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ABSTRACT

While multiresolution data analysis, processing, and compression
hold considerable promise for sensor network applications, progress
has been confounded by two factors. First, typical sensor data are
irregularly spaced, which is incompatible with standard wavelet
techniques. Second, the communication overhead of multiscale
algorithms can become prohibitive. In this paper, we take a first
step in addressing both shortcomings by introducing two new dis-
tributed multiresolution transforms. Our irregularly sampled Haar
wavelet pyramid and telescoping Haar orthonormal wavelet ba-
sis provide efficient piecewise-constant approximations of sensor
data. We illustrate with examples from distributed data compres-
sion and in-network wavelet de-noising.

1. INTRODUCTION

In the recent call-to-arms found in [1], the authors emphasize that
spatially irregular data sampling is an inescapable reality when
considering real-world sensor network deployments. Using the ex-
ample of compression of a sensor network measurement field for
transmission to a single, external sink via a tree-like routing struc-
ture, they emphasize that traditional regular 2-D signal processing
schemes simply do not translate to the irregular setting. Observing
that much of sensor network signal processing literature assumes
regularity of sensor placement, the authors motivate the need for
newer, irregularity-tolerant solutions for the sensor network set-
ting.

To that end, we propose what is to our knowledge the first
distributed, irregular wavelet transform for sensor networks. Em-
ploying successive piecewise constant approximations inspired by
the Haar wavelet in the regular setting, our transform integrates
seamlessly with existing hierarchical routing schemes to align its
data flow with efficient communication paths in the network. We
present two variants on our technique and outline exactly how to
implement each in a real sensor network setting. Finally, using our
transform, we specify protocols for distributed solutions to both
the data compression and transmission problem discussed above
and the problem of de-noising sensor measurements within the net-
work.

A good deal of prior work has addressed wavelet-based pro-
cessing in sensor networks, but none has yet to resolve the diffi-
culties of working with irregularly-spaced data while appreciating
the need to minimize communication overhead to reduce network
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power consumption. Dimensions [2, 3] proposes an in-network
multiscale wavelet transform and hierarchical coefficient routing
with its wavRoute protocol but assumes sensor measurements lie
on a square grid. Similarly, Wisden [4] also assumes a square grid
and application of regular wavelets for compression purposes, as
do [5] and [6]. Finally, Fractional Cascading [7] assigns to a sen-
sor a view of the entire network which decays in resolution as the
network becomes more distant from the sensor. While this ap-
proach does not assume regular sensor placement and is useful for
answering measurement range queries, it does not have the broad
applicability of a wavelet transform to a variety of signal process-
ing applications.

In specifying our transform algorithms, we assume only that
each sensor knows its location and shares this information with a
data sink and that an efficient multiscale routing hierarchy is al-
ready in place. A number of algorithms for sensor localization ad-
dress the former problem (see [8]), and both wavRoute mentioned
above and COMPASS [9] provide examples of the latter. COM-
PASS, in particular, creates a hierarchical routing scheme by clus-
tering nodes, electing clusterheads, and iteratively clustering the
clusterheads. Under this paradigm, local communication within
clusters and up and down the routing hierarchy are less expensive
than communication across cluster boundaries. Adopting the rout-
ing hierarchy as our multiscale decomposition hierarchy allows us
to tailor data flows to match the economics of the routing protocol.

In Section 2 we review challenges of irregular data sampling
and motivate the need for wavelet transforms tailored to irregular
data. Section 3 provides the mathematical foundations of the two
proposed wavelet transforms, beginning with the multiscale data-
flow model induced by the routing topology. The details of the two
transforms, one a tight frame pyramid and the other a complete or-
thonormal basis, follow. Section 4 addresses details of implement-
ing these transforms, and Section 5 provides protocols for both dis-
tributed data compression/ transmission and distributed de-noising
of sensor measurements. Section 6 demonstrates the aforemen-
tioned applications in a simulated sensor network setting, and Sec-
tion 7 concludes with a discussion of future directions for such
irregular wavelet transforms.

