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1. Brief description of the Project and objectives 
 
Plasma microwave generators on relativistic electron beams open up the best possibilities for 
direct conversion of beam kinetic energy to energy of electromagnetic radiation in large 
wavelength range [1]-[6]. Recent plasma devices actually correspond to cylindrical waveguide 
with thin annular e-beam and coaxial thin annular plasma in external longitudinal magnetic 
field that is strong enough to freeze transversal motion of plasma and beam electrons[1]-[3]. In 
these systems plasma oscillations are excited as a result of beam-plasma instability 
development. The waves are brought out via trumpet. Dispersion properties of such systems 
make possible to control output frequency (determined by intersection of straight line of 
Cherenkov resonance with the dispersion curve) and bandwidth by changing plasma density 
and geometry (distance between beam and plasma pipes). The advantages of plasma-filled 
systems were justified experimentally in the Institute of General Physics of Russian Ac. Sci 
and in other experiments  
Theory of plasma-filled microwave devices in strong external magnetic field has been 
developed by authors of present project under guidance of their scientific leader A.A. 
Rukhadze. They published vast literature on plasma physics, beam-plasma interaction, and 
theory of microwave devices on relativistic electron beams (plasma filled as well as vacuum): 
11 books and more than 40 reviews. Some of the books have been translated into English [1], 
[7]-[8]. 
At changing over to higher frequencies upper limitation on the value of external magnetic field 
arises. Thus, the problem must be solved with the regard of finite value of external magnetic 
field.  Given project has been aimed to develop theory of plasma devices in finite external 
longitudinal magnetic field. Including investigation of the mechanisms of wave excitation, 
nonlinear dynamics of instability development in no-uniform cross section waveguide.   
This theory is also important for optimization of plasma microwave oscillators and amplifiers 
(for reducing their prices). In addition, investigations of beam-plasma interaction in finite 
external magnetic field are important for development of theory of fundamental mechanisms of 
radiation in plasma such as collective and single particle Cherenkov effects and anomalous 
Doppler Effect. 
In the framework of present project following first-priority problems related to the 
configuration of microwave sources in finite external field: 

• Linear theory of beam-plasma interaction in finite magnetic field. 
• Nonlinear dynamics of beam-plasma interaction in finite magnetic field in unbound 

uniform and no-uniform cross section systems. 
• Theory of beam plasma interaction in finite magnetic field with account of radiation 

output from system of finite length. 
• Theory of beam plasma interaction with account of dissipation in configuration of 

microwave sources in finite external magnetic field  
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2. Research methods 
In the framework of present project the mechanisms of excitations of plasma oscillations by 
high current relativistic electron beam and their nonlinear dynamics in finite external magnetic 
field are theoretically investigated. 

• Linear analysis has been carried out based on solution of dispersion equation. Electron 
beam and plasma are described by linearized set of hydrodynamic equations.  

• Nonlinear dynamics of beam-plasma interaction in finite magnetic field has been 
investigated numerically based on large particle (particle in cell) method. 

• For adequate account of the reflection in plasma microwave sources the reflective 
properties of the electrodynamic system has been determined. The analysis has been 
carried out based solutions of Helmholtz equation. 

• For investigations of influence of dissipation on beam-plasma instabilities in 
configuration of microwave sources we used methods of plasma electrodynamics that 
are developed in books of the authors of this project (e.g. [1], [Error! Reference 
source not found.]-[8]).  

 
3. Results 
 
The basic mechanisms of beam-plasma (BP) instability that underlay on modern development 
of plasma microwave electronics are single-particle (Tomson-type) and collective (Raman-
type) Cherekov effects. If the beam density is low enough (as compared to plasma density) the 
conventional Cherenkov effect realizes under resonance ukz=ω  (ω  is frequency, zk -
longitudinal wave number, u - the velocity of the beam electrons). As a rule, the value of 
external longitudinal magnetic field 0B in actual experiments is high enough and the Larmor 

frequency of electrons mceBe 0=Ω is higher than plasma frequency mne pp
24πω = ,  ( pn  

is plasma density, e and m are the charge and the mass of electron). That is why most of 
theoretical investigations have been carried out in limit of infinite value of external magnetic 
field. At the same time new resonances arise in finite external magnetic field as well as new 
mechanisms of instability: normal and anomalous Doppler effects. These effects appear 
themselves in following conditions: γω ezuk Ω±= , where ( ) 21221 −

