If you would like your presentation included in the 75th MORSS Final Report CD it must:

1. Be unclassified, approved for public release, distribution unlimited, and is exempt from U.S. export licensing and other export approvals including the International Traffic in Arms Regulations (22CFR120 et seq.);
2. Include MORS Form 712CD as the first page of the presentation;
3. Have an approved MORS form 712 A/B and
4. Be turned into the MORS office no later than: DEADLINE: 14 June 2007 (Late submissions will not be included.)

Author Request (To be completed by applicant) - The following author(s) request authority to disclose the following presentation in the MORSS Final Report, for inclusion on the MORSS CD and/or posting on the MORS web site.

<table>
<thead>
<tr>
<th>Name of Principal Author and all other author(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greg Steeger and Edward Viale</td>
</tr>
</tbody>
</table>

Principal Author's Organization and address:
Office of Aerospace Studies (OAS)
2050A 2nd St SE
Kirtland AFB, NM 87117

Phone: 505-846-8103
Fax: 505-846-5558
Email: Gregory.steeger@kirtland.af.mil

Please use the same title listed on the 75th MORSS Disclosure Form 712 A/B. If the title of the presentation has changed please list both.

Original title on 712 A/B: Aircraft Countermeasures (ACCM) Human Effects Test Analysis

If the title was revised please list the original title above and the revised title here:

PRESENTED IN:

<table>
<thead>
<tr>
<th>WORKING GROUP:</th>
</tr>
</thead>
<tbody>
<tr>
<td>WG 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPOSITE GROUP:</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSTER:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECIAL SESSION 1:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUTORIAL:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECIAL SESSION 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTHER:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECIAL SESSION 3:</th>
</tr>
</thead>
</table>

This presentation is believed to be: Unclassified, approved for public release, distribution unlimited, and is exempt from U.S. export licensing and other export approvals including the International Traffic in Arms Regulations (22CFR120 et seq.)
<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 JUN 2007</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Countermeasures (ACCM) Human Effects Test Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Aerospace Studies (OAS) 2050A 2nd St SE Kirtland AFB, NM 87117 7320-L Parkway Drive Hanover, MD 21076</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>unclassified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>unclassified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>unclassified</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UU</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>
No Beam -- Shot Scatter Plot

- X Coordinates (ft)
- Y Coordinates (ft)

Scatter plot showing data points distribution.
Aircraft Counter Measures (ACCM)

Human Effects (HE) Test Analysis

Capt Greg Steeger

9 Apr 07
Overview

• ACCM Background
• Test Details
• Data Collection
• Test Analysis Methodology
• Findings
• Lessons Learned and Conclusion
ACCM Background

- ACCM is a Warfighter Rapid Acquisition Program (WRAP) involving AFSOC/A5T, AFRL/DE, AFRL/HE, and Boeing Scorpworks Lab
- Laser system designed to provide significant glare source
Test Details

• **Main purpose:** to determine if the ACCM laser system works as an effective counter measure against small arms fire

• **Three test phases**
 – No laser (no beam)
 – Low power level
 – High power level

• **Players**
 – Helicopter gunner
 – Shooters
Proposed Data Collection Tools

- Video feeds
- Shot placement software
- Sensor suite
 - Accelerometer (rifle recoil), optical (MILES/ACCM beam), data logger (GPS position, time etc.)
- Shooter Data
 - Interviews and surveys
- Gunner Data
HE Test Methodology

• Measures Of Performance (MOPs) considered
• Comparing test phases
• What we wanted to do with our data
• What we were able to do with our data
MOPs Considered

- Hit ratio on the helo
 - No. of hits divided by shots fired
 - A hit was designated a shot within 11’ of the center of the gunner’s window
- Average miss distance and Circular Error Probable (CEP)
- Average number of aggressors killed
- Average number of near-misses
Comparing Test Phases

• Compare the MOPs captured via statistical tests
 – Large sample hypothesis tests
 – Determine if shooters performance was adversely affected in engagements with the ACCM laser system

• Analyze survey responses
 – Assigned a score to each response and looked at averages and standard deviation
 – Did not look at non-parametric statistics
Data – Hopes vs. Reality

• Hopes
 – Analyze each shooter’s performance individually
 • Shooter variability not an issue
 – Shot placement software would efficiently “score” the shots
• Reality
 – Without sensor suite could not analyze the shooter’s performance individually (assume ea. shooter the same)
 – Without shot placement software all of the videos had to be watched and scored by “hand”
Findings

How do you conduct meaningful analysis based on only 42% of the data points?

<table>
<thead>
<tr>
<th></th>
<th>No Beam</th>
<th>0.5% MPE</th>
<th>1% MPE</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Fired</td>
<td>3217</td>
<td>2162</td>
<td>3034</td>
<td>8413</td>
</tr>
<tr>
<td>Total Found</td>
<td>1406</td>
<td>859</td>
<td>1272</td>
<td>3537</td>
</tr>
<tr>
<td>% Found</td>
<td>0.4371</td>
<td>0.3973</td>
<td>0.4192</td>
<td>0.4204</td>
</tr>
</tbody>
</table>

- Only found 42% of the shots
 - Remaining shots were either not seen/captured on the video feeds or missed the hangar altogether
 - Non-representative sample

- Most of MOPs could not be used
 - Except for hit-ratio, kills, and near-misses
Shooter Accuracy

