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Abstract
The magnetic flux density component perpendicular to the broad tape face
was mapped by miniature Hall probes in the vicinity of a striated
YBCO-coated tape at frequencies of external magnetic field from 21 to
400 Hz, applied perpendicularly to the tape surface. For reasons of modelling
the coupling current behaviour in tapes with a conductive substrate, we
amplified the coupling current–amplitude by soldering 25 μm thick copper
foil on the top of the filaments. The aim of this procedure was to decrease the
transverse resistivity of the tape. The longitudinal components of the total
currents flowing in the tape were calculated by an inverse method from the
field map corresponding to the zero phase of the applied field. The diffusion
lengths, characterizing the flux penetration into the tape, were determined for
the respective frequencies. The experimentally determined diffusion length is
in good accordance with theoretical models. While at 21 Hz both weak
coupling currents and distinctive hysteretic currents of individual filaments
are observed, at 400 Hz the coupling currents are predominant in this YBCO
tape.

(Some figures in this article are in colour only in the electronic version)

A significant amount of development has occurred for high-
temperature superconducting (HTS) wires and more recently
especially for the second-generation (2G) YBa2Cu3O7−x

(YBCO)-coated conductor. In order to make these HTS tapes
suitable for AC applications, a part of this developmental
effort has gone toward studies leading to a more AC-tolerant
architecture for the conductor [1]. As part of this, a variety
of techniques are widely used for characterization of the
electromagnetic properties of the HTS tapes, such as AC
loss, current density versus electric field (E–J ), resistivity
versus temperature (R–T ) measurements, etc. However, these
techniques are typically integral methods describing the tapes
as a whole on the scale of several millimetres or more. Much
less is known about the behaviour of these tapes on a sub-
millimetre scale when exposed to an external AC magnetic

3 Author to whom any correspondence should be addressed.

field, where local variations of the critical current or the
magnetic self-field may occur.

As already determined, the sample length plays an
important role in AC loss measurements. While the total
hysteresis power loss is proportional to the sample length,
the total coupling loss in a twisted multifilament conductor
increases as the square of the twist pitch length l2

t [2]. A linear,
not twisted multifilament tape with the length of L behaves like
a twisted one with twist pitch lt = 2L . To reduce the coupling
losses in an application, the multifilament HTS tape must be
either physically twisted or have a ‘twist’ of the filaments
incorporated into the conductor’s architecture [3, 4]. In a
rectangular non-twisted multifilament sample, the coupling
currents at the end of the tape will flow in a direction
perpendicular to the filaments. In the central section of the
tape, however, the coupling currents flow in the direction
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Figure 1. Electron microscope microphotograph of the
YBCO-coated conductor tape in lateral cross-section showing the
layer structure of the original tape, as well as the additional copper
layer soldered with indium solder and reducing thus the transverse
resistivity; approximate layer thicknesses are as follows: substrate
50 μm, YBCO 2 μm, silver cap layer 3 μm, Cu foil 25 μm, indium
solder 15 μm.
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Figure 2. HPM measurement of the z-component of the magnetic
self-field due to magnetization currents induced in the tape by AC
external magnetic field, perpendicular to the broad tape face.

parallel to the filaments’ axis. The measurement techniques,
such as the time integration of the pick-up coil voltage [5], the
temperature increase of the sample due to the self-heating [6],

(a) (b) (c)

Figure 3. Magnetic self-field map Bsf,z(x, y) generated by magnetization currents induced in the tape exposed to external AC field;
measurement by Hall probe in the distance z = 0.35 mm above the tape. x is the coordinate across the tape (in millimetres), the y-axis (at the
left side of the figures) gives the coordinate in the direction along the tape in millimetres, and the colour bar represents the amplitude of the
z-component’s magnetic flux density Bz (in mT). The phase of the external field φ = ωt = 0. Lateral self-field profiles along the horizontal
lines for y = 16 mm are shown in figure 5(a). (a) Frequency 21 Hz, (b) frequency 165 Hz and (c) frequency 400 Hz.

or a technique based on AC susceptibility measurements [7],
provide only the total loss value. Due to the complex current
paths in an actual filamentary tape, it is important to verify the
simplified theoretical predictions by an appropriate experiment
giving information also on the local scale. Magneto-optical
imaging (MOI) and Hall probe mapping (HPM) are useful
tools in this respect. MOI was already used in experiments
focused on the current density distribution in YBCO at
frequencies up to 1 kHz [8]. The advantages of HPM compared
to MOI are the higher sensitivity of the Hall probe sensors
to the magnetic field, higher versatility, and a lower cost
of the experimental device. In this work, we focused on
the visualization of both the magnetization and the coupling
currents in a special filamentary sample of YBCO-coated
conductor.