−= cuγ - is relativistic 
factor of the beam electrons. In spite of the Cherenkov and the Doppler effects reveal 
themselves in different frequency and wave vector ranges, these effects compete and the 
competition can essentially influence on development of instability in the system. 
The normal Doppler effect corresponds to wave non-transparency in BP system and doesn’t 
lead to instability. But if anomalous Doppler effect takes place, the developing instability leads 
to increasing of transversal component of velocity of the beam electrons and to decreasing of 
the longitudinal component. As a result the velocity distribution of the beam electrons can 
spread out and the development of Cherenkov-type instability can be deranged. 
We consider beam-plasma system consisting cylindrical waveguide of radius R with plasma 
and electron beam homogeneous along axis. In the cross-section the plasma and the beam 
correspond to thin-walled pipe with the mean radii bpr ,  )( bp rr ≠ and thicknesses bp,Δ . The 
basic result of linear theory is the dispersion relation that takes into account the interaction of 
low frequency cable wave of plasma filled waveguide with the thin annular e-beam. It may be 
written in following form 
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where bω  is the Lengmuir frequency of the beam electrons, and expressions  
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(here  1,0I  and 0K  are the modified Bessel and MacDonald functions). 
Based on numerical modeling we analyzed beam-plasma interaction. Approximate expressions 
for the growth rates of excited by the e-beam cable wave have a form 
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If the growth rate of the instability due to anomalous Doppler effect is higher than the growth 
rate of Cherenkov-type instability the Cherenkov-type instability does not develop at all. One 
can easily see this is possible only in comparatively low external magnetic fields.  But even if 
this condition does not hold, and the growth rate of Cherenkov-type instability is greater, that 
all the same: development of the instability due to anomalous Doppler effect takes place. It 
develops in other (shorter) wavelength range and development of long wavelength instability 
can not suppress it. That is why the development of slower instability of anomalous Doppler 
type can lead to full derangement of the Cherenkov-type instability on late stages of its 
development. 
 
In the framework of the project a set of equations is obtained that uniformly describes 
development of following types of instabilities in beam-plasma systems in finite external 
magnetic field: Cherenkov-type instability that develops on plasma branch of oscillations; 
Cherenkov-type instability that develops on cyclotron branch of plasma oscillations and 
anomalous Doppler type instability on the plasma and cyclotron branches of oscillation. 
System consisting of cold plasma and straight-line electron beam was considered. 
Consideration has been carried out in potential approximation. 
Let z  is the coordinate along unperturbed motion of the beam and the external magnetic field, 
x is transversal coordinate and there is no dependence on the third coordinate. The expression 
for the beam and the plasma densities may be written as  

000 )()(),,( dzdxzzxxenzxt αααα δδρ −−= ∫∫                                              (1) 

where bp,=α  for the plasma and the beam respectively, ),,( 00 zxtxα  and  ),,( 00 zxtzα are the 
trajectory of the particle that begins the motion from the point 0x , 0z  at the time 0=t . 
Represent the potential of the electric field in the form 

( )| |
, 0

1( , , ) ( )exp( )exp( ) c.c.
2 ns

n s

e t x z t isk x ink z
m ⊥

=

ϕ = ϕ +∑                                   (2) 

where e and m  is the charge and the mass of electron, ||k  and  ⊥k  are the basic values of 
longitudinal and transversal wavenumbers. These values are determined particularly by the 
structure of initial perturbation thrown into considered system. Substituting the (1) and (2) into 
the Poisson equation we have  
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are dimensionless amplitudes of the density perturbations of α - type particles (dimensional 
amplitudes may be obtained by multiplication of (4) by unperturbed densities α0n  ) 