No Beam Hits

0.5% MPE Hits

1% MPE Hits

Low Power Hits

High Power Hits
Shooter Accuracy

<table>
<thead>
<tr>
<th></th>
<th>No Beam</th>
<th>Low Pwr</th>
<th>High Pwr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hits</td>
<td>314</td>
<td>117</td>
<td>274</td>
</tr>
<tr>
<td>Shots Fired</td>
<td>3217</td>
<td>2162</td>
<td>3034</td>
</tr>
<tr>
<td>Hit Ratio</td>
<td>0.0976</td>
<td>0.0541</td>
<td>0.0903</td>
</tr>
</tbody>
</table>

- Hit ratio is statistically smaller in the Low Power test phase
- Looked into this further by analyzing hit ratio at the engagement level
 - No. of hits per engagement
 - No. of engagements with 5, 10, 15, or 20+ hits
 - Analyzed this for all of the engagements and a random sampling of engagements
- Consistent results
Findings

• One other factor changed with the power of the laser (which we were not made aware of until late into the analysis)
 – Spot size went from 29.5’ in diameter in High Power test phase to 42.7’ in diameter in the Low Power test phase
 – A difference of 744 square feet (or double the area)

• So we conclude that the laser’s spot size is the most important factor, but more testing needs to be done to confirm this
Findings

• Shooters killed and near-misses by gunner
 – A lot more kills and near-misses from the No Beam to the High Power test phase
 – Explanation: Gunner’s are used to aiming using tracer rounds, cannot do that when using blanks
 • Laser became their aiming device

• Overall our findings were not inherently conclusive
 – Missing a lot of data
 – Need data on each shooter’s performance
 – Better way to score/find the shooter’s shots
Lessons Learned

- Test environment is ever changing
 - Flexibility
 - Back-up plans
- Understand all of the possible variables/factors prior to test
 - Control as many as possible
- Everything sounds great on paper (but chances are things will not work as advertised)
- More testing to obtain conclusive results is never a conclusion that wants to be heard
Questions?
Backups
ACCM Background

• Main purpose: to determine if the ACCM laser system works as an effective counter measure against small arms fire

• ACCM is a Warfighter Rapid Acquisition Program (WRAP) involving AFSOC/A5T, AFRL/DE, AFRL/HE, Boeing Scorpworks Lab, and AFMC/OAS

• Laser system designed by Boeing Scorpworks lab to provide significant glare source
 – Green light laser of particular wavelength, found to create a ‘dazzling effect’ on the human eye

• Designed to fill weapons engagement zone gap from 1Km to terminal area of recovery
Test Details

• Helicopter gunner
 – On scissor lift in hangar (gunner’s window)
 – Goal was to “kill” as many shooters as possible during each engagement
 – Weapon was a M-249 (equipped with MILES 2000)

• Shooters in the field in front of hangar
 – Two teams of 5 shooters
 – Goal was to get as many shots on the helicopter as possible (aim point - center of the gunner’s window)
 – Weapon – M-4 rifles (equipped with MILES 2000)
Test Details

• Multiple Integrated Laser Engagement System 2000 (MILES 2000)
 – System of sensors and transmitters that the shooters and gunner wear
 • Gunner did not wear a sensor so we could not determine when he was hit – did not want his weapon to be disabled during engagement
 – Record hits and near-misses (disables weapon if hit)

• Main purpose: to determine if the ACCM laser system works as an effective counter measure against small arms fire
OAS Involvement

• Independent review of the Human Effects test for the ACCM program
 – OAS holds no stake in the outcome of the WRAP
• Test design, implementation, and analysis of results
 – OAS was involved in previous phase of HE test
• Production of study report to include findings and future recommendations
Data Collection

• 3 cameras for video shot placement
 – IR sensitive cameras pickup MILES 2000 pulses
 – Shot placement software proved to be ineffective
 – All video had a time stamp that was synchronized with all other data by GPS time
 – Each video was scanned by team from Scorpworks lab to identify and assess time and location of each shot

• Scorpworks sensor suite
 – Data loggers were found, during test, to be unreliable
 • Made other sensors useless
 – Voice recorders were used but not analyzed

• Combat camera footage on field during engagements to verify sequences of action
Data Collection

• MILES gear downloads
• Shooter data
 – Interviewed shooters after each engagement to record shots fired, misfires, jams etc.
 – 3 cameras for video shot placement
• Gunner data
 – Shots fired, etc.
• Shooter surveys
 – Handed out at end of each phase per night
Hopes For Our Data

- Wanted to locate and measure the miss distance of all shots fired by the aggressor teams
 - Use this data to compare test phases or conditions
- Show from surveys whether or not the aggressors had opinions about particular test conditions that were later verified through analysis of shot data
- Show number of kills and near-misses against the aggressors
Reality of Our Data

- Without a working Scorpworks sensor suite, we were unable to identify shots by shooter or show when a shooter was in the ACCM beam
 - No way to determine (by shooter) if a shot was better or worse while the shooter was in the laser’s path
- Without the shot placement software all of the videos had to be watched and the shots scored “by hand”
 - Capturing a MILES 2000 pulse on hangar, finding the center, and then calculating the radial miss distance
Findings

• Shooter’s accuracy
 – No notable difference between the no beam and 1% MPE test phases
 – Hit ratios were significantly lower in the 0.5% MPE test phase than in the other two
 • If laser had a negative effect on shooter accuracy wouldn’t the trend continue as the power of the laser went up (brighter)?
Findings

- Not much difference seen, with similar numbers of shots found, in the No Beam and High Power scatter plots
Findings

- In the Low Power condition we had significantly fewer data points to work with than in the No Beam or High Power conditions