A multifilamentary YBCO-coated conductor sample with
the dimensions 4 × 40 mm2 was prepared for this investigation
from a uniform 12 mm wide coated conductor provided by
SuperPower Inc [9]. In this conductor, the ∼1 μm thick
YBCO layer is deposited on 50 μm thick Ion Beam Assisted
Deposition (IBAD) Hastelloy substrate and covered with the
silver cap layer about 3 μm thick. The non-superconducting
grooves segregating the superconducting stripes were cut by
laser ablation as described in [10], and the sample was
annealed in flowing oxygen afterwards [11]. The distance
between the grooves is 0.5 mm and their width is about
30 μm. Before striation the critical current of the 12 mm
wide conductor was about 160 A. The AC loss measurements
in the frequency range from 28.5 to 203 Hz indicate that the
coupling loss in the sample is quite small, as the loss per cycle
at given amplitude of the external magnetic field, Bext, was
practically frequency independent. This is the result of post-
ablation oxygenation that leads to formation of high-resistivity
oxides (NiO, Cr2O3, etc) in the grooves [11]. For the purpose
of this investigation the coupling currents were amplified to
allow their spatial determination by deliberate reduction of
the interfilamentary resistance. A 25 μm thick Cu foil was
soldered to the surface of the silver cap layer (see figure 1).
Thus, the coupling currents were able to flow between the
superconducting filaments through the copper overlayer [12].
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(a) (b) (c)

(d) (e)       (f)

Tape end Tape end Tape end 

Figure 4. Inversely calculated map showing longitudinal component of coupling currents. The axes x and y are spatial coordinates (in mm),
and the colour bar represents the amplitude of the coupling current y-component per unit width Iy in (A cm−1). Note that at the tape ends the
longitudinal (Iy)-component decreases to zero; this is due to the increase of the transverse (Ix )-component of the current loops. One can see
in (b), (e) and in (c), (f) that at frequencies 165 and 400 Hz, the coupling currents predominate over hysteretic currents, while at 21 Hz,
see (a), (d), the coupling currents play only a minor role. Lateral current profiles along the horizontal lines y = 16 mm are shown on
figures 5(b). (a)–(c) Calculation for frequencies 21, 165 and 400 Hz, respectively, (d)–(f) schematic magnetization currents paths deduced
from (a)–(c) calculations.

Miniature Hall probes (developed in our laboratory, HHP-
VU) with a sensitivity of ∼150 mV T−1 and an active area
of 50 by 50 μm2 were used for the field mapping. The
experimental system used to perform the HPM measurements
is described elsewhere [13]. The system provided a harmonic
signal Be = Bmax sin(ωt) with Bmax = 33.5 mT. By using
a triggered-signal data acquisition technique for the selected
phase of the AC field [13], we measured a series of lateral
magnetic self-field profiles Bsf,z = f (x), where x is the
direction perpendicular to the superconducting stripes. The
measurements were repeated by shifting the Hall sensors along
the stripes with a spatial step of �y = 1 mm from one tape
end to the other; see figure 2. At the tape ends, the step �y
was reduced to �y = 0.5 mm to track changes of the self-
field. The distance of the Hall probe sensor from the tape’s
surface was �z = 0.35 mm. The AC magnetic profiles were
measured at the fixed phase of the external field φ = ωt = 0;
they correspond to zero value of the external field, when the
coupling current is at its maximum. The maps of Bsf,z(x, y)

measured at frequencies 21, 165 and 400 Hz are shown in
figure 3.

