712CD
75TH MORSS CD Cover Page

If you would like your presentation included in the 75th MORSS Final Report CD it must:

1. Be unclassified, approved for public release, distribution unlimited, and is exempt from U.S. export licensing and other export approvals including the International Traffic in Arms Regulations (22CFR120 et seq.);
2. Include MORS Form 712CD as the first page of the presentation;
3. Have an approved MORS form 712 A/B and
4. Be turned into the MORS office no later than: DEADLINE: 14 June 2007 (Late submissions will not be included.)

Author Request (To be completed by applicant) - The following author(s) request authority to disclose the following presentation in the MORSS Final Report, for inclusion on the MORSS CD and/or posting on the MORSS web site.

Name of Principal Author and all other author(s):
Kurt Willstatter, Richard "Andy" Campbell, and Kirk L. Hoy

Principal Author’s Organization and address:
Summit Engineering Group
102 Paul Mellon Court, Suite 1
Waldorf, MD 20602

Phone: (301) 645-3535
Fax: (301) 645-3950
Email: kwillstatter@summit-group.com

Please use the same title listed on the 75TH MORSS Disclosure Form 712 A/B. If the title of the presentation has changed please list both.

Original title on 712 A/B:
Modeling the Life Cycle Cost of Protecting US Commercial Aircraft

If the title was revised please list the original title above and the revised title here:

PRESENTED IN:
WORKING GROUP: 4, 19, 27, 30
COMPOSITE GROUP:
SPECIAL SESSION 1:
SPECIAL SESSION 2:
SPECIAL SESSION 3:
DEMONSTRATION:
POSTER:
TUTORIAL:
OTHER:

This presentation is believed to be: Unclassified, approved for public release, distribution unlimited, and is exempt from U.S. export licensing and other export approvals including the International Traffic in Arms Regulations (22CFR120 et seq.)
Modeling The Life Cycle Cost Of Protecting Us Commercial Aircraft

Summit Engineering Group Waldorf, MD 20602

Approved for public release, distribution unlimited

Modeling the Life Cycle Cost of Protecting US Commercial Aircraft

Presentation to:
75th MORS Symposium
Annapolis, MD
12-14 June 2007

By: Mr. Kurt Willstatter
Mr. Richard “Andy” Campbell
Summit Engineering Group
102 Paul Mellon Court, Suite 1
Waldorf, Maryland 20602
301-645-3535 (-3950 fax)
Kwillstatter@summit-group.com
Acampbell@summit-group.com
www.summit-group.com

Views, opinions, and/or findings contained in this briefing are those of the authors and should not be construed as an official Department of Homeland Security position, policy or decision unless so designated by other official documentation. No official endorsement should be inferred.
Preface

- This briefing focuses on the Life Cycle Cost (LCC) estimate developed by Summit Engineering Group for the Counter-MANPADS (CM) Program managed by the Department of Homeland Security (DHS)
- The completeness and accuracy of the LCC estimate was a key requirement

The Risk of Any Specific Threat is NOT Addressed Here
Acronyms

- A/C = Aircraft
- CM = Counter-MANPADS & Countermeasures
- DHS = Department of Homeland Security
- DIRCM = Directed Infrared Countermeasures
- DT&E = Developmental Test and Evaluation
- ECP = Engineering Change Proposal
- LCC = Life Cycle Cost
- LOE = Level of Effort
- LRU = Line Replicable Unit
- MFHBF = Mean Flight Hours Between Failure
- NB = Narrow Body
- O&S = Operations and Support
- OEM = Original Equipment Manufacturer
- OGC = Other Government Costs
- OT&E = Operational Test and Evaluation
- P^3I = Pre-Planned Product Improvement
- PM = Program Management
- PMP = Prime Mission Product
- RDT&E = Research, Development, Test, and Evaluation
- SE = System Engineering
- ST&E = System Test and Evaluation
- STC = Supplemental Type Certificate
- T_1 = First Unit
- WB = Wide Body

Views, opinions, and/or findings contained in this briefing are those of the authors and should not be construed as an official Department of Homeland Security position, policy or decision unless so designated by other official documentation. No official endorsement should be inferred.
Discussion Topics