2
||

2222 knksqns += ⊥ . 
As a result the potential of electric field takes following form 
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Using (5), equations of motion of the plasma ( p=α ) and the beam ( b=α ) electrons may be 
written as 
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In linear approximation the following dispersion relation results from (6) and (7) 
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Numerical analysis of (8) has been carried out for following values of the parameters  
05.0/ 22 =pb ωω , 5.1/ =Ω pe ω ,  4.1/ =⊥ puk ω ,  15.3 −

⊥ = смk  
Fig 1 represents the dependences of the growth rate of the beam-plasma instability in finite 
external magnetic field on longitudinal wavenumber ||k  for various transverse modes 0=s , 

1=s . Fig 1a corresponds to 0=s . In this case there is one region of instability only.  It is 
related to stimulated Cherenkov radiation of the low frequency plasma wave. The dispersion 
relation (8) shows that there is no other instabilities. Recall that in the equation (8) ⊥k  actually 
means ⊥sk . The Cherenkov type instability under mode 0=s  is due to stimulated Cherekov 
effect ( bωω >Im ). 
Fig 1b presents the growth rates of the instabilities under  1=s . There are three regions that do 
not overlap. The left-hand region, where the growth rate is maximal, is related to stimulated 
Cherenkov radiation of high frequency cyclotron wave in plasma. This instability is due to 
stimulated Collective Cherenkov effect ( bωω <Im ). Following two instability region (to the 
sideway of large ||k  are related to radiation of low frequency plasma wave and high frequency 
cyclotron wave in conditions of anomalous Doppler effect. The growth rates under anomalous 
Doppler effect are essentially lower than the growth rates of Cherenkov-type instabilities. Note, 
there is no instability on transversal mode 1=s  that is due to Cherenkov radiation of low 



Project # A-1512p Final Project Technical Report Page 8 / 17
 
frequency plasma wave, because the needed condition for this instability ukp ⊥>ω  does not 
satisfy for given value of ⊥k .  
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Fig. 1. The dependences of the growth rates of the instability pωω /Im  

vs  longitudinal  wavenumber ||k   for various values of ⊥k . 
 
Now begin to analyze the nonlinear dynamics of the instability development. The dependencies 
of the beam and the plasma densities on the time are presented on the Figs 2a,b . The 
dependencies are calculated from the expression (4). On the linear stage the harmonics 0=s , 

2,1=n are excited (see curves 1.2). The first one corresponds to Cherenkov excitation of the 
low frequency plasma wave. There takes place energy transfer to higher harmonics due to 
nonlinear interaction of various waves. Under  0≠s  the growth rates are less and the 
excitation of these waves is weaker. The changes of the energy of longitudinal and transversal 
motion are presented on the fig 2c. This fig shows that the transversal motion actually does not 
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Fig. 2. The dependences of the densities of the plasma  (a) and the beam (b) electrons, and the 

dynamics of changes of longitudinal ||E  and transversal ⊥E  energy  of the beam (c). 

 
excite, and the instability is of Cherenkov-type. This is related to relatively low growth rate of 
anomalous Doppler-type instability and it has no time to develop. Insignificant increase of the 
transversal energy is caused by the motion of the electrons be subjected to transversal 
component of the electric field.  
 
In the framework of the project the problem of definition of reflective properties of the 
longitudinally confined system on the boundary between beam-plasma system and the emitting 
trumpet was considered. 
For modeling of the reflective properties we have considered (see Fig 3) part of waveguide of 
radius R : 1 2L z L− < <  . The part 0 cz L< <  is occupied by metallic cone. The angle on its 
vertex is 2α . On cz L=  this cone turns into metallic coaxial, inner radius of which is  0r . 
Plasma layer with radial profile described by expression  

2 2( ) ( )p p p pr r rω = ω δ δ −  
( pω is the Longmuir frequency of the plasma, pδ is the thickness of the layer, pr  is the mean 
radius, )(xδ  is the Dirac function) is placed on the left-hand side of the cone. The plasma 
wave, if it propagates along z axis in positive direction, reflects partially from the conical 
region. As a result of this partial reflection backward waves arise. Propagation of the wave in 
the region cz L>  leads to creation of proper waves of the waveguide with inner radius 0r , and 
outward radius R .  
Calculation of the reflection coefficient was carried out by solving the Maxwell’s and 
hydrodynamic equations. We considered scattering of wave train with fixed (in the framework 
of given calculation)  carrier frequency,  but  the wave  vector  zk   may  be  obtained  from  the 
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Fig. 3. Metallic resonator with thin plasma and emitting trumpet. 
 
respective dispersion relation. Thus by varying the frequency it is possible to obtain the 
dependence of the reflection coefficient on the frequency – its dispersion.  
For modeling of the reflection processes in abovementioned system we use linearized 
hydrodynamic equations for describing the current density in plasma.  

