
,5. I

NUREG/CR-6463, Rev. 1

Review Guidelines for
Software Languages for Use in
Nuclear Power Plant
Safety Systems

Final Report

Prepared by
M. Hecht, D. Decker, S. Graff, W. Green,
D. Lin, G. Dinsmre, S. Koch

SoHaR Incorporated

Prepared for
U.S. Nuclear Regulatory Commission

lee0

20081009199

AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publica

Most documents cited In NRC publications will be available from one of the following sources:
1. The NRC Public Document Room, 2120 L Street, NW., Lower Level, Washington, DC 20555-0001

2. The Superintendent of Documents. U.S. Government Printing Office, P. 0. Box 37082, Washington, DC
20402-9328

3. The National Technical Information Service, Springfield, VA 22161-0002

Although the listing that follows represents the majority of documents cited in NRC publications, it is not in-
tended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Roominclude NRC correspondence and internal NRC memoranda; NRC bulletins, circulars. information notices, in-spection and investigation notices: licensee event reports- vendor reports and correspondence; Commission
papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the Government Printing Office:formal NRC staff and contractor reports, NRC-sponsored conference proceedings, international agreement
reports, grantee reports, and NRC booklets and brochures. Also available are regulatory guides, NRC regula-
tions in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG-serles reports and tech-nical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission,
forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books,
journal articles, and transactions. Federal Register notices, Federal and State legislation, and congressionalreports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference pro-ceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free. to the extent of supply, upon written request to the Officeof Adrrinistration, Distribution and Mail Services Section, U .S. Nuclear Regulatory Commission, Washington,
DC 20555-0001.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are main-tained at the NRC Library, Two White Flint North, 11545 Rockville Pike, Rockville, MD 20852-2738. for use bythe public. Codes and standards are usually copyrighted and may be purchased from the originating organiza-tion or, If they are American National Standards, from the American National Standards Institute. 1430 Broad-
way, New York, NY 10018-3308.

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government.
Neitherthe UnitedlStatesGv ment nor any agency thereof, norany of theiremployees, makes anywarrarty,
expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of
such use, of any information, apparatus, product, or process disclosed in this report, or represents that its use
by such third party would not infringe privately owned rights.

NUREG/CR-6463, Rev. 1

Review Guidelines for
Software Languages for Use in
Nuclear Power Plant
Safety Systems

Final Report

Manuscript Completed: August 1997
Date Published: October 1997

Prepared by
M. Hecht, D. Decker, S. Graff, W. Green,
D. Lin, G. Dinsmore, S. Koch

SoHaR Incorporated
8421 Wilshire Boulevard
Beverly Hills, CA 90211

R. Brill, NRC Project Manager

Prepared for
Division of Systems Technology
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

NRC Job Code W6674

Abstract

Guidelines for the programming and auditing of software written in high level languages for safety
systems are presented. The guidelines are derived from a framework of issues significant to software
safety which was gathered from relevant standards and research literature. Language-specific
adaptations of these guidelines are provided for the following high level languages: Ada83 and
Ada95; C and C++; International Electrotechnical Commission (EEC) Standard 1131-3 Ladder
Logic, Sequential Function Charts, Structured Text, and Function Block Diagrams; Pascal; and
PUM, . Appendices to the report include a tabular summary of the guidelines and additional
information on selected languages.

iii NUREG/CR-6463 Rev. 1

Table of Contents

List of Figures .. xii

List of T ables ... xiii

Executive Sum m ary .. xv

Acknow ledgm ents .. xviii

List of A cronym s .. xix

Introduction ... 1-1
1.1 Scope ... 1-1
1.2 M ethodology ... 1-2

1.2.1 Task 1 M ethodology 1-4
1.2.2 Task 2 M ethodology 1-6
1.2.3 Task 3 M ethodology 1-7
1.2.4 Tasks 4 and 5 Methodology 1-7
1.2.5 Task 6 M ethodology 1-7
1.2.6 Task 7 M ethodology 1-7
1.2.7 Task 8 M ethodology 1-8
1.2.8 Task 9 M ethodology 1-8

1.3 Technical Basis .. 1-10
1.4 Contents Overview .. 1-11
References .. 1-13

2 Generic Safe Programming Attributes 2-1
2.1 R eliability .. 2-3

2.1.1 Predictability of Memory Utilization 2-4
2.1.2 Predictability of Control Flow 2-8
2.1.3 Predictability of Timing 2-13
2.1.4 Predictability of Mathematical or Logical Result 2-15

2.2 Robustness .. 2-15
2.2.1 Controlling Use of Diversity 2-16
2.2.2 Controlling Use of Exception Handling 2-18
2.2.3 Checking Input and Output 2-19

2.3 Traceability ... 2-20
2.3.1 Controlling Use of Built-In Functions 2-20
2.3.2 Controlling Use of Compiled Libraries 2-21

2.4 M aintainability ... 2-21
2.4.1 Readability .. 2-22

v NUREG/CR-6463 Rev. 1

2.4.2 Data Abstraction ... 2-26
2.4.3 Functional Cohesiveness 2-27
2.4.4 M alleability ... 2-28
2.4.5 Portability ... 2-28

References .. 2-30

3 A da 83 ... 3-1
3.1 Reliability ... 3-1

3.1.1 Predictability of Memory Utilization 3-1
3.1.2 Predictability of Control Flow 3-6
3.1.3 Predictability of Timing 3-22

3.2 Robustness .. 3-26
3.2.1 Controlled Use of Software Diversity 3-26
3.2.2 Controlled Use of Exception Handling 3-26

3.3 Traceability ... 3-30
3.3.1 Use of Built-In Functions 3-31
3.3.2 Use of Compiled Libraries 3-31
3.3.3 Ada Run-time Environment 3-32
3.3.4 Maintaining Traceability Between Source Code and Compiled Code

'.. 3-32
3.3.5 Minimizing Use of Generic Units 3-33

3.4 M aintainability ... 3-33
3.4.1 Readability .. 3-33
3.4.2 Data Abstraction ... 3-39
3.4.3 Functional Cohesiveness 3-40
3.4.4 M alleability ... 3-41
3.4.5 Portability ... 3-4 1

References .. 3-43

4 C and C++ .. 4-1
4.1 R eliability .. 4-1

4.1.1 Predictability of Memory Utilization 4-1
4.1.2 Predictability of Control Flow 4-10
4.1.3 Predictability of Timing 4-35

4.2 Robustness .. 4-39
4.2.1 Controlled Use of Software Diversity 4-39
4.2.2 Controlled Use of Exception Handling 4-39
4.2.3 Input and Output Checking 4-42

4.3 Traceability ... 4-43
4.3.1 Minimizing the Use of Built-In Functions 4-43
4.3.2 Minimizing the Use of Compiled Libraries 4-44
4.3.3 Utilizing Version Control Tools 4-45

4.4 M aintainability ... 4-45

NUREG/CR-6463, Rev. 1 vi

4.4.1 Readability .. 4-45
4.4.2 Data Abstraction ... 4-53
4.4.3 Functional Cohesiveness 4-55
4.4.4 M alleability ... 4-55
4.4.5 Portability ... 4-55

References .. 4-59

5 PLC Ladder Logic .. 5-1
5.1 R eliability .. 5-1

5.1.1 Predictability of Memory Utilization 5-1
5.1.2 Predictability of Control Flow 5-2
5.1.3 Predictability of Timing 5-13

5.2 Robustness .. 5-16
5.2.1 Transparency of Functional Diversity 5-17
5.2.2 Exception Handling 5-17
5.2.3 Error Containment .. 5-24

5.3 Traceability ... 5-24
5.3.1 Use of Built-in Functions 5-24
5.3.2 Use of Compiled Libraries 5-25

5.4 M aintainability ... 5-26
5.4.1 Readability .. 5-26
5.4.2 Data Abstraction ... 5-30
5.4.3 Functional Cohesiveness 5-32
5.4.4 M alleability ... 5-32
5.4.5 Portability ... 5-32

5.5 Security .. 5-33
References .. 5-35

6 Sequential Function Charts ... 6-1
6.1 R eliability .. 6-1

6.1.1 Predictability of Memory Utilization 6-1
6.1.2 Predictability of Control Flow 6-2
6.1.3 Predictability of Timing 6-5

6.2 Robustness ... 6-7
6.2.1 Transparency of Functional Diversity 6-8
6.2.2 Exception Handling .. 6-8
6.2.3 Input and Output Checking 6-9

6.3 Traceability ... 6-10
6.3.1 Use of Built-In Functions 6-10
6.3.2 Use of Compiled Libraries 6-10

6.4 M aintainability ... 6-11
6.4.1 Readability .. 6-11
6.4.2 Data Abstraction ... 6-15

vii NUREG/CR-6463 Rev. 1

6.4.3 Functional Cohesiveness 6-15
6.4.4 M alleability ... 6-16
6.4.5 Portability ... 6-16

References .. 6-17

7 Pascal .. 7-1
7.1 R eliability .. 7-1

7.1.1 Predictability of Memory Utilization 7-1
7.1.2 Predictability of Control Flow 7-5
7.1.3 Predictability of Timing 7-15

7.2 Robustness .. 7-16
7.3 Traceability ... 7-18

7.3.1 Controlling Use of Built-in Functions 7-18
7.3.2 Use of Compiled Libraries 7-18

7.4 M aintainability ... 7-20
7.4.1 Readability .. 7-20
7.4.2 Data Abstraction ... 7-23
7.4.3 M alleability ... 7-24
7.4.5 Portability ... 7-24

R eferences .. 7-25

8P IM .. 8-1
8.1 R eliability .. 8-1

8.1.1 Predictability of Memory Utilization 8-1
8.1.2 Predictability of Control Flow 8-3
8.1.3 Predictability of Timing 8-19

8.2 Robustness .. 8-21
8.2.1 Controlled Use of Software Diversity 8-21
8.2.2 Controlled Use of Exception Handling 8-21
8.2.3 Input and Output Checking 8-22

8.3 Traceability ... 8-24
8.3.1 Use of Built-in Functions 8-24
8.3.2 Use of Compiled Libraries 8-25

8.4 M aintainability ... 8-25
8.4.1 Readability .. 8-25
8.4.2 Data Abstraction ... 8-34
8.4.3 Functional Cohesiveness 8-39
8.4.4 M alleability ... 8-40
8.4.5 Portability ... 8-4 1

R eferences .. 8-42

9 A da 95 .. 9-1
9.1 R eliability .. 9-1

NUREG/CR-6463, Rev. 1 viii

9.1.1 Predictability of Memory Utilization 9-2

9.1.2 Predictability of Control Flow 9-15

9.1.3 Predictability of Timing 9-21

9.1.4 Predictability of Mathematical or Logical Result 9-25

9.2 Robustness .. 9-46

9.2.1 Controlled Use of Software Diversity 9-46

9.2.2 Controlled Use of Exception Handling 9-46

9.3 Traceability ... 9-55
9.3.1 Use of Built-In Functions 9-55

9.3.2 Use of Compiled Libraries 9-55

9.3.3 Ada Run-time Environment 9-56

9.3.4 Maintaining Traceability Between Source Code and Compiled Code

... 9-56

9.3.5 Minimizing Use of Generic Units 9-57

9.4 M aintainability ... 9-59

9.4.1 Readability .. 9-59

9.4.2 Data Abstraction ... 9-65

9.4.3 Functional Cohesiveness 9-66

9.4.4 M alleability ... 9-66

9.4.5 Portability ... 9-66

R eferences .. 9-69

10 PLC Structured Text ... 10-1
10.1 Reliability .. 10-1

10.1.1 Predictability of Memory Utilization 10-1

10.1.2 Predictability of Control Flow 10-1
10.1.3 Predictability of Timing 10-9

10.2 Robustness .. 10-12

10.2.1 Exception Handling 10-13

10.3 Traceability ... 10-14

10.3.1 Use of Built-in Functions 10-14

10.3.2 Use of Compiled Libraries 10-14

10.4 M aintainability ... 10-15

10.4.1 Readability .. 10-15

10.4.2 Abstraction .. 10-19

10.4.3 Functional cohesiveness 10-20

10.4.4 M alleability ... 10-21
10.4.5 Portability ... 10-21

R eferences ... 10-22

11 Function Block Diagram s ... 11-1
11.1 R eliability ... 11-1

11.1.1 Predictability of Memory Utilization 11-1

ix NUREG/CR-6463 Rev. 1

11.1.2 Predictability of Control Flow............................ 11-1
11.1.3 Predictability of Timing................................. 11-8

11.2 Robustness... 11-11
11.2.1 Exception Handling 11-11

11.3 Traceability.. 11-12
11.3.1 Use of Built-in Functions............................... 11-12
11. 3.2 Use of Compiled Libraries.............................. 11-12

11.4 Maintainability.. 11-13
11.4.1 Readability ... 11-13
11.4.2 Abstraction... 11-18
11.4.3 Functional cohesiveness................................ 11-19
11.4.4 Malleability .. 11-19
11.4.5 Portability.. 11-20

