

American Institute of Aeronautics and Astronautics

1

Reusable Design Processes via Modular, Executable,
Decision-Centric Templates

Jitesh H. Panchal*, Marco Gero Fernández§, Christiaan J. J. Paredis# and Farrokh Mistree**
Systems Realization Laboratory, The George W. Woodruff School of Mechanical Engineering,

Georgia Institute of Technology, Atlanta, GA 30332-0405

While there have been many advances with respect to reusability and scalability of
product architectures over the past several decades, little progress has been made in
applying the same concepts to underlying design processes. It is on this aspect of design
process design that we focus in this paper. Design processes play a key role in product
design and their configuration has a significant effect on both the efficiency and the
effectiveness with which resources are committed. Design processes also directly influence
the final design of the product under consideration. As such, more attention must be paid to
the manner in which these processes are modeled so that they may be standardized,
executed, analyzed, and stored, allowing for their leveraging across product lines and
reducing product development times. Computer interpretability is a key consideration in
making required adjustments as product considerations evolve and design requirements
change from one product to the next. In this paper, we offer a fundamental step in this
direction by presenting a method for modeling design processes as reusable process
templates that can be captured, archived, analyzed and manipulated on a computer.

I. Frame of Reference

A. Design Process Reuse

OW similar do two (or more) products have to be in order to reuse the processes underlying their design? The
answer varies depending on the level of abstraction at which the processes are modeled. For example, the Pahl

and Beitz1 design process is widely applicable to almost any mechanical design problem. However, at a
computational level, were the design process is defined as a series of computational operations, the reusability of
design processes, thus far, is extremely limited. It is reusability at this level that we seek to improve.

Consider a simple example, involving the design of two commonly employed mechanical components, namely, a
pressure vessel and a spring, pictured in Figure 1. While both of these products can be described in terms of the
geometric constraints, describing their form, and mechanical relations describing their function, they are
nevertheless fundamentally different – with regard to the design parameters describing form, function, and behavior.
Hence, computational design processes are problem specific and cannot be directly leveraged from one problem to
another.

When considering the design processes underlying the products in Figure 1, however, there are certain
similarities that emerge. Each design process can be considered to be a sequence of decisions and tasks. It is in
terms of these information transformations that we develop a generic design process model, that can be executed,
analyzed stored, and reused, regardless of context, engineering domain, or scale of the product considered. The
required “genericism” of the underlying process model is achieved via a separation of the declarative (i.e., problem
specific information) from the procedural (i.e., process specific information) flows of information. It is at the hand
of the spring and pressure vessel design examples that we seek to illustrate relevant concepts. Although these
examples are rather simple in nature, they nevertheless constitute a convenient means of illustrating the novelty of
our method.

* Graduate Research Assistant, AIAA Student Member
§ NSF IGERT Fellow, AIAA Student Member
Assistant Professor
** Professor and Corresponding Author, AIAA Associate Fellow. Email: farrokh.mistree@me.gatech.edu.
 Phone: (404) 894-8412 Fax: (404) 894-9342

H

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
Reusable Design Processes via Modular, Executable, Decision-Centric
Templates

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Georgia Institute of Technology,The George W. Woodruff School of
Mechanical Engineering,Systems Realization
Laboratory,Atlanta,GA,30332

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

American Institute of Aeronautics and Astronautics

2

Before reviewing current process modeling techniques in
Section II, however, we elucidate the needs for pursuing template-
based design process modeling and establish the requirements for
developing such an approach in Section I. B.

B. Modeling Design Processes as Templates
One of the main challenges in modeling any design effort,

regardless of scale or scope, is formalizing the manner in which
information flows and dependencies are represented. Another
challenge lies in representing design processes in a domain neutral
form that supports designers in providing and structuring required information content. This calls for a domain
independent means of capturing design processes in an archivable and executable manner. It is for this reason that
we advocate a template-based approach to modeling design processes. A template is commonly defined as (1) a
pattern, used as a guide in making something accurately (2) a document or file having a preset format, used as a
starting point for a particular application so that the format does not have to be recreated each time it is used.*
Clearly, the word template is appropriate in our context because it implies reusability, achievability, and
support/guidance.

In order to effectively support engineering design
processes, this notion translates to the development of
reusable computational models that can serve as building
blocks. Such building blocks must also facilitate analysis,
and execution. Currently, there is a lack of formal,
executable, computational models for representing and
reusing existing knowledge about design processes. The only
knowledge that is readily available is confined either to
designers’ expertise or to descriptive/pictorial forms of
documentation. This is a result of the predominantly
narrative or symbolic nature of current models.

In order to address these challenges, we propose the use
of domain independent design process templates. The design
process templates result from a combination of templates for commonly encountered information transformations
and the interactions between these transformations. The process templates are defined as computer-based
representations of information transformations with well-defined inputs and outputs. The resulting design process
templates, analogously to the building block templates from which they are composed, can be executed, stored,
analyzed, and reused. The concept of constructing process templates from networks of design process building
blocks is illustrated in Figure 2. The design process in this figure involves three information transformations,
namely, T1, T2, and T3. Each of these templates is at a different level of completion. T1 is a complete template,
implying that all the information required for its execution is available. T3 on the other hand has yet to be
instantiated relevant to the problem at hand and consequently, does not differ from a generic information
transformation on which it is based.

We proceed to illustrate the shortcomings of current approaches to modeling engineering design processes at the
hand of the pressure vessel and spring design examples in Section II, exhibit the details of our design process
modeling technique in Section III, and demonstrate the separation of declarative and procedural information in
Section IV. In Section V, we establish confidence in the capability of our approach to handle the intricacies of
significantly more comprehensive design problems (e.g., involving further complications due to distribution,
complexity, collaboration, multi-functionality, etc.), and illustrate its use at the hand of designing Linear Cellular
Alloys. With this in mind, we review various efforts towards modeling processes currently underway.

II. Existing Literature on Design Process Modeling
Processes can be represented at various levels of detail, depending on the intended use of the resulting models.