From these results we calculated the lateral distribution
of the local sheet current values, Is,y (x), at each position
y, by solving the inverse problem. The details of the
method used are described in [14]. The number of elements
used to calculate Is,y (x) was 85. The paths of the
magnetization currents determined by the calculations using
the data from figures 3(a)–(c) are shown in figures 4(a)–(c).
The magnetization current paths deduced from the calculations
in figures 4(a)–(c) are schematically shown in figures 4(d)–
(f). The magnetic field profiles Bsf,z(x) and the current
profiles Is,y (x) at the position y = 16 mm are shown
in figures 5(a) and (b), respectively. For y-values close to
the sample centre

∑
i Is,y(xi ) = 0, as no transport current

flows in the sample. The mean of lateral sum of absolute
values, 1/n

∑n
i=1 |Is,y(xi )| = Iy , equals the total induced sheet

current’s longitudinal component at longitudinal position y.
This value is supposed to be maximum in the centre of the
tape and decreasing to the ends in favour of the complementary
transverse sheet current component, which is supposed to be
maximum at the tape’s ends, with amplitude equal to the
longitudinal component Iy at the tape’s centre.
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Figure 5. The measured lateral self magnetic field profiles Bsf,z (x) and corresponding lateral current profiles Iy (x) along the horizontal line
y = 16 mm from figures 3(a)–(c) and figures 4(a)–(c) for the frequencies 21, 165 and 400 Hz, respectively.
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Figure 6. Data normalized and fitted by an exponential curve for
each respective frequency, 21, 165 and 400 Hz. On the y-axis are
normalized data representing exponential decay of the transverse
current component from the tape’s end.

The magnetic flux penetration into the tape can be
quantitatively described by means of the diffusion length
which is the length characterizing the exponential decay of
the complementary transverse component of coupling current
amplitude from the tape ends [15]:

ld = 1
√

μ0ωnp ln(1 + 2n⊥)/2πρtr
, (1)

where ω is the angular frequency, ω = 2π f ; np and n⊥ stand
for number of filaments parallel or perpendicular to the broad
tape side, respectively; and ρtr is the transverse resistivity. The
amplitude of the transverse component of the coupling currents
for a given distance from the tape end can be deduced from the
decrease in the longitudinal component of the current. While
in the tape’s central region the longitudinal current component
is maximal and essentially equals the net coupling current, it
continuously decreases to zero value at the tape ends, (Iy →
0). This decrease is compensated with an increase in the
transverse component Ix = f (y) towards the tape ends. The
Ix (y)-component (complementary to Iy) decays from the tape
ends following the exponential function

Ix = k · exp{−y/ ld}, (2)

where ld is the diffusion length.
The diffusion lengths (ld) were determined from the

HPM experiments based on equation (2). Based on curve
fitting of the data shown in the figure 6, we determined the
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Figure 7. Measured data of frequency dependence of the diffusion
length compared to the theory, calculated for the following value of
transverse resistivity: ρtr = 5.66 × 10−9 � m.

diffusion lengths ld to be 8.7 mm, 3.5 mm and 2.1 mm for
21 Hz, 165 Hz and 400 Hz, respectively. As expected from
equation (1), the diffusion length decreases with increasing
frequency; see figure 7. Using the expression R = ld( f )/ ld

(21 Hz), the ratios of the diffusion length for each frequency
with respect to the diffusion length at the lowest frequency,
i.e. 21 Hz, are R165Hz = 0.40 and R400Hz = 0.24. This is
in good agreement with the theoretical square root frequency
dependence suggested by equation (1), namely R165Hz = 0.36
and R400Hz = 0.23.

From the experimentally determined diffusion lengths, we
calculated the transverse resistivity using equation (1), taking
np and n⊥ to be 6 and 1, respectively, for our sample. The
mean value of the transverse resistivity determined from the
measurements was ρtr mean = 5.66 × 10−9 � m. This value
compares favourably with the copper foil resistivity measured
at LN2 temperature, ρ(77 K) = 2.48 × 10−9 � m.

In conclusion, we have reconstructed the current paths
of the longitudinal (Iy)-component of coupling currents in a
striated YBCO conductor with non-striated copper stabilizer.
This was accomplished by solving the inverse problem and
thus determining the induced coupling currents from the
measured magnetic field. The results obtained for three
particular frequencies (21, 165 and 400 Hz) confirm the
theoretical prediction of the f −1/2 frequency dependence of
the diffusion length. For the lowest frequency of 21 Hz, we
observed weak coupling currents between the filaments with
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dominant hysteretic currents. At higher frequencies of 165
and 400 Hz the superconducting filaments are almost fully re-
coupled by the currents flowing through the copper stabilizer.
The resistivity of the coupling medium obtained from the
values of the diffusion length by inverting equation (2) is close
to that of copper.
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