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1. Background 

A complex mechanical system analysis can incur several hundred, thousand, or even million 
degrees of freedom (DOF).  As the number of DOF in the system increases, so does the 
computing time, in some cases exponentially.  Consequently, computational engineers are 
always seeking to strike a balance between model accuracy and computational efficiency. 

In 1960, Hurty (1) introduced the concept of modal synthesis, also called substructure or 
component mode synthesis.  It has enjoyed popularity over four decades due to its 
straightforward methodology.  The premise of modal synthesis is that the first few modes of 
vibration of a complex structure can be predicted by using the lower modes of vibration of its 
substructures (2).  An extension of modal analysis, modal synthesis provides for a reduction in 
the overall number of DOF.  As such, the computational complexity decreases, but the reduced 
model still maintains the desired numerical precision. 

The theory behind modal analysis is fairly simple.  A coordinate transformation of the equations 
of motion yields an equivalent uncoupled system of equations, each of which is linearly 
independent of the others.  The transformation yields the equations in terms of principal 
coordinates rather than physical coordinates.  The physical motion of the system then is simply a 
linear combination of the motion of the principal coordinates such as in equation 1. 

 
    
 



  1 1 2 2

( , ) ( ) ( )

( , ) ( ) ( ) ( ) ( ) ( ) ( )N N

q z t z v t

q z t z v t z v t z v t



  
 (1) 

where vi(t) is the ith principal coordinate response of the diagonalized equations of motion, and 
{i(z)} is the corresponding eigenvector or mode shape. 

One benefit of modal analysis is that it shows the contribution of the individual modes of 
vibration to the motion of the entire structure and thus explicitly captures the dynamics of the 
system.  The lower modes extracted by modal analysis generally provide the most contribution to 
the motion of the system.  Therefore, it provides a basis for DOF reduction and model 
simplification.  Using modal analysis, the following applications are available: among others, 
structural modification, sensitivity analysis, model reduction, correlation of model and finite 
element results, response prediction, substructure coupling, and structural damage detection (3). 

In dynamic analysis, traditional modal analysis techniques have achieved varying degrees of 
success when a system undergoes damping, due to the presence of the damping matrix.  In 
structural applications, the common approach is to assume proportional damping, such that 
traditional eigenvalue approaches still apply.  In rotor dynamic applications, however, the 
damping is rarely, if ever, proportional. 
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Furthermore, the gyroscopics of a spinning rotor produce frequency variations which are absent 
in non-spinning systems.  One of the first rotor dynamic analyses to use modal synthesis resulted 
in the computer program Analysis of Rotor Dynamic Systems (ARDS ) that could return the 
frequency modes within 1-10% error (4).  However, gyroscopic effects were not explicitly 
defined within the program. 

While the gyroscopic forces are themselves conservative and take no energy from the system, 
they can become significant at higher rotational speeds and must be addressed. 

The presence of gearing also complicates the modal analysis process.  Separately, the scientific 
studies of gearing and rotor dynamics first appeared approximately 150 years at the height of the 
Industrial Revolution.  Studied together, geared rotor dynamic models did not appear until the 
1960s (5).  Gears couple the motion of rotating shafts together and result in coupled lateral-
torsional or lateral-torsional-axial vibrations not found in non-geared rotating shafts.  
Additionally, the gear mesh induces a periodic forcing function known as the gear-mesh, or 
tooth-pass, frequency.  The gear-mesh frequency has a unique impact and is further discussed 
later. 

Returning to the subject of general damping in dynamic models, previous attempts have made 
approximations by different methods (6), the most common being the proportional damping 
assumption.  Once again, this is not particularly useful in rotor dynamics.  Another approach 
ignores damping in the system and focuses only on the mass and stiffness contributions, resulting 
in the familiar eigenvalue problem:  (K – 2l M = 0).  A third method has been to transform the 
damping matrix via the traditional modal matrix and simply ignore the off-diagonal terms.  Other 
methods (7, 8) perform an iterative procedure in transforming systems consisting of symmetric 
damping matrices only.  However, a modal transformation does exist (9, 10) to uncouple the 
equations of motion for a system undergoing general damping that can include gyroscopic 
effects.  This transformation procedure provides the theoretical basis for the proposed 
methodology. 

The overarching objective of this report is to present a method for conducting modal synthesis on 
a geared rotor dynamic system under the influences of non-proportional damping and gyroscopic 
effects.  In addition to model simplification, this technique also exhibits further potential for use 
in optimization and system identification schemes. 



 

3 

2. Coordinate Transformation 

2.1 Theory 

For a rotor dynamic system undergoing general damping and gyroscopic effects, the general 
equations of motion are  

 
[ ]{ } [ ]{ } [ ]{ } ( ){ }
[ ] [ ] [ ]

t+ + =

= +W

M q D q K q F

D C G

 
 (2) 

where [D] is the “damping” matrix, consisting of the general damping matrix, [C], and the skew-
symmetric gyroscopic matrix, [G].  The gyroscopic effects in the system are a function of the 
shaft rotational speed, (Ω), and the gyroscopic matrix.  This representation is often defined as the 
“real” representation, which will double the size of the system.  Furthermore, distinction between 
forward and backward whirl disappears using this representation (11). 