2. CHALLENGES OF IRREGULAR DATA SAMPLING

A large body of elegant wavelet theory suited to regularly-spaced
data has emerged in recent decades, but application of wavelet
analysis to irregularly spaced samples is a relatively new endeavor.
The Fourier mathematics underlying regular wavelets no longer
apply in the regular setting, and second-generation wavelet the-
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Fig. 1. Voronoi polygons (solid) bounding a field of sensors con-
nected by edges in a Delaunay triangulation (dashed).

ory such as the lifting scheme [10] has risen to replace traditional
techniques. Extending these ideas to two dimensions proves an
ever greater challenge. The pyramid-based approach of [11] and
the non-redundant technique given in [12] represent some of the
first sophisticated attempts at tackling this problem. Unfortunately,
such approaches are typically intended to operate in a centralized
fashion on an entire dataset, so as such they are not directly appli-
cable to the sensor network problem. For example, they typically
assume complete freedom to construct their own multiscale anal-
ysis hierarchies, and as stated in Section 1, communication effi-
ciency suggests that transforms must direct their flows along rout-
ing hierarchies formed with respect to physical constraints such as
sensor placement and wireless channel quality.

Rather than attempting to directly apply these ideas, we take
inspiration from the approaches contained therein. Varying sensor
density poses one of the key challenges in computing an irregular
transform, as measurements from nodes in more dense areas of the
graph will appear to have greater “importance” than those from
less dense regions. To counter this problem, we adopt the tech-
nique in [12] of assigning weight to sensor measurements based
on the area of a Voronoi polygon [13] around the sensor. Figure 1
illustrates a set of Voronoi tiles drawn as solid lines around a set of
sensor locations. The figure also shows a Delaunay triangulation
of the sensor locations drawn in dashed lines. Voronoi tesselations
are in fact geometric duels of Delaunay triangulations, and a sensor
can compute the area of its surrounding Voronoi polygon merely
by knowing the edges for which it is an endpoint in the Delaunay
triangulation. Delaunay triangulations can be computed in a dis-
tributed fashion within the sensor network, as will be discussed in
Section 4.

3. MULTISCALE TRANSFORMS WITH IRREGULAR
SAMPLES

We now present the mathematical details behind our proposed trans-
forms. First, we discuss the interplay between network routing and
multiscale data decomposition. Then, we delve into the details be-
hind our two proposed transforms, one a tight-frame Haar pyramid
and the other an orthonormal basis Haar “telescoping” transform.

3.1. Hierarchical Routing and Data Decomposition

In Section 1 we introduced the idea of matching the transform hi-
erarchy to the routing hierarchy. Such a hierarchical routing topol-
ogy will typically consist of clusters of sensors, one of which is
designated as the clusterhead. Figure 2(a) describes the scenario
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Fig. 2. Data flow (a) within a single clusterk1 and (b) from clus-
terheads ink1 throughk3 to the superclusterl1 head in clusterk4.

in a typical 6-node cluster, labeledk1. Under the assumed routing
economics, local communications within a cluster are relatively
cheap, so each sensorm1 throughm5 sends it measurement to
the clusterheadm6 for processing. Using the setm of measure-
ments, the clusterhead computes two quantities. Ascaling coeffi-
cientsk1

describes some average behavior over the cluster, while
a setdk1

of wavelet coefficientsencode deviations of the measure-
ments from the average value.

The clusterhead stores wavelet coefficientsdk1
, but the scaling

coefficientsk1
flow up to the next level of the transform/routing

hierarchy, as show in Figure 2(b). Along with clusterk1 from Fig-
ure 2(a), clustersk2 throughk4 are grouped together to form a
superclusterl1, whose clusterhead coincides with that of cluster
k4. Scaling coefficientssk1

throughsk3
are passed to clusterk4,

which combines them with its ownsk4
as the input to the next level

of multiresolution analysis. A scaling coefficientsl1 for the super
cluster is generated along with a setdl1 of wavelet coefficients.
Note that the node acting as the super clusterhead performs dou-
ble duty. As the clusterhead of clusterk4, it stores the setdk4

of
level-k wavelet coefficients, and as the clusterhead for the super-
clusterl1, it maintains the setdl1 of level-l wavelet coefficients.
The scaling coefficientsl1 for the supercluster is then passed up
the hierarchy to participate in subsequent analysis. The iterative
process terminates when one supercluster spans the entire network
and a scaling coefficient for a single root node is computed. This
root scaling value, which describes the average behavior over the
whole network, and the entire set of wavelet coefficients at each
level represent the completed multiresolution analysis of the sen-
sor field. Note that, under this model, the hierarchical wavelet
decomposition matchesexactlywith the routing topology, group-
ing data arbitrarily as dictated by routing concerns. As such, our
proposed techniques are extraordinarily flexible in the realm of ir-
regular wavelet transforms.
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Fig. 3. Conceptual mapping of piecewise-constant function over
2-D intervals of area∆i to piecewise-constant 1-D function over
intervals of width∆i

