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ABSTRACT power consumption. Dimensions [2, 3] proposes an in-network

While multiresolution data analvsis. processing. and com ressionmultiscale wavelet transform and hierarchical coefficient routing
ysIS, p 9 P with its wavRoute protocol but assumes sensor measurements lie

hold considerable promise for sensor network applications, progres . L : .
has been confounded by two factors. First, typical sensor data are(§n a square grid. Similarly, Wisden [4] also assumes a square grid

. AR i ) and application of regular wavelets for compression purposes, as
|rregu_larly spaced, which is mcompatlple with standard wayelet do [5] and [6]. Finally, Fractional Cascading [7] assigns to a sen-
techn_lques. Second, the COF“FT?””'C""“OF‘ overhead of mun'S(.:alesor a view of the entire network which decays in resolution as the
algorllthms can .become prOh'b't'V?' In th!s paper, we take a f'r.St network becomes more distant from the sensor. While this ap-
st_ep n addre_ssmg b.Oth shortcomings by introducing two new dis- proach does not assume regular sensor placement and is useful fo
\t/c:\lljéleg murlgﬁisdogjrtl'grlélrggsgoriws'H(;l;rr 'gﬁﬁgfg%ﬁry&?ﬁl;aﬁ; answering measurement range queries, it does not have the broad
. pyramic . coping R applicability of a wavelet transform to a variety of signal process-
sis provide efficient piecewise-constant approximations of Sensor; - " bolications
data. We illustrate with examples from distributed data compres- 9 Irf)Zpecifyiné our transform algorithms, we assume only that
sion and in-network wavelet de-noising. . ; AR : .
9 each sensor knows its location and shares this information with a
data sink and that an efficient multiscale routing hierarchy is al-
1. INTRODUCTION ready in place. A number of algorithms for sensor localization ad-
. . dress the former problem (see [8]), and both wavRoute mentioned
In the recent call-to-arms found in [1], the authors emphasize that 5)5ve and COMPASS [9] provide examples of the latter. COM-

spatially irregular data sampling is an inescapable reality when pasg in particular, creates a hierarchical routing scheme by clus-
considering real-world sensor network deployments. Using the ex-ering nodes, electing clusterheads, and iteratively clustering the

ample of compression of a sensor network measurement field forg)sterheads. Under this paradigm, local communication within
transmission to a single, external sink via a tree-like routing struc- ¢|sters and up and down the routing hierarchy are less expensive
ture, they emphasize that traditional regular 2-D signal processinghan communication across cluster boundaries. Adopting the rout-
schemes simply do not translate to the irregular setting. Observinging hierarchy as our multiscale decomposition hierarchy allows us
that much of sensor network signal processing literature assumesy tajjor data flows to match the economics of the routing protocol.
regularity of sensor placement, the authors motivate the need for In Section 2 we review challenges of irregular data sampling

newer, irregularity-tolerant solutions for the sensor network set- and motivate the need for wavelet transforms tailored to irregular
ting. . . data. Section 3 provides the mathematical foundations of the two

. To that gnd, we propose what is to our knowledge the first proposed wavelet transforms, beginning with the multiscale data-
distributed, irregular wavelet transform for sensor networks. Em- flow model induced by the routing topology. The details of the two
ploying successive piecewise constant approximations inspired bytransforms one a tight frame pyramid and the other a complete or-
the Haar wavelet in the regular setting, our transform inte‘:‘]r""testhonormal l’:)asis follow. Section 4 addresses details of implement-
seamlessly_with (_9x_isting hierarc_hicgl routing §chemes to align its ing these transfdrms, and Section 5 provides protocols for both dis-
data flow with e_ff|(:|ent communication paths |n_the network. We tributed data compression/ transmission and distributed de-noising
present two variants on our technique and o_utlme' exactly _hOW 10 ot sensor measurements. Section 6 demonstrates the aforemen-
implement each in a real sensor netwqu _settlng. Flne_tlly, USINg OUNi5neq applications in a simulated sensor network setting, and Sec-
transform, we specify protocols for distributed solutions to both tion 7 concludes with a discussion of future directions for such
the data compression and transmission problem discussed abovﬁ'regular wavelet transforms.
and the problem of de-noising sensor measurements within the net-
work.