The presence of the damping/gyroscopic matrix, [D], poses a problem for traditional analysis, 
since the eigen-solution problem uses only two matrices.  Converting the problem into the 
familiar first-order, state-space equation, the general eigenvalue problem becomes 

 
é ù é ù ì ü ì üì ü ï ï ï ïï ï ï ï ï ïï ïê ú ê ú- + =í  í  í ê ú ê úï ï ï ï ï ïê ú ê úï ï ï ï ï ïî  î î ë û ë û

I 0 0 I q 0q

q 0q0 -K M D


  (3) 

or 

 [ ]{ } [ ]{ } { }1 2- + =A q' A q' 0  (4) 

where 

 [ ] [ ] { } { }1 2, , ,
é ù é ù ì üì ü ï ïï ï ï ïï ïê ú ê ú= = = =í  í ê ú ê ú ï ï ï ïê ú ê ú ï ï ï ïî  î ë û ë û

I 0 0 I qq
A A q' q'

q q0 -K M D




  (5) 

Assuming the displacement and velocity vectors in equation 4 to be of the form: 

 
{ } { }
{ } { }

t
o

t
o

e

e

l

ll

=

=

q' Q

q' Q
 (6) 

the generalized eigenvalue problem for the state-space formulation becomes 

 [ ] [ ]( ){ } { }1 2 rl- =A A 0  (7) 
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where (l ) is the complex eigenvalue, and {r} is the corresponding eigenvector.  The state-
space formulation results in (2N) eigenvalues occurring in complex conjugate pairs, where (N) is 
the number of DOF of the system. 

Returning to equation 2, the system matrices, [M], [K], and [D], are generally not diagonal but 
have cross-coupling terms throughout.  The objective is to determine the mass, stiffness, and 
damping matrices, respectively as [MD], [KD], [DD], that are diagonal matrices of the 
transformed equations of motion. 

The next step is to calculate the eigenvalues and eigenvectors of the state-space formulation.  
The results will form two modal matrices, [r] and [l], whose columns contain the right and 
left eigenvectors, respectively. 

Since the eigenvalues occur in conjugate pairs:  il  =   j, the eigenvalues and corresponding 

eigenvectors can arrange so that the conjugate pairs are separate.  From this, two diagonal 
matrices of dimension (N  N) can be defined that contain the conjugate eigenvalues on the 
diagonal: 

 

1 1

1

j 0 0

0 0

0 0 j
N N

a b

a b

é ù+ê ú
ê ú= ê ú
ê ú+ê úë û

Λ  (8) 

 

1 1

2

j 0 0

0 0

0 0 j
N N

a b

a b

é ù-ê ú
ê ú= ê ú
ê ú-ê úë û

Λ  (9) 

If any of the eigenvalues contain purely real roots, the transformation scheme changes somewhat 
(9).  However, for brevity, all roots are assumed to be complex. 

To ensure the desired results, the right eigenvector must be scaled or normalized.  One 
appropriate scaling results in  

 

1
T'

2r r l r

-é ùé ù é ù é ù é ù= ê úê ú ê ú ê ú ê úë û ë û ë û ë ûê úë û
A     (10) 

such that 

 

T 1'

1
2

T '
2

l r

l r

é ù
ê úé ùé ù é ù é ù= =ê ú ê ú ê úê úê úë û ë û ë ûë û ê úë û
é ù
ê úé ùé ù é ù é ù= =ê ú ê ú ê úê úê úë û ë û ë ûë û ê úë û

0
A

0

I 0
A I

0 I


 



 

Λ

 (11) 
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Both the left and right eigenvectors are complex, and any further transformations will continue to 
produce complex numbers.  The elimination matrix, [], is therefore defined to eliminate all 
complex notation from the transformation. 

 

1 j

2 2
1 j

2 2

é ù-ê ú
ê ú
ê ú= ê ú
ê ú
ê úë û

I I

I I
  (12) 

Then 

 

T T '

1

x y

l r
y z

é ù
ê úé ùé ù é ù é ù é ù =ê ú ê ú ê ú ê ú ê úê úë û ë û ë û ë ûë û ê úë û

L L
A

L L
     (13) 

 

T T '

2 r

é ù
ê úé ùé ù é ù é ù é ù =ê ú ê ú ê ú ê ú ê úê úë û ë û ë û ë ûë û ê úë û

l

I 0
A

0 -I
     (14) 

The matrices 
x
é ùê úë ûL , 

y
é ùê úë ûL , and 

z
é ùê úë ûL  are real and diagonal.  They are equal to the following: 

 

1

1

1

( )

( )

( )

x

y

z x

real

imag

real

=
=
= - = -

L

L

L



 

 (15) 

A diagonal matrix, [], is defined. 

 

1 ( , ) ( , )1
( , ) sinh

2 2 ( , )
z x

y

k k k k
k k

k k
-
æ ö- ÷ç ÷ç= ÷ç ÷ç ÷çè ø

L L

L
Γ  (16) 

Then the following relationship holds. 

 

cosh sinh cosh sinh

sinh cosh sinh cosh 2
x y n

y z n n

é ùé ù é ù é ù é ùê úê úê ú ê ú ê ú ë û= ê úê ú ê ú ê ú é ù é ùê úê ú ê ú ê ú ê ú ê úë û ë ûë û ë û ë û ë û

L L 0

L L

   
   



 
 (17) 

where the matrices [n] and [2n] are diagonal, containing the natural and damped natural 
frequencies of the system, respectively. 

The left and right transformation matrices can now be determined.  These are the matrices that 
diagonalize the state-space matrices [A1] and [A2]. 