Most of the traditional process modeling methods like the Program Evaluation and Review Technique (PERT),2,3
Gantt Charts,3 IDEF 0,4 etc. capture information at the activity level. As such, these tools are useful for making
organizational decisions with regard to processes such as time utilization, resource allocation, task precedence,

* Compiled from www.dictionary.com

Figure 1. Helical spring and pressure vessel.

Pr
od

uc
t I

nf
or

m
at

io
n

St
at

e
A

Pr
od

uc
t I

nf
or

m
at

io
n

St
at

e
B

Transformation
T1

Transformation
T2

Transformation
T3

Complete Template
Partial

Template

Pr
od

uc
t I

nf
or

m
at

io
n

St
at

e
A

Pr
od

uc
t I

nf
or

m
at

io
n

St
at

e
B

Transformation
T1

Transformation
T1

Transformation
T2

Transformation
T3

Complete Template
Partial

Template

Figure 2. Design Process Modeled as Templates.

American Institute of Aeronautics and Astronautics

3

material flow, etc. Example applications of tools such as these include modeling manufacturing processes to study
process characteristics including time scheduling, material processing, assembly/disassembly and packaging. In a
collaborative design scenario, models of processes are needed for understanding and coordinating collaborative
work, thereby defining conflict management.5

What are the challenges in modeling design processes? Design processes for mechanical systems are complex
often due to the inherent complexity of the product itself. Interactions and iterations between various activities and
stakeholders add to the complexity of product realization processes. Whitney6 points out that the complexity of
mechanical designs results from the multifunctional nature of the parts required to obtain efficient designs. The
underlying design processes involve many organizational units and engineering disciplines and the level of human
intervention comprises an additional barrier to process modeling. Modeling of design processes is also complex
because these cannot be completely described a priori. Downstream activities are very much dependent on the
information generated by upstream activities and the associated level of uncertainty is consistently high.

Various methods have been developed in order to model design processes. These methods can be categorized by
the manner in which design is viewed as a process. Some of these views characterize design processes as series of
activities, decisions, evolving functions, sets of transformations, search processes, etc. The resulting representation
of design processes, of course, is directly dependent on the view of design process chosen. A summary of the
approaches to design process modeling is provided in Table 1, a discussion follows.

Table 1. Process modeling efforts in the design literature

Process Modeling
Effort

View of
Design

Modeling, analysis objective Basic units of a process

IDEF 4 Activity based Organizational decisions Activities, information
DSM7 Activity/Task

based
Organizational decisions, risk,
complexity, probability of
rework, iterations, etc.

Tasks

Shimomura8 Functional
Evolution

Capture design process,
designers’ intentions, trace
design processes

Functional realization, functional
operation, functional evaluation

Ullman 9

Evolution of
product states

Process representation Abstraction, refinement,
decomposition, patching
combination, combination

Maimon10 Knowledge
Manipulation
through ASE

Development of a mathematical
theory for design

Artifact space, specs, Analysis,
synthesis, evaluation

Maher11 Knowledge
manipulation

Development of knowledge
based systems

Decomposition, case based
reasoning, transformation

Gorti12 Development of engineering
knowledge base

Goal, plan, specification, decision
and context

DSP Technique13 Decision
Based Design

Modeling, analyzing, debugging,
finding inconsistencies in a
design process

Phases, events, decisions, tasks,
information

1. Activity-Based View of Design Processes
The design process, when viewed as a set of activities, can be subjected to organizational or scheduling analysis.

Graph-based and matrix-based methods can be used to represent these processes. The graph-based techniques use
Activity-Net-based models. Activity-Net-based models14 are the earliest and most widely used techniques for
modeling processes. These activity-net-based models are instantiated in two distinct representations, namely
Activity-on-Node (AoN) and Activity-on-Arc (AoA). AoN representations are more applicable when the precedence
of activities is known, whereas AoA representations are used when graphical identification and visualization of
process events is important. Each of these models is thus used as a means of analyzing and comparing the
complexity of processes -- performing risk-based analysis on aspects such as the expected time required for different
tasks and obtaining a critical path. The design structure matrix (DSM)7 is a popular means for representing both
products and processes. Through DSM, hierarchical structures of both products and processes can be captured. The
main advantage of using DSM is the ability to identify both interactions and iterations in a design process. Browning

American Institute of Aeronautics and Astronautics

4

and Eppinger15 use DSM to model processes as sets of activities and process architectures as processes, along with
their patterns of interaction. DSM is used for a variety of analyses including cost, schedule, risk tradeoff, probability
of rework, level of interaction, complexity, iteration, and process improvement.

2. Functional-Evolution-Based View of Design Processes
Shimomura and co-authors8 portray design as a process of functional evolution. Design is represented as a

process in which a representation of a design object, which includes function, is gradually refined over time. The
representation of the design object is based on the Function-Behavior-Structure (FBS)16 model. Each functional
evolution involves functional realization (i.e., converting function into structure), functional evaluation (i.e.,
confirming functional description with behavior) and functional operation (i.e., adding functional elements and
functional relations to functional description). The authors present functional content as a measure of functional
satisfaction. One of the advantages of this technique is the ability to model the product (as an FBS model) and
process (as functional evolution) in an integrated fashion. This model can be used to both trace the design process
and capture design intent.

3. Product-State-Evolution-Based View of Design Processes
A view similar to the functional evolution is the evolution of product states.17 In this view, the design process is

considered to be a problem solving technique centered on dynamically moving around a so called product state
space. A product state represents all the information describing the product at a given point in the design process.
Tomiyama, Yoshikawa, and co-authors18,19 view design as a mapping of a point in the function space onto a point in
the attribute space. Ullman9 has also viewed the process of design as the refinement of a design from its initial state
to its final state. According to Ullman, the essential components for aptly characterizing design processes are: the
plan, the processing action, the effect, and the failure action. The various effects of a design process on the artifact
are categorized as abstraction, refinement, decomposition, combination, combination, and patching.