Given this transform model, we can present the details of our
two proposed transforms. Both are based on piecewise-constant
approximations as seen in the well-known Haar wavelet in the reg-
ular setting by the. We adopt a similar piecewise-constant model
for the data gathered in the network, assuming that measurements
hold constant over the Voronoi polygons surrounding each sen-
sor, as described in Section 2. Section 3.2 details a pyramid-like
transform whose analysis and synthesis functions are remarkably
easy to implement but lead to a slightly redundant representation,
computing 1 scaling andN wavelet coefficients for a cluster ofN
sensors. Section 3.3 presents a more advanced transform which
employs a complete orthonormal basis expansion of sensor mea-
surements, achieving a non-redundant coefficient representation
(N coefficients for anN -sensor cluster). Providing a sparser rep-
resentation of the sensor field, this transform nonetheless carries
a slightly higher cost in terms of computational cost and ease of
implementation.

3.2. Tight-Frame Haar Pyramid

The first transform, originally introduced in [14], represents an
extraordinarily intuitive and easy-to-implement decomposition of
sensor data into wavelet and scaling coefficients. Harkening back
to the pyramid image coders which preceded modern wavelet coders
[15], the transform passes a smoothed average to the next level of
decomposition via the scaling coefficients and leaves behind as
many detail coefficientsd as there are sensors in a cluster — in
essence, a redundant transform with the slightest possible redun-
dancy.

We now describe how to calculate the transform coefficients
given anN -length vectorm of measurements for a cluster ofN
sensors. We assume that each sensor in the cluster knows it’s sup-
port size as defined by the Voronoi polygon surrounding the sensor.
These areas,{∆1, ∆2, . . . , ∆N}, can be computed in a distributed
fashion, as detailed in Section 4. Given the set of areas and mea-
surements, we can conceptually map the 2-D transform problem to
1-D as shown in Figure 3, where sensor measurements are taken
to be constant over intervals whose lengths correspond to sensors’
Voronoi region areas. Note that this mapping is purely for illus-
trative purposes and that all subsequent integrations in fact involve
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Fig. 4. Tight frame analysis functions for a cluster of 5 nodes,
including one scaling functionS and 3 wavelet functionsW1

throughW3

piecewise-constant functions over 2-D regions.
Given the set{∆j}Nj=1 of areas, we form the(N + 1) × N

matrix K, given by

K =




k0 k0 k0 · · · k0
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1 k1 k1 · · · k1
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N




, (1)

where the total area over the cluster is given as∆tot =
∑N

i=1 ∆i.
The bulk of the entries ofK are defined as

ki =






1
√

∆tot

, i = 0

√
∆i

∆tot
, i > 0

(2)

while the first sub-diagonal entries are given by

k
′

i = −ki(∆tot −∆i)

∆i

, i > 0. (3)

Taken together, the entries ofK define the basis functions given
in Figure 4. The first row ofK represents the constant-valued
scaling function, while each(i, j)th element in the remaining rows
gives the value of wavelet functioni − 1 over the Voronoi cell
surrounding sensorj

Given the matrixK describing the set of basis functions, all
that is left to do is simply multiply against the sensor measure-
ments and integrate over the set of support areas. Defining a an
N -by-N matrix∆ as a diagonal matrix of the areas{∆j}Nj=1, we
form the analysis matrix as

TA = K∆. (4)

Using the analysis matrix, we compute the(N + 1)× 1 vector of
transform coefficientsc as



c = TAm, (5)

where the first element of cis the scaling coefficients and the re-
mainingN elements give the wavelet detail coefficientsd. Defin-
ing the synthesis matrix as

TS = ∆
−1

T
T
A, (6)

we recover the set of measurements from the coefficients as

m = TSc. (7)

As stated previously, the analysis and synthesis functions form
a tight frame. In fact, they form a special class of tight frame
known as aParseval tight frame[16]. Given this membership,
we conclude that, even though the frame is redundant, we have an
equivalence between energy in the signal domain and energy in the
coefficient domain:

E =
N∑

i=0

c2
i , (8)

whereE is calculated by squaring the piecewise-continuous sig-
nal given in Figure 3 and integrating it over its support regions.
This equivalence implies that, were we to selectively discardq

wavelet coefficients, the energŷE of the resultant signal would be
maximized by discarding the smallestq coefficients — exactly the
procedure we turn to for the compression application discussed in
Section 5.1. Moreover, given properties of the transform, we can
bound the difference in energies between the reconstructed and
original signals as

q∑

i=1

c2
i ≤ (E − Ê) ≤ 2(

q∑

i=1

c2
i ), (9)

ensuring that the approximated signal will not blow up when the
inverse transform is applied — a useful sanity check when working
with tight frames, whose redundancy can induce problems in such
situations. For a complete proof of the transform’s Parseval tight
frame properties and error bounds, we refer the reader to [17].

Clearly, the tight frame pyramid transform is extremely easy to
implement. Given a set{∆j}Nj=1 of sensor support areas, comput-
ing the wavelet decomposition amounts to multiplying the sensor
measurements againstTA, which depends entirely on the{∆j}Nj=1.
Unfortunately, this does entail suffering redundancy in the coeffi-
cient representation — a problem we can rectify with a second,
more computationally intensive piecewise-constant transform.

3.3. Orthonormal Basis Haar Telescope

Clearly, a non-redundant, distributed wavelet transform for sen-
sor networks is superior from a data-representation standpoint. In
this section we present a technique which appeals to classic Haar
wavelets in the 1-D setting and forms a set of basis functions which
by construction are orthonormal and span the piecewise-constant
measurements in a cluster of sensors. Figure 5(a) recalls the reg-
ular Haar scaling and wavelet functions in 1-D. Applied to data
which is piecewise constant over the intervals[0, 0.5] and[0.5, 1],
the scaling function merely sums measurements in the two regions
while the wavelet function differences those measurements. The
two functions are each unit norm, mutually orthogonal (their prod-
uct integrates to zero), and span the entire interval (any function
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Fig. 5. (a) Regular, 1-D Haar wavelet (W ) and scaling (S) ba-
sis functions and (b) corresponding matched pair telescope basis
functions.

which is piecewise constant over[0, 0.5] and[0.5, 1] can be formed
as a linear combination of the Haar scaling and wavelet functions).

By grouping sensors in our irregular setting into pairs, we can
perform a decomposition mirroring that of the classic Haar case,
though we must take into account the support sizes of our sensor
measurements when doing so. Appealing to the 1-D visualization
of Section 3, a conceptual mapping of sensor measurements to 1-D
intervals places paired sensors in adjacent positions on the line so
that pairwise basis functions such as those shown in Figure 5(b)
apply over the pair of intervals. Again we stress that this mapping
is merely for visualization purposes — the pertinent information
is contained in adjacent sensor pairings, which we describe how to
generate later in the section.

To each pair of sensors, we apply the set of scaling and wavelet

coefficients given in the figure, whereh1 =
√

∆2

∆1(∆1+∆2)
, h2 =

−
√

∆1

∆2(∆1+∆2)
, andh1 =

√
1

∆1+∆2
. Thus, for a given cluster,

we have that

s = (m1∆1 + m2∆2)
√

1
∆1+∆2

d = m1∆1

√
∆2

∆1(∆1+∆2)
+−m2∆2

√
∆1

∆2(∆1+∆2)
.

(10)

Using theh0, h1, andh2 expressions, it is easily verified that the
pair of basis functions are mutually orthogonal, have unit-norm,
and span the space of functions constant over the∆1 and∆2 in-
tervals.