References ... 11-21

APPENDIX A. Language Descriptions....................................... A-1
A. 1 Overview of PLCs.. A-2

A. 1. 1 Software Development for PLCs A-2
A. 1.2 Runtime Environment.................................... A-3
A. 1.3 IEC 1131-3 Programming Languages A-5

A.2 PLC Ladder Logic ... A-7
A.2.2 PLC Ladder Logic Example............................... A-i I
A.2.3 General Description - Ladder Logic Programming Shell A-13
A.2.4 Ladder Logic Modularization.............................. A- 14

A.3 Sequential Function Charts...................................... A-i5
A.3.1 SFC Steps ... A-18
A.3.2 SFC Transitions A-18
A.3.3 SFC Actions ... A-18
A.3.4 SFC Control Structures.................................. A-19

A.4 Structured Text Language....................................... A-2 1
A.5 Function Block Diagram Language................................ A-25
A.6 PIJM.. A-27

A.6. 1 Language History...................................... A-27
A.6.2 Generation of Executable PIJM Programs A-28
A.6.3 Language Overview.................................... A-29
A.6.4 General Guidelines for Using PIJM A-30
A.6.5 New Project Guidelines and Recommendations A-32

References.. A-34

Appendix B. Summary of Language Guidelines B- 1
Generic (Language Independent) Attributes............................... B-2
Ada83... B-9
C andC .. B-29

NUREG/CR-6463, Rev. 1 x

PLC Ladder Logic .. B-44
IEC 1131 Sequential Function Charts B-51
Pascal .. B -59
PU M .. B -66
A da95 .. B -73
PLC Structured Text .. B-96
Function Block Diagrams ... B-101

Appendix C Glossary .. C-1

Appendix D Relationship of Generic Attributes to Other Work D- 1
D. I IEEE Standard 603 .. D-1
D.2 IEC Publication 880 ... D-3
D.3 IEEE Std 7-4.3.2 1993, Appendix F D-5
D.4. Rome Laboratory Software Quality Framework D-6
D.5 Other Published Research .. D-8
References ... D -10

Appendix E Backgrounds of Subject Matter Experts and Reviewers E-1

xi NUREG/CR-6463 Rev. 1

List of Figures

Figure 1-1 Overview of Guideline Development Process 1-3
Figure 1-2 Decision Diagram for Defining Attributes from Existing Literature 1-6
Figure 2-1 Top Level Attributes .. 2-1
Figure 2-2 Reliability and Lower Level Attributes (procedural languages) 2-5
Figure 2-3 Reliability and Lower Level Attributes (object-oriented languages) 2-6
Figure 2-4 Robustness and Lower Level Attributes 2-15
Figure 2-5 Traceability and Lower Level Attributes 2-20
Figure 2-6 Maintainability and Lower Level Attributes 2-22
Figure 5-1 Use of goto ... 5-3
Figure 5-2 Sample of "Complex" Control Structure 5-4
Figure 5-3 Use of an Initialization Subroutine 5-7
Figure 5-4 Ladder Logic Multiple RETURN 5-8
Figure 5-5 Health Monitoring Routine Sample Program 5-19
Figure 5-5 Health Monitoring Routine Sample Program (continued) 5-20
Figure 5-6 Fault Routine That Alarms and Halts Sample Program 5-22
Figure 5-7 Fault Routine That Restarts Operation (Sample Program) 5-23
Figure 11-1 Examples of Unconditional and Conditional Jumps 11-2
Figure 11-2 Inappropriate Comparison with Floating Point Zero 11-5
Figure 11-3 Safe Method for Comparison with Floating Point Zero 11-5
Figure 11-4 Example of Inputs Obscured by Surrounding Blocks 11-14
Figure 11-5 Example of Inappropriate FBD Layout 11-15
Figure A- I General description of a PLC software environment A-3
Figure A-2 Real time execution of PLC program A-4
Figure A-3 Ladder logic "rung" with ERTHEN configuration A-1I
Figure A-4 Example of Ladder Logic .. A-12
Figure A-5 Subroutine calling in Ladder Logic A-14
Figure A-6 Subroutine interface (parameter passing) A-15
Figure A-7 Subroutine call interface (parameter passing) A-15
Figure A-8 Example of Sequential Function Chart A-17
Figure A-9 Sequential Chart for Traffic Light A-20
Figure A- 10 Examples of Function Blocks in IEC 1131-3 ASCII Notation A-26
Figure A-11 Example of FBD Data Types A-26

NUREG/CR-6463, Rev. 1 xii

List of Tables

Table 1-1 Sources Used for the Identification of Software Safety Attributes 1-5
Table 1-2 Subject M atter Experts ... 1-9
Table 1-3 Error Data Sources for Validation of Attributes 1-9
Table 1-4 Technical Basis Criteria and How They Were Addressed in this Document 1-10
Table 1-5 Language Cross Reference ... 1-12
Table 4-1 Examples of Problems Caused by Increment and Decrement Operators 4-22
Table 4-2 Problems in Mixing Signed and Unsigned Variables 4-26
Table 8-1 Optimization and Hardware Flags 8-18
Table A -I Contacts ... A -9
Table A -2 C oils ... A -10
Table A-3 List of ST Operators (in descending order of precedence) A-23
Table A-4 PI/M Compilers ... A-28
Table D- 1 Comparison of Generic Attributes with IEEE Std-603-1991 Criteria D-2
Table D-2 Relationship between Top Level Generic Attributes and IEC 880 Recommendations

............ .. D-4
Table D-3 Support Provided by Attributes of Chapter 2 to Items of Concern in ACES Analysis of

IE EE 7-4.3.2 ... D -5
Table D-4 Chapter 2 Attributes and Factors in the USAF Rome Laboratory Framework ... D-7
Table D-5 Relationship between Generic Attributes and Safety Concerns or Criteria Identified by

O ther Researchers .. D -9

xiii NUREG/CR-6463 Rev. 1

Executive Summary

This report provides guidance to the NRC on auditing of programs for safety systems written in the
following ten high level languages: Ada83 and Ada95, C and C++ (discussed together in one
chapter), International Electrotechnical Commission (IEC) Standard 1131-3 Ladder Logic,
Sequential Function Charts, Structured Text, and Function Block Diagrams, Pascal, and PLIM. It
could also be used by those developing safety significant software as a basis for project-specific
programming guidelines. The focus of the report is on programming, not design, requirements
development, or testing. However, it is not intended as a general programming style guide; excellent
sources for such guidance already exist.

A uniform framework for the formulation and discussion of language-specific programming
guidelines was the basis for developing the guidelines. The framework is a 3-level hierarchy. At the
top of the hierarchy are top level attributes, i.e., attributes which largely define a general quality of
software related to safety. Four top level attributes were defined. These are:

Reliability. The predictable and consistent performance of the software under conditions
specified in the design basis. This top level attribute is important to safety because it
decreases the likelihood that faults causing unsuccessful operation will be introduced into
the source code during implementation.

Robustness. Robustness is the capability of the safety system software to operate in an
acceptable manner under abnormal conditions or events. This top level attribute is important
to safety because it enhances the capability of the software to handle exception conditions,
recover from internal failures, and prevent propagation of errors arising from unusual
circumstances.

*Traceability. Traceability relates to the feasibility of reviewing and identifying the source code and
library component origin and development processes, i.e., that the delivered code can be shown to
be the product of a disciplined implementation process. Traceability also includes being able to
associate source code with higher level design documents. This top level attribute is important to
safety because it facilitates verification and validation, and other aspects of software quality
assurance.

*Maintainability. The means by which the source code reduces the likelihood that faults will be
introduced during changes made after delivery. This top level attribute is important to safety because
it decreases the likelihood of unsuccessful operation resulting from faults during adaptive, corrective,
or perfective software maintenance.

Immediately below these top level attributes are intermediate attributes, i.e., related to the top level
attribute but not sufficiently specific to define guidelines. An example of an intermediate level
attribute is predictable memory utilization. At the lowest level are base attributes, i.e., attributes

xv NUREG/CR-6463 Rev. 1

sufficiently specific to define guidelines. An example of a base attribute is to avoid dynamic
memory allocation. The guideline which can be derived from this base attribute for C programs is
to avoid the use of malloc in safety system software.

Guidelines for Ada were developed for both the original 1983("Ada 83") and the 1995 standards
("Ada 95"). For Ada 83, the discussion encourages use of strong typing and exception handling
features in Ada 83, but strongly discourages the use of tasking. Certain pragmas such as unchecked
deallocation or suppression of run-time constraint checking are also strongly discouraged. The Ada
guidelines were based on the those for the earlier language with additional consideration of object
oriented features. The discussion encourages use of strong typing and exception handling features
in Ada95, but strongly discourages the use of tasking. Certain pragmas (compiler and system
directives) such as unchecked deallocation or suppression of run-time constraint checking are also
strongly discouraged.

Guidelines for C and C++ were combined into a single chapter because of the close relationship
between the two languages and because programs written in C++ are also likely to contain C code
as well. Although C programs can interact extensively with operating systems or real time kernels,
a discussion of these issues is not included because it is related to specific operating system
characteristics and is beyond the scope of this study. The discussion emphasized the problems in
memory allocation and deallocation, pointers, control flow, and software interfaces.

Guidelines for Ladder Logic were discussed for the language as defined by the IEC 1131-3 standard,
but emphasized that implementations vary significantly among vendors. Ladder Logic is
fundamentally different from other high level languages in that it is more symbolic, has a limited
number of data types, and has a more limited syntax. Another difference is that Ladder Logic is
closely associated with PLCs, computers specialized for real time industrial control. This
specialization results in unique VO capabilities but limited information processing features. The
graphical syntax of Ladder Logic requires that safety system programs be well organized in both
their control flow and the structure of their internal data storage.

Guidelines for IEC 1131-3 Sequential Function Charts (SFCs) also recognized the differences among
vendor implementation as well as fundamental difference between the programming paradigm for
that language and those of other languages. SFCs are intended as a way to organize the control flow
of lower level software modules written in other languages defined by the IEC 1131-3 standard
(including Ladder Logic). The guidelines emphasized the proper use of SFCs given their intended
purpose and orientation. The guidelines also identified potential pitfalls in the application of SFCs
to safety systems.

Guidelines for the IEC 1131-3 Structured Text (ST) and Function Block Diagram (FBD) languages
assumed strict conformance to the standard because there is less variation among vendor offerings.
ST is a text-based language similar to Pascal whereas FBD uses a graphical representation. Both
languages are closely associated with PLCs, computers specialized for real-time industrial control.
This specialization results in unique I/O capabilities but limited information processing features.

NUREG/CR-6463, Rev. 1 xvi

The guidelines emphasize the proper use of these languages given their intended purpose and
orientation.

The discussion of Pascal addressed not only the ANSI standard, which is fairly limited, but also the
most popular extensions. Addressing the extensions is important because they are more widely used
in real time and near-real time systems than is the standard language. The focus of the discussion
was similar to C, dealing with memory allocation and deallocation, pointers, and software interfaces.

PLIM is a language that has been used extensively in microprocessor control applications, but which
is now no longer being supported by its corporate progenitor. The guidelines that were developed
were similar to those of C and Pascal. However, a specific concern for the use of PIJM in safety
systems is the preservation of the technical base including people, software tools, and support
environments.

Appendices to the document include (a) additional descriptive material on the specialized real time
control languages discussed in this report (PLC Ladder Logic, SFCs, ST, FBDs and PL/M), (b)
tabular summaries of the guidelines in the main body of the report, a glossary together with an
assessment of their importance, (c) a glossary, (d) additional material on the origin of the generic
attributes, and (e) a brief description of the background of the report contributors.

This report was prepared as an account of work sponsored by the Nuclear Regulatory Commission,
an agency of the United States Government. Neither the United States Government nor any agency
thereof, nor any employees, makes any warranty, expressed or implied, or assumes legal liability or
responsibility for any information, apparatus, product, or process disclosed in this report, or
represents that its use by such a third party would not infringe privately owned rights. The opinions,
findings, conclusions, and recommendations expressed herein are those of the authors and do not
necessarily reflect the views of the NRC. Use of these guidelines will assist auditors in identifying
problems in the implementation of safety system programs, but it does not guarantee that such
problems will not occur. The emphasis of these guidelines was on common attributes and related
problems; it was not possible for the subject matter experts to exhaustively consider all legal
constructs in each of the languages.

xvii NUREG/CR-6463 Rev. 1

Acknowledgments

We acknowledge the support and interest of the NRC Office of Research and in particular, that of
Mr. Robert Brill, the project manager. The additional review and comments from the National
Institute of Standards and Technology and from Dr. David Binkley are also appreciated. We also
wish to thank Mario Gareri, Michael Waterman, John Gallagher, and all the other individuals from
the NRC who contributed their views and comments to enhance this document. We also wish to
thank members of the ISO Ada95 Annex H Rapporteur's Group whose work enhanced this
document..