Maimon and Braha10 present the use of the Analysis-Synthesis-Evaluation (ASE) paradigm for representing
design processes in terms of knowledge manipulation. Design processes are represented as tuples containing the
artifact space, specifications, and transformation operators: analysis, synthesis, and evaluation (ASE). Zeng and
Gu20 also use models similar to ASE for developing a mathematical model of the design process. The authors
develop a basic mathematical representation scheme to define objects involving the entire design process and
investigate design processes via their mathematical representation. The elements of the design process proposed by
Zeng and Gu include the following processes: synthesis and evaluation, design problem redefinition, and design
decomposition.

4. Knowledge-Manipulation-Based View of Design Processes
Another effort focused on formalizing the representation of design knowledge within the design processes is

purported by Maher.11 Maher presents three models for knowledge representation: decomposition, case-based
reasoning, and transformation. The focus of this work is on design synthesis for developing knowledge-based
systems. Decomposition involves dividing large complex systems into smaller, less complex subsystems. Case-
based reasoning involves generating design solutions from previous design problems. In transformation, available
design knowledge is then expressed as a set of general transformational rules that can be used in a variety of
scenarios.

5. Decision-Based View of Design Processes
Decision-based design (DBD) is a view of design that has been widely adapted for modeling design processes.

Mistree and co-authors21 view design as a process of converting information into knowledge about the product and
decisions are the key markers used to determine the progress of design. Design processes can thus be modeled as
sets of decisions. The Decision Support Problem (DSP) Technique13,21-25 is a framework for design, developed based
on this mindset. The DSP Technique22 palette contains entities for modeling design processes, and allows for the
arrangement and rearrangement of procedures or activities essential to design. The entities in the palette are used to
build hierarchies and model design processes independent of the domain of the design under consideration.21 The
entities considered within the palette (i.e., tasks, decisions, events, and phases) are used to transform information
from one state to another. Key decision types in engineering are also identified within the DSP Technique. These
are selection26,27, compromise28,29, and combinations thereof (i.e., coupled decision). These decisions serve as the
backbone for modeling design processes. In order to generate information required for executing decisions,
supporting tasks are performed.

American Institute of Aeronautics and Astronautics

5

6. Representations of Design Processes
The Process Specification Language (PSL)30 is an effort pursued by the National Institute of Standards and

Technology (NIST) aimed at standardizing the representation of discrete processes (i.e., processes described as
individually distinct events such as production scheduling, process planning, workflow, business process re-
engineering, project management, etc). Gorti and co-authors12 have developed object-oriented representations for
design processes and products. The key elements of a design process, as identified by the authors, are goals, plans,
specifications, decisions and context. The design artifact includes function, behavior, structure, and causal
knowledge, relating objects to physical phenomena. Since the primary objective of the authors was to develop
comprehensive engineering knowledge-bases, they did not focus on design process analysis.

Summary of Design Process Models
Each of these efforts towards modeling design processes are summarized in Table 1. While some of the methods

are focused on capturing processes to make organizational decisions others focus on understanding and capturing
designers’ intentions. Even others center on the applicability of artificial intelligence. The most important
realization is that there is a tradeoff between the broadness of model applicability, the granularity of information that
can be represented, and the variety of analyses that can be performed using each of the models considered. For
example, PERT, Gantt Charts, IDEF0, and Activity-Net-based models are very general in terms of applicability, but
can be used to represent information only in terms of required activities and time. The kind of information being
processed is not captured in any of these models, however. Due to these limitations, it has thus far not been possible
to model design processes at a level sufficient for (1) execution, (2) analysis, and (3) reusability, as required for
effective design process design. It is on addressing each of these three aspects in a consistent manner that we focus
in this paper.

III. Systems-Based Modeling of Decision-Centric Design Processes
Our design process modeling strategy is based on two key assumptions: (1) design is a decision-centric activity

and (2) design processes themselves are hierarchical systems. From a decision-centric standpoint, designing is a
process of converting information that characterizes the needs and requirements for a product into knowledge about
the product.31,32 From the requirements to the final product, design processes are carried out through a number of
phases. For example, the phases associated with Pahl and Beitz33 design process are - planning and clarification of
task, conceptual design, embodiment design and detailed design. Each phase is associated with stages of product
information and converts information from one stage to another. Within each phase, there is a network of
transformations that operate on product information. These transformations can be carried out in a sequential (as
shown in Figure 3) or parallel fashion (not shown). The transformations operate on product related information and
convert this information from one state to another. The state of information refers to the amount and form of that
information that is available for design decision-making. For example, analysis is a transformation that maps the
product form to behavior, whereas, synthesis is a mapping from expected behavior to the product form. It is
important to note that these transformations remain same during different phases of the product realization process,
as shown in Figure 3.

From a hierarchical systems standpoint, design processes can be progressively broken down into sub-processes
that can be further represented in terms of basic design process building blocks, namely the information
transformations, discussed in the previous paragraph. Specifically, we focus on developing modular, reusable
models of information transformations with clearly defined inputs and outputs that facilitate hierarchical modeling

Phase 1
Information

Stage A

T2 T3Information
State 0 Information

State 1
Information

State 2

T1 Information
State 3

Phase 2Information
Stage B

Information
Stage C

T2 T3Information
State 4

Information
State 5

T1 Information
State 6

DesigningRequirements Product
Specifications

Figure 3. Sequential Design Process as a Series of Transformations.

American Institute of Aeronautics and Astronautics

6

of design processes. The design processes, modeled in such a manner, provide the ability to easily archive and reuse
design process knowledge.

The design process model presented in this paper is an extension of the constructs developed within the DSP
Technique proposed by Mistree and co-authors22,25,31,32, rooted in the work of Simon.34,35 The DSP Technique
consists of three principal components: a design philosophy rooted in systems thinking, an approach to identifying
and solving Decision Support Problems (DSPs), and software. ‘Systems thinking’ encourages designers to view
products and processes as systems interacting with the environment. In the DSP Technique, support for human
judgment in designing is offered through the formulation and solution of DSPs, which provide a means for modeling
decisions encountered in design. The DSP Technique allows designers to model design processes at various levels of
abstraction.32 The level of required software support is different at different levels of abstraction.