Pairing measurements to generate wavelet and scaling coef-
ficients according to Equation 10 gives us roughlyN/2 scaling
coefficients over the cluster ofN sensors. Recall, though, that to
fit into the model of Figure 2(a) we must describe the whole clus-
ter with a single scaling value for transport to the next layer of
the hierarchy. To do so, we merely iterate the pairing and trans-
form process, operating now on scaling coefficients whose sup-
ports spans those of the pairs from which they were derived. This
process effectively turns the arbitrary,(N − 1)–to–1 single-depth
tree provided by the routing hierarchy into avirtual binary treeas
shown in Figure 6. We refer to this structure as atelescope tree
since it “stretches” the cluster into a deeper tree. Note that the tree



Fig. 6. Generating a virtual telescoping tree from the routing hier-
archy cluster specification.
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Fig. 7. Comparing a pair of disjoint wavelet functionsW1 andW2

with the wavelet functionW3 and scaling functionS spanning the
combined support at the next level of telescope hierarchy.

is, in fact, virtual, as the entire transform is calculated by the clus-
terhead given the measurements and supports for all sensors in the
cluster, as described in the introduction to Section 3.

Orthonormality of the basis functions holds over levels of the
telescope tree, as illustrated in Figure 7.W1 andW2 in the fig-
ure describe wavelet functions in separate pairs over the intervals
{∆1, ∆2} and{∆3, ∆4} on the same level of the tree. Clearly,
these functions are orthogonal given their disjoint support inter-
vals. W3 andS describe the wavelet and scaling functions at the
next level of the hierarchy, which pairs the scaling coefficient over
{∆1, ∆2} with that over{∆3, ∆4}. It is not difficult to see that
bothW1 andW2 at the lower level of the hierarchy are orthogonal
to the next-level functions. By construction, all wavelet functions
integrate to zero against a constant value. AsW1 andW2 both
reside in regions spanned by constants inW3 andS, their inner
products with those functions are zero, ensuring orthonormality
of the complete set of wavelet functions and the scaling function
employed in the telescoped decomposition.

Given pairings that form the binary tree in Figure 6 and re-
peated application of Equation 10 to the pairs, we can form a set
of N − 1 wavelets and a scaling coefficient for a cluster ofN sen-
sors. Moreover, as we have a complete orthonormal basis across
the cluster, the relation in Equation 8 and approximation energy
error is fixed at

E − Ê =

q∑

i=1

c2
i , (11)

wherei again indexesq smallest-magnitude wavelet coefficients,
which have been set to zero prior to reconstruction.

Computational complexity in this telescoping transform clearly
resides in the pairing scheme used. We appeal to a technique
known as Perfect Matching [18], which pairs points so that some
objective function is minimized. As clusters may have an odd
number of nodes, as illustrated in Figure 6, care is needed to spec-
ify the non-paired node, which retains its value and support into
the next round of matching. We discuss the details of matching, as
well as a variety of other practical concerns, in Section 4.

4. IMPLEMENTATION DETAILS

Given both the tight-frame pyramid algorithm described in Section
3.2 and the orthonormal basis algorithm of Section 3.3, we now
have two methods for computing piecewise-constant distributed
wavelet transforms for sensor networks. In this section we discuss
implementation issues of the two transforms, distinguishing the
former from the latter. But before addressing their differences, we
begin with a common requirement of both.

As discussed in Section 2, the reality of irregular sampling
requires that we appropriately weight sensor measurements to ac-
count for non-uniform sensor densities. This motivates us to calcu-
late the area of the Voronoi polygon surrounding each sensor, giv-
ing a useful measure of the support-size of each sensor value. As
the transform progresses up levels in the hierarchy, support areas
are merely aggregated and applied to the scaling coefficients which
summarize finer-level measurements. Clearly, all higher-level area
information can flow up the hierarchy, leading to efficient aggre-
gation. Thus, the real challenge becomes efficiently computing the
base-level Voroni cell areas.

Fortunately, efficient, distributed algorithms already exist for
computing a Delaunay triangulation of sensors. Recall from Sec-
tion 2 that the Delaunay triangulation is the geometric dual of the
Voronoi polygon. Given the set of Delaunay edges to which it
belongs, a sensor can easily compute the area of its Voronoi cell
by simple geometric construction. A method for computing the
triangulation of ann-node network with anO(n lg n) commu-
nication cost is given in [19], which constructs a subset of the
Voronoi graph having all but the largest edges in the triangulation.
Edges not found by the distributed algorithm can conceivably be
sent from outside the network, as the network user is assumed to
know all sensor locations and can easily identify these edges. As
area calculation need happen only once, this extra communication
overhead should have a small amortized cost.