- Background
- LCC Estimate
 - Goals
 - Risks
 - Risk Mitigation
- Key Assumptions
- LCC Estimate
 - Summary
 - RDT&E Phase
 - Production & Deployment Phase
 - Operations & Support (O&S) Phase
 - De-Modification & Disposal Phase
- Risk Insights
- Related Activities
- Questions

Views, opinions, and/or findings contained in this briefing are those of the authors and should not be construed as an official Department of Homeland Security position, policy or decision unless so designated by other official documentation. No official endorsement should be inferred.
Background

- DHS Science and Technology (S&T) Directorate tasked with demonstrating the technical feasibility, assessing life cycle costs, and evaluating the effectiveness of protecting commercial aircraft against the threat of Man-Portable Air Defense Systems (MANPADS)

- Primarily focused on mature Directed Infrared Countermeasure (DIRCM) systems
 - Self-contained pod
 - Distributed installation

- Complex problem due to
 - Multitude of aircraft types (Wide-body vs. Narrow-body)
 - Varying flight profiles as a function of aircraft type
 - Multiple operating environments (Cargo vs. Passenger)
 - Potentially large lost revenue costs for installations that fall outside normal maintenance cycles

Views, opinions, and/or findings contained in this briefing are those of the authors and should not be construed as an official Department of Homeland Security position, policy or decision unless so designated by other official documentation. No official endorsement should be inferred.
Aircraft Demographics

- **Wide body (WB)**
 - Multi-aisle
 - Longer flights at altitude
 - More passengers per aircraft
- **Narrow body (NB)**
 - Single-aisle
 - Shorter, more frequent flights
 - Fewer passengers per aircraft, but higher total passenger volume
- **Cargo is ~1,000 of total**

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Type</th>
<th>Fleet Size*</th>
</tr>
</thead>
<tbody>
<tr>
<td>777</td>
<td>WB</td>
<td>122</td>
</tr>
<tr>
<td>767</td>
<td>WB</td>
<td>334</td>
</tr>
<tr>
<td>747</td>
<td>WB</td>
<td>108</td>
</tr>
<tr>
<td>DC/MD10</td>
<td>WB</td>
<td>99</td>
</tr>
<tr>
<td>MD11</td>
<td>WB</td>
<td>74</td>
</tr>
<tr>
<td>A300</td>
<td>WB</td>
<td>140</td>
</tr>
<tr>
<td>A310</td>
<td>WB</td>
<td>64</td>
</tr>
<tr>
<td>A330</td>
<td>WB</td>
<td>29</td>
</tr>
<tr>
<td>A318/19</td>
<td>NB</td>
<td>279</td>
</tr>
<tr>
<td>A320/21</td>
<td>NB</td>
<td>368</td>
</tr>
<tr>
<td>717/727</td>
<td>NB</td>
<td>271</td>
</tr>
<tr>
<td>737</td>
<td>NB</td>
<td>1241</td>
</tr>
<tr>
<td>757</td>
<td>NB</td>
<td>617</td>
</tr>
<tr>
<td>DC8,9/MD80/90</td>
<td>NB</td>
<td>703</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4,449</td>
</tr>
</tbody>
</table>

* Circa 2005 ** Excludes ~1,600 regional jets

Views, opinions, and/or findings contained in this briefing are those of the authors and should not be construed as an official Department of Homeland Security position, policy or decision unless so designated by other official documentation. No official endorsement should be inferred.
LCC Estimate Goals

- Comprehensive accounting of all foreseeable costs
- Explicitly address key LCC parameters
 - STCs and follow-on P3I/testing
 - Production rate tooling/test equipment (& for depot)
 - Investments to achieve reliability growth
 - CM system weight/drag impacts to fuel consumption
- Consistent approaches among vendors’ LCC estimates so individual results could be leveraged
- Exercise LCC across various quantity profiles

The goal was an independent, vendor-neutral Cost Estimate at about the 70% confidence level
Civil Counter-MANPADS Cost Elements

- Hardware (Production)
 - Aircraft Mod/Install (Airframe, Power, Display, etc.)
 - Counter-MANPADS (Sensors, Processing, Negation H/W & S/W)
- Other Cost Elements
 - I&A/T
 - SE/PM
 - Non-Recurring “Start up”
 - Gov’t Furnished Equipment (GFE)
 - First Destination Transportation
 - Allowances for Change
 - Warranties