As a part of the DSP Technique, a palette for
modeling design processes using various entities such
as phases, events, decision, tasks, and the system was
developed.22 Since there is a support problem
associated with each DSP Technique palette entity,
the use and reuse of design process and subprocess
models, created and stored by others, is thus
facilitated. Due to the domain independence of the
underlying constructs and the overarching systems
perspective, the DSP Technique offers a solid
foundation for developing computational models of
reusable design processes, as envisioned in this paper.

In the resulting model, the design processes are
viewed as network of information transformations, as
indicated in Figure 3. Our focus lies in developing
generic constructs for modeling the most fundamental
information transformations encountered in engineering design, including abstraction, composition, decomposition,
interface, mapping, and synthesis. It is our intention to develop the corresponding support problems structured
according to the overarching systems model envisioned in the DSP Technique. These information transformations
are examples of tasks essential to supporting required design decisions. Since design tasks generate the information
upon which the design decisions are based, our approach is decision-centric. Modeling a design process using such a
decision centric approach involves developing networks of transformations with information-based interfaces.

In order to facilitate reuse of design process models, the building blocks of design processes must be generic.
This requires modularity and domain independence. We aim to facilitate design process reuse with respect to (1)
hierarchical composition and (2) cross-domain application, respectively. The underlying relationship between these
two dimensions is illustrated in Figure 4. The domain independence of the underlying constructs is derived from the
domain independence of underlying DSP Technique. The hierarchical composition (see Section V) is derived from
the novel application of modularity to processes introduced in Section IV. The underlying concept centers on a
separation of the declarative and procedural aspects of design processes, resulting in generic information
transformation constructs that are instantiated as software templates. In fact, it is the nature of the information
content, captured within the template that serves as the only differentiator among instantiated constructs, the
underlying structure remaining the same.

IV. Design Process Reusability:
Separation of Declarative Information from Procedural Information

In order to facilitate reusability of design processes across different design problems, the information about
design processes is segmented into three layers as shown in Figure 5. These layers are discussed in detail in Sections
 IV. A through IV. C and include the product information layer, the declarative process layer, and the execution layer,
respectively.

A. Product Information Level (Declarative Product Level)
In the layer corresponding to the product information level, only information, specific to the product being

designed, is captured. Since this information is treated in a standardized manner, it can be used by different design
processes. For example, the information associated with the design of either the spring or the pressure vessel,
introduced in Section I, can be categorized as constituting design variables, responses, parameters, constraints,

Application Specific Information

C
om

po
si

tio
n

of
 T

em
pl

at
es

Figure 4. Reusability of design processes with regard to
hierarchical composition and cross-domain application.

American Institute of Aeronautics and Astronautics

7

goals, preferences, objectives, or analyses, as illustrated in the compromise DSP formulations in Table 2. We note
that the two problems are notably different with dissimilar variables and relationships between them. The goals and
constraints are also different. Although the product specific information is different, the inherent structure of the
manner in which the information is used remains the same. Hence, it is possible to standardize the structure of
information so that the creation of generic process elements becomes possible. The product information
corresponding to these generic process elements for both the pressure vessel design and the spring design example
are provided in Figure 6.

The process modeling technique
proposed in this paper is analogous to
architecture of a printed wiring board
with a number of electronic components,
such as those shown in Figure 7. The
wiring corresponds to the flow of
information in a process and the
declarative process specific information
discussed in Section IV. B is thus
“hardwired”. The chips plugged into the
board define the manner in which the
information is actually processed. Consequently, these chips correspond to the declarative (product specific)
information, discussed in this section. A prime benefit is that the resulting reusability extends to both the chips and
the board independently. Since procedural elements of information transformations are captured in a template form
that is independent of the declarative aspects (i.e., the specific information considered), all aspects of information
transformations from the components to the underlying interactions (represented by the “chips” and “wiring” in
Figure 7, respectively) become modular. Both re-usability and reconfigure-ability are thus achieved.

Table 2. Compromise DSP formulations for pressure vessel and spring design.

Pressure Vessel Design Spring Design
Given
Strength (St), Pressure (P), Density(ρ)

Some helpful relations:

Volume, V = 3 24
3

R R Lπ  +  

Weight, W = 3 2 3 24 4() () ()
3 3

R T R T L R R Lπρ  + + + − +  

Find
System variables:

Radius (R)
Length (L)
Thickness (T)

Values of Deviation Variables:
d1- (for weight goal)
d2- (for volume goal)

Satisfy
System constraints:

0t
PRS
T

 − ≥ 
 

5 0R T− ≥
(40) 0R T− − ≥
(150 2 2) 0L R T− − − ≥

System Goals (Normalized):

arg

1 achieved
Volume

t et

Vd
V

− = −

arg1 t et
Weight

achieved

W
d

W
− = −

Bounds on System Variables:

0.1 36R≤ ≤
0.1 140L≤ ≤
0.5 6T≤ ≤

Minimize
Deviation Function: 1 1 2 2Z w d w d− −= +

Given
Assumptions:
Some helpful relations:

Deflection of spring: δ =
8 3

4

FD N
d G

Solid height of spring: H=Nd, H<0.5 in

Stiffness of spring: k d G
D N

=
4

38

Volume of spring: V Dd N= +0 25 22 2. ()π

Find
System variables:

Wire diameter (d),
Number of coils (N)

Values of Deviation Variables: d+, d- for goals

Satisfy
System constraints:

6
46.957 10 1.1Nx

d
− ≥

0.5Nd ≤

System Goals (Normalized):
4

1 153345.5 1d d d
N

− ++ − =

2 22
10.0191 1

(2)
d d

d N
− +− + =

+
Bounds on System Variables:

3.5N ≥
0.059 0.09d≤ ≤

Minimize
Deviation Function: 1 1 2 2Z w d w d− += +

XML Template
(Problem Definition)

XML Template
(Analysis)

Product Information Level
(Declarative Product Level)XML Template

(Problem Definition)
XML Template

(Analysis)

Product Information Level
(Declarative Product Level)

Model Center
Problem Definition

(Java Beans)
Analysis

(Java Beans)

Process Level
(Declarative Process Level)

Pressure Vessel Analysis
(Visual basic)

W = f (L, R, T, density)
V = g (L, R, T)

Spring Analysis
(Visual Basic)

V = f (d, D, N, …)
K = g (d, D, N, …)

Pressure Vessel Problem
Design Variables: R, L, T

Spring Problem
Design Variables: d, N

Execution Level
(Procedural Level)

Figure 5 - Architecture of process modeling framework

American Institute of Aeronautics and Astronautics

8

Currently, we standardize the structure of product information according to a set of XML schemas (or
templates). XML offers a convenient and standardized means of capturing information at the product information
level and ensures that problem specific declarative information can be reused in different processes. For the simple
example problem of designing a pressure vessel and a spring, the product information is stored in four XML
templates: the problem definition template, the constraints template, the goals and preferences template, and the
analysis code template. These templates, discussed next, correspond to the declarative product information “hidden”
within the compromise DSP formulation shown in Table 2.