2
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∂ π

 

where zE is the longitudinal electric field on the plasma layer.      
In the vacuum region the set of Maxwell’s equations are  

r BE c
t z

ϕ∂∂
= −

∂ ∂
,          

( )z rBE c
t r r

ϕ∂∂
=

∂ ∂
,      z rB E Ec

t r z
ϕ∂ ∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂ ∂⎝ ⎠

. 

With account of infinite conductivity of the waveguide’s walls, one can use following 
boundary conditions for the electric field: 
            ( ) 0zE r R= = , 0( , ) 0z cE r r z L= > = , (0 ) 0cE z Lτ < < = , 
where Eτ is the component of the electric field, tangential to conic surface of the trumpet.   
Account of the symmetry gives additional conditions for the field on the axis: 

( 0) 0rE r = = , ( 0) 0B rϕ = = . 
On the plasma the boundary conditions have following form 

( 0) ( 0) 4r p r p pE r E r+ − − = πσ , 4( 0) ( 0)p p pB r B r j
cϕ ϕ

π
+ − − = , 

where ( , )p z tσ  and ( , )pj z t  are the surface charge and current densities in plasma that are 
coupled by continuity equation 
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Under pr r=  the component zE  is continuous but its derivative undergoes discontinuity 
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On the plane 1z L= −  no stationary boundary condition is given that is responsible for excited 
plasma wave 
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where 0t is the impulse duration,  ( )P t   is the impulse envelope,  ( )rΨ -is the proper function 
of excited plasma wave. 
We defined the coefficient of reflection as a ratio of energy flux of reflected wave to that of 
incident wave. The frequency dependencies of the reflection coefficients for various angles α  
of the cone are presented in the Fig 4. The curve 1 corresponds to 90α = ° , the curve 2 – to 

45α = ° , the curve 3 – to 10α = ° .  The cutoff frequencies of volume waves in the region 0z <  
are denoted by dotted upright lines but in the region cz L>  by continuous upright lines. It is 
seen with increase in frequency of excited wave the reflection coefficient increases also and 
tends to unity. In the region of intermediate frequencies the values of the coefficient are of 
order 0.3 – 0.7. The case 90α = °  provides the best matching i.e. the sharp transition of the 
beam-plasma waveguide to emitting trumpet. 
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Fig. 4. The frequency dependencies of the reflection coefficients for various angles α   

of the vertex of emitting trumpet (1 - 90α = ° , 2 - 45α = ° , 3 - 10α = ° ). 
 

In the framework of present project the effect of dissipation in configuration of plasma 
microwave devices has also been investigated. In the configuration with spatially separated 
beam and plasma proper oscillations of the beam play an important role. Of special importance 
is the excitation of the negative energy beam wave (NEBW). Its growth leads to instability due 
to sign of energy. Characteristic peculiarity of this instability (as compared to conventional 
beam-plasma instability) is its growth rate attains maximum under collective Cherenkov 
resonance. Dissipation in the system also leads to the growth of the same wave. In these 
conditions the role of dissipation increases, as it intensifies the growth of the NEBW. Actually, 
the configuration creates a superposition of two factors both of which lead to excitation of 
NEBW. With increase in dissipation level this superposition leads to dissipative beam 
instability (DBI) of new type. Its growth rate has more critical dependence on dissipation (as 
compared to conventional DBI). 
 