 

cosh sinh

sinh cosh
n

L l

é ùé ù é ùê úê úê ú ë ûé ù é ù= ê ú ê ú ê úê úë û ë û ê úê úë û ë û

0
T

0 I

 
 

 


 (18) 
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'
cosh sinh

sinh cosh
n

R r

é ùé ù é ùê úê úê úé ù ë ûé ù= ê ú ê úê úê ú ë ûë û ê úê úë û ë û

0
T

0 I

 
 

 


 (19) 

Transforming, the diagonalized results become  

 

T

1 1

D

L R
D D

é ù
ê úé ù é ù é ù é ù= =ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ê úë û

0 K
T A T B

K D
 (20) 

 

T

2 2

D

L R
D

é ù
ê úé ù é ù é ù é ù= =ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û -ê úë û

K 0
T A T B

0 M
 (21) 

This transformation methodology will result in (2N) de-coupled linearly independent equations.  
The usual relationships achieved through modal analysis apply here as well, namely 

 
2

[2 ]

[ ]

D

D n

D n

=
=
=

M I

D

K





 (22) 

If carried through from start to finish, the process produces results consistent with the following 
simplification (12). 

 

( )
( ) ( )

1

2

1 2
2 2

2 1 2 1 2 2

j

j

2

4
1

i

i

i i i i

i i i i

i i i

i

d

k

m

l a b
l a b

l l a

l l l l
a b

= +
= -
= - + = -

+ - -
= = +

=

 (23) 

where i = 1 … N 

From modal analysis, the transformed coordinates, {v}, are principal coordinates.  The 
transformation to the physical coordinate system is 

 
R

ì ü ì üï ï ï ïï ï ï ïé ù=í  í ê úë ûï ï ï ïï ï ï ïî  î 

q v
T

q u


 (24) 

In the equation above, the term, {u} is not necessarily the time derivative of the general 
coordinate, {v}, except when the system is in free vibration (9).  Also, the vector order of the 
principal coordinate and its “derivative” are reversed compared to the physical coordinates. 
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2.2 Transformation Simplification 

The full procedure outlined in the previous section is rigorous and lengthy.  However, a 
simplified transformation is available using equation 23 and similarity transformation 
relationships.  From the definition of a similarity transformation, 

 

T T' '

1 1l r l r
é ù é ùé ù é ù é ù é ù é ù= =ê ú ê ú ê ú ê ú ê úê ú ê úë û ë û ë û ë û ë ûë û ë ûA B      (25) 

 

T T' '

2 2l r l r
é ù é ùé ù é ù é ù é ù é ù= =ê ú ê ú ê ú ê ú ê úê ú ê úë û ë û ë û ë û ë ûë û ë ûA I B     (26) 

where [r] and [l] are the modal matrices of the reduced system.  Using linear algebra, the 
transformation matrices [TL] and [TR] can be written as (12) 

 

1

L l l

-é ù é ù é ù=ê ú ê ú ê úë û ë û ë ûT Ψ Φ  (27) 

 

1
' '

R r r

-é ù é ùé ù =ê ú ê ú ê úë û ë û ë ûT Ψ Φ  (28) 

Using these relationships, the simplified transformation procedure is as follows: 

1. Given matrices [A1] and [A2], solve the eigenvalue problem.  Arrange the eigenvalues in 

matrices [1] and [2].  Assemble the left, [l], and right normalized, '

r
é ù
ê úë ûΨ , eigenvector 

matrices, corresponding to [1] and [2]. 

2. Using equation 23, calculate the diagonal values of [MD], [KD], [DD].  Substitute into 
equations 20 and 21 for [B1] and [B2], respectively. 

3. Determine the left, [l], and right, '

r
é ù
ê úë ûΦ , normalized eigenvector matrices of the modal 

system, [B1] and [B2]. 

4. Substitute into equations 27 and 28 to solve for [TL] and [TR], respectively. 

In order to ensure more precise results, it is possible to further refine the transformation by 
calculating the left eigenvector matrix, [l], using either equation 20 or 21, rather than using the 
originally determined left eigenvector matrix.  The results are then substituted into equations 27 
and 28. 
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3. Modal Synthesis 

3.1 Theory 

In modal synthesis, the analysis begins with the substructures.  The equations of motion for each 
substructure are 

 { } { } { } ( ){ }i i i i i i i
tM q D q K q F é ù é ù é ù+ + =ê ú ê ú ê úë û ë û ë û  (29) 

where the subscript, (i), represents the ith substructure.  The substructure eigenvalue problem 
solution follows the state-space methodology introduced in equation 3. 

 i i i

é ù ì ü é ù ì ü ì üï ï ï ï ï ïï ï ï ï ï ïê ú ê ú- + =í  í  í ê ú ê úï ï ï ï ï ï-ê ú ê úï ï ï ï ï ïë û î  ë û î  î 

I 0 q 0 I q 0

0 K q M D q F(t)

 
  (30) 

Once the substructure analysis is complete, the global, uncoupled system is constructed.  
However, unlike some other modal synthesis works (13), the entire state-space formulation of 
equation 30 becomes part of the global model.  The dimensions of the global state-space 
formulation are [(2N1 + … + 2Nm)  (2N1 + … + 2Nm)]. 