1. Variables and Parameters Definition Template

The template for defining design variables and parameters includes the following information about design
variables: a) Design variable Name b) Type c) Unit d) Value e) Lower bound and Upper bound. The parameters are
defined with equal lower and upper bounds. The XML schema representation associated with the problem definition
template is shown in Figure 8.

2. Constraints Definition Template

The constraints definition template includes information about various constraints on the system. The constraints
are associated with a name and a string
representing required mathematical
operations. The XML schema representation
associated with the constraints definition
template is provided in Figure 8.

3. Goals and Preferences Definition
Template

In this template, information about
design goals and designer preferences
regarding the satisfaction of these goals is
captured. The goals are formulated with
target values for system responses.
Preferences are associated with the various
goals included in the compromise DSP
formulation. Here, these preferences are

GoalsGoals

PreferencesPreferences

VariablesVariables

ParametersParameters

ConstraintsConstraints

ResponseResponse

ObjectiveObjective

AnalysisAnalysis

DriverDriver

Stiffness,
Volume

Outputs

Wire Diameter,
Coil Diameter,
Shear Modulus,
Number of Coils

Volume, WeightRadius, Length, Thickness,
Density, Strength, Pressure

Outputs

Design Variable Values – Radius,
Length, Thickness
Objective Function Value - Z

Design Variable Values – Radius, Length, Thickness
Objective Function Value - Z

Optimization Algorithm – Exhaustive
Search, SQP, etc.

Optimization Algorithm – Exhaustive Search, SQP,
etc.

InputsInputs

Maximize Stiffness

Minimize Volume

Maximize Volume

Minimize
Weight

Stiffness Weighting Factor = 0.5
Volume Weighting Factor = 0.5

Volume Weighting Factor = 0.5
Weight Weighting Factor = 0.5

Stiffness Target = lbf/in
Volume Target = in^3

Volume Target = 500000 m^3
Weight Target = 300 kg

Applied Force, Coil Diameter, Shear
Modulus

Density, Strength, Pressure

Number of Coils, Wire DiameterRadius, Length, Thickness

Minimum Deflection:

Maximum Solid Height:

Stress:
Thickness:
Radius:
Length:

SpringPressure VesselcDSP “Chips”

Stiffness,
Volume

Outputs

Wire Diameter,
Coil Diameter,
Shear Modulus,
Number of Coils

Volume, WeightRadius, Length, Thickness,
Density, Strength, Pressure

Outputs

Design Variable Values – Radius,
Length, Thickness
Objective Function Value - Z

Design Variable Values – Radius, Length, Thickness
Objective Function Value - Z

Optimization Algorithm – Exhaustive
Search, SQP, etc.

Optimization Algorithm – Exhaustive Search, SQP,
etc.

InputsInputs

Maximize Stiffness

Minimize Volume

Maximize Volume

Minimize
Weight

Stiffness Weighting Factor = 0.5
Volume Weighting Factor = 0.5

Volume Weighting Factor = 0.5
Weight Weighting Factor = 0.5

Stiffness Target = lbf/in
Volume Target = in^3

Volume Target = 500000 m^3
Weight Target = 300 kg

Applied Force, Coil Diameter, Shear
Modulus

Density, Strength, Pressure

Number of Coils, Wire DiameterRadius, Length, Thickness

Minimum Deflection:

Maximum Solid Height:

Stress:
Thickness:
Radius:
Length:

SpringPressure VesselcDSP “Chips”

() ()3 2 3 24 4(, ,)
3 3

W R T L R T R T L R R Lπρ   = + + + − +    

3 24(,)
3

V R L R R Lπ  = +  

4

38
d Gk
D N

=

()2 21 2
4

V Dd Nπ= +

3

4

8 1.1FD N
d G

δ = ≥

0.5H N d= ≤i

0t
PR S
T

− ≤

5 0T R− ≤
40 0R T+ − ≤

2 2 150 0L R T+ + − ≤

Figure 6. Product information level (declarative product level) for pressure vessel and spring design.

Generic cDSP TemplateGeneric cDSP TemplateGeneric cDSP Template

Goals

Preferences

Variables

Parameters

Constraints

Response

Objective

Analysis

Driver

Instantiated cDSP Template

Goals

Preferences

Variables

Parameters

Constraints

Response

Objective

Analysis

Driver

Goals

Preferences

Variables

Parameters

Constraints

Response

Objective

Analysis

Driver

GoalsGoals

PreferencesPreferences

VariablesVariables

ParametersParameters

ConstraintsConstraints

ResponseResponse

ObjectiveObjective

AnalysisAnalysis

DriverDriver

Instantiated cDSP Template

Goals

Preferences

Variables

Parameters

Constraints

Response

Objective

Analysis

Driver

“Modular” Re-Usability of cDSP Components

Goals

Preferences

Variables

Parameters

Constraints

Response

Objective

Analysis

Driver

GoalsGoals

PreferencesPreferences

VariablesVariables

ParametersParameters

ConstraintsConstraints

ResponseResponse

ObjectiveObjective

AnalysisAnalysis

DriverDriver

“Modular” Re-Usability of cDSP Components

Figure 7 - Archival, Documentation, and Re-use of Design Process
Building Blocks

American Institute of Aeronautics and Astronautics

9

Schema representation for problem definition

Schema representation for constraints

Schema representation for goals and preferences

Schema representation for analysis code
Figure 8 – Schemas for product information

modeled as weights on the deviation variables. The entities associated with goals are: a) Name b) Weight c) Target
and d) Monotonicity. Monotonicity captures information regarding whether the goal is to be maximized, minimized,
or matched as closely as possible. The XML schema associated with the goals and preference definition templates is
shown in Figure 8.