A good deal of prior work has addressed wavelet-based pro- 2 CHALLENGESOF IRREGULAR DATA SAMPLING
cessing in sensor networks, but none has yet to resolve the diffi-
culties of working with irregularly-spaced data while appreciating - A jarge body of elegant wavelet theory suited to regularly-spaced
the need to minimize communication overhead to reduce network qata has emerged in recent decades, but application of wavelet
This work was supported by NSF, AFOSR, ONR, and analysistoirregularly spaced samples is arelatively new endeavor.

the Texas Instruments Leadership University Program. Email: The Fourier mathematics underlying regular wavelets no longer
{rwagner,shri,choi,richp@rice.edu. Web: dsp.rice.edu. apply in the regular setting, and second-generation wavelet the-
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Fig. 1. Voronoi polygons (solid) bounding a field of sensors con-
nected by edges in a Delaunay triangulation (dashed).

ory such as the lifting scheme [10] has risen to replace traditional
techniques. Extending these ideas to two dimensions proves an
ever greater challenge. The pyramid-based approach of [11] and
the non-redundant technique given in [12] represent some of the
first sophisticated attempts at tackling this problem. Unfortunately,
such approaches are typically intended to operate in a centralized
fashion on an entire dataset, so as such they are not directly appli-
cable to the sensor network problem. For example, they typically (b)

assume complete freedom to construct their own multiscale anal- o ]

ysis hierarchies, and as stated in Section 1, communication effi-Fig. 2. Data flow (a) within a single clustén and (b) from clus-
ciency suggests that transforms must direct their flows along rout- terheads irk; throughks to the superclustei head in clustek,.

ing hierarchies formed with respect to physical constraints such as

sensor placement and wireless channel quality.

Rather than attempting to directly apply these ideas, we takein a typical 6-node cluster, labeléd. Under the assumed routing
inspiration from the approaches contained therein. Varying sensoreconomics, local communications within a cluster are relatively
density poses one of the key challenges in computing an irregularcheap, so each sensor; throughms sends it measurement to
transform, as measurements from nodes in more dense areas of the clusterheadhs for processing. Using the set of measure-
graph will appear to have greater “importance” than those from ments, the clusterhead computes two quantitiesc#ling coeffi-
less dense regions. To counter this problem, we adopt the techcients;, describes some average behavior over the cluster, while
nique in [12] of assigning weight to sensor measurements baseda setdy, of wavelet coefficientsncode deviations of the measure-
on the area of a Voronoi polygon [13] around the sensor. Figure 1 ments from the average value.
illustrates a set of Voronoi tiles drawn as solid lines around asetof  The clusterhead stores wavelet coefficiehts but the scaling
sensor locations. The figure also shows a Delaunay triangulationcoefficientsy, flow up to the next level of the transform/routing
of the sensor locations drawn in dashed lines. Voronoi tesselationspjerarchy, as show in Figure 2(b). Along with cluskerfrom Fig-
are in fact geometric duels of Delaunay triangulations, and a sensofyre 2(a), clusterd, throughks are grouped together to form a
can compute the area of its surrounding Voronoi polygon merely syperclusteri;, whose clusterhead coincides with that of cluster
by knowing the edges for which it is an endpoint in the Delaunay 1, = scaling coefficientsy, throughs;, are passed to clustér,

triangulation. Delaunay triangulations can be computed in a dis- \hich combines them with its ows),, as the input to the next level

Section 4. cluster is generated along with a skf of wavelet coefficients.
Note that the node acting as the super clusterhead performs dou-
3. MULTISCALE TRANSFORMSWITH IRREGULAR ble duty. As the clusterhead of clustey, it stores the sedy, of
SAMPLES level-k wavelet coefficients, and as the clusterhead for the super-

clusterl;, it maintains the sed;, of level{ wavelet coefficients.
We now present the mathematical details behind our proposed tran3he scaling coefficiens;, for the supercluster is then passed up
forms. First, we discuss the interplay between network routing and the hierarchy to participate in subsequent analysis. The iterative
multiscale data decomposition. Then, we delve into the details be-process terminates when one supercluster spans the entire network
hind our two proposed transforms, one a tight-frame Haar pyramid and a scaling coefficient for a single root node is computed. This
and the other an orthonormal basis Haar “telescoping” transform. root scaling value, which describes the average behavior over the
whole network, and the entire set of wavelet coefficients at each
level represent the completed multiresolution analysis of the sen-
sor field. Note that, under this model, the hierarchical wavelet
In Section 1 we introduced the idea of matching the transform hi- decomposition matchesxactlywith the routing topology, group-
erarchy to the routing hierarchy. Such a hierarchical routing topol- ing data arbitrarily as dictated by routing concerns. As such, our
ogy will typically consist of clusters of sensors, one of which is proposed techniques are extraordinarily flexible in the realm of ir-
designated as the clusterhead. Figure 2(a) describes the scenari@gular wavelet transforms.