One of the basic trend of microwave electronics – to increase output frequency – leads to 
decreasing of the skin depth in the walls of resonators. Their quality factor Q decreases and 
actually dissipation increases. One more reason of the increase of the dissipation should be 
mentioned. In waveguide systems return current flows mainly via metallic surfaces. With 
increase in the beam current the return current increases also. With account of decreasing of the 
skin depth and finite conductivity of metallic surfaces this significantly increases the level of 
dissipation in the system. All this creates favorable conditions for developing of the new type 
of DBI. 
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Exact solution of the problem justifies this reasoning. The influence of dissipation in 
abovementioned configuration has been investigated quantitatively. Cylindrical waveguide 
filled by plasma and penetrated by electron beam has been considered. The beam and the 
plasma are thin annular with mean radii pr  and br ; pδ and bδ are their thicknesses. We have 
made following expedient for theoretical model assumption: the plasma and beam are not just 
thin but infinitesimal thin. This assumption allows using approximate boundary conditions 
carried out in [9] that essentially simplify consideration. Dissipation has been taken into 
account by introducing collision frequency ν  in plasma. Obtained dispersion relation describes 
interaction of the electron beam with low frequency plasma wave. It may be written as follows 
(for symmetric modes) 
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where ω  is the perturbations frequency k  is the wave vector along axis,  2222 / ck ωκ −= , 
bp,ω - are the Longmuir frequencies of the plasma and the beam 122 )/1( −−= cuγ ,  u  is the 

velocity of the beam electrons, bpG ,  are the geometric factors of the plasma and the beam 
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The dispersion relation indeed leads to the new type of DBI. Its growth rate is given by  

( ) ( ) α
γν

ω ν
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und
Gku

=                                                               (**) 

where α  is the parameter that characterizes beam current value. It is equal to the ratio of the 
beam current to limiting vacuum current. The expression for the growth rate is written for 
underlimiting e-beams i.e. 1<α . The parameter G shows level of beam-plasma coupling i.e. 
the overlap of the beam and the plasma fields. It complicatedly depends on the parameters. (**) 
is obtained under weak coupling 1<<G and depends on the dissipation inverse proportionally. 
As compared to conventional DBI the dependence became more critical, i.e.  12

1 −→νν . 
The expression (**) makes quotation, for simplicity, in limit of strong external field. Explicit 
expression for the growth rate under arbitrary external field is not quoted here. The equations 
for the plasma and the beam wave (equality to zero of first and second braces in left-hand side 
of (*)) have no analytical solution. The results are obtained numerically.  But the structure of 
the equation (*) shows that the growth rate inevitably depends on dissipation inverse 
proportionally.  
Thus abovementioned configuration of microwave devices favors development of the new type 
of DBI with inverse proportional dependence on dissipation. Its properties and development 
conditions show that it can adversely affect on the operation in conditions of collective 
Cherenkov effect in short wavelength limit. This should be taken into account upon design of 
future devices. 
The transient processes in microwave devices are determined by rate of growth of initial 
perturbation. The influence of dissipation on the development dynamics of the initial 
perturbation in the same configuration is also investigated in the framework of the project. The 
solution of the problem was carried out based on method developed in [10]. This method has 
been modified according to conditions of collective Cherenkov effect. The results show that 
dissipation significantly effects on growth rates and suppresses low-velocity (lower than the 
beam velocity) modes. In the limit of high-level dissipation, unstable perturbations move at 
beam velocity. I.e. if one considers injection of an e-beam into plasma-filled waveguide and its 
further propagation, the DBI develops mainly near beam front.  
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4. Conclusion 
 
1. Based on numerical modeling we analyzed beam-plasma interaction. Increments values of 
beam-plasma system in finite magnetic field are obtained. The analysis leads to following 
conclusions: 

• Anomalous Doppler effect can essentially influence on the character of development of 
Cherenkov type instability only in presence of magnetic field of moderate value, when 
Larmor frequency of the electrons is of order plasma frequency. 

• The development of the instability of anomalous Doppler type leads to increasing of 
transversal component of the velocity of beam electrons. In its turn this can leads to full 
derangement of the Cherenkov type instability.  