 
1 1 1

mm m

é ù é ùì üé ù é ùï ïì üê ú ê úï ïï ïê ú ê úï ïï ïê ú ê úí ï ïê ú ê ú- ï ïê ú ê úï ïê ú ê úï ïï ïë û î  ë ûê ú ê úï ïï ïê ú ê úï ï- +í ê ú ê úï ïê ú ê úï ïï ïê ú ê úé ù ì ü é ùï ïï ïï ïï ïê ú ê úê ú ê úïí  ïê ú ê úê ú ê úï ïï ï- ï ïï ïê ú êî ê ú ê úï ïî ë û ë ûë û ë û

I 0 0 Iq
0 0

0 K q M D

qI 0 0 I
0 0q0 K M D



  



1 1

m m

ì üì ü ï ïï ï ì üì ü ï ïï ï ï ïï ï ï ïï ï ï ïï ï ï ïí ï ïí  ï ïï ï ï ïï ï ï ïï ï ï ïï ïî  î ï ïï ï ï ïï ï ï ïï ï =í  í ï ï ï ïï ï ï ïï ï ï ïì ü ì üï ï ï ïï ï ï ïï ï ï ïï ï ï ïï ï ï ïí  í ï ï ï ïï ï ï ïï ï ï ïú ï ï ï ïî ï ï ï ïî î  î 

0q

q F(t)

0q

q F(t)





 





 (31) 

or in simpler notation 

 

[ ]

[ ]

{ }

{ }

[ ]

[ ]

{ }

{ }

{ }

{ }

' '
1 21 1 11 1

' '
1 2m m mm m

ì ü ì üé ù é ù ì üï ï ï ï ï ïï ï ï ï ï ïê ú ê úï ï ï ï ï ïï ï ï ïê ú ê ú ï ïï ï ï ï ï ïê ú ê ú+ =í  í  í ê ú ê úï ï ï ï ï ïï ï ï ï ï ïê ú ê úï ï ï ï ï ïï ï ï ï ï ïê ú ê úï ï ï ï ï ïë û ë û î î  î 

A 0 q A 0 q F(t)

0 A 0 A F(t)q q



    



 (32) 

where (m) is the number of substructures in the system. 

For simplicity, equation 32 can be rewritten as 

 
{ } { } { }* * * * *

1 2
é ù é ù+ =ê ú ê úë û ë ûA q A q F(t)  (33) 
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where the asterisk symbolizes the global system of individual substructures.  Note that the 
substructure coupling has not been introduced yet. 

Returning to the fundamental concept of modal analysis, the system equations of motion are 
transformed into principal coordinates.  The global transformation matrices are composed of the 
substructure transformation matrices of equations 27 and 28, respectively. 

 
{ } { } { }T T T

* * * * * * * * * *
1 2L R L R L

é ù é ù é ù é ù é ù é ù é ù+ =ê ú ê ú ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û ë û ë ûT A T v T A T v T F(t)  (34) 

where  

 

1 1
* *,

L R

L R

L Rm m

é ù é ùé ù é ùê ú ê úê ú ê úë û ë ûê ú ê úé ù é ù= =ê ú ê úê ú ê úë û ë ûê ú ê úé ù é ùê ú ê úê ú ê úë û ë ûë û ë û

T 0 T 0

T T

0 T 0 T

   (35) 

Equation 34 simplifies to 

 
{ } { } { }T

* * * * * *
1 2 L
é ù é ù é ù- =ê ú ê ú ê úë û ë û ë ûB v B v T F(t)  (36) 

or in long form, 

 

1 1 1

D D

D D

D D

D D m m m

é ù ì ü é ùé ù ïì ü ï é ùï ïï ïê ú ê úï ïê ú ê úï ïí ê ú ê úï ïê ú ê úï ïï ïê ú ê úê ú ê úï ïï ïë û î  ë ûï ïê ú ê úï ïê ú ê ú-í ï ïê ú ê úï ïé ù ì ü é ùê ú ê úï ïï ïï ïï ïê ú ê úê ú ê úï ïí ê ú ê úï ïê ú ê úï ïï ïê ú ê úï ïê ú ê úï ïë û î  ë ûë û î  ë û

0 K u K 0 u
0 0

K D v 0 -M

0 K u K 0
0 0

K D v 0 -M



  
1 1T

*

L

m m

ì ü ì üïì ü ï ïì ü ïï ï ï ïï ï ï ïï ï ï ïï ï ï ïí  í ï ï ï ïï ï ï ïï ï ï ïï ï ï ïï ï ï ïî  î ï ï ï ïï ï ï ïé ù=í  í ê úë ûï ï ï ïï ï ï ïì ü ì üï ï ï ïï ï ï ïï ï ï ïï ï ï ïï ï ï ïí  í ï ï ï ïï ï ï ïï ï ï ïï ï ï ïï ï ï ïî  î î  î 

0

v F(t)

T

u 0

v F(t)



 



 (37) 

Note that the global equation containing the (m) systems is still uncoupled. 

The coupling occurs as a result of the gear mesh.  The mesh stiffness is the coupling agent.  
However, this treatment is general enough to apply to other types of couplings with only minor 
changes to the methodology. 

The mesh matrix, [Kmesh], breaks into quadrants as shown below.  A methodology for 
determining the components of the mesh matrix for spur or helical gears can be found in (14). 