4. Analysis Code Template

The analysis code is used to evaluate the system response to changes in design variables. The information
associated with the analysis code template includes a) Inputs, which consist of Name, Type, Unit, and Value, b)
Outputs, which consist of: Name, Type, Unit, and Value and c) Execute. The “Execute” field captures the software
application that needs to be executed in order to obtain the system response. The XML schema associated with the
analysis code template is shown in Figure 8.

B. Process Level (Declarative
Process Level)
In the layer, corresponding to the

Process Level (1) required information
transformations are identified and (2)
required information flows are specified
accordingly. In order to ensure that
declarative information is separated
from procedural information,
information flows are clearly separated
from information content. In other
words, we capture only the mechanics of
information transfer at this level, while
problem specific information is defined
separately at the declarative level. This
results in a process map that remains the
same irrespective of the application in
which the process is used. Information
content is thus effectively batched,
according to the structure of the
overarching template.

A simple example of a generic
process map for the design of either a
spring or a pressure vessel using
compromise DSP construct, discussed in
Section III, is given in Figure 9. The
elements of this generic process include
problem definition, analysis, constraint
evaluation, goals evaluation, and an
optimization routine. Each of these
entities interacts with the product
information layer through the product
information templates discussed in
Section IV. A. The information flows
between these entities are generic and
independent of the product being
designed. For example, the flow of
information between the analysis
module and constraints evaluation
include the problem name, an array of
input names (i.e., design variables) and
an array of input values. The actual input
names and values are dependent on the
problem and are extracted from the

American Institute of Aeronautics and Astronautics

10

variables and parameter definition template discussed in
Section IV. A. 1.

 The implementation of the declarative process level
relies on the use of ModelCenter®36 developed by
Phoenix Integration Inc. ModelCenter® allows modeling
design processes in terms of various simulation codes and
the information required to flow among them. Associated
with each entity in this process are a set of JavaBeans that
parse information from appropriate XML files at the
product information level and make information available
for processing in ModelCenter®. These Process elements
are mapped to each other for a specific problem, in a
manner that reflects the underlying (batched) information
flows required by the generic templates. This mapping
remains the same irrespective of the design problem in
which the process is used. For example, the information
flows and mappings relevant for the solution of a
compromise DSP, will remain the same, whether we are
designing a pressure vessel or a spring.

C. Execution Level (Procedural Level)
The details of code execution are captured in the layer, corresponding to the Execution Level. This level is

specific to the design problem for which the process is used. Execution level codes interface only with the
declarative problem formulation level. Thus, there is no direct link between the process specification level and the
execution level. This architecture preserves the modularity of the design processes being modeled. For the design of
the pressure vessel and the spring, the execution level codes (i.e., the analysis codes for both the pressure vessel and
the spring) have been written in Visual Basic, although any other model wrapped as a ModelCenter® component
could be used.
 The results obtained for the pressure vessel and spring design, using the generic process, pictured in Figure 9, are
summarized in Table 3 and Table 4, respectively. These results have been verified and validated with exhaustive
searches, based on more traditional problem formulations.

Table 3 - Results for pressure vessel problem
Design Variable Value
Radius (R) 10 mm
Length (L) 80 mm
Thickness (T) 3.5 mm
Objective function (Z) 0.497

Table 4 - Results for spring design problem

Design Variable Value
Coil Diameter (d) 0.059 in
Number of Coils (N) 3.5
Objective function (Z) 0.655

V. Design Process Reusability: Composition of Templates
Having illustrated our approach for the simple design scenarios involved in spring and pressure vessel design, we

now shift our attention to a more complex (e.g., involving further complications due to distribution, complexity,
collaboration, multi-functionality, etc.) design example, namely that of designing Linear Cellular Alloys (LCAs).
Specifically, we extend the templates, discussed in Section IV, to model the required design process, thereby
illustrating the ability to compose design process templates from existing sub-process templates.

Figure 9 - Process map for design of spring /
pressure vessel

American Institute of Aeronautics and Astronautics

11

Linear Cellular Alloys are honeycomb materials (see
Figure 10) that are processed through the extrusion of
slurry through a multistage die. The slurry is composed
of a binder mixed with metal oxide powders. The
structure resulting from extrusion is first dried and
reduced into the metallic phase in a hydrogen rich envi-
ronment and then sintered to achieve nearly fully dense
metal composites. A wide range of cell sizes and shapes
including functionally graded structures can be achieved
using this manufacturing process. These materials are
suitable for multi-functional applications that require
both strength and heat transfer capabilities37.
Applications of these materials include heat sinks for
microprocessors and combustor liners for aircraft
engines. One of the main advantages of these LCAs is that desired structural and thermal properties can be obtained
by designing the shape, arrangement of cells, selecting appropriate cell wall thicknesses and setting appropriate
dimensions for the LCA.

Assuming the construction of a structural heat exchanger, using LCAs, the required design process must
encompass both structural and thermal considerations. One way of structuring this design process is as a series of
information transformations that reduce the available design space according to the perspectives considered. In such
a sequential design process, designers consider sets of design alternatives rather than pursuing a particular
alternative directly, as shown in Figure 11. The underlying philosophy is to gradually concretize the design space
until a final solution is achieved. In the LCA design scenario, considered, this approach may be implemented as one
designer (thermal or structural) generating a range of design parameters and subsequently passing on this range to
the next designer to select the best value within the proposed range. Therefore, the process of designing
multifunctional LCAs involves two compromise DSPs, one for structural and one for thermal considerations,
respectively. Each of these compromise DSPs is solved using an independent instantiation of the process shown in
Figure 9. This process (see Figure 9) serves as
a reusable building block and thus constitutes
sub-process of the overall LCA design
process. Here, again, the declarative, process
specific information remains unchanged.
Since only the product specific information
must be altered or adapted for application in
modeling the LCA design problem, reusability
of the process is enhanced.