NUREG/CR-6463, Rev. 1 xviii

List of Acronyms

ANSI American National Standards Institute
BSO Boston System Organization
CPU Central Processing Unit
DPMI DOS Protected Mode Interface
EEPROM Electrically Erasable Programmable Read Only Memory
EPROM Erasable Programmable Read Only Memory
HMI Human Machine Interface
ICE In Circuit Emulator
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronic Engineers
IL Instruction List
ISO International Standards Organization
LRM (Ada) Language Reference Manual
NIST National Institute of Standards and Technology
NRC Nuclear Regulatory Commission
PID Proportional+Integral+Derivative
PLC Programmable Logic Controller
RTE (Ada) Run-time Environment
SCADA Supervisory Control and Data Acquisition
SFC Sequential Function Chart
SME Subject Matter Expert
SPC Software Productivity Consortium
ST Structured Text
TVA Tennessee Valley Authority

xix NUREG/CR-6463 Rev. 1

1 Introduction

This is the revised final report prepared in accordance with the requirements of Nuclear Regulatory
Commission (NRC) Contract RES 04-94-046.1 This document describes characteristics and
programming guidelines for the following high level languages.

oAda83
°Ada95
*C and C++
•IEC 1131-3 Ladder Logic
°IEC 1131-3 Sequential Function Charts
-IEC 1131-3 Structured Text
*IEC 1131-3 Function Block Diagrams
*Pascal
OPL/M

The report provides guidance to the NRC for reviewing high-integrity software in nuclear power
plants. Thus, the focus of the document is on implementation (i.e., programming). Issues related
to design, requirements, verification and validation, and the development process are covered in
other industry standards and NRC reports (e.g., IEEE 7-4.3.2-1993, IEC 880, NUREG/CR 5930,
NUREG/CR 6263, and NUREG/CR 6293). In this document, these topics are covered only to the
extent that they affect implementation.

This report was prepared as an account of work sponsored by the Nuclear Regulatory Commission,
an agency of the United States Government. Neither the United States Government nor any agency
thereof, nor any employees, makes any warranty, expressed or implied, or assumes legal liability or
responsibility for any information, apparatus, product, or process disclosed in this report, or
represents that its use by such a third party would not infringe privately owned rights. The opinions,
findings, conclusions, and recommendations expressed herein are those of the authors and do not
necessarily reflect the views of the NRC.

1.1 Scope

Certain programming practices can affect the safety of digital systems, and hence, guidelines can be
developed to enhance their dependability. This document identifies such guidelines for safety
related software written in the high level languages identified above. This report is not intended as
a general programming style guide; excellent sources already exist for these languages. However,

1The original version of NUREG/CR 6463 covered only the following 6 languages: Ada 83, C/C++, PLC

Ladder Logic, IEC 1131-3 Sequential Function Charts, Pascal, and PU/M

1-1 NUREG/CR-6463 Rev. 1

this document could be used to review the development of safety-critical systems to supplement
guidance in existing coding standards or as part of the basis for reviewing non-safety grade software
incorporated in safety grade systems.

Because of the focus of this work, many programming topics were excluded unless they directly
affected safety. Such topics include object-oriented analysis and design, code reuse, and efficiency
(e.g. minimizing resource requirements or optimizing for response time).

The applicability of the generic attributes and language specific guidelines is affected by many
characteristics of a safety-related system. Where possible, these have been noted in the document.
However, not all such factors can be anticipated by the subject matter experts who contributed to the
language specific sections. Moreover, the general subject of coding practices and styles can be
controversial. Users of this document should take both the guidance contained in this document, the
specific project characteristics and the existing practices of the development organization into
account as they consider the application of these guidelines.

1.2 Methodology

Figure 1-1 shows the process by which the language guidelines were developed. The work is divided
into 9 tasks, five of which were performed under a base contract; the remainder were performed
under a contract modification which extended the scope and period of performance. The following
is a listing of the tasks:

* Task 1, Generic Characteristics: Define language independent software attributes affecting
safety

0 Task 2, Language Assessment: Relate language independent software attributes to language
specific programming guidelines

* Task 3, Peer Review: Revise results of Tasks 1 and 2 based on review by independent
Subject Matter Experts (SMEs) acting as reviewers.

* Task 4, Seminar: Present results (base contract)

0 Task 5, Final Report (base contract)

* Task 6, Language Assessment (additional languages: Ada95, IEC 1131 Function Block
Diagrams, IEC 1131 Structured Text)

* Task 7, Validate guidelines using problem reports from actual software development projects

NUREG/CR-6463, Rev. 1 1-2

S ii S

p .i6
I -=11.i

I U °
I. Ii 4

J t °
"7

1-IUE/R-43RvD

* Task 8, Hypertext Version of the Final Report

Task 9, Seminar for additional languages

The following subsections discuss the methodology in greater detail.

1.2.1 Task 1 Methodology

In Task 1, generic attributes of computer languages were defined through the following iterative 3-
step process:

1. Identify safety related software attributes from review of existing work.
2. Classify and group attributes.
3. Validate classification.

In the first step, attributes related to safety identified in relevant standards and the current literature
were identified. Table 1-1 identifies the sources from which the majority attributes were extracted.
The attributes from Step 1 were aggregated and regrouped into a three level hierarchy as follows:

Top level attributes: attributes which largely define a general quality of software related to
safety. An example of a top level attribute is reliability.

Intermediate attributes: attributes related to the top level attribute but which are not
sufficient specific to define guidelines. An example of an intermediate level attribute is
predictable memory utilization.

Base attributes: Attributes related to intermediate attributes and sufficiently specific to
define guidelines. An example of a base attribute is to avoid dynamic memory allocation.
The guideline which can be derived from this base attribute for C programs is to avoid the
use of malloc in safety systems.

The process was iterative. An initial framework was established, and the grouping and classification
was modified as additional references were consulted and attributes added. The decision diagram
for defining and classifying the attributes is shown in Figure 1-2.

NUREG/CR-6463, Rev. 1 1-4

Table 1-1 Sources Used for the Identification of Software Safety Attributes

Andersen, 0. and P.G. Petersen, Standards and regulations for software approval and certification, Elektronik

Centralen Report ECR 154 (Denmark), 1984.

Bowen, T.P. and G.B. Wigle and J.T. Tsai, "Specification of Software Quality Attributes" Report, 3 Vols.

RADC-TR-85-37, available from NTIS, 1985.

Gottfried, R.and D. Naiditch, Using Ada in Trusted Systems, Proc. of COMPASS 93, May, 1993, National

Institute of Standards and Technology, Washington, DC, 1993.

Institute of Electrical and Electronic Engineers, Nuclear Power Engineering Committee, IEEE Std-603-1991,

IEEE Standard for Nuclear Power Generating Stations.

Institute of Electrical and Electronic Engineers, IEEE-Std-7 4.3.2-1993, IEEE Standard Criteria for Digital

Computers in Safety Systems of Nuclear Power Generating Station.

International Electrotechnical Commission (IEC), "Software for Computers in the Safety Systems of Nuclear

Power Stations," Standard 880.

McDermid, J.D., ed., Software Engineer's Reference Book CRC Press, Inc., Cleveland, Ohio, 1993.

Leveson, N.G. and C.S. Turner, An Investigation of the Therac-25 Accidents, University of California, Irvine

Technical Report 92-108, Irvine, California, 1992.

McGarry, F., "The Impacts of Software Engineering," briefing presented to the NRC Advisory Committee on

Reactor Safeguards (ACRS), August 21, 1992.

Murine, G.E., "Rome Laboratory Framework Implementation Guidebook", RL-TR-94-149, USAF Rome

Laboratory, March 1994.

Parnas, D.L., A.J. van Schouwen and S.P. Kwan, "Evaluation of Safety Critical Software," Communications of

the ACM, Vol. 33, No. 6, p. 636, June, 1990.

Proceedings of the Digital Systems Reliability and Nuclear Safety Workshop, NUREG/CP-0136, NIST SP
500-216, 1993.

Smith, D.J. and K.B. Wood, Engineering Quality Software: A review of Current Practices, Standards, and

Guidelines Including New Methods and Development Tools. New York: Elsevier Applied Sciences, 1989.

U.S. Department of Defense, DoD-Std-2167A, Software Development Standard.

Witt, B.I. and F.T. Baker and W.W. Merritt, Software Architecture and Design. Van Nostrand Reinhold, New

York, 1994.

1-5 NUREG/CR-6463 Rev. 1

Identify attribute
from existing

literature

NINoNO Int r lated aIbttspcific

i No Is It general? No enough for a No Intermediate level
guideline? attribute

yes yes

Candidate top
level attribute

SIt subset of nerait ntermediate level
another? - atrattribute

NYes
Candidate top

selevel attribute

enough for a -No treibutelel
uldeline?atrb e

yet

Base attribute

Figure 1-2 Decision Diagram for Defining Attributes from Existing Literature

1.2.2 Task 2 Methodology

In Task 2, these attributes were provided to an initial set of Subject Matter Experts (SMEs) who
developed language-specific guidelines. These experts developed language-specific guidelines as
stand-alone documents in conjunction with the authors of the Task 1 report, who also served as
reviewers. The SMEs were briefed on the specific nature of this work, that is, concentrating on
safety and language-specific issues. The SMEs were also instructed to provide published literature
citations as references for any points that they felt would be controversial. Each SME report
prepared for a Task 2 report was reviewed and revised. This process allowed for the resolution of
technical disagreements and uncertainties. The results of the SMEs' work were then edited for

NUREG/CR-6463, Rev. 1 1-6

uniformity and integrated into a single document. The results of the Task 2 report were then sent
to a panel of expert reviewers for their comments. Preliminary and final copies of this report were
prepared.

1.2.3 Task 3 Methodology

In task 3, the generic attributes and language specific guidelines were submitted to an independent
set of SMEs who served as reviewers. These reviewers provided an initial round of comments, after
which the guidelines were revised. The guidelines were then resubmitted to the reviewers for a final
round of evaluations.

Each SME has one or more graduate degrees and a substantial background in software development
in both safety-critical systems and in the particular language for which the criteria were developed.
Appendix E provides additional information on the software development background of these
individuals.

1.2.4 Tasks 4 and 5 Methodology

The Task 3 report was circulated for comment within the NRC as well as to selected individuals
outside of the NRC. As part of Task 4, a seminar was conducted at which time additional comments
and feedback on the specific guidelines and the general conclusions of the report were gathered.
These comments resulted in additional changes which were then incorporated into the final
document

1.2.5 Task 6 Methodology

The methodology used in task 6 was similar to that used in the previous tasks. However, there were
two differences: (a) additional guidelines were developed to handle the object-oriented design and
coding issues introduced by Ada95, and (b) as of this writing of this introduction, the languages
covered in this report have not had the same level of operational use and experience in high integrity
systems as most of the languages in the main report. The first issue was addressed by modifying the
guidelines contained in the main body of this report with a revised Chapter 2. For the second issue,
the work on Ada95 was enhanced by participation in the ISO Annex H Rapporteurs Group.

Table 1-2 lists the SMEs who served as authors and reviewers for tasks 2, 3, 5, and 6.

1.2.6 Task 7 Methodology

The classification was validated by comparing the attributes with the causes and descriptions of

1-7 NUREG/CR-6463 Rev. 1

failures in two major air traffic control projects (the Federal Aviation Administration Advanced
Automation System and Voice Control Switching System) as well as incident reports from the Eagle
21 reactor protection system upgrades at the Tennessee Valley Authority (TVA) Sequoyah Nuclear
Plant. For the C and Ada languages, a total of 150 specific failure reports were associated with
specific guidelines. A search for failure reports on IEC 1131 was undertaken by Additional
validation came from other published large scale studies of software failures. These are identified
in Table 1-3.

1.2.7 Task 8 Methodology

This report was translated into the Hypertext Markup Language (HTML), and links were provided
between generic guidelines, language-specific guidelines, and, where applicable, synopses of
problem reports.

1.2.8 Task 9 Methodology

A seminar based on the guidelines prepared for Ada95, IEC 1131 Function Block Diagrams, IEC
1131 Structured Text was presented at the NRC.

NUREG/CR-6463, Rev. 1 1-8

Table 1-2 Subject Matter Experts

Language Guideline Author SMEs Reviewer SMEs

Ada83 S. Graff B. Sanden, Ph.D
W. Green K.S. Tso, Ph.D

E. Shokri, Ph.D

Ada95 G. Dinsmore, Ph. D K.S. Tso, Ph.DE. Shokri, Ph.D

C D. Lin, Ph.D A. Sorkin, Ph.D
A. Tai, Ph.D E. Shokri, Ph.D

K. Ossia, Ph.D

IEC 1131-3 Sequential Function S. Koch, Ph.D D. Decker
Charts H. Hecht, Ph.D J. Pollard

IEC 1131-3 Structured Text
D. Decker

EEC 1131-3 Function Block K. Ossia, Ph.D J. Pollard
Diagrams

IEC 1131-3 Ladder Logic S. Koch, Ph.D D. Decker
H. Hecht, Ph.D J. Pollard

Pascal S. Graff A. Sorkin, Ph.D
M. Hecht

PLJM D. Wendelboe A. Sorkin, Ph.D
M. Justice

Nuclear Systems J. Leivo

Table 1-3 Error Data Sources for Validation of Attributes

Thayer, R., "Software Reliability Study," Rome Air Development Center report RADC TR 76-238, March, 1976.