 

mesh meshii ij
mesh

mesh meshji jj

é ùé ù é ùê ú ê úê úë û ë ûé ù = ê úê úë û é ù é ùê úê ú ê úë û ë ûë û

K K
K

K K
 (38) 

For a two-shaft system, the coupling becomes 
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, ,* 1
1

, ,2

mesh meshi i i j

sys

mesh meshj i j j

é ùé ù é ùé ùé ù ê úê ú ê úê úê ú ê úê ú ê úê ú é ù é ùê ú - -- ê úê ú ê úê ú ê úê úê ú ë û ë ûë ûé ù ë û ë ûê ú= +ê úê ú é ù é ù é ùë û ê úê úê ú ê ú ê úê úê úê ú ê ú ê úê úé ù é ùê ú- - -ê ú ê ú ê úê ú ê úê úê ú ë û ë ûë ûë û ë û ë ûë û

0 0 0 0I 0
0

0 K 0 K0 K
A

I 0 0 0 0 0
0

0 K 0 K 0 K

 (39) 

or 

 
* * *

1 1 1sys mesh

é ù é ù é ù= +ê ú ê ú ê úë û ë û ë ûA A A  (40) 

Using the same transformation on the second term in equation 39 results in the transformed 
coupling matrix, [KDm]. 

 

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

, , , ,T* * *
1

, , ,

mesh mesh Dm Dmi i i j i i i j

L Rmesh

mesh mesh Dm Dmj i j j j i j

é ùé ù é ù é ù é ùê úê ú ê ú ê ú ê úê úê ú ê ú ê ú ê ú- -ê úê ú ê ú ê ú ê úë û ë û ë û ë ûé ù é ù é ùê ú= =ë û ë û ë ûê úé ù é ù é ùê úê ú ê ú ê úê úê ú ê ú ê ú- -ê úê ú ê ú ê úë û ë û ë ûë û

0 0 0 0 0 0 0 0

0 K 0 K 0 K 0 K
B T T

0 0 0 0 0 0 0 0

0 K 0 K 0 K 0 K
,j

é ù
ê ú
ê ú
ê ú
ê ú
ê úé ùê úê úê úê úê úê úë ûë û

 (41) 

Note that since this is a coupling matrix, it is not necessarily diagonal.  Thus the coupled system 

modal matrix, *

1 sys

é ù
ê úë ûB , is 

 
* * *

1 1 1sys mesh

é ù é ù é ù= +ê ú ê ú ê úë û ë û ë ûB B B  (42) 

In this formulation, it is assumed that no damping occurs in the gear mesh.  Consequently, the 

gear mesh does not affect the modal system matrix, *

2
é ù
ê úë ûB  from equation 36.  It requires no 

modification: 

 
* *

2 2sys

é ù é ù=ê ú ê úë û ë ûB B  (43) 

Equation 36 then becomes 

 
{ } { } { }T

* * * * * *

1 2 Lsys sys sys sys sys

é ù é ù é ù- =ê ú ê ú ê úë û ë û ë ûB v B v T F(t)  (44) 

The general eigenvalue problem of equation 44 yields the same results as the original problem of 
equation 3.  
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As with the transformation sequence, the steps for reduction are as follows: 

1. Define a variable, (P), that represents the number of DOF of the reduced system model.  
The only caveat is that the selection of (P) must be divisible by 2.  The resulting state space 

matrices *

1 sys

é ù
ê úë ûB  and *

2 sys

é ù
ê úë ûB  will have dimensions (2P  2P).  This requires (P) to be 

smaller than the lowest subsystem DOF. 

2. Reduce the size of modal matrices, *

L
é ù
ê úë ûT  and *

R
é ù
ê úë ûT , to dimensions (2N1 + … + 2Nm  2P) by 

discarding the unnecessary columns of the modal matrices.  Since this is a state-space 
formulation, the columns associated with each of the (2m) vector components (i.e., 

{ } { } { } { } { } { }
1 1 2 2 3 3

1 1 2 21 1 1 1 1 1
, , , ,

m mN N N N N N´ ´ ´ ´ ´ ´
q q q q q q   ) must undergo an equal 

reduction.  The size of the reduced system is (2P  2P).  The selection matrices from  *

L
é ù
ê úë ûT  

and *

R
é ù
ê úë ûT  will result in an equal number of modes selected from the original eigen matrices 

associated with each vector component.  The reduced transformation matrices, *

L
é ù
ê úë ûT  and 

*

R
é ù
ê úë ûT , will thus have dimensions (2N1 + … + 2Nm  2P). 

3. Transform the system matrices, *

1 sys

é ù
ê úë ûA  and *

2 sys

é ù
ê úë ûA , using the reduced transformation 

matrices, *

L
é ù
ê úë ûT  and *

R
é ù
ê úë ûT .  This results in the reduced diagonal matrices of equation 45. 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1

1 1 1 1

T
* * * *

1 12 2 2 2 2 2 2 2 2 2 2 2

T
* * * *

2 22 2 2 2 2 2 2 2 2 2 2 2

m m m m

m m m m

L RP N N sys N N N N N N P sys P P

L RP N N sys N N N N N N P sys P P

´ + + + + ´ + + + + ´ ´

´ + + + + ´ + + + + ´ ´

é ù é ù é ù é ù=ê ú ê ú ê ú ê úë û ë û ë û ë û
é ù é ù é ù é ù=ê ú ê ú ê ú ê úë û ë û ë û ë û

T A T B

T A T B

   

   

 (45) 

4. Solve the eigenvalue problem of the reduced state-space matrices, 
( )

*

1 2 2sys P P´
é ù
ê úë ûB  and 

( )
*

2 2 2sys P P´
é ù
ê úë ûB .  The eigenvalues will result in (P) complex conjugate pairs, which represent 

the first (P) frequencies of the system.  They will have the same or very near the same 
value as the corresponding frequencies of the full system model. 