PLUS
- RDT&E
 - Design
 - Engineering
 - Software
 - Prototypes
 - System Test & Evaluation
 - SE/PM
 - Other
 - OGCs
- FAA Certification
- Facility Construction
- Disposal

FLYAWAY COST
SYSTEM COST
PROCUREMENT COST
PROGRAM ACQUISITION COST
LIFE CYCLE COST (LCC)
TOTAL OWNERSHIP COST (TOC)

Views, opinions, and/or findings contained in this briefing are those of the authors and should not be construed as an official Department of Homeland Security position, policy or decision unless so designated by other official documentation. No official endorsement should be inferred.
LCC Estimate Risks

- Inaccurate assumptions
- Vendor optimism
 - Initial system reliability and reliability growth
 - Learning curves
 - Flight duration across various aircraft types
- Uncertain policies
 - Export controls
 - Ground notification requirements
 - Alarm response
- Deployment timeframe

Views, opinions, and/or findings contained in this briefing are those of the authors and should not be construed as an official Department of Homeland Security position, policy or decision unless so designated by other official documentation. No official endorsement should be inferred.
LCC Estimate Risk Mitigation

Summit Engineering Group role was to …

- Develop comprehensive Cost Ground Rules and Assumptions
 - Promulgated and updated at each major program milestone
- Interface with major air carriers to discuss and socialize program assumptions
- Conduct intensive research into US commercial flight demographics
- Interface with vendors on developing detailed Manufacturing Rate Assessments
Key Assumptions

- Quantity of CM Systems and Aircraft Modified
- Production start & initial deployment in FY08
- 20-year service life
- 2-level maintenance (Airport and OEM/Depot)
- Flights demographics
 - 350 Days per Year
 - Narrow body (NB), ~5 flights/ day, ~2.3 hours/ flight
 - Wide body (WB), ~2 flights/ day, ~6.8 hours/ flight
- $2.00/gallon (BY03) applied to CM system induced fuel consumption
- >525 A-kit installs/ year could a ‘special visit’ penalty
LCC Estimate – Summary

<table>
<thead>
<tr>
<th>LCC Phase</th>
<th>% of Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. RDT&E</td>
<td>1.5%</td>
</tr>
<tr>
<td>2. Production & Deployment</td>
<td>23.4%</td>
</tr>
<tr>
<td>3. O&S</td>
<td>73.9%</td>
</tr>
<tr>
<td>4. De-Mod & Disposal</td>
<td>1.1%</td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

- RDT&E – FY08 to FY18
- Production & Deployment – FY08 to FY17
- O&S – FY08 to FY34
- De-mod & Disposal – FY27 to FY35
LCC Estimate – RDT&E Phase

<table>
<thead>
<tr>
<th>WBS Element</th>
<th>Phase%</th>
<th>LCC%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 PMP</td>
<td>17.4%</td>
<td>0.3%</td>
</tr>
<tr>
<td>1.2 A/C Integr</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>1.3 Grd Sys Imp</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>1.4 ST&E</td>
<td>56.2%</td>
<td>0.8%</td>
</tr>
<tr>
<td>1.5 SE/PM</td>
<td>14.9%</td>
<td>0.2%</td>
</tr>
<tr>
<td>1.6 Support</td>
<td>1.1%</td>
<td>0.0%</td>
</tr>
<tr>
<td>1.7 Data</td>
<td>1.1%</td>
<td>0.0%</td>
</tr>
<tr>
<td>1.8 ECP</td>
<td>4.5%</td>
<td>0.1%</td>
</tr>
<tr>
<td>1.9 OGC</td>
<td>4.8%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
<td>1.5%</td>
</tr>
</tbody>
</table>

- 73.6% of Total RDT&E $ is for PMP and ST&E (shaded areas)
- Prime Mission Product (PMP)
 - ~LOE/Yr for Block Design Upgrades
- System Test & Evaluation (ST&E)
 - Periodic DT&E/OT&E to Support PMP block upgrades
 - LOE/Test Cycle & Test Materials
 - New/Amendment STCs each vendor
 - X quantity New STC
 - Y quantity Amendment STC