Chillarege, R., "Orthogonal Defect Classification," IEEE Trans. SW Engineering, November, 1991.

TVA Letter to NRC Dated May 10, 1990, Sequoyah Nuclear Plant (SQN) - Eagle 21 Functional Upgrade
Commitments, NRC Public Document Room, Accession #910715001.

Advanced Automation System Program Trouble Report data (IBM/Loral) January, 1993 to July, 1994, U.S.
Federal Aviation Administration Contract DTFAO1-88-C-00042.

Voice Switching and Communication System Change Request (SCR) data (Harris Corp.), January, 1991 to July,
1994, Federal Aviation Administration Contract DTFA01-87-C-00002.

1-9 NUREG/CR-6463 Rev. 1

1.3 Technical Basis

Five criteria for a technical basis on which the use of digital systems could be justified were defined
in NUREG/CP-0136 (Beltracchi, 1994, p. 39). Table 1-4 shows how these criteria have been
addressed in this document.

Table 1-4 Technical Basis Criteria and How They Were Addressed in this Document

Technical basis criterion How addressed

1. The topic has been clearly The rationale for each guideline has been stated in this document
coupled to safe operations.

2. The scope of the topic is clearly Section 1.1 describes the scope of language specific safety concerns.
defined.

3. A substantial body of knowledge Language-specific guidelines were based on generic attributes of safety critical
exists, and the preponderance of software using the methodology defined in Section 1.2. References associated
the evidence supports a technical with the guidelines are provided at the end of each chapter
conclusion.

Language-specific guidelines for each language were prepared by SMEs with
an average of 20 years' overall programming experience.

Language specific guidelines were reviewed by independent SMEs

4. A repeatable method to correlate Not addressed in this document. Due to the paucity of failure data on digital
relevant characteristics with nuclear safety systems and the (fortunate) rarity of events resulting in
performance exists. challenges to such systems, a repeatable method for correlating the identified

attributes with safe operation is not possible at this time. However, data
collection to permit assessment of the guidelines using actual failure
experience is planned for a later enhancement of this document.

5. A threshold for acceptance can Not directly addressed in this study. The guidelines identify qualitative
be established, attributes rather than quantitatively measurable parameters. Substantial

progress in research on the quantitative failure behavior of high integrity
software is necessary to formulate a threshold.

The guidelines developed in this work provide a basis for the auditing and development of
dependable software in safety systems, but can not be considered exhaustive because they are written
without knowledge of the specific systems, language variants, and software development
environments to which they may be applied. Certain guidelines proposed by SMEs were rejected
based on the judgment of the editors or Task 3 SMEs that they were obscure or overly prescriptive,
that is, limiting the use of a language or advocating a certain style where the safety benefit was
unclear. On the other hand, not all guidelines included in this document may be applicable to a
specific project because of the presence or absence of certain requirements and design constraints,
the characteristics of a particular development environment, the testing program, or other factors.

NUREG/CR-6463, Rev. 1 1-10

Use of these guidelines will assist auditors in identifying problems in the implementation of safety
system programs, but it does not guarantee that such problems will not occur. The emphasis of these
guidelines was on common attributes and related problems; it was not possible for the subject matter
experts to exhaustively consider all legal constructs in each of the languages.

1.4 Contents Overview

This report is organized as follows: the second chapter of the report describes the generic attributes
for software safety and the resultant guidelines. Chapters 3 through 11 describe language-specific
guidelines for Ada-83, C and C++, PLC Ladder Logic, IEC 1131 Sequential Function Charts, Pascal,
and PL/M, Ada95, IEC 1131-3 Structured Text, and IEC 1131-3 Function Block Diagrams.
References are provided for the languages at the end of each chapter. Appendix A includes an
introductory discussion of PLCs, Ladder Logic, Sequential Function Charts, and PL/M. Appendix
B includes tables summarizing the language specific guidelines for the 6 languages discussed in the
main body of the report. These tables are intended to provide a brief overview of the guidelines and
to satisfy the requirement for a language matrix in the Statement of Work. Appendix C is a glossary,
Appendix D provides additional technical basis for the report, and Appendix E summarizes the
qualifications of the subject matter experts participating in the report.

Table 1-5 is a cross reference by language. It provides recommended selections of the report to
readers interested in a specific language.

1-11 NUREG/CR-6463 Rev. 1

Table 1-5 Language Cross Reference

Language Relevant Chapters Relevant Appendices

Ada83 Chapter 2 (generic guidelines) Appendix B. 1 (guideline summary and weighting
Chapter 3 (Ada specific guidelines) factors)

Appendix C (Glossary)

Ada95 Chapter 2 (generic guidelines) Appendix B.7 (guideline summary and weighting
Chapter 9 (Ada95 specific guidelines) factors)

Appendix C (Glossary - Main Report)

C and C++ Chapter 2 (generic guidelines) Appendix B.2 (guideline summary and weighting
Chapter 4 (C and C++ specific factors)
guidelines) Appendix C (Glossary)

EEC 1131-3 PLC Chapter 2 (generic guidelines) Appendix A. 1 (PLC description)
Ladder Logic Chapter 5 (PLC Ladder Logic Appendix A.2 (Ladder Logic description)

Specific Guidelines) Appendix B.3 (guideline summary and weighting
factors)
Appendix C (Glossary)

EEC 1131-3 Chapter 2 (generic guidelines) Appendix A.1 (PLC description)
Sequential Chapter 6 (SFC Specific Guidelines) Appendix A.3 (SFC description)
Function Charts Appendix B.4 (guideline summary and weighting

factors)
Appendix C (Glossary)

IEC 1131-3 Chapter 2 (generic guidelines) Appendix A. 1 (PLC description)
Structured Text Chapter 10 (ST Specific Guidelines) Appendix A.4 (ST description)

Appendix B.8 (guideline summary and weighting
factors)
Appendix C (Glossary - Main Report)

IEC 1131-3 Chapter 2 (generic guidelines) Appendix A. 1 (PLC description)
Function Block Chapter 11 (FBD Specific Appendix A.5 (FBD description)
Diagrams Guidelines) Appendix B.9 (guideline summary and weighting

factors)
Appendix C (Glossary - Main Report)

Pascal Chapter 2 (generic guidelines) Appendix B.5 (guideline summary and weighting
Chapter 7 (Pascal specific guidelines) factors)

Appendix C (Glossary)

PI.M Chapter 2 (generic guidelines) Appendix A.4 (PIJM description)
Chapter 8 (PLIM specific guidelines) Appendix B.2 (guideline summary and weighting

factors)
Appendix C (Glossary)

NUREG/CR-6463, Rev. 1 1-12

References

Beltracchi, L., "NRC Research Activities", Proceedings of the Digital Systems Reliability and
Nuclear Safety Workshop, NUREG/CP-0136, conducted by the NRC in conjunction with NIST,
March, 1994.

Hecht, H. et al., Verification and Validation Guidelines for High Integrity Systems, NUREG/CR-
6293, Vols. 1 and 2, March, 1995.

Institute of Electrical and Electronic Engineers, Standard Criteria for Digital Computers in Safety
Systems of Nuclear Power Generating Stations, ANSI/IEEE Std 7-4.3.2-1993.

International Electrotechnical Commission, Software for Computers in the Safety Systems of Nuclear
Power Stations, IEC Standard 880, 1986.

National Institute of Standards and Technology, High Integrity Software Standards and Guidelines,
NUREG/CR-5930, NIST SP 500-204, September, 1992.

Saaltink, M., and S.. Michell, Ada95 Trustworthiness Study: Guidelines on the Use of Ada95 in the
Development of High Integrity Systems, Version 1.0, Document TR 96-5499-94, ORA Canada,
Ottawa, Ontario, September, 1996.

Seth, S., et. al., High Integrity Software for Nuclear Power Plants: Candidate Guidelines, Technical
Basis, and Research Needs, NUREG/CR-6263, MTR 94W00001 14, Vols. 1 and 2, June, 1995.

1-13 NUREG/CR-6463 Rev. 1

2 Generic Safe Programming Attributes

This chapter describes generic, or language-independent, attributes of safe programming. These
attributes are used as a basis for deriving the language-specific guidelines described in the following
chapters. As noted in the previous chapter, the attributes have been defined in a hierarchical, three-
level framework. The top-level attributes, shown (bold) in Figure 2-1, are:

Reliability. Reliability is the predictable and consistent performance of the software under
conditions specified in the design basis. This top level attribute is important to safety
because it decreases the likelihood that faults causing unsuccessful operation will be
introduced into the source code during implementation.

Robustness. Robustness is the capability of the safety system software to operate in an
acceptable manner under abnormal conditions or events. This top level attribute is important
to safety because it enhances the capability of the software to handle exception conditions,
recover from internal failures, and prevent propagation of errors arising from unusual
circumstances (not all of which may have been fully defined in the design basis).

Traceability. Traceability relates to the feasibility of reviewing and identifying the source
code and library component origin and development processes i.e., that the delivered code
can be shown to be the product of a disciplined implementation process. Traceability also
includes being able to associate source code with higher level design documents. This top

Safe Progrmmming
A

ftbutesI

T Traceability Reability Robustnss MaintalnabllityTAXONOMY

CRITERION

LOWEST
LEVEL OPERATING

CONDITIONS - NORMAL -b 4- ABNORMAL --

PROGRAM DESIGN -. .- IMPLEMENTATION
PHASE

TIME OF PRESENT FUTURE
HIGHEST CONCERN PRESENT - FUTURE

LEVEL

Figure 2-1 Top Level Attributes

2-1 NUREG/CR-6463 Rev. 1

level attribute is important to safety because it facilitates verification and validation, and
other aspects of software quality assurance.

Maintainability. Maintainability is the means by which the source code reduces the
likelihood that faults will be introduced during changes made after delivery. This top level
attribute is important to safety because it decreases the likelihood of unsuccessful operation
resulting from faults during adaptive, corrective, or perfective software maintenance.

Sections 2.1 through 2.4 discuss each of these attributes in greater detail. Appendix B lists and
summarizes the associated lower level attributes, their relative priorities, and mitigation approaches
(where applicable). Appendix D shows their relationship to applicable Institute of Electrical and
Electronic Engineers (IEEE), International Electrotechnical Commission (1EC), and Department of
Defense (DoD) standards and frameworks. It also contains a discussion of how these attributes
compare with other work in software safety.

The guidelines set forth below assume the existence of "project guidelines" which have been adopted
by the development contractor and approved by the responsible agency. It is also assumed that the
project guidelines were reviewed by the auditor before beginning any review of the actual code. In
some of the guidelines of this document, reference is made, usually implicitly, to the project
guidelines. All references in this document of a comparative nature, such as a reference that some
code characteristic should not be "excessive" or "too small", for example, should always be
interpreted with respect to the project guidelines and good safety engineering practice.

After the first publication of this document, several enhancements to it were begun. In particular,
a large number of trouble reports relating to Ada83 and C were analyzed and correlated with the the
specific guidelines defined for these two languages for the purpose of providing World Wide Web
support to the chapters discussing these languages. This analysis suggested a need for a slight
revision of the lower-level attributes used to characterize the guidelines. The analysis also suggested
a firmer theoretical basis for the taxonomy of faults underlying the guidelines. A presentation of this
revised taxonomy and its theoretical basis follows.

First, it is easy to see that the purpose of this document (to aid in the review of software used in
nuclear power plant safety systems) matches the top-level attributes well and that a clear taxonomy
exists which can be shown as basis for these attributes. In particular, the scope of the review
envisioned by this document extends from a review of software related design documents to line-by-
line source code examination. The need encompasses both the software as it exists currently and as
it will be modified in the future. The present software state is reviewed in accordance with the first
three attributes (reliability, robustness, and traceability); the future software state is examined in
terms of the fourth attribute, maintainability. The present software state is further examined in terms
of its implementation (reliability and robustness) and its design (traceability -- i.e., does the
implementation match the system requirements, the mathematical model of the system physics?).
Finally, the distinction between the reliability attribute and the robustness attribute is the former's

NUREG/CR-6463, Rev. 1 2-2

emphasis on nominal operating conditions and the latter's emphasis on off-nominal operating
conditions. The resulting top-level taxonomy is shown (in normal face type) in Figure 2-1.

2.1 Reliability

In the software context, reliability is either (1) the probability of successful execution over a defined
interval of time and under defined conditions, or (2) the probability of successful operation upon
demand (IEEE, 1977). That the software executes to completion is a result of its proper behavior
with respect to system memory and program logic. That the software produces timely output is a
function of the programmer's understanding of the language constructs and run-time environment
characteristics. Thus, the intermediate attributes for reliability set forth in the original version of this
document were :

-Predictability of memory utilization. There is a high likelihood that the software will not cause the
processor to access unintended or unallowed memory locations.