3.2 Speed-Sweep Vibration Response 

The determination of the vibration response is possible using the principal coordinates as well.  
Returning to equation 44, one can assume a harmonic response to the forcing function, 
{F(t)*}sys: 

 
{ } { }* * je t

sys

w=V V
 (46) 

such that the equations of motion become 
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{ } { } { }T

* * * * * *

1 2 0
j

Lsys sys sys sys sys
wé ù é ù é ù- =ê ú ê ú ê úë û ë û ë ûB V B V T F  (47) 

The displacements in modal coordinates are 

 
{ } { }

1 T
* * * * *

1 2 0
j

Lsys sys sys sys
w

-é ùé ù é ù é ù= -ê úê ú ê ú ê úë û ë û ë ûë û
V B B T F  (48) 

Converting back to physical coordinates yields the following expression: 

 
{ } { }

1 T
* * * * * *

1 2 0
j

R Lsys sys sys sys
w

-é ùé ù é ù é ù é ù= -ê úê ú ê ú ê ú ê úë û ë û ë û ë ûë û
Q T B B T F  (49) 

where {Q*}sys is the vector containing the amplitudes of the response.  Substituting the 
operational speeds, (Ω), into equation 49 will yield speed sweep vibration responses, as shown 
later in figures 3 and 4. 

Gyroscopic effects play a unique role in speed-sweep response.  The modal transformation 
matrices are determined by calculating the eigenvectors of the system.  The matrix, [D], contains 
the system gyroscopics, which is a function of rotational speed.  Hence, the eigenvectors 
themselves are a function of rotational speed, and the transformation matrices themselves change 
with rotational speed.  Consequently, for a full, modal speed-sweep analysis, the transformation 
matrices must be calculated at each speed interval within the desired range.  Additionally, the 
frequency response can be calculated by fixing the operational speed in the [D] matrix and 
varying the frequency () in equation 49. 

3.3 Time Domain Response 

If desired, it is also possible to determine the time domain forced response using equation 49.  
The time domain response acts at a single frequency.  The shaft operating speed is simply 
substituted into equation 49 to solve for the amplitude vector, {Q*}eye.  The time domain 
response is simply the periodic function: 

 
{ } { }* * je wt

sys sys
=q Q  (50) 
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4. Application: Geared System with Damping 

4.1 Overview 

The application for preliminary validation of this methodology is a basic model of a spur gear 
shaft pair similar to the one found in figure 1.  Selected because of the ready availability of the 
system parameters, it appears a number of times in the literature (15, 16).  The system consists of 
two identical spur gears resting at the midpoint of identical shafts, each connected to the gearbox 
by a pair of rolling-element bearings.  Since the two substructures are the same, the reduction in 
the complexity of equation 30 is significant.  All substructure matrix components are identical 
for each substructure.  Table 1 provides the parameters of the two-shaft system. 

 

Figure 1.  Spur gear test stand (15). 
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Table 1.  Spur gear application system parameters. 

Material Parameters  
Young’s Modulus (N/m2) 2.03E11 
Shear Modulus (N/m2) 8.0E10 
Poission’s Ratio  0.3 
Density (kg/m3) 7750 
  
Shaft Parameters  
Length (m) 0.254 
Mass (kg) 1.96 
Rigidity (N-m2) 18576 
Outer Diameter (m) 0.037 
Inner Diameter (m) 0.01 
  
Gear Parameters  
Mass (kg) 1.84 
Moment of Inertia (kg-m2) 1.8E-3 
Polar Moment of Inertia (kg-m2) 3.6E-3 
Diameter (m) 0.089 
Pressure Angle (deg) 20 
Helical Angle (deg) 0.0 
Average Mesh Stiffness (N/m) 1.0E8 
  
Bearing Parameters  
kxx, kyy (N-s/m) 1.0E9 
cxx (N-s/m) 500 
cyy (N-s/m) 700 

 

The gear mesh is, in actuality, a periodic (non-linear) stiffness due to the alternating number of 
teeth in contact throughout the mesh cycle.  This closed-form solution linearizes the equations of 
motion by assuming an average mesh stiffness value (table 1).  Otherwise, for non-linear 
treatment, numerical integration techniques become necessary (4) 

The full finite element system model calculates the eigen solution of the system and the 
frequency response to a harmonic forcing function.  Each shaft consists of 126 DOF, or 252 for 
the entire system.  Since the state-space formulation doubles the size of the model, the total 
number of DOF is 504.  The software used in this formulation was MATLAB®. 

Prior to any modal reduction, the validity of the system model was accessed through a 
comparison of natural frequencies at low speed and low damping to those previously published 
in the literature (16, 17).  As depicted in figure 2, the model provides results consistent with 
previous experiments.  The x-axis of figure 2 contains no values.  It is a set of bins that 
categorizes the like frequencies of the three sets of data. 
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Figure 2.  Comparison with previous results (16,17). 

4.2 Modal Reduction Comparisons 

Since modal analysis is an approximation, it requires further validation through comparison with 
the full system model results.  The first validation compares the eigenvalues of the system model 
with those of the reduced model.  Tables 2 and 3 provide the results of reductions to (P) = 30 and 
20 DOF, respectively.  The rotational speed (Ω) for this analysis is 1000 rpm or 16.67 Hz.  For 
brevity, only the first 10 frequencies are provided. 

Table 2.  Modal analysis eigenvalue comparison (P=30). 