Strongest Influences or Highest Risk
- **PMP** – Extent of future design updates
- **ST&E** – # and Extent of STCs

Views, opinions, and/or findings contained in this briefing are those of the authors and should not be construed as an official Department of Homeland Security position, policy or decision unless so designated by other official documentation. No official endorsement should be inferred.
LCC Estimate – Production/Deployment Phase

<table>
<thead>
<tr>
<th>WBS Element</th>
<th>Phase%</th>
<th>LCC%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 PMP</td>
<td>61.8%</td>
<td>14.5%</td>
</tr>
<tr>
<td>2.2 A/C Integr</td>
<td>3.6%</td>
<td>0.8%</td>
</tr>
<tr>
<td>2.3 Grd Sys Imp</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>2.4 ST&E</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>2.5 SE/PM</td>
<td>8.3%</td>
<td>2.0%</td>
</tr>
<tr>
<td>2.6 Supportability</td>
<td>20.3%</td>
<td>4.7%</td>
</tr>
<tr>
<td>2.7 Data</td>
<td>1.2%</td>
<td>0.3%</td>
</tr>
<tr>
<td>2.8 ECP</td>
<td>1.9%</td>
<td>0.4%</td>
</tr>
<tr>
<td>2.9 OGC</td>
<td>2.9%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
<td>23.4%</td>
</tr>
</tbody>
</table>

- **85.7% of Production/Deployment $** is for PMP, A/C Integration and Supportability (shaded areas)
- **Prime Mission Product (PMP)**
 - Detailed T₁ (Labor/Mat’l) and Learning Curve across Each LRU
- **Aircraft (A/C) Integration**
 - Assumed no Learning for Modification/Install Labor based on numerous organizations performing them across time
- **Supportability**
 - Manufacturing Rate Assessment: Special Tooling/Prod Rate SE/Repair Station SE
 - Annual Quantity drives demand

Strongest Influences or Highest Risk
- PMP – Assumed learning curve
- A/C Integration & Supportability – System deployment qty/rate

Views, opinions, and/or findings contained in this briefing are those of the authors and should not be construed as an official Department of Homeland Security position, policy or decision unless so designated by other official documentation. No official endorsement should be inferred.
LCC Estimate – Operations & Support Phase

<table>
<thead>
<tr>
<th>WBS Element</th>
<th>Phase%</th>
<th>LCC%</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Mission Per</td>
<td>3.2%</td>
<td>2.4%</td>
</tr>
<tr>
<td>3.2 UL Conspmp</td>
<td>56.1%</td>
<td>41.4%</td>
</tr>
<tr>
<td>3.3 I/M Maint</td>
<td>16.1%</td>
<td>11.9%</td>
</tr>
<tr>
<td>3.4 Depot Maint</td>
<td>8.9%</td>
<td>6.6%</td>
</tr>
<tr>
<td>3.5 Ktr Support</td>
<td>3.5%</td>
<td>2.6%</td>
</tr>
<tr>
<td>3.6 Sustain Spt</td>
<td>8.8%</td>
<td>6.5%</td>
</tr>
<tr>
<td>3.7 Indirect Spt</td>
<td>1.4%</td>
<td>1.0%</td>
</tr>
<tr>
<td>3.8 ECP</td>
<td>0.5%</td>
<td>0.4%</td>
</tr>
<tr>
<td>3.9 OGC</td>
<td>1.5%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
<td>73.9%</td>
</tr>
</tbody>
</table>

- 81.1% of Total O&S $ is for Unit Level Consumption, Inter. Maint. and Depot Maint. (shaded areas)
- Unit Level (UL) Consumption
 - CM System induced Weight/Drag Impacts on Fuel Use across Aircraft Types (done for every discrete aircraft type) *Ex of how risk/uncertainty reduced*
- Intermediate Maintenance (I/M)
 - Unscheduled Repairs—due to MFHBF/year across each LRU—times $/Repair
- Depot Maintenance
 - Periodic CM System Tech Refresh

Strongest Influences or Highest Risk
- Unit Level Consumption – Assumed fuel cost, induced drag
- Maintenance – System reliability
LCC Estimate – De-Mod/Disposal Phase