3.1. Hierarchical Routing and Data Decomposition
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Fig. 3. Conceptual mapping of piecewise-constant function over —

2-D intervals of area\; to piecewise-constant 1-D function over

intervals of widthA; Fig. 4. Tight frame analysis functions for a cluster of 5 nodes,

including one scaling functiors and 3 wavelet functiond¥?;

Given this transform model, we can present the details of our throughWs
two proposed transforms. Both are based on piecewise-constant
approximations as seen in the well-known Haar wavelet in the reg- . ) . .
ular setting by the. We adopt a similar piecewise-constant model PIECeWiSe-constant functions over 2-D regions.
for the data gathered in the network, assuming that measurements (_Slven t_he sefA;}j=, of areas, we form theN + 1) x N
hold constant over the Voronoi polygons surrounding each sen-MatrixK, given by
sor, as described in Section 2. Section 3.2 details a pyramid-like

transform whose analysis and synthesis functions are remarkably ko ko ko - ko
easy to implement but lead to a slightly redundant representation, kr k} ki ka
computing 1 scaling andy’ wavelet coefficients for a cluster of ka ks kg ke
sensors. Section 3.3 presents a more advanced transform which K= ks ks ks -+ k3 ) @)

employs a complete orthonormal basis expansion of sensor mea-

surements, achieving a non-redundant coefficient representation :
(V coefficients for anV-sensor cluster). Providing a sparser rep- kn  kn kv - ky
resentation of the sensor field, this transform nonetheless carrie§N
a slightly higher cost in terms of computational cost and ease of
implementation.

here the total area over the cluster is givemas;, = > | A;.
The bulk of the entries df are defined as

A, i=0
3.2. Tight-FrameHaar Pyramid L VAot (2)
The first transform, originally introduced in [14], represents an VAtA:7 i>0

extraordinarily intuitive and easy-to-implement decomposition of . ) . . .

. . . : while the first sub-diagonal entries are given by
sensor data into wavelet and scaling coefficients. Harkening back
to the pyramid image coders which preceded modern wavelet coders , ki(Ator — Ai)

[15], the transform passes a smoothed average to the next level of k; = N > 0. 3)
decomposition via the scaling coefficientand leaves behind as !
many detail coefficientd as there are sensors in a cluster — in
essence, a redundant transform with the slightest possible redun
dancy.

We now describe how to calculate the transform coefficients . .
given anN-length vectorm of measurements for a cluster df surrogndlng Sensor - . .
sensors. We assume that each sensor in the cluster knows it's sup. _CVe" the matriXK describing the set of basis functions, all

port size as defined by the Voronoi polygon surrounding the sensor.that Is left t_o do is simply multiply against the sensor measure-
These areag A1, Ao, ..., An }, can be computed in a distributed ments and integrate over the set of support areas. Defining a an

fashion, as detailed in Section 4. Given the set of areas and mea-N'by'N matnx_A as a_dlagonal matrix of the arepa; } %1, we
surements, we can conceptually map the 2-D transform problem toform the analysis matrix as

1-D as shown in Figure 3, where sensor measurements are taken
to be constant over intervals whose lengths correspond to sensors’ Ta=KA. )
Voronoi region areas. Note that this mapping is purely for illus- Using the analysis matrix, we compute 1€ + 1) x 1 vector of
trative purposes and that all subsequent integrations in fact involvetransform coefficients as

Taken together, the entries Bf define the basis functions given
in Figure 4. The first row ofK represents the constant-valued
scaling function, while eachi, 7)*" element in the remaining rows

gives the value of wavelet function— 1 over the Voronoi cell



c=Tam, ®)
' . . . h
where the first element ofis the scaling coefficient and the re- —_— L
maining N elements give the wavelet detail coefficiedtDefin- 1
ing the synthesis matrix as Aq Aj hy
0.5 05 |1
Ts = AT, 6)
we recover the set of measurements from the coefficients as S ho
1 .
m = Tsc. (7 Aq Ay

As stated previously, the analysis and synthesis functions form
a tight frame. In fact, they form a special class of tight frame
known as aParseval tight framg16]. Given this membership, (@) (b)
we conclude that, even though the frame is redundant, we have an_.

val in the sianal ; inthe 19 5. (a) Regular, 1-D Haar wgveIeW() and scgling £) ba- .
sg;%z:gtcg::gﬁen energy inthe signal domain and energy in sis functions and (b) corresponding matched pair telescope basis

functions.