-Predictability of controlflow. There is a high probability that the processor will execute instructions
in sequences intended by the programmer.

-Predictability of timing. There is a high probability that the software executing within the defined
run-time environment will meet its response time and capacity constraints.

The same analysis that produced the top level taxonomy described above also suggested, for the
object-oriented Ada95 and possibly C++, a fourth intermediate attribute as well as clarification of
the meaning of these three attributes. The fourth attribute is:

Predictability of mathematical or logical result. There is a high probability that the software
executing within the defined run-time environment will yield the programmer-intended
mathematical or logical result.

The further clarification of these intermediate attributes is they all refer to the immediate or
proximate result of the specific line(s) of code under review at the point the guideline is applied.
Further justification for the addition of this fourth intermediate-level attribute comes from (Saaltink,
96, page 5). In discussing Ada95, the authors identify "functional predictability" as a high integrity
software needs category, where this category is defined as "the predictability of the values of outputs
or, for concurrent systems, the sequence of interactions or outputs". This definition appears to
include both the predictability of control flow as well as the predictability of mathematical or logical
result.

As shown in Figures 2-2 and 2-3, for the non-object oriented languages and for the object-oriented
languages, respectively, each of these intermediate attributes has multiple base attributes. As may
be seen by comparing these two figures, interpreting the intermediate attributes in accordance with
the preceding paragraph results in a change in the assignment of base attributes to intermediate

2-3 NUREG/CR-6463 Rev. 1

attributes for the object-oriented Ada95. Although not shown on Figure 2-3, some characteristics
of base attributes otherwise assignable to the higher-level attributes of Readability and
Maintainability apply to Reliability and could be assigned to the new fourth intermediate attribute.
The figures also show that base attributes related to object-oriented programming (control over
polymorphism, minimization of dynamic binding, and control over overloading) assigned in Figure
2-2 to both memory utilization and control flow are assigned to the new fourth intermediate attribute
in Figure 2-3. These attributes are discussed further in the following sections.

The effect of adding this fourth intermediate attribute is that the Ada95 chapter is organized
somewhat differently from the other language chapters.

This revised taxonomy has not been applied to C++ even though this is oviously an object-oriented
language. The reasons for this is that the authors' experience with C++ suggests that such benefit
would at this time be small. Most C++ programmer are still primarily using the features of C++
which do not exploit the object-oriented characteristics of the language. Programmers are largely
using C++ classes and C++ compilers for programs which are really C programs.

Future analysis may show the object-oriented language attribute structure for Reliability may apply
to procedural languages as well. However, since this has not yet been shown, the attribute structure
for procedure-oriented languages will continue to be used for all the languages except Ada95. To
simplify the presentation in this chapter, the older, procedure-oriented attribute structure will be used
throughout this chapter, with parenthetic remarks as appropriate for object-oriented languages.

2.1.1 Predictability of Memory Utilization

This section discusses the following base attributes that facilitate the predictability of memory
utilization:

-Minimizing dynamic memory allocation
-Minimizing memory paging and swapping.

2.1.1.1 Minimizing Dynamic Memory Allocation

Dynamic memory allocation is used in programs to temporarily claim (allocate) memory when
necessary during run time and to free the memory (also during run time) for other uses when no
longer needed. The safety concern is that when memory is dynamically allocated in a real-time
system, the software may not subsequently release all or some of it. This can happen either because:

*The application program allocates memory to itself but does not free it as part of normal execution
paths, or

NUREG/CR-6463, Rev. 1 2-4

MilReliabiltl

"IS ndMOTo cotiro * ftw#m

Min. ~ ~ ~ ~ ~ m dyamcMa SnctnMn U W

Conolls

.nb~ on. inodng

vafkmlon

M2-5 NURG/C-643aRv.s

"\ -

Fiue22Rliblt n Lowe Lee trbte poeullnugs

2- URGC-66,Rv

Predictabilty of Predictability of Predictability of Predictability of
control flow timingutilization logical result

extInfnc,prtor

Explicit
precedence

Initialize
qwrdun13ftkmbWI variables

Figure 2-3 Reliability and Lower Level Attributes (object-oriented languages)

NUREG/CR-6463, Rev. 1 2-6

9A program which has temporarily allocated memory to itself is interrupted in its execution prior to

executing the statement which releases the memory.

Either of these situations will cause the eventual loss of all usable memory and a loss of all safety

system functions. Dynamic memory allocation in digital safety systems should therefore be

minimized.

If dynamic memory allocation is unavoidable, the source code should include provisions to ensure

that:

-All dynamically allocated memory during a specific execution cycle is released at the end of that

cycle, and

-The possibility of interruption of execution between the point where memory is dynamically

allocated and when it is released is minimized (if not totally eliminated); there should also be

provisions in the application code that will detect any situation where dynamically allocated memory

has not been released and release such memory.

2.1.1.2 Minimizing Memory Paging and Swapping

Memory paging is the use of a part of a disk (or other form of secondary or bulk memory) to store

infrequently used primary memory areas. When these memory areas are needed by a running

program, the operating system causes them to be read from the disk and loaded back into the primary

memory. Process swapping is the use of part of a disk (or other form of bulk memory) to store the

memory image of an entire inactive process (including its data areas such as a stack space and heap

space). When it is time for the process to be executed, the image is loaded from the disk back into

the primary memory for use by the CPU. In any event, the specific usage of memory and the portion

of storage used for swapping is indeterminate.

Both capabilities were developed for interactive and batch timesharing systems, where the demand

for memory was greater than the amount installed in the computer system. However, they are

inappropriate for safety systems because these indeterminacies in memory and storage utilization

can, in turn, cause significant delays in response time and use complex interrupt-driven functions

to handle the memory transfers. In addition, these capabilities depend on electromechanical

components (if a disk is used as the secondary storage device) which are subject to failure.

If an operating system and hardware that support memory paging or process swapping are used in

a safety system, this feature should be disabled at the operating system level. There should be

enough primary memory for all data and programs. If there is any question that these features were

not disabled, there should be provisions in the safety applications software ensuring that all critical

functions and their data areas are in primary memory during the entire period of execution. Such

2-7 NUREG/CR-6463 Rev. 1

provisions in the source code include operating system calls ("pinning"), compiler directives, and
operating system scripts.

2.1.2 Predictability of Control Flow

Control flow defines the order in which statements in a program are executed (i.e., sequential,
branching, looping, or procedural) (Meek, 1993). A predictable control flow allows an unambiguous
assessment of how the program will execute under specified conditions.

Related base attributes are:

-Maximizing structure
-Minimizing control flow complexity
Initializing variables before use
*Single entry and exit points for subprograms
-Minimizing interface ambiguities*
-Use of data typing*
eAccounting for precision and accuracy*
-Order of precedence of arithmetic, logical, and functional operators*
-Avoiding functions or procedures with side effects*
-Separating assignment from evaluation*
eProper handling of program instrumentation
-Controlling class library size*
Minimizing use of dynamic binding
-Controlling operator overloading.*

These attributes and their relevance to safety are discussed in the following subsections. The
attributes marked with an asterisk are treated as lower level attributes associated with the
intermediate-level attribute, predictability of mathematical/logical result, in Chapter 4, the chapter
dealing with the Ada95 language.

2.1.2.1 Maximizing Structure

"Spaghetti code" is a common derogatory reference to code with Goo or equivalent execution
control statements that cause an unstructured shift of execution from one branch of a program to
another. The safety concern is that the execution time behavior is difficult to trace and understand.
GKm statements can cause undesirable side effects because they interrupt execution of a particular
code segment without assurance that subsequent execution will satisfy all conditions that caused
entry into that segment. Standards discouraging or prohibiting such coding practices have been in
place for more than two decades (e.g., MIL-Std-1679). Structure is maximized by the elimination

NUREG/CR-6463, Rev. 1 2-8

of GOTO statements and use of appropriate block structured code. The case, if. ..thn... Ola,
do until, and do while constructs permit branching with a defined return and without

introducing the uncertainty of control flow associated with GOTO or equivalent statements (Dijkstra,
1972; DoD-Std-2167A, Appendix C).

2.1.2.2 Minimizing Control Flow Complexity

An indication of control flow complexity is the number of nesting levels for branching or looping.

Excessive complexity makes it difficult to predict the flow of a program and impedes review and
maintenance. A specific safety concern is that the control flow may be unpredictable when

unanticipated combinations of parameters are encountered. Excessive nesting can usually be avoided
by the use of functions or subroutines in place of in-line branches. A specific limit on nesting, as

part of project or organizational coding guidelines, can mitigate safety concerns.

2.1.2.3 Initializing Variables Before Use

When variables are not initialized to a known value at the beginning of an execution cycle, safety

is impaired because they may contain "garbage" values (residue from the previous use of that
memory area). Run-time predictability requires that memory storage areas set aside for process data

be set to known values before being accessed (set and used). The specific result of using unknown

initial values of a variable depends upon how that variable is used in the software. A compiler
cannot be depended on to automatically reset memory areas set aside for variables (Gottfried, 1993;

Naiditch, 1993).

2.1.2.4 Single Entry and Exit Points for Subprograms

Multiple entry and exit points in subprograms introduce control flow uncertainties similar to those

caused by Goo statements (DoD-Std-2167A, Appendix C). Run-time execution flow predictability

is enhanced by having only a single entry to and exit from each program. Because predictability of
execution flow is a characteristic important to safety, multiple entry and exit points in subroutines
or functions are undesirable even if the language supports them.

2.1.2.5 Minimizing Interface Ambiguities

Interface faults include mismatches in argument lists when calling other subprograms,
communicating with other tasks, passing messages among objects, or using operating system
services. An example of such a fault is reversing the order of arguments when calling a subroutine.
Previous research on software failures has shown that this category of faults is quite significant
(Chillarege, 1992; Thayer, 1976). Recent failures in actual systems have also served to underscore

2-9 NUREG/CR-6463 Rev. 1

the need for reasonableness checks on input and output (Baber, 1997). Coding practices that can
reduce or eliminate the probability of interface faults include:

-Ordering arguments to alternate different data types (reducing the chance that two adjacent
arguments will be placed in an incorrect order).

-Using named notation rather than ordering or position notation for languages that support such
notation, e.g., display(value=>TC5, units=>EU) rather than display(TC5, EU).

-Testing for the validity of input arguments at the beginning of the subprogram.

'Routines should have adequate pre- and post-conditions specified. A pre-condition is an assurance
that all local variables are initialized and all input variables meet appropriate reasonableness checks.
A post-condition is an assurance that all output variables meet appropriate reasonableness checks.
See also Section 2.1.2.3.

2.1.2.6 Use of Data Typing

Acceptance of data that differ from those intended to be used by a program can cause failures, and
such failures that occur during an exception condition may have particularly adverse effects on safety
(IEEE, 1993). This concern can be addressed by declaration of data types. Originally, the primary
advantage of declaring data types was to allow compilers to reserve the correct amount of memory.
However, data typing is useful for improved definition of interfaces (see above), increased legibility
(for reviews), and compile time and run time checking. These originally ancillary uses have now
become the primary motivators for data typing and have prompted the use of strong typing in which
additional declarations, at least that of a valid range, are required. The safety issues associated with
data typing include (IEEE, 1993; DoD-Std-2167A, Appendix C):

'Limiting the use of anonymous types (e.g., general integer or floating point without upper and lower
limits) in strongly typed languages.

'Ensuring that the limits on data types are not excessively constrained so that spurious exceptions
or error messages are not generated (this is an issue in strongly typed languages).

-Minimizing type conversions, and eliminating implicit or automated type conversions (e.g., in
assignments and pointer operations).

'Avoiding mixed-mode operations. If such operations are necessary, they should be clearly
identified and described using prominent comments in the source code.

'Ensuring that expressions involving arithmetic evaluations or relational operations have a single
data type-or the proper set of data types for which conversion difficulties are minimized.

NUREG/CR-6463, Rev. 1 2-10

-Limiting the use of indirection such as array indices, pointers (in Pascal or C), or access objects (in
Ada) to situations where there are no other reasonable alternatives, and performing validation on
indirectly addressed data prior to setting or use to ensure the correctness of the accessed locations.
Strongly typed pointers, array indices, and access types reduce the possibility of referencing invalid
locations.

2.1.2.7 Accounting for Precision and Accuracy

The software implementation must provide adequate precision and accuracy for the intended safety
application (IEEE, 1993). Safety concerns are raised when the declared precision of floating point
variables is not supported by analysis-particularly when small differences between large values are
used (e.g., when computing rate of change from the difference between current and previous values,
calculating variances, or performing filtering operations such as moving averages).

2.1.2.8 Order of Precedence of Arithmetic, Logical, and Functional Operators

The default order of precedence of arithmetic, logical, and other operations varies among languages.
Developers or reviewers may make incorrect precedence assumptions when explicit parentheses are
not used-particularly in complex expressions (DoD-Std-2167A, Appendix C). Therefore the use
of parentheses or other mechanisms for ensuring a clear statement of the order of evaluation of
operations should be used.