<table>
<thead>
<tr>
<th>WBS Element</th>
<th>Phase%</th>
<th>LCC%</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 De-Mod</td>
<td>72.2%</td>
<td>0.8%</td>
</tr>
<tr>
<td>4.2 Disposal</td>
<td>27.8%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
<td>1.1%</td>
</tr>
</tbody>
</table>

- **De-Modification**
 - Final removal of the Aircraft Modifications (e.g., A-kit)
 - 100% of original install time
 - Final removal of CM Equipment (e.g., B-kit)
 - 50% of original install time

- **Disposal**
 - All disposal costs of A-kit and B-kit material

Strongest Influences or Highest Risk
- De-Modification – % of labor effort from original installation

Views, opinions, and/or findings contained in this briefing are those of the authors and should not be construed as an official Department of Homeland Security position, policy or decision unless so designated by other official documentation. No official endorsement should be inferred.
LCC Estimate – Sensitivities

<table>
<thead>
<tr>
<th>Attribute</th>
<th>+ / - %</th>
<th>Low</th>
<th>LCC</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>$/STC (New/Amend)</td>
<td>20</td>
<td>0.998</td>
<td>1.000</td>
<td>1.002</td>
</tr>
<tr>
<td>CM System T₁</td>
<td>15</td>
<td>0.952</td>
<td>1.000</td>
<td>1.048</td>
</tr>
<tr>
<td>CM System Learning Curve</td>
<td>5</td>
<td>0.852</td>
<td>1.000</td>
<td>1.255</td>
</tr>
<tr>
<td>Fuel ($/gal)</td>
<td>25</td>
<td>0.903</td>
<td>1.000</td>
<td>1.097</td>
</tr>
<tr>
<td>Fleet Drag (%)</td>
<td>20</td>
<td>0.941</td>
<td>1.000</td>
<td>1.059</td>
</tr>
<tr>
<td>Installed Weight (lbs)</td>
<td>10</td>
<td>0.991</td>
<td>1.000</td>
<td>1.009</td>
</tr>
<tr>
<td>Initial Reliability (MFHBF, WB/NB)</td>
<td>25</td>
<td>0.970</td>
<td>1.000</td>
<td>1.050</td>
</tr>
<tr>
<td>Order Quantity (For Illustrative Case)</td>
<td>5</td>
<td>0.958</td>
<td>1.000</td>
<td>1.040</td>
</tr>
</tbody>
</table>

- Costs normalized to ‘Base Case’
- Sensitivities are shown as being independent of each other
 - Correlations could result in significantly different impacts (e.g., an increase in fuel cost coupled with higher than projected drag effects)
Risk Insights

- Highest Estimating Risk
 - System Deployment Quantity and Rate
 - Fuel Cost
 - System Reliability
 - Learning Curves

- Other ‘Influences’
 - NRE Cost for Each Aircraft Type
 - Technology Refresh Costs
 - Installation Weight (unless talking Regional Jets)
 - First Unit Cost (e.g., T₁)
Related Activities

- Deployment decision influenced by probability of threat and applicable cost/benefit analyses
- USC CREATE has done groundbreaking work on the economic impacts of a MANPADS attack
 - Avoiding the economic impact is a benefit
- Ongoing threat assessments are crucial to evaluating the likelihood of a MANPADS attack
- Metrics for quantifying the level of protection afforded by a given deployment alternative
 - More than just number of planes, number of flights, and/or number of passengers

Views, opinions, and/or findings contained in this briefing are those of the authors and should not be construed as an official Department of Homeland Security position, policy or decision unless so designated by other official documentation. No official endorsement should be inferred.
Questions?
Presenter Biographies

- **Mr. Kurt Willstatter**
 - Sr. Principal at Summit Engineering Group
 - Certified Cost Estimator/Cost Analyst (SCEA)
 - BA Biology (Texas A&M)
 - MS Operations Research (Naval Post Graduate School)
 - 15+ years of systems engineering, modeling & simulation, cost estimation experience
 - 20 years of Navy operations and systems engineering

- **Mr. Richard “Andy” Campbell**
 - Associate at Summit Engineering Group
 - Certified Cost Estimator/Cost Analyst (SCEA)
 - BS Mathematics, BA Economics (Rhodes College)
 - 4+ years of cost estimation, program analysis/management, and effectiveness modeling experience