Although the LCAs pertain to an emerging
class of multifunctional structure-material systems that often span multiple functional domains as well as
length/time scales, the underlying design process is clearly decomposable. Different designers contribute their
expertise to each aspect of the multifunctional design. There are a number of inherent benefits to the proposed
modeling technique for design processes. On the whole, there are three main functions, namely computer
interpretability, modularity, and archival, that each in turn allow for the execution, re-use/reconfiguration, and
documentation of design processes and any of their components, respectively. The fundamental methodological
differences between the proposed design process modeling technique and other commonly available approaches are
that (1) declarative and procedural models are effectively separated and (2) the process elements are composable as
modular building blocks. Consequently, it is possible to effectively model design processes and sub-processes,
regardless of functional domain or complexity.

VI. Closure
In this paper, we present an approach for modeling design processes, based on a modular, decision-centric,

template-based representation of design processes. These process templates are computer interpretable and
archivable, allowing for the execution, re-use/reconfiguration, and documentation of design processes and any of
their components, respectively. A modular, generic formulation of the process required for the solution of a
compromise DSP is conceived and presented in Section IV. Furthermore, the underlying information model is
formalized and the resulting construct is implemented in ModelCenter®. Finally, the developed process model is

Heat Source
(Microprocessor)

Cool
Fluid

In

Warm
Fluid
Out

Distributed Forces

Figure 10. Linear Cellular Alloys with rectangular
cells.

Capture
Customer

Requirements

Structural
Design Thermal Design

Desired
Structural
Behavior

Set of LCA
Geometry (Triangular,

Rectangular),
Range of Dimensions

Final LCA
Geometry,
Dimensions

Desired Thermal Behavior

FEM Based Structural
Analysis Model

FEM Based Thermal
Analysis Model

Figure 11. Process of Design of LCAs.

American Institute of Aeronautics and Astronautics

12

instantiated and validated for two examples, namely, pressure vessel and spring design, in order to offer proof of
concept for the proposed modeling technique. Reusability of the process model for solving compromise DSPs as
sub-process is then illustrated for the design of Linear Cellular Alloys.

There are a number of changes that can take place with regard to any given design process. The intent in the
proposed modeling approach is to isolate the effects of each of these changes by providing the required level of
modularity. The principal advantage of this approach is the enhanced reusability of information and knowledge
achieved via the separation of information pertaining to problem formulation, process, and execution. However, we
recognize that the value and ease of implementing a template-based design approach increases with the quantity and
quality of information available. Thus, while it is possible to formulate templates, at least structurally, even in the
early stages of design, the information and knowledge gained by exercising the resulting models becomes more
concrete as the design matures. The advantage of relying on completely modular templates is the provision of a
consistent means of capturing and exploiting knowledge that reflects evolving information content throughout the
design process.

The overarching goal of this research is to formalize a declarative design process modeling technique, centered
on decision-centric design processes. We have already implemented compromise DSPs as modular, reusable,
template-based design process building blocks, taking advantage of the consistent, application independent structure
of this construct. Future efforts will center on formalizing the remaining information transformations (e.g.,
abstraction, composition, decomposition, interface, and mapping), mentioned in Section III, in an analogous fashion.
This requires: (1) mapping information schemas defined at various levels of abstraction, (2) developing a design
process repository (3) developing metrics for characterizing individual information transformations and their
compositions, (4) formalizing interactions among the stakeholders involved in a shared design effort, (5) exploring
design process architecture and development of design process families, and (6) investigating effects of stakeholder
control on design processes and value chain modularity. We believe that this research is a stepping stone towards
top-down design of design processes from existing design process knowledge. The existence of a repository of
design process building blocks will greatly facilitate the original, adaptive, derivative, and variant design of products
and serves as a springboard for the evolution of a product portfolio.

Acknowledgements
We acknowledge the support from National Science Foundation grants DMI-0085136 and DMI-0100123, as

well as, Air Force Office of Scientific Research grant F49620-03-1-0348. Marco Gero Fernández is sponsored by a
National Science Foundation IGERT Fellowship through the TI:GER Program at the Georgia Tech College of
Management and a President’s Fellowship from the Georgia Institute of Technology.

References

1Pahl, G. and W. Beitz, 1996, Engineering Design - A Systematic Approach, Springer, Berlin, Heidelberg, New York.
2Moder, J. J., C. R. Phillips and E. W. Davis, 1983, Project management with CPM, PERT, and precedence diagramming,

New York : Van Nostrand Reinhold.
3Modell, M. E., 1996, A Professional's Guide to Systems Analysis, McGraw-Hill Book Company, New York, NY.
41993, Integrated Definition for Functional Modeling (IDEF 0), Federal Information Processing Standards Publication 183.
5Park, H. and M. R. Cutkosky, 1999, “Framework for Modeling Dependencies in Collaborative Engineering Process,”

Research in Engineering Design, Vol. 11, No. 2, pp. 84-102.
6Whitney, D. E., 1996, “Why Mechanical Design Cannot be Like VLSI Design,” Research in Engineering Design, Vol. 8,

No. 3, pp. 125-138.
7Eppinger, S., D. E. Whitney, R. P. Smith and D. A. Gebala, 1994, “A Model-based Method for Organizing Tasks in

Product Development,” Research in Engineering Design, Vol. 6, No. 1, pp. 1-13.
8Shimomura, Y., M. Yoshioka, H. Takeda, Y. Umeda and T. Tomiyama, 1998, “Representation of Design Object Based on

the Functional Evolution Process Model,” Journal of Mechanical Design, Vol. 120, No. 2, pp. 221-229.
9Ullman, D. G., 1992, “A Taxonomy for Mechanical Design,” Research in Engineering Design, Vol. 3, No. 3, pp. 179-189.
10Maimon, O. and D. Braha, 1996, “On the Complexity of the Design Synthesis Problem,” IEEE Transactions on Systems,

Man, and Cybernetics - Part A: Systems and Humans, Vol. 26, No. 1, pp. 142-151.
11Maher, M. L.,1990, Process Models for Design Synthesis. AI Magazine. Winter 1990: 49-58.
12Gorti, S. R., A. Gupta, G. J. Kim, R. D. Sriram and A. Wong, 1998, “An Object-Oriented Representation for Product and

Design Process,” Computer Aided Design, Vol. 30, No. 7, pp. 489-501.
13Muster, D. and F. Mistree, 1988, “The Decision Support Problem Technique in Engineering Design,” International

Journal of Applied Engineering Education, Vol. 4, No. 1, pp. 23-33.