2.1.2.9 Avoiding Functions or Procedures with Side Effects

A side effect is a change to any variable not returned by that function that persists after the
completion of the function. This includes changes to files, hardware registers, etc. An example of
such a side effect would be a change in a global variable not in the function parameter list. Side
effects can lead to problems with unplanned dependencies and can cause bugs that are very hard to
find.

2.1.2.10 Separating Assignment from Evaluation

Assignment statements (e.g., extern_var := 100) should be separated from evaluation
expressions (e.g., if sensor_val < temp_limit). The separation can be violated when
subprograms are used as part of the evaluation. For example, a filtering function may be used as part
of an evaluation rather than simply the sensor value:

if(func(a) < teMplimit).

2-11 NUREG/CR-6463 Rev. 1

Execution of func (a) may also set a global or external variable, using an assignment statement.
For example:

func (t);
/* data declarations */

begin

/* initialization, execution, or evaluation code */
extern_var:=O;

/*an external variable declared at a higher scope
and used by this routine */

end.

As a result, when the subprogram func is called, it will set an external variable to a value of 0. The
value of this variable may be used by other programs in calculations, logical decisions, or output.
Although this change may have been explicitly intended by the programmer, it is very difficult for
others to follow. It is acceptable for the subprogram func to assign values to variables providing
that these variables are visible only within the subprogram, i.e., they are local variables rather than
global or external variables. A related attribute is minimization of the use of global variables
discussed below.

2.1.2.11 Proper Handling of Program Instrumentation

Program instrumentation collects and outputs certain internal state values of a program during
execution and allows the developer to check if particular aspects of the specification have been
correctly implemented (Liao, 1991). Specific safety related issues are:

-Minimizing Run-time Perturbations: Instrumentation that interferes with the normal execution flow
is undesirable in safety applications. For example, extensive "write" or other output statements can
result in the execution of a significant amount of library code associated with outputting values; a
less intrusive means may be to write such values to external memory locations where they can be
processed later. It may also mean writing data in binary format for off-line format processing (i.e.,
conversion to human-readable text and numeric values). To minimize differences in behavior
between test and normal operation, it may be desirable to keep certain instrumentation code in place
in the actual environment.

-Maintaining Visibility of Instrumentation in Runtime Source Code: Some software tools alter
compiler generated object (or executable) files in order to insert instrumentation (Campbell, 1994;
Castellano, 1994). This is generally not acceptable in a safety system because the impact of such
changes is not visible in the source code and its effect on execution cannot be reviewed.

NUREG/CR-6463, Rev. 1 2-12

-Conforming to Software Instrumentation Guidelines: Review is facilitated (and therefore safety is
enhanced) if the instrumentation practices are described in project specific engineering notebooks.
Guidelines are needed to identify what types of output mechanisms are to be used, and under which
conditions they should not be used. For example, a measure mentioned above for minimizing
runtime interference is at odds with the data abstraction and error containment attributes described
later in this section.

2.1.2.12 Controlling Class Library Size

Control of class library size is important to avoid a system that becomes unmanageable or has large
performance penalties because it has too many classes and objects (Cuthill, 1993). Safety is
enhanced if project-specific guidelines limit the number of classes and objects... and the actual
software conforms to these guidelines.

2.1.2.13 Minimizing Use of Dynamic Binding

Binding denotes the association of a name with a class. Dynamic binding permits the name/class
association to be deferred until the object designated by the name is created at execution time. The
unpredictability of the name/class association creates safety concerns. It also reduces the
predictability of the runtime behavior of an object-oriented program and it complicates debugging,
understanding, and tracing (Royce, 1993). Restrictions on, or elimination of, dynamic binding is
desirable for safety-critical applications.

2.1.2.14 Controlling Operator Overloading

Polymorphism (operator overloading) can improve readability and reduce complexity by allowing
a single subprogram or operator (in Ada) or object behavior (in C++ and Ada95) to be used for
different data types. However, it can also be problematic from the perspective of predictability
because it is unclear how a compiler will bind code for different polymorphisms (e.g., how would
a multiply operation on a multidimensional array be bound to scalars or one-dimensional arrays)
(Royce, 1993). Guidance on use of operator overloading in a project-specific or organizational
coding standards manual is therefore desirable for safety-related applications, together with
verification that the code complies with this standard.

2.1.3 Predictability of Timing

Predictability of timing is crucial in a safety system used in real time control (Kopetz, 1993;
Leveson, 1992; Turner, 1992). For example, a reactor shutdown system must generate a trip signal

2-13 NUREG/CR-6463 Rev. 1

within a specified interval of operating parameters falling outside of allowable ranges. Also, diesel
engine startup sequences require events to happen within a defined time interval. Base attributes
related to object oriented programming that have relevance to this intermediate attribute were
discussed under previous headings:

* Controlling class library size
* Minimizing use of dynamic binding, and
* Controlling operator overloading.

Two additional base attributes related to timing discussed in the following subsections are:

* Minimizing the use of tasking, and
* Minimizing the use of interrupt driven processing.

2.1.3.1 Minimizing the Use of Tasking

Although tasking (in languages such as Ada) provides an attractive model for concurrent processing,
its use is undesirable in safety-critical applications for the following reasons:

--There are timing uncertainties associated with differing implementations by compiler vendors,
interactions with underlying operating systems (or real time kernels), and the design of the hardware
platform.

oThe sequence of execution is uncertain when several calling alternatives are waiting to be executed
because it is not always clear which call will be selected (Gottfried, 1993; Naiditch, 1993).

@Tasking allows time critical errors, such as race conditions and deadlocks, to develop. Such
differences are difficult to debug (Royce, 1993).

Therefore, tasking is to be avoided in safety systems unless there is a compelling justification.

2.1.3.2 Minimizing the Use of Interrupt Driven Processing

Using interrupt driven processing to handle the acceptance and processing of plant and operator input
can reduce average response time, but usually leads to non-deterministic maximum response times.
Interrupt driven processing was implicated in at least one of the Therac-25 accidents (Leveson, 1992;
Turner, 1992). Reference documents and standards related to digital system safety generally
discourage or prohibit its use (IEC 880). Avoiding interrupt driven processing facilitates analysis
of synchronization and run-time behavior, and avoids the non-determinism of response time inherent
in interrupt driven processing.

NUREG/CR-6463, Rev. 1 2-14

2.1.4 Predictability of Mathematical or Logical Result

Predictable mathematical or logical result means that the results realized at the completion of
execution of the low level of code (source line or construct) being examined are the results intended
and expected by the programmer who wrote the code. The term "logical" is intended to extend the
term "results" to the case where the code is manipulating Boolean data and will yield a Boolean
result.

As mentioned previously in this chapter, this intermediate level attribute is being only applied to
object-oriented Ada95 at this time. Accordingly, there is no need for separate generic guidelines for
the lower level attributes assigned to this intermediate level-attribute other than the guidelines
presented in this chapter for procedure-oriented languages.

2.2 Robustness

Robustness refers to the capability of the software to continue execution during off-nominal or other
unanticipated conditions. A synonym for robustness is survivability (Bowen, 1985; Wigle, 1985).
Robustness is an important attribute for a safety system because unanticipated events can happen
during an accident or excursion, and the capability of the software to continue monitoring and
controlling a system in such circumstances is vital.

oca ndeing Control of SW Input and Outp
I diversity Checking

Handling

Figure 2-4 Robustness and Lower Level Attributes

2-15 NUREG/CR-6463 Rev. 1

As shown in Figure 2-4, the intermediate attributes for robustness are:

-Controlling use of diversity
-Controlling use of exception handling
-Checking input and output.

These attributes and their relevance to safety are discussed in the following subsections.

2.2.1 Controlling Use of Diversity

The decision to employ diverse software implementations is a design-level function and is therefore
outside the scope of this document. However, if diversity is called for in the design or requirements,
it should be controlled in its application. The principal issue with the use of diversity in software
is the possibility that common-mode software failures may cause redundant safety systems to fail in
such a way that there is a loss of safety function (Committee, 1995).

The possibility of common-mode failures between independently developed software routines is not
easily eliminated. Any shared specification can lead to common-mode failures. The same problem
exists in developing test data to check the software -- the testers may omit the same off-nominal or
unusual cases that the developers overlooked. Further, in order to use the approach where the
outputs of multiple versions of software can be compared in real time (or to be able to compare
intermediate results), the designs from independent teams may be overspecified. Such detailed
common specifications may result in little software design diversity.

In addition, multiple versions of the software written independently from the same requirements
specification are effective only against coding errors (and sometimes only a limited set of these).
On the other hand, empirical evidence suggests that most safety problems (and most errors found in
operational software) stem from errors in the software requirements, especially misunderstandings
about the required operation of the software. Software intended to provide redundancy may not
achieve this goal but may simply duplicate the misunderstandings (Committee, 1995). In reviewing
safety-critical software, analysis of software diversity to determine common-mode failures is
important.

There are two base attributes:

-Controlling internal diversity
eControlling external diversity.

NUREG/CR-6463, Rev. 1 2-16

2.2.1.1 Controlling Internal Diversity

When only internal diversity is used, the interfaces to all versions must be identical. In other words,
any sensor data or parameters from calling procedures should be passed identically to all versions,
and output data from any version should be accepted and used by other parts of the system.
However, internal operations and storage of local data should occur diversely in the multiple module

versions or instantiations. Internal diversity is facilitated by an object-oriented approach in which

the same messages and methods are used, but the internal algorithms and data representations differ

(Cuthill, 1993). Internal diversity should be implemented in accordance with the design and with

project-specific guidelines. These should address:

-Diverse algorithms. Using different algorithms, unit conversions, and process parameters (when
called for or allowed in the requirements or design) minimizes the possibility of a design or
implementation-related failure.

-Diverse data validation. Using alternate schemes for sensor (or other input) data and output data

validation minimizes the possibility of a design or implementation-related failure.

-Diverse exception handling routines. This measure reduces the probability that an error in the

exception handling or processing will occur simultaneously on multiple versions.

-Different data types, structures, and storage allocation. This measure reduces the possibility that

unanticipated interactions between the object code generated by the compiler and the operating

system will cause data or code to be inadvertently overwritten simultaneously on multiple versions.

-Diverse libraries and subroutines. Avoiding the use of the same application software subroutines,

compiler-supplied library routines, and operating system provided application programming
interfaces. This measure reduces the possibility of a simultaneous failure due to a defect in such
routines.

'Diverse order of arithmetic operation. Changing the order of arithmetic operations in conversions,
arithmetic, and assignment statements by using commutative, associative, and distributive properties

reduces the possibility of simultaneous failures due to unanticipated overflow conditions generated
by intermediate results or problems in numerical precision.

-Diverse order of input and output operation. Performing I/O operations in different orders reduces

the possibility of simultaneous timing-related failures (such as a deadlock) or data-driven failures
(i.e., a program crash due to a particular data value).

2-17 NUREG/CR-6463 Rev. 1

2.2.1.2 Controlling External Diversity

Where external diversity is used, safety is enhanced if it is implemented in a disciplined manner in
accordance with design documents. The design documents should reflect the diversity imposed by
requirements, hazard analyses, and similar sources. External diversity is achieved by using different
interfaces among the versions, and may be combined with internal diversity. External diversity is
necessary when different languages are used for different versions, and may also be used to obtain
sensor data through a different channel. Uncontrolled or unspecified external diversity can lead to
a proliferation of interfaces which impact safety due to difficult maintenance, testing, verification,
and validation.

2.2.2 Controlling Use of Exception Handling

Exception handling deals with abnormal system states and input data (IEEE, 1993). Exception
handling provisions in some languages facilitate the establishment of an alternate execution path in
the event of conditions which, although unexpected, result in states that can be defined in advance.
Problems can arise in the use of exception raising and handling, however, because execution flow
during exception conditions is often difficult to trace.

Base attributes with respect to exception handling include (DoD-Std-2167A, Appendix, D):

*Handling of exceptions locally
*Preserving external control flow
eHandling of exceptions uniformly.

2.2.2.1 Handling of Exceptions Locally

Propagation of exceptions through several levels of a program can cause the precise nature of the
exception to be misinterpreted at the place where the exception handling is implemented. This cause
of system failure (with potentially serious safety implications) is avoided if exceptions are handled
locally.

2.2.2.1 Preserving External Control Flow

Interruption of control flow external to the routine in which the exception was raised creates
uncertainty in the execution subsequent to the exception handling. Safety is enhanced by
preservation of control flow external to the module responsible for the exception.

2.2.2.2 Handling of Exceptions Uniformly

Undisciplined use of exception handling can result in inconsistent processing of the same exception
condition in different parts of the code. At worst, it can result in some exceptions being raised and

NUREG/CR-6463, Rev. 1 2-18

not handled. These problems can be avoided by guidance on the use of exceptions as part of the
coding practices procedures of the organization or the specific project. Topics to be included in this
guidance are:

*General and project specific exceptions which have been defined and are allowed
-Placement of exception handling code
-Enumerating all intended side effects and verifying that there are no other side effects
-Ensuring the integrity of critical state data during exception processing
*Criteria for distinguishing what conditions should be handled through control flow constructs as
part of normal processing versus abnormal conditions where use of exception handling is
appropriate.