 Modal Synthesis 
(Hz) 

Full FEA 
(Hz) 

Difference 
(%) 

1 504.647 504.635 0.00% 
2 684.261 684.260 0.00% 
3 684.279 684.279 0.00% 
4 684.296 684.297 0.00% 
5 2091.562 2090.630 0.04% 
6 2837.572 2837.560 0.00% 
7 2837.572 2837.560 0.00% 
8 2858.979 2858.969 0.00% 
9 2858.979 2858.969 0.00% 
10 6677.140 6676.739 0.01% 
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Table 3.  Modal synthesis eigenvalue comparison (P=20). 

 Modal Synthesis 
(Hz) 

Full FEA 
(Hz) 

Difference 
(%) 

1 504.65204 504.635 0.00% 
2 684.261 684.260 0.00% 
3 684.279 684.279 0.00% 
4 684.296 684.297 0.00% 
5 2091.950 2090.630 0.06% 
6 2837.572 2837.560 0.00% 
7 2837.572 2837.560 0.00% 
8 2858.979 2858.969 0.00% 
9 2858.979 2858.969 0.00% 
10 6677.140 6676.739 0.01% 

 

These results clearly show the levels of accuracy attainable by modal synthesis.  Furthermore, 
the modal simplifications also produce substantial reductions in the amount of computing time 
required compared to the full system model:  62% and 63%, respectively. 

The second validation method occurs by comparing the reduced system’s speed-sweep responses 
to excitation.  The responses of two harmonic forcing functions are presented.  The first is the 
gear-meshing frequency.  The gear-mesh frequency is a result of the clatter between gears as the 
gear teeth come in and out of contact with each other and the nonlinear loading of the gear mesh.  
It is present in all gears and for spur and helical gears, it is defined as the number of gear teeth 
multiplied by the shaft rotational seed.  The key impact of the gear-mesh frequency is that it 
excites higher modes of vibration at lower rotational speeds.   

The second forcing function models a mass imbalance in one of the gears.  A finite imbalance 
exists in all rotating systems and is a function of the rotational speed squared, (Ω)2.  Figures 3 
and 4 provide the speed-sweep responses for the gear-mesh frequency and mass imbalance 
excitations, respectively, using a speed step, (Ω), of 50 Hz. 

The response curves represent the lateral displacement of each shaft at its midpoint.  Three 
curves are plotted for each shaft, providing the results of (1) the full finite element model – “Full 
FEA,” (2) the full modal reduction – “Modal Synthesis,” and (3) the modal reduction using a 
fixed operating speed – Modal Fixed Gyro.”  The Modal Synthesis scenario recalculates the 
transformation matrices for each rotational speed interval.  The Modal Fixed Gyro scenario 
calculates the matrices only once for a single value within the desired speed range in order to 
reduce the number of burdensome eigenvector calculations.  It then uses these matrices for all 
responses within the operating range, 0-5000 Hz.  Figures 3 and 4 show that for this system, the 
difference between these two approaches is negligible. 
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Figure 3.  Gear-mesh frequency response comparison (0-5000 Hz). 
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Figure 4.  Imbalance response comparison (0-5000 Hz). 
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If necessary, the time domain response can also be determined.  This might be desirable if the 
shape of one of the shaft orbits is important.  Figure 5 shows four views of the combined 
horizontal and vertical vibrations for a single shaft.  The top-left plot simply shows the circular 
motion of the vibration over time.  The top-right chart shows the shape of the orbit.  The bottom 
two charts simply show the sinusoidal motion of the vibration in the horizontal (left) and vertical 
(right) planes of motion. 
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Figure 5.  Time response of damped gear shaft due to excitation near resonance. 

5. Discussion – Modal Synthesis Practicality in Geared System Application 

For all its accuracy, this experiment does raise some questions regarding the utility of such 
procedure in terms of practicality and efficiency.  These questions fall into two categories: 
limitations on modal reduction and the impact of the gyroscopic effect. 
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5.1 Limitations on Modal Reduction 

Once again, the modal synthesis procedure can produce a significant modal reduction without 
loss of accuracy.  However, in the speed-sweep response, the gear-mesh forcing function will 
limit the amount of reduction available.  At lower speeds, the gear-mesh frequency will excite 
higher modes of vibration.  Consequently, for the modal synthesis transformation to capture 
these higher modes, they must be included in the modal reduction.  An example is presented in 
figure 6. 
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Figure 6.  Gear-mesh frequency limitations on modal reduction. 

The total number of DOF in the geared, two-shaft model is 252.  This increases to 504 DOF in 
the state-space.  Figure 6 illustrates a modal reduction to 30 DOF (60 DOF in the state-space) in 
terms of the gear-mesh forcing function response.  The reduced model has failed to accurately 
portray all resonance peaks within the operating range, 0-5000 Hz.  To capture the remaining 
peaks, the modal DOF must increase to account for excitation of the higher modes.  For the 
application system, the required number of degrees of freedom to produce an accurate response 
is 168, or in the state-space, 336.  Thus, an intended 88% DOF reduction will result in a 
reduction of only 33% if the gear-meshing frequency excitation is important. 

The implication for geared system analysis is that there must be some a priori knowledge as to 
the number of higher modes excited within the desired operating speed range.  An increase in the 
number of gear teeth or the operating range itself will increase the number of required modes.  
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The amount of modal reduction available is therefore inversely proportional to the number of 
gear teeth and shaft operating speed. 