 
2.  A set of equations is obtained that uniformly describes development of following types of 
instabilities in beam-plasma systems in finite external magnetic field: Cherenkov-type 
instability that develops on plasma branch of oscillations; Cherenkov-type instability that 
develops on cyclotron branch of plasma oscillations and anomalous Doppler type instability on 
the plasma and cyclotron branches of oscillation. A system consisting of cold plasma and 
straightline electron beam was considered. Consideration has been carried out in potential 
approximation. Greater growth rates of Cherenkov-type instabilities make namely this 
mechanism of wave excitation dominant. However, in transversally bounded systems the 
instabilities of this type have a threshold related to plasma density and in transversally bounded 
systems basic mechanism of wave excitation can that anomalous Doppler type. 
 
3.   The problem of definition of reflective properties of the longitudinally confined system on 
the boundary between beam-plasma system and the emitting trumpet was considered. The 
dependencies of the reflection coefficient are obtained. There is strong frequency dispersion of 
the reflection coefficient. For wide range of the frequencies the values of the reflection 
coefficient fall in the range 0.3 – 0.7. The best matching of the beam-plasma system with the 
emitting trumpet is provided by the cone angle 90°. 
 
4.   In configuration of plasma microwave devices in finite external magnetic field new type of 
dissipative beam instability (BI) can develop. Properties of this instability and conditions of its 
development show that it reveals itself as additional factor  that should be taken into account 
under design of microwave devices (especially under operation in regime of collective 
Cherenkov effect, in short wavelength range).  
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Abstract. The excitation of oscillations of cylindrical plasma waveguide with thin 
annular plasma penetrated by thin annular e-beam is considered in linear 
approximation. The growth rates of the instabilities and the coefficients of spatial 
amplification of the beam-plasma system are obtained in regimes of Cherenkov and 
anomalous Doppler effects. A comparison with the transversally uniform system is 
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Abstract. The present article is devoted to the statement of the theory of 
electromagnetic waves in cylindrical plasma and plasma-dielectric filling systems 
(waveguides). The case of isotropic cold electron plasma with sharp cross-section 
borders plasma-vacuum, plasma-dielectric, plasma-plasma and plasma-metal is 
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Interaction of monoenergetic electron beam and plasma in a waveguide is considered in 
general form without specifying the cross-section of the waveguide.    The influence of dissipation 
leads to the new type of dissipative beam instability with growth rate that has more critical (as 
compared to conventional) dependence on dissipation.  

 
2. E. V. Rostomyan. Influence of Dissipation on Instability of Overlimiting Electron 

Beam. Presentation on PPPS-07 (IEEE International Conference on Pulsed Power and 
Plasma Science, June 17 – 22, 2007, Albuquerque, New Mexico USA). 

 
Investigation considers interaction of overlimiting e-beam with plasma in presence of 
dissipation. New type of dissipative beam instability develops. Its growth rate has inverse 
proportional dependence on dissipation 
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The influence of dissipation on excitation of negative energy beam wave is considered. High 
level of dissipation leads to a  dissipative beam instability that differs from conventional.      
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Plasma in Finite Magnetic Field. Presentation in Conference on Plasma Physics 
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One-particle and collective Cherenkov effects are the basic mechanisms of the stimulated 
radiation of electromagnetic waves by a straight electron beam in plasma-filled systems in 
strong magnetic field. In case of finite external  magnetic field, in addition to conventional  
Cherenkov instability on the plasma branch of oscillations, Cherenkov instability on the  
cyclotron branch arises also, as well as the instabilities of anomalous Doppler-type on low-
frequency plasma and high-frequency cyclotron branches. Nonlinear dynamics of beam 
instability in plasma in a finite magnetic field is investigated by numerical simulation in 
conditions of joint influence of Cherenkov  and anomalous Doppler effects. 
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Investigation considers beam-plasma interaction in waveguide in finite external longitudinal 
field in presence of dissipation.  It is shown that the new type of dissipative beam instability 
discovered under strong external magnetic field, develops in finite external magnetic field also.  
It can essentially influence on the operation of microwave devices. 
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Present investigation presented a new type dissipative beam instability, the maximal 
growth rate of which has inverse proportional dependence on dissipation. It develops in a 
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