N
E=Y¢&, ®) o
o which is piecewise constant oviér, 0.5] and[0.5, 1] can be formed
where E is calculated by squaring the piecewise-continuous sig- 25 2 linear cqmblnatlon of the H_aar scaling a_nd v_vavelet_ functions).
nal given in Figure 3 and integrating it over its support regions. By grouping sensors in our irregular setting into pairs, we can
This equivalence implies that, were we to selectively disaard perform a decomposn.lon mirroring that of the cl.assm Haar case,
wavelet coefficients, the energATyOf the resultant signal would be though we must take into account the support sizes of our sensor

maximized by discarding the smallestoefficients — exactly the measurements when doing so. Appealing to the 1-D visualization
procedure we turn to for the compression application discussed in.Of Section 3, a conceptual mapping of sensor measurements to 1-D

Section 5.1. Moreover, given properties of the transform, we can intervals places paired sensors in adjacent positions on the line so

bound the difference in energies between the reconstructed anc}hat pairwise bas]s fupctlons such as those shown |n.F|gure 5(b)
original signals as apply over the pair of intervals. Again we stress that this mapping

is merely for visualization purposes — the pertinent information
q q is contained in adjacent sensor pairings, which we describe how to

Y d<(E-E)<20) ), (9) generate later in the section.

i=1 i=1 To each pair of sensors, we apply the set of scaling and wavelet

ensuring that the approximated signal will not blow up when the coefficients given in the figure, whetg = , /m, ho =
inverse transform is applied — a useful sanity check when working < T )
with tight frames, whose redundancy can induce problems in such—\/ xz(a1Fa5) @dh =/ x17&; - Thus, for a given cluster,
situations. For a complete proof of the transform’s Parseval tight we have that
frame properties and error bounds, we refer the reader to [17].

Clearly, the tight frame pyramid transform is extremely easy to

implement. Given a s€tA ; };V:I of sensor support areas, comput- s = (m1A1 +ma2la) /m
ing the wavelet decomposition amounts to multiplying the sensor (10)

measurements agairBt , which depends entirely on tHe\; 17, . ~, )

Unfortunately, this does entail suffering redundancy in the coeffi- d= mlAl\/ Aairay T _m2A2\/ A (Al+AL)

cient representation — a problem we can rectify with a second,

more computationally intensive piecewise-constant transform. Using thehg, k1, andh, expressions, it is easily verified that the
pair of basis functions are mutually orthogonal, have unit-norm,
and span the space of functions constant overtheand A, in-
tervals.

Clearly, a non-redundant, distributed wavelet transform for sen- Pairing measurements to generate wavelet and scaling coef-
sor networks is superior from a data-representation standpoint. Inficients according to Equation 10 gives us rougily2 scaling

this section we present a technique which appeals to classic Haaroefficients over the cluster @f sensors. Recall, though, that to
wavelets in the 1-D setting and forms a set of basis functions which fit into the model of Figure 2(a) we must describe the whole clus-
by construction are orthonormal and span the piecewise-constanter with a single scaling value for transport to the next layer of
measurements in a cluster of sensors. Figure 5(a) recalls the regthe hierarchy. To do so, we merely iterate the pairing and trans-
ular Haar scaling and wavelet functions in 1-D. Applied to data form process, operating now on scaling coefficients whose sup-
which is piecewise constant over the intenf@lg0.5] and|[0.5, 1], ports spans those of the pairs from which they were derived. This
the scaling function merely sums measurements in the two regionsprocess effectively turns the arbitratyy — 1)-to-1 single-depth
while the wavelet function differences those measurements. Thetree provided by the routing hierarchy intoviatual binary treeas

two functions are each unit norm, mutually orthogonal (their prod- shown in Figure 6. We refer to this structure asehescope tree

uct integrates to zero), and span the entire interval (any functionsince it “stretches” the cluster into a deeper tree. Note that the tree

3.3. Orthonormal BasisHaar Telescope



q
E-B=Y ¢ (11)
=1

wherei again indexeg smallest-magnitude wavelet coefficients,
which have been set to zero prior to reconstruction.