2.2.3 Checking Input and Output

Data corruption due to a transient failure or an invalid result can have serious consequences on
subsequent processing if allowed to propagate. The base attributes related to input and output
checking mitigate such consequences by containing the error. The two base attributes discussed in
the following subsections are:

-Input data checking and
-Output data checking.

2.2.3.1 Input Data Checking

Input data includes data from another routine, data from the external environment, and data stored
in memory from a previous iteration. Input data should be checked for validity before processing.
Such checks reduce the probability of incorrect results or corrupted data being propagated. At a

minimum, the values of the inputs should be checked for data type and being within an acceptable
range. If possible, reasonableness checks on the data should also be performed. Provisions should
exist in the safety system software to detect invalid input and to bring the module to a known state
(i.e., default or previously valid values) as defined in the higher-level design.

2.2.3.2 Output Data Checking

Output data-whether to the external environment, to another routine or stored for use in a
subsequent iteration-should be checked for validity. At a minimum, this validity check should
ensure that the values are of the appropriate data type and are within acceptable ranges. It is more
desirable that the values also be checked for reasonableness. However, such reasonableness checks
should not be so restrictive that they spuriously reject correct values. Provisions for handling
rejected output values according to the design should also be present in the software.

2-19 NUREG/CR-6463 Rev. 1

2.3 Traceability

As defined earlier in this chapter, traceability refers to attributes of safety software which support
verification of correctness and completeness compared with the software design. As shown in
Figure 2-5, the intermediate attributes for traceability are:

* Readability
* Controlling use of built-in functions
• Controlling use of compiled libraries.

Control use of ReadabilityCnlecompiled I (see[Control use of

libraries Maintainability) built in functions

Figure 2-5 Traceability and Lower Level Attributes

Since readability is also an intermediate attribute of maintainability, it is discussed in Section 2.4.
The latter two attributes and their relevance to safety are discussed in the following section.

2.3.1 Controlling Use of Built-In Functions

Nearly all languages include built-in functions for frequently used programming tasks to maximize
programmer productivity. However, the limitations of these functions and the way in which they
handle exceptions may not be as well known as those of the basic language constructs. Thus, the
use of such functions raises safety concerns.

Concerns over the use of built-in functions can be addressed through organizational or project
specific guidelines. Regression test cases make it possible to establish conformance with expected
results of new releases of compilers and runtime libraries. Thus, test cases, procedures, and results
of previous testing for allowable built-in functions should be retained. Testing should also assess
behavior for out-of-bounds and marginal conditions (e.g., negative arguments on a square root
routine; improperly terminated strings for a string copy routine, etc.) in the specific runtime
environment.

NUREG/CR-6463, Rev. 1 2-20

2.3.2 Controlling Use of Compiled Libraries

Compiled libraries are routines written and compiled by an entity other than the development group.
Applications of compiled libraries include input/output operations, device drivers, or mathematical
operations that are not defined in the standard language. Such libraries can be supplied by compiler
vendors, third parties, or other departments of the development organization. Concerns for such
libraries are similar to those for built-in functions.

Concerns over the use of compiled libraries can be addressed by controlling the use of function calls
to such libraries through organizational or project-specific guidelines. Like built-in functions, a set
of test cases, procedures, and results should be maintained. The test cases should assess behavior
for normal, out-of-bounds, and marginal conditions in the specific runtime environment. Regression
testing should be performed for each new release of the compiled library.

2.4 Maintainability

Software maintainability reduces the likelihood that errors will be introduced while making changes.
The intermediate attributes related to maintainability that affect safety include:

*Readability: those attributes of the software that facilitate the understanding of the software by
project personnel

*Data abstraction: the extent to which the code is partitioned and modularized so that the collateral
impact and probability of unintended side effects due to software changes are minimized

-Functional cohesiveness: the appropriate allocation of design level functions to software elements
in the code (one procedure; one function)

-Malleability: the extent to which areas of potential change are isolated from the rest of the code

*Portability: the major safety impact of which is the avoidance of non-standard functions of a
language.

Figure 2-6 shows these lower level and associated base attributes, which are discussed further in the
following subsections.

2-21 NUREG/CR-6463 Rev. 1

Maintainabillity]

241 Readabilitucinl Dtyasrcin PrablqMlebll

Descriptive Conform to ingle purpose Msingnal n .se of Isolate
variable names Id e nat cGar y, non-standard Alterableguidelines procedure aiae features Functions

Control ComnsMin interface
Procedure siz Comet

copext

9M.
mixed

in. dispersionlanguage of var. decl.
pgming initializations

Min. obscure Min. literals for
programming constants

Figure 2-6 Maintainability and Lower Level Attributes

2.4.1 Readability

Readability allows software to be understood by qualified development personnel other than the
writer. The importance of readability for maintainability can be seen by a study performed at the
NASA Goddard Software Engineering Laboratory (McGarry, 1992), in which manual code reading
(desk checking) was found to be more effective than structural or functional testing for finding
coding faults. It is reasonable to extrapolate that readability would also enhance identifying code

NUJREG/CR-6463, Rev. 1 2-22

to be changed during corrective or adaptive maintenance and would reduce the probability of

introducing new faults during such maintenance.

There are no general standards for readability that can be mandated or even recommended.

However, organizational or project-specific coding style and practices manuals (or related

guidelines) are expected for safety-critical systems. The following base attributes are related to

readability:

-Conforming to indentation guidelines
*Using descriptive identifier names
-Commenting and internal documentation
-Limiting subprogram size
sMinimizing mixed language programming
-Minimizing obscure or subtle programming constructs
-Minimizing dispersion of related elements
-Minimizing use of literals.

These attributes are discussed in the following subsections.

2.4.1.1 Conforming to Indentation Guidelines

Appropriate indentation facilitates the identification of declarations, control flows, non-executable

comments, and other components of source code (DoD-Std-2167A, Appendix C). Indentation

guidelines are generally part of a project specific or organizational programming style or standards.

Significant issues to be addressed by indentation practices are the handling of:

*Programming blocks (sequences of statements bounded by begin and end)

-Comments
eBranching constructs (e.g., if... then... else, came statements, loops, etc.)

-Multiple levels of nesting (e.g., a do loop within a do loop)
eVariable and subroutine declarations
-Compiler directives
*Exception raising and handling.

2.4.1.2 Using Descriptive Identifier Names

Names for variables, procedures, functions, data types, constants, exceptions, objects, methods,

labels, and other identifiers that are not easily understood can impede review and maintenance.

Safety concerns arising from naming practices can be alleviated when names are required to be

descriptive, consistent, and traceable to higher-level (i.e., software design) documents (DoD-Std-

2167A, Appendix C). Naming conventions are an important part of the coding style and practices

manual. Examples of issues to be addressed include:

2-23 NUREG/CR-6463 Rev. 1

*Identification of plant input data (e.g., should the variable refer to a sensor, or should it be called
loopl_hot_1.g_TC1)
-How looping variables should be named (e.g., i, J , k or longer titles)
*Local renaming of identifiers (e.g., average-.procedure .man renamed as mean)
-Distinguishing between different categories of identifiers (e.g., a suffix on all data types with an
-T to distinguish them from variables)
-Lists of project-specific terminology and reserved words (e.g., restrictions on the use of the terms
"alarm", "limit", etc.).

Use of the same name for a different purpose is to be avoided unless obviously advantageous and,
when employed, should be accompanied by clear, consistent, and unambiguous notations. Multiple
use of the same name can be confusing. A further problem can occur if the language supports
precompiled units (such as Ada). A variable with the same name in two different packages, one of
which is used by the other, may be interpreted by the compiler in a different manner than intended
by the program writer. In some cases, the programmer may have omitted the declaration of a name
in a package. Thus, another package can cause a different variable with the same name to be used
in a totally unintended manner (Campbell, 1994; Castellano, 1994). If the particular branch or
execution path is not encountered frequently, it is possible that such a fault would not be discovered
until it causes a run-time failure.

Use of reserved words for user-selected identifiers (in languages where this feature is allowed) is
undesirable (DoD-Std-2167A, Appendix C).

2.4.1.3 Commenting and Internal Documentation

Incomplete comments, inconsistent formats, and comments that are not updated to reflect the current
code impede review and raise safety concerns. These problems can be minimized by guidance in the
organizational or project coding standards that controls comments and internal (to the program)
documentation. Examples of items, when incorporated, that should be located in the prologue
section include the following (DoD-Std-2167A, Appendix C):

-The subprogram or unit purpose and how achieved
*Functions and performance requirements, and external interfaces that the subprogram or unit helps
implement
oOther subprograms or units called and their dependencies
*Use of global and local variables and, if applicable, memory and register locations together with
special maintenance instructions
-The responsible programming department or section
*Date of creation of the unit
-Date of latest revision, revision number, problem report number, and title associated with the
revision
*Intended failure behavior and related information for all major segments of the code

NUREG/CR-6463, Rev. 1 2-24

-Inputs and outputs, including data files referenced during unit entry of execution

-Comments on the purpose, scope, and limitations on each argument (for subprograms with

arguments).

Similar examples for documentation within the code include:

-Reference to higher level design documentation in comments associated with data type, variable,

and constant declarations
-Purpose and expected results at the beginning of branches and programming blocks

-Detailed in-line comments explaining unusual constructs and deviations from programming

practices.

2.4.1.4 Limiting Subprogram Size

Some documents recommend specific limits on the source code of each subprogram or unit. For

example, an average of 100 non-expandable statements and a maximum of more than 200 such

statements has been recommended (DoD-Std-2167A, Appendix C). Concern with the size of

subprograms was one of the motivators for the adoption of structured programming. In Dijkstra's

words, "Widespread under-estimation of the specific difficulties of size seems to be one of the major

underlying causes of software failure" (Dahl, 1972; Dijkstra, 1972). Small subprograms (one or two

pages) are easier to review than longer ones. However, the limits on allowable size must also take

into account the nature of the program and the language. In nuclear safety and control systems, a

given code must frequently handle a multitude of sensed quantities, and the data declarations (with

required comments) for these can by themselves amount to more than a page. The criterion for this

base attribute is therefore that guidance on size be provided, rather than a universal numerical

threshold.

2.4.1.5 Minimizing Mixed Language Programming

Mixed language programming (e.g., assembly language for interrupt handling and high-level

languages for other processing) presents difficulties for reviewers and maintainers and is therefore

a safety concern. When this practice cannot be avoided, the difficulties can be minimized by placing

the "foreign" language code adjacent to the dominant language routine with which it interfaces (e.g.,

an in-line assembly compiler directive in the input processing routine associated with an interrupt)

so that readability is enhanced.

2.4.1.6 Minimizing Obscure or Subtle Programming Constructs

Obscure coding constructs can generally be characterized as the use of indirect techniques to

decrease the amount of coding or CPU processing required to achieve a result. Such coding practices

2-25 NUREG/CR-6463 Rev. 1

present problems in review and maintenance and hence are a safety concern. For example shifting
an integer to the left is equivalent to doubling its value. However, the former construct would be
obscure if the design calls for doubling the value (i.e., it would be preferable to perform the
multiplication); the latter construct would be obscure if the design calls for shifting the value to the
left (i.e., it would be preferable to perform the shifting operation in the source code rather than
multiplying by 2). Appropriate commenting can minimize the impact of obscure or marginally
obscure coding changes (e.g., adding the value to itself as a means of doubling it).

2.4.1.7 Minimizing Dispersion of Related Elements

If related elements of the code are dispersed in a program, it is necessary to refer to multiple
locations within a source listing during reviews and maintenance. However, the specific nature of
the dispersion varies by language. For example, some languages allow for interface specifications
separated from the body of the code; others allow for "prototyping" for a similar purpose. In
languages with strong data typing, it may be desirable to centralize all type declarations in a single
file (or set of files); in object-oriented languages, it may be desirable to segregate base classes from
derived classes. Review is facilitated and safety is enhanced if project-specific guidance is provided
on the placement of related elements in the code.

2.4.1.8 Minimizing Use of Literals

Literals (i.e., an actual number or string in the source code) are more difficult to identify than names
to which a constant value is assigned at the beginning of the module (DoD-Std-2167A, Appendix
C). Literals impact safety because they decrease readability and complicate maintainability -
particularly if the literal is associated with a process parameter which may be tuned or a conversion
factor which may be changed upon recalibration of an instrument. It is far easier to change one value
set at the beginning of a file than it is to guarantee that all literals associated with such a parameter
have been changed completely and correctly throughout all relevant files.