Once we know support sizes, we can implement each trans-
form as detailed in Algorithms 1 and 2, which respectively pro-
vide pseudocode for the pyramid and telescope transforms within
a cluster. Note the disparity in complexity between the two. The
pyramid transform merely computes the analysis matrix specified
by Equation 4 given the set of support areas and multiplies the
matrix against the value set for the cluster, passing the resultant
scaling coefficient and aggregate area up the hierarchy.

The telescope transform, which yields a superior, non-redundant
wavelet expansion, requires a bit more computation. Each level of
the telescope tree within a cluster requires identification of value
pairs. To compute these pairings, we appeal to Perfect Matching



Algorithm 1 PyramidXfm(Values, Areas)
1: form analysis matrixTA (Eqn. 4) using Areas
2: Coefficients← TAV alues
3: RETURN Coefficients(1), sum(Areas)

Algorithm 2 TelescopeXfm(Values, Areas)
1: if size of Values is 1then
2: RETURN Values, Areas
3: end if
4: newValues← ∅, newAreas← ∅
5: Pairs← perfectMatch(Areas)
6: for each pair∈ Pairsdo
7: compute pair scaling/wavelet coefficients (Eqn. 10)
8: insert scaling coefficient in newValues
9: insert sum of pair areas in newAreas

10: end for
11: if number of values is oddthen
12: insert leftover value in newValues
13: insert leftover area in newAreas
14: end if
15: TelescopeXfm(newValues, newAreas)

as described in [18]. The Perfect Matching algorithm computes
the lowest-cost match between points in a set given a cost func-
tion. For the telescoping tree, we choose distance between paired
sensors as our minimizing metric and constrain chosen edges to
correspond to edges in the Delaunay triangulation (guaranteeing
merged cells share a common boundary). As Voronoi cells merge
into super-cells, we define the distance between the super-cells to
be the minimum distance between centers of their member Voronoi
polygons. This distance-based matching requirement insures that
difference coefficients remain as small as possible by exploiting
the similarity in spatially proximate measurements from smooth
fields.

Though the Perfect Matching requirement does add computa-
tional and implementation complexity to the transform computed
at a cluster, fast algorithms exist for computing the match [20].
Additionally, the telescope tree within a cluster need only be com-
puted once and stored, provided nodes remain stationary and do
not drop out of the network. Such an approach also opens the
door to computing all pairings outside the network and flowing
the match information down the hierarchy to clusters. Such an ap-
proach would entail far more communication, but the amortized
cost could potentially be tolerable when spread over many subse-
quent transform operations.

Now that we have completely described our proposed trans-
forms and their implementation issues, we proceed in Section 5
to outline how transform coefficients can be applied to a pair of
pertinent signal processing problems.

5. APPLICATION OF TRANSFORM DATA

Transmitting a compressed version of the entire measurement field
to an exterior sink represents an expected sensor network task, as
suggested in [1]. Removing noise in a distributed fashion from
sensor measurements polluted by additive IID processes will also
find much use in sensor networks, especially as a pre-processing
step for more advanced distributed algorithms. We describe below
algorithms for doing so, given wavelet coefficients calculated as

Algorithm 3 xmtCompressed(ClsthdID,Threshold)
1: CandidateCoeffs← Coefficients(ClsthdID)
2: Coeffs2xmt← ∅, ID2xmt← ∅
3: for each coefficient∈ CandidateCoeffsdo
4: if (magnitude of coefficient)< Thresholdthen
5: insert coefficient into Coeffs2xmt, node ID into ID2xmt
6: end if
7: end for
8: send Coeffs2xmt and ID2xmt up the hierarchy to the root
9: for each node in clusterdo

10: xmtCompressed(nodeID,Threshold)
11: end for

described above.

5.1. Distributed Compression and Transmission

Sections 3.2 and 3.3 appeal to Equation 8 to motivate thresholding
of wavelet coefficients as an optimal procedure for approximating
the function they represent. As reconstruction error energy equals
that of discarded wavelet coefficients, discarding smallest coeffi-
cients first leads to an optimal approximation, given that only a
specified number of coefficients can be retained.

Thus, given a magnitude threshold below which wavelet coef-
ficients are presumed insignificant, compression and transmission
of the measurement field proceeds as described in Algorithm 3,
which is called on the root node.

Given a threshold, a clusterhead sends up the hierarchy sig-
nificant wavelet coefficients along with node identifiers indicating
which nodes in the transform generated the coefficients. It then
passes the threshold down the hierarchy to child nodes in the clus-
ter.