Computational complexity in this telescoping transform clearly
resides in the pairing scheme used. We appeal to a technique
known as Perfect Matching [18], which pairs points so that some

objective function is minimized. As clusters may have an odd
T number of nodes, as illustrated in Figure 6, care is needed to spec-
ify the non-paired node, which retains its value and support into
Fig. 6. Generating a virtual telescoping tree from the routing hier- {he next round of matching. We discuss the details of matching, as
archy cluster specification. well as a variety of other practical concerns, in Section 4.

w w, 4. IMPLEMENTATION DETAILS

Given both the tight-frame pyramid algorithm described in Section

3.2 and the orthonormal basis algorithm of Section 3.3, we now
5 2, B, b, 5, b, |25 o, have two methods for computing piecewise-constant distributed
wavelet transforms for sensor networks. In this section we discuss
implementation issues of the two transforms, distinguishing the

former from the latter. But before addressing their differences, we
begin with a common requirement of both.

As discussed in Section 2, the reality of irregular sampling
requires that we appropriately weight sensor measurements to ac-
AL By Ay B IS PR R VS count for non-uniform sensor densities. This motivates us to calcu-
late the area of the Voronoi polygon surrounding each sensor, giv-
ing a useful measure of the support-size of each sensor value. As
L the transform progresses up levels in the hierarchy, support areas
are merely aggregated and applied to the scaling coefficients which
summarize finer-level measurements. Clearly, all higher-level area
information can flow up the hierarchy, leading to efficient aggre-
gation. Thus, the real challenge becomes efficiently computing the
base-level Voroni cell areas.

Fortunately, efficient, distributed algorithms already exist for
computing a Delaunay triangulation of sensors. Recall from Sec-
is, in fact, virtual, as the entire transform is calculated by the clus- tign 2 that the Delaunay triangulation is the geometric dual of the
terhead given the measurements and supports for all sensors in thggronoi polygon. Given the set of Delaunay edges to which it

Fig. 7. Comparing a pair of disjoint wavelet functiois, andi¥
with the wavelet functioiiVs and scaling functior$ spanning the
combined support at the next level of telescope hierarchy.

cluster, as described in the introduction to Section 3. belongs, a sensor can easily compute the area of its Voronoi cell
Orthonormality of the basis functions holds over levels of the by simple geometric construction. A method for computing the
telescope tree, as illustrated in Figure W, andW> in the fig- triangulation of ann-node network with arO(nlgn) commu-

ure describe wavelet functions in separate pairs over the intervalsnication cost is given in [19], which constructs a subset of the
{A1, Az} and{A3, A4} on the same level of the tree. Clearly, Voronoi graph having all but the largest edges in the triangulation.
these functions are orthogonal given their disjoint support inter- Edges not found by the distributed algorithm can conceivably be
vals. W3 and S describe the wavelet and scaling functions at the sent from outside the network, as the network user is assumed to
next level of the hierarchy, which pairs the scaling coefficient over know all sensor locations and can easily identify these edges. As
{A1, Az} with that over{A3z, A,}. Itis not difficult to see that  area calculation need happen only once, this extra communication
bothWW; andW, at the lower level of the hierarchy are orthogonal overhead should have a small amortized cost.
to the next-level functions. By construction, all wavelet functions Once we know support sizes, we can implement each trans-
integrate to zero against a constant value. VXs and W> both form as detailed in Algorithms 1 and 2, which respectively pro-
reside in regions spanned by constantsiip and S, their inner  vide pseudocode for the pyramid and telescope transforms within
products with those functions are zero, ensuring orthonormality a cluster. Note the disparity in complexity between the two. The
of the complete set of wavelet functions and the scaling function pyramid transform merely computes the analysis matrix specified
employed in the telescoped decomposition. by Equation 4 given the set of support areas and multiplies the
Given pairings that form the binary tree in Figure 6 and re- matrix against the value set for the cluster, passing the resultant
peated application of Equation 10 to the pairs, we can form a setscaling coefficient and aggregate area up the hierarchy.
of N — 1 wavelets and a scaling coefficient for a clusteNogen- The telescope transform, which yields a superior, non-redundant
sors. Moreover, as we have a complete orthonormal basis acrossvavelet expansion, requires a bit more computation. Each level of
the cluster, the relation in Equation 8 and approximation energy the telescope tree within a cluster requires identification of value
error is fixed at pairs. To compute these pairings, we appeal to Perfect Matching