5.2 Gyroscopic Impacts 

The presence of gyroscopics complicates the analysis of any system, and modal synthesis is no 
different.  As previously discussed, a full modal speed-sweep response analysis requires the 
transformation matrices to be calculated at each speed interval, which greatly adds to computer 
processing time.  Nevertheless, figures 3 and 4 showed that one could reach a good 
approximation by “fixing” the gyroscopics and calculating the transformation matrices at one 
speed only.  However, the ability to fix the gyroscopics depends upon the system’s sensitivity to 
gyroscopic effects. 

5.3 Limitations to Practicality 

These two factors may adversely affect the utility of the methodology by increasing the computer 
processing time of a procedure originally designed to reduce it.  A comparison of computing 
time is presented in table 4, illustrating the gyroscopic effects on processing time.  The full 252-
DOF system model is the comparison standard with a computer processing ratio of one.  In the 
Full Modal Synthesis models, where the transformation matrices are recalculated for each 
operating speed within the spectrum, the 168 and 30 DOF models take 8.7 and 5.9 times longer 
to process, respectively, than the full finite element model.  The Modal Fixed Gyro scenarios 
reduce those times substantially.  In the case of the 30 DOF model, the processing time is 20% of 
the full system model.  However, as pointed out, these two reduction models do not produce an 
accurate gear-mesh frequency response. 

Table 4.  Vibration response processing time ratio comparison 

Degrees of Freedom 252 168 30 
Full Modal Synthesis Scenario 1 8.7 5.9 
Modal Fixed Gyro Scenario 1 1.3 0.2 

 
Consequently, while this experiment validates the modal synthesis procedure and results in 
computer processing time savings during eigen analysis, the cutoff frequency or limit of modal 
reduction is determined by the type of excitation analyzed.  Therefore, it may or may not be 
particularly practical for use in vibration response calculations. 
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6. Conclusions 

This report has presented a method for performing modal synthesis on a geared rotor dynamic 
system undergoing general damping and gyroscopic effects.  The modal analysis produces the 
eigen solutions, frequency response, and time domain response of the system.  Validation of the 
reduced model occurred by comparing the eigen-solutions and frequency responses of the 
reduced system with the original model.  The results, in almost all instances, matched exactly. 

In the speed-sweep response, the modal synthesis procedure resulted in limitations due to the 
limit of modal reduction imposed by gear-mesh frequency considerations and the amount of 
computer processing time required.  The gear-mesh frequency excited higher modes of vibration, 
which required a higher DOF model to maintain accuracy.  The introduction of gyroscopic 
effects increased processing time, substantially in some cases.  These two limitations call into 
question the applicability and practicality of using the modal synthesis method for geared, 
rotating systems. 

Finally, an important point is that this was only one system analysis; other systems may behave 
differently.  For example, fixing the gyroscopic speed value in the transformation matrix of this 
scenario was acceptable.  Other systems may be more susceptible to gyroscopic effects, where 
fixing the speed would be unacceptable.  It also may be that in other systems, the ratio of 
computer processing time is substantially lower for response calculations, making it an attractive 
alternative to the full finite element model, especially when the full model contains thousands or 
millions of DOF. 

7. Recommendations 

Recommended further research falls into three categories.  The first deals with application to 
other systems.  This procedure worked very well for a simple, symmetric, two-shaft system.  
More complex systems might behave differently, especially when gyroscopic sensitivity is 
considered.  Second, the extension of this method in complex notation to capture forward and 
backward whirl might also be of interest.  Finally, this method should be further considered for 
its potential to other applications, including system identification and design optimization 
methods. 
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List of Symbols 

é ùê úë ûC     general damping matrix 

,
xx yy
c c     bearing damping values in x and y-directions, respectively 

é ùê úë ûD     combined damping/gyroscopic matrix 

i
d      diagonal damping matrix component 

( ){ }tF    excitation force vector 

é ùê úë ûG     gyroscopic matrix 

é ùê úë ûI      identity matrix 

j      imaginary component, 1-  

é ùê úë ûK     stiffness matrix 

i
k      diagonal stiffness matrix component 

,
xx yy
k k     bearing stiffness values in x and y-directions, respectively 

é ùê úë ûL      transformation sub-matrix designation 

é ùê úë ûM     consistent mass matrix 

i
m      diagonal mass matrix component 

N      number of degrees of freedom 

P      number of reduced degrees of freedom 

{ }Q     amplitude of physical coordinate vector of general equation  

of motion 

{ }q     physical coordinate vector 

{ }q     first derivative of physical coordinate vector 

{ }u     first derivative of principal coordinate vector 
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{ }v     principal coordinate vector 

i
é ùê úë ûA     original state-space matrix 

i
é ùê úë ûB     transformed state-space matrix 

é ùê úë ûT     transformation matrix 

W      shaft rotational speed 

a      real eigenvalue component 

b      imaginary eigenvalue component 

é ùê úë û      diagonalizing matrix 

z      damping ratio 

é ùê úë û     diagonal eigenvalue matrix 

l      complex eigenvalue 

é ùê úë û     elimination matrix 

é ùê úë û     reduced system modal matrix 

é ùê úë û     original modal matrix 

{ }     eigenvector 

w      system frequency 

 

Subscripts 

D      diagonal 

Dm     transformed mesh 

l      left 

m      number of substructures of global system 

mesh     gear-mesh 

n      natural frequency 

r      right 

sys     global system to include coupling effects 
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Superscripts 

T      transpose 

'      first-order vector, scaled or normalized 

*      global system excluding coupling effects 
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