5.2. Distributed Measurement De-Noising

Noise in sensor measurements manifests itself as small wavelet co-
efficients. Therefore, de-noising proceeds much as compression,
where wavelet coefficients are compared against a threshold. An
important difference arises, though. IID sensor noise applies only
to individual sensor measurements and not to their entire support
areas. As wavelet coefficients are derived with respect to continu-
ous functions over the plane, we must tailor the threshold to each
coefficient.

We inject an estimatêσn of the noise variance into the net-
work. Considering the telescoped transform and a single cluster,
we fashion a threshold for each wavelet coefficient in the telescope
tree as follows. Where{∆i}ui=1 and{∆i}vi=u+1 describe thev
base-level Voronoi cells aggregated into the positive and negative
support regions of the functions given in Figure 5(b), the thresh-
old t for the wavelet coefficient generated from those basis pairs is
computed as

t = σn

√√√√h2
1

u∑

i=1

∆2
i + h2

2

v∑

j=u+1

∆2
j (12)

Note that this requires knowledge at each transform level of the
base-level Voronoi cells spanned by the transform function sup-
ports. Such information can be computed in a single bottom-up
pass along the routing hierarchy and stored for future reference.
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Now, given that appropriate thresholds can be applied to each
wavelet coefficient, de-noising proceeds as follows. Starting at the
hierarchy root, we threshold wavelet coefficients, compute inverse
transforms, and pass reconstructed values down to child clusters
as scaling values for subsequent inverse transforms. This process
iterates top-down until the base-level values are recovered. These
then represent de-noised versions of original sensor measurements.

6. EXAMPLES

We now proceed to demonstrate the effectiveness of our proposed
transforms on a variety of simulated sensor measurement fields.
We show results for both compression and de-noising, but first we
provide a comparison of our technique, operating in the regular
setting, to a standard regular wavelet transform.

6.1. Comparison to Wavelets on Regular Grids

As a brief sanity check, we compare the performance of our pro-
posed transforms in the regular setting to transforms using regu-
lar Daubechies-2, Daubechies-4, Daubechies-6, and Daubechies-8
wavelets. For all transforms, we plot reconstruction error versus
numbers of coefficients retained with increasing fidelity. For this
setting, the sensor network consists of a regular square grid of 256
sensors. We allow sensors to cluster randomly and evaluate the
resultant reconstructions against those given by the Daubechies
wavelets operating on the entire square grid without clustering.
Figure 8 illustrates the relative performances. Though both the
Haar Pyramid and Haar Telescope transforms are out-performed
by the Daubechies wavelets (as expected), their performance is
clearly comparable. Thus, the transforms are capable of perform-
ing well in both the regular and irregular domains — a claim the
Daubechies wavelets cannot make.

6.2. Compression and Transmission of Network Data

Now, we move back into the irregular domain for an examina-
tion of the relative performances of the Haar Pyramid and Haar
Telescope transforms. Figures 9 (a), (b), and (c) give the three
simulated sensor measurement fields used in the study. The first

consists of a piecewise-planar field with discontinuities in its left
and right corners, the second of a smooth quadratic, and the third
of a noisy quadratic with a discontinuity. Relative performances of
the Haar Pyramid and Telescope transforms are given in Figures 9
(d), (e), and (f), with the non-redundant Haar Telescope outper-
forming the easier-to-implement Haar Pyramid, as expected. Fi-
nally Figures 9 (g), (h), and (i) show the fields reconstructed from
the Haar Telescope function by retaining 250 of the 2,500 coeffi-
cients. Clearly, major features of the fields are retained even in the
presence of such heavy compression

6.3. In-Network De-noising of Measurements

To evaluate the de-noising operation, we took samples from the
noisy quadratic function of Figure 9(c). Over 60 trials we realized
a 5.48 dB improvement in signal-to-noise ratio using soft thresh-
olding.

7. CONCLUSION

In conclusion, we have successfully demonstrated novel irregular
wavelet transforms which are ideally suited to the setting of sen-
sor networks. Providing transforms which are both implementable
and practically valuable, we have demonstrated their utility in the
applications of distributed data compression and distributed de-
noising. To extend this work, we intend to pursue higher-order
approximations, enabling superior data compression.
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