Algorithm 1 PyramidXfm(Values, Areas) Algorithm 3 xmtCompressed(ClsthdID, Threshold)
1: form analysis matrix@ 4 (Eqn. 4) using Areas 1: CandidateCoeffs— Coefficients(ClsthdID)

2: Coefficients— T 4V alues 2: Coeffs2xmt— (), ID2xmt « ()
3: RETURN Coefficients(1), sum(Areas) 3: for each coefficient CandidateCoeffdo
4: if (magnitude of coefficientl Thresholdthen

Algorithm 2 TelescopeXim(values, Areas) 2. en|dnisfert coefficient into Coeffs2xmt, node ID into ID2xmt

1: if size of Values is then 7: end for

2. RETURN Values, Areas 8: send Coeffs2xmt and ID2xmt up the hierarchy to the root

3: end if 9: for each node in clustedo

4: newValues— (), newAreas— () 10:  xmtCompressed(nodelD, Threshold)

5: Pairs«— perfectMatch(Areas) 11: end for

6: for each pairc Pairsdo

7.  compute pair scaling/wavelet coefficients (Egn. 10)

8: insert scaling coefficient in newValues )

9: insert sum of pair areas in newAreas described above.
10: end for

11: if number of values is odthen 5.1. Distributed Compression and Transmission

12:  insert leftover value in newValues

13:  insert leftover area in newAreas Sections 3.2 and 3.3 appeal to Equation 8 to motivate thresholding
14: end if of wavelet coefficients as an optimal procedure for approximating
15: TelescopeXfm(newValues, newAreas) the function they represent. As reconstruction error energy equals

that of discarded wavelet coefficients, discarding smallest coeffi-
cients first leads to an optimal approximation, given that only a
specified number of coefficients can be retained.

as described in [18]. The Perfect Matching algorithm computes Thus, given a magnitude threshold below which wavelet coef-

the lowest-cost match between points in a set given a cost func-

tion. For the telescoping tree. we choose distance between paire icients are presumed insignificant, compression and transmission
: coping P . p f the measurement field proceeds as described in Algorithm 3,
sensors as our minimizing metric and constrain chosen edges tQ

) . . . which is called on the root node.
correspond to edges in the Delaunay triangulation (guaranteeing Given a threshold, a clusterhead sends up the hierarchy sig-

merged cells share a common boundary). As Voronoi cells METYE ificant wavelet coefficients along with node identifiers indicatin
into super-cells, we define the distance between the super-cells to 9 9

be the minimum distance between centers of theirmemberVoronoiWhiCh nodes in the transform ggnerated the .Coefﬁdem.s' It then
polygons. This distance-based matching requirement insures tha asses the threshold down the hierarchy to child nodes in the clus-
difference coefficients remain as small as possible by exploiting er.
the similarity in spatially proximate measurements from smooth
fields. 5.2. Distributed Measurement De-Noising

Though the Perfect Matching requirement does add computa-

tional and implementation complexity to the transform computed Noise in sensor measurements manifests itself as small wavelet co-
at a cluster, fast algorithms exist for computing the match [20]. €fficients. Therefore, de-noising proceeds much as compression,

Additionally, the telescope tree within a cluster need only be com- Where wavelet coefficients are compared against a threshold. An
puted once and stored, provided nodes remain stationary and ddMPortant difference arises, though. 11D sensor noise applies only
not drop out of the network. Such an approach also opens thel0 individual sensor measurements and not to their entire support
door to computing all pairings outside the network and flowing 2'€aS: As wavelet coefficients are derived with respect to continu-

the match information down the hierarchy to clusters. Such an ap-°US functions over the plane, we must tailor the threshold to each
proach would entail far more communication, but the amortized coefficient.

cost could potentially be tolerable when spread over many subse- ~ We inject an estimate,, of the noise variance into the net-
quent transform operations. work. Considering the telescoped transform and a single cluster,