American Institute of Aeronautics and Astronautics

13

14Elmaghraby, S. E., 1995, “Activity Nets: A Guided Tour Through Some Recent Developments,” European Journal of
Operational Research, Vol. 82, No. 3, pp. 383-408.

15Browning, T. R. and S. D. Eppinger, 2002, “Modeling Impacts of Process Architecture on Cost and Schedule Risk in
Product Development,” IEEE TRansactions on Engineering Management, Vol. 49, No. 4, pp. 428-442.

16Umeda, Y., H. Takeda, T. Tomiyama and H. Yoshikawa, 1990, "Function, Behavior, and Structure," AIENG '90
Applications of AI in Engineering, Computational Mechanics Publications and Springer Verlag, pp. 177-193.

17Hsu, Y.-L., C.-Y. Tai and Y.-C. Chen, 2000, “A Design Process Model Based on Product States,” Journal of Chinese
Society of Mechanical Engineers, Vol. 21, No. 4, pp. 369-377.

18Tomiyama, T. and H. Yoshikawa, 1986, "Extended General Design Theory," Design Theory for CAD, Proceedings of the
IFIP WG5.2 Working Conference 1985, Elsevier, North-Holland, Amsterdam, pp. 95-130.

19Takeda, H., P. Veerkamp, T. Tomiyama and H. Yoshikawa,1990, Modeling Design Processes. AI Magazine. Winter
1990: 37-48.

20Zeng, Y. and P. Gu, 1999, “A Science Based Approach to Product Design Theory Part 1: Formulation and formalization of
Design Process,” Robotics and Computer Integrated Manufacturing, Vol. 15, No. 6, pp. 331-339.

21Mistree, F., B. A. Bras, W. F. Smith and J. K. Allen, 1996, “Modeling Design Processes: A Conceptual, Decision-Based
Perspective,” International Journal of Engineering Design and Automation, Vol. 1, No. 4, pp. 209-221.

22Mistree, F., W. F. Smith, B. Bras, J. K. Allen and D. Muster, 1990, "Decision-Based Design: A Contemporary Paradigm
for Ship Design," Transactions, Society of Naval Architects and Marine Engineers, Jersey City, New Jersey, Vol. 98, pp. 565-
597.

23Mistree, F., W. F. Smith and B. A. Bras, 1993, "A Decision-Based Approach to Concurrent Engineering," Handbook of
Concurrent Engineering (H. R. Paresai and W. Sullivan, Eds.), Chapman & Hall, New York, pp. 127-158.

24Mistree, F., W. F. Smith, S. Z. Kamal and B. A. Bras, 1991, "Designing Decisions: Axioms, Models and Marine
Applications," Fourth International Marine Systems Design Conference, Kobe, Japan, Society of Naval Architects of Japan, pp.
1-24.

25Bras, B., Mistree, F., 1991, “Designing Design Processes in Decision-Based Concurrent Engineering,” SAE Transactions
Journal of Materials & Manufacturing, pp. 451-458.

26Mistree, F., K. Lewis and L. Stonis, 1994, "Selection in the Conceptual Design of Aircraft," 5th AIAA/USAF/NASA/ISSMO
Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, Panama City, FL, pp. 1153-1166, pp. 1153-
1166.

27Fernández, M. G., C. C. Seepersad, D. W. Rosen, J. K. Allen and F. Mistree, 2001, "Utility-Based Decision, Support for
Selection in Engineering Design," 13th Internation Conference on Design Theory and Methodology, Pittsburgh, PA. Paper
Number: DETC2001/DAC-21106.

28Mistree, F., O. F. Hughes and B. A. Bras, 1993, "The Compromise Decision Support Problem and the Adaptive Linear
Programming Algorithm," Structural Optimization: Status and Promise (M. P. Kamat, Ed.), AIAA, Washington, D.C., pp. 247-
286.

29Seepersad, C. C., F. Mistree and J. K. Allen, 2002, "A Quantitative Approach for Designing Multiple Product Platforms
for an Evolving Portfolio of Products," ASME Design Engineering Technical Conferences, Advances in Design Automation,
Montreal, Canada. Paper Number: DETC2002/DAC-34096.

30Schlenoff, C., A. Knutilla and S. Ray,1996, Unified Process Specification Language: Requirements for Modeling Process.
Gaithersburg, MD, National Institute of Standards and Technology.

31Mistree, F., D. Muster, J. A. Shupe and J. K. Allen, 1989, "A Decision-Based Perspective for the Design of Methods for
Systems Design," Recent Experiences in Multidisciplinary Analysis and Optimization, Hampton, Virginia. Paper Number: NASA
CP 3031.

32Kamal, S. Z., H. M. Karandikar, F. Mistree and D. Muster, 1987, "Knowledge Representation for Discipline-Independent
Decision Making," Expert Systems in Computer-Aided Design (J. Gero, Ed.), Elsevier Science Publishers B.V., Amsterdam, pp.
289-321.

33Pahl, G. and W. Beitz, 1996, Engineering Design: A Systematic Approach, Springer-Verlag, New York.
34Simon, H. A., 1996, The Sciences of the Artificial, MIT Press, Cambridge, Mass.
35Simon, H. A.,1976, Administrative Behavior. New York, N.Y., The Free Press.
36Phoenix Integration Inc.,2004, ModelCenter®, Version 5.0.
37Seepersad, C. C., B. M. Dempsey, J. K. Allen, F. Mistree and D. L. McDowell, 2002, "Design of Multifunctional

Honeycomb Materials," 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, GA. Paper
Number: AIAA-2002-5626.