Now that we have completely described our proposed trans- e fashion a threshold for each wavelet coefficient in the telescope
forms and their implementation issues, we proceed in Section 5ree as follows. WhergA;}i_, and{Ai}i_,, describe they
to outline how transform coefficients can be applied to a pair of base-level Voronoi cells aggregated into the positive and negative
pertinent signal processing problems. support regions of the functions given in Figure 5(b), the thresh-

old ¢ for the wavelet coefficient generated from those basis pairs is

computed as
5. APPLICATION OF TRANSFORM DATA

to an exterior sink represents an expected sensor network task, as
suggested in [1]. Removing noise in a distributed fashion from
sensor measurements polluted by additive IID processes will alsoNote that this requires knowledge at each transform level of the
find much use in sensor networks, especially as a pre-processingase-level Voronoi cells spanned by the transform function sup-
step for more advanced distributed algorithms. We describe belowports. Such information can be computed in a single bottom-up
algorithms for doing so, given wavelet coefficients calculated as pass along the routing hierarchy and stored for future reference.

Transmitting a compressed version of the entire measurement field t = o | h2 Z A2 4 R2 Z AJQ_ (12)
i=1

Jj=u+1



10 ; ‘ ‘ ‘ — consists of a piecewise-planar field with discontinuities in its left
e and right corners, the second of a smooth quadratic, and the third
. * Dauechies of a noisy quadratic with a discontinuity. Relative performances of
. 10 the Haar Pyramid and Telescope transforms are given in Figures 9
= (d), (e), and (f), with the non-redundant Haar Telescope outper-
S 10 forming the easier-to-implement Haar Pyramid, as expected. Fi-
g nally Figures 9 (g), (h), and (i) show the fields reconstructed from
© the Haar Telescope function by retaining 250 of the 2,500 coeffi-
S10° cients. Clearly, major features of the fields are retained even in the
£ presence of such heavy compression
=z
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6.3. In-Network De-noising of M easurements
107 ‘ To evaluate the de-noising operation, we took samples from the

100 150 200
Coeffs retained

0 50 250

noisy quadratic function of Figure 9(c). Over 60 trials we realized
a 5.48 dB improvement in signal-to-noise ratio using soft thresh-

olding.

Fig. 8. Comparison of Haar Pyramid and Haar Telescope to D-2,
D-4, D-6, and D-8 wavelets in a regular setting.

Now, given that appropriate thresholds can be applied to eac
wavelet coefficient, de-noising proceeds as follows. Starting at the
hierarchy root, we threshold wavelet coefficients, compute inverse
transforms, and pass reconstructed values down to child clusteré
as scaling values for subsequent inverse transforms. This proces
iterates top-down until the base-level values are recovered. Thesé'
then represent de-noised versions of original sensor measuiemen

6. EXAMPLES 1
We now proceed to demonstrate the effectiveness of our proposed
transforms on a variety of simulated sensor measurement fields. [2]
We show results for both compression and de-noising, but first we
provide a comparison of our technique, operating in the regular
setting, to a standard regular wavelet transform. (3]

6.1. Comparison to Wavelets on Regular Grids [4]
As a brief sanity check, we compare the performance of our pro-
posed transforms in the regular setting to transforms using regu- [5]
lar Daubechies-2, Daubechies-4, Daubechies-6, and Daube&thies-
wavelets. For all transforms, we plot reconstruction error versus
numbers of coefficients retained with increasing fidelity. For this
setting, the sensor network consists of a regular square grid of 256
sensors. We allow sensors to cluster randomly and evaluate the 7]
resultant reconstructions against those given by the Daubechies
wavelets operating on the entire square grid without clustering.
Figure 8 illustrates the relative performances. Though both the [&]
Haar Pyramid and Haar Telescope transforms are out-performed
by the Daubechies wavelets (as expected), their performance is 4
clearly comparable. Thus, the transforms are capable of perform-
ing well in both the regular and irregular domains — a claim the [;q;
Daubechies wavelets cannot make.

6]

[11]
6.2. Compression and Transmission of Network Data

Now, we move back into the irregular domain for an examina- (12]

tion of the relative performances of the Haar Pyramid and Haar
Telescope transforms. Figures 9 (a), (b), and (c) give the threer,,
simulated sensor measurement fields used in the study. The first

7. CONCLUSION

hIn conclusion, we have successfully demonstrated novel irregular
wavelet transforms which are ideally suited to the setting of sen-
sor networks. Providing transforms which are both implementable
nd practically valuable, we have demonstrated their utility in the
applications of distributed data compression and distributed de-
oising. To extend this work, we intend to pursue higher-order
approximations, enabling superior data compression.
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