2.4.2 Data Abstraction

Data abstraction is the combination of data and allowable operations on that data into a single entity,
and establishment of an interface which allows access, manipulation and storage of the data only
through the allowable operations. It is an important contributor to safety by virtue of reducing or
eliminating potential side effects of changing variables either during runtime or in software
maintenance activities (Pamas, 1972). This principle is associated with the following specific base
attributes:

-Minimizing the use of global variables
-Minimizing the complexity of the interface defining allowable operations.

These attributes are discussed further in the following subsections.

NUREG/CR-6463, Rev. 1 2-26

2.4.2.1 Minimizing the Use of Global Variables

It is desirable to limit the use of global variables in safety related programs (Parnas, 1990; van
Schouwen, 1990; Kwan, 1990) because of the potential for unintended side effects. Readability is
enhanced if variables are set and used in the same routine. These variables can be made available to
other routines through established and controlled interfaces which minimize the possibility of
unintended interactions. For the same reasons, dependencies among internal stored data of different
routines need to be avoided or controlled.

To avoid potential safety concerns, local variables within different programs should not share the
same storage locations (DoD-Std-2167A, Appendix C).

2.4.2.2 Minimizing the Complexity of Interfaces

Interfaces are a frequent cause of software failures (Thayer, 1976). Complex interfaces are difficult
to review and maintain and are therefore not desirable in safety related programs. Characteristics
that contribute to complexity include:

-Large numbers of arguments used in calling routines
*Use of terse expressions when different modes or options are used (e.g., arraymult (a, b, 2)
instead of arraymult (a, b, crousproduct))
-Lack of easily understood restrictions and limitations on the use of allowable operations.

2.4.3 Functional Cohesiveness

Functional cohesiveness refers to a clear correspondence between the functions of a program and the
structure of its components. Functional cohesiveness has a single base attribute.

2.4.3.1 Single Purpose Function and Procedures

Review and maintenance are facilitated when every given procedure, subprogram, or function
implements only one task or purpose specified in the software design. Subprograms, functions, or
procedures that perform multiple tasks should be separated and written as separate functions. A
simple way to test if a function is a single purpose function is to check to determine if the function
can be summarized by a sentence in the following form (Parnas, 1990):

"verb + object(s)"

If multiple purposes or tasks specified in the design must be grouped into a single subprogram,
function, or procedure, then justification of the grouping should be documented.

2-27 NUREG/CR-6463 Rev. 1

2.4.3.2 Single Purpose Variables

The principle of single purpose functions should be applied to variables. A variable should be used
for a single purpose only (Plum, 1991).

2.4.4 Malleability

Malleability is the ability of a software system to accommodate changes in functional requirements
(Parnas, 1990; van Schouwen, 1990; Kwan, 1990). Malleability extends data abstraction with the
motivation toward isolating areas of potential change. To implement a malleable software system,
it is necessary to identify what is expected to be constant and what is expected to be changed, and
to isolate what is expected to be changed into easily identifiable areas that can be altered with a
minimum of collateral changes. Malleability has a single base attribute.

2.4.4.1 Isolation of Alterable Functions

Review and maintenance are facilitated when functions that can be altered are isolated, so that
changes in these do not affect other code or data. In many cases, such functions are hardware-related
functions that need to be changed when the platform changes, the system changes, or when new
devices are used to replace old devices.

For example, when a new display device is used to replace an old display device, graphics-display-
related functions may need to be modified. Thus, the functions associated with the graphics
controller should be grouped together in the same file, kept in close physical proximity, and
organized in a manner which minimizes changes to other modules.

To a large extent, the isolation of alterable functions is a design issue related to data abstraction. As
such, a detailed discussion is beyond the scope of this document.

2.4.5 Portability

From the perspective of safety, the benefits of portability are the adherence to standard programming
constructs that yield predictable and consistent results across different operating platforms (Witt,
1994; Baker, 1994; Merrit, 1994). Thus, code which is reused or converted to run on a different
platform will be easier to maintain. Attributes related to portability which have been discussed
elsewhere include:

eMinimizing the use of built-in functions
-Minimizing the use of compiled libraries
*Minimizing dynamic binding

NUREG/CR-6463, Rev. 1 2-28

-Minimizing tasking
-Minimizing asynchronous constructs (interrupts).

The single base attribute related to portability is avoiding use of non-standard, or "enhanced"
constructs specific to a particular compiler or a compiler in combination with the execution platform
(Smith, 1989; Wood, 1989).

2.4.5.1 Isolation of Non-Standard Constructs

Where non-standard constructs are necessary, they should be clearly identified together with the
rationale, limitations, and version dependencies.

2-29 NUREG/CR-6463 Rev. 1

References

Andersen, 0. and P.G. Petersen, Standards and regulations for software approval and certification,
Elektronik Centralen Report ECR 154 (Denmark), 1984.

Baber, R.L., "The Ariane 5 Explosion as Seen by a Software Engineer", World Wide Web page
www. cs.wits.ac.zal-bob/ariane5.htm, February, 1997.

Bowen, T.P. and G.B. Wigle and J.T. Tsai, "Specification of Software Quality Attributes" Report,
3 Vols. RADC-TR-85-37, available from NTIS, 1985.

Bullock, J.B., briefing charts contained in Working Group Report on Software Reliability
Verification and Validation, IEEE/NRC Working Conference on Advanced Electrotechnology
Applications to Nuclear Power Plants, IEEE Cat. No.TH0073-7, January, 1980.

Campbell, D. and V. Castellano and 0. Cole, et. al., Ada16000 Tool Set, O.C. Systems, Fairfax, VA,

1994.

Chillarege, R., "Orthogonal Defect Classification," IEEE Trans. SWEngineering, November, 1991.

Committee on Application of Digital Instrumentation and Control Systems to Nuclear Power Plant
Operations and Safety, "Digital Instrumentation and Control Systems in Nuclear Power Plants:
Safety and Reliability Issues" Report, National Academy Press, 1995.

Cuthill, B., "Applicability of Object Oriented Design Methods and C++ to Safety Critical Systems,"
Proceedings of the Digital System Reliability and Nuclear Safety Workshop, NUREG CP-0 136,
NIST SP 500-216, 1993.

Dali, O.J. and E.W. Dijkstra and C.A.R. Hoare, Structured Programming, Academic Press, London
and New York, 1972.

Gottfried, R. and D. Naiditch, Using Ada in Trusted Systems, Proc. of COMPASS 93, May, 1993,
National Institute of Standards and Technology, Washington, DC, 1993.

Henderson, J., "Low level programming," in Software Engineer's Reference Book, J.D. McDermid,
ed., CRC Press, Inc., Cleveland, OH, 1993.

Institute of Electrical and Electronic Engineering, IEEE Std 100-1977, IEEE Standard Dictionary
of Electrical and Electronic Terms.

Institute of Electrical and Electronic Engineers, Nuclear Power Engineering Committee, IEEE Std.
603-1991, IEEE Standard for Nuclear Power Generating Stations.

NUREG/CR-6463, Rev. 1 2-30

Institute of Electrical and Electronic Engineers, IEEE-Std-7 -4.3.2-1993, IEEE Standard Criteria
for Digital Computers in Safety Systems of Nuclear Power Generating Station.

International Electrotechnical Commission (IEC), "Software for Computers in the Safety Systems
of Nuclear Power Stations," Standard 880, 1986.

Kopetz, H., "Real-time systems," in Software Engineer's Reference Book, J.D. McDermid, ed., CRC
Press, Inc., Cleveland, OH, 1993.

Leveson, N.G. and C.S. Turner, An Investigation of the Therac-25 Accidents, University of
California, Irvine Technical Report 92-108, Irvine, CA, 1992.

Liao, Y., "Requirements for Directed Automatic Instrumentation Generation for Program Monitoring
and Measuring," in IEEE Trans. SW Engineering, 1991.

McGarry, F., "The Impacts of Software Engineering," briefing presented to the NRC Advisory
Committee on Reactor Safeguards (ACRS), August 21, 1992.

Meek, B.L., "Early High-Level languages," in Software Engineer's Reference Book, J.D. McDermid,
ed., CRC Press, Inc., 1993.

Murine, G.E., "Rome Laboratory Framework Implementation Guidebook", RL-TR-94-149, USAF
Rome Laboratory, March 1994.

Parnas, D.L., "On the Criteria to be Used in Decomposing Systems into Modules," Communications
of the ACM, Vol. 15, No. 12, 1972.

Parnas, D.L. and A.J. van Schouwen and S.P. Kwan, "Evaluation of Safety Critical Software,"
Communications of the ACM, Vol. 33, No. 6, p. 636, June, 1990.

Royce, W.W., written comments in Proceedings of the Digital Systems Reliability and Nuclear
Safety Workshop, NUREG/CP-0136, NIST SP 500-216, 1993.

Smith, D.J. and K.B. Wood, Engineering Quality Software: A review of Current Practices,
Standards, and Guidelines Including New Methods and Development Tools. New York: Elsevier
Applied Sciences, 1989.

Thayer, R., "Software Reliability Study," Rome Air Development Center report RADC TR 76-238,
March, 1976.

U.S. Department of Defense, "Weapon System Software Development," MIL-Std-1679 (Navy),
1978.

2-31 NUREG/CR-6463 Rev. 1

U.S. Department of Defense, DoD-Std-2167A, Software Development Standard, Appendix C, 1986.

U.S. Department of Defense, DoD Std 2167A, Software Development Standard, Appendix D, 1986.

Witt, B.I. and F.T. Baker and W.W. Merritt, Software Architecture and Design. Van Nostrand
Reinhold, New York, 1994.

NUREG/CR-6463, Rev. 1 2-32

3 Ada 83

This chapter discusses Ada83 (DoD-Std-1815A)-specific guidelines. Ada 95 is discussed in a later
chapter' . Section 3.1 identifies reliability-related attributes; Section 3.2 discusses robustness-related
attributes; Section 3.3 discusses traceability-related attributes; and Section 3.4 describes
maintainability-related attributes. A summary matrix is contained in Appendix B, together with
language-specific weighting factors. These factors were influenced by Ada's strong typing and
exception handling capabilities.

3.1 Reliability

The intermediate attributes of reliability related to Ada are as follows:

• Predictability of memory utilization
* Predictability of control flow
• Predictability of timing.

Ada-specific guidelines are described in the following subsections.

3.1.1 Predictability of Memory Utilization

Base-level attributes related to the predictability of memory utilization in Ada are as follows:

• Minimizing dynamic memory utilization
* Minimizing memory paging and swapping.

Specific guidelines for these attributes are discussed in the following subsections.

2Ada 95 differs with Ada 83 in several major areas, making Ada 95 potentially more suitable over the long
term for developing safety-critical systems. The most important improvements are (a) providing object-oriented
features, (b) new features for more responsive task communication such as protected types for emulating the
monitor structure, and (c) hierarchical library structuring.

3-1 NUREG/CR-6463 Rev. 1

3.1.1.1 Avoiding Dynamic Memory Utilization

The generic 3 guidelines apply to Ada. Dynamic memory allocation should be avoided. Errors
resulting from dynamic memory allocation can include (SPC, 1989, pp 76, 112 - 113):

1. Memory leaks that can cause the software to run out of memory. This problem is likely to
occur in Ada since an access object (pointer) ceases to exist when its scope is exited, but the
allocated memory it points to remains allocated.

2. Corruption of data due to multiple pointers to the same areas. Such corruption can be
difficult to impossible to correct or even detect. This error condition can lead to the system
crashing, frequently due to an exception being raised at a point distant from where the data
were corrupted. This makes tracing the cause of the crash difficult.

The following are Ada-specific guidelines related to memory allocation. The final four guidelines
are mitigation approaches and are relevant if dynamic memory allocation is determined to be
unavoidable by the system designers.

Avoid explicit dynamic memory allocation. The Ada primitive new causes memory to be
allocated during execution. The following Ada code is an example of the use of dynamic
memory for a linked list:

type Cell;
type Link is aocess Cell;
type Cell is

record
Value: Element;
Next : Link;

end record;

L: Link := null; -- initialization unnecessary
L:= new Cell; -- allocation of memory

Avoid dynamically created tasks. Tasks should be elaborated only at system initialization.
Dynamically created tasks also cause dynamic memory allocation in Ada. The dynamic
memory utilization problem is aggravated in this case because the generic subprogram the
programmer can utilize to deallocate objects in memory, Unchecked_Deallocation, does not
apply to tasks or to objects that have tasks as components. This issue of dynamic tasks is
discussed further in section 3.

*
31t should be noted that "generic guidelines" refers to the non-language specific guidelines of Chapter 2,

not to the Ada construct.

NUREG/CR-6463, Rev. 1 3-2

Avoid recursion. Recursion also uses dynamic memory space. Therefore, recursive
procedures or functions should not be used. Recursion depth can be large, even infinite if
the terminating condition does not occur. An unanticipated large number of recursive calls
can use up available memory (SPC, 1989; Hutcheon, 1992). Recursion can frequently be
recognized by having a subprogram call within a subprogram of the same name, as seen in
the following example.

procedure RECURS_EXAMPLE(argl: in typel arg2: in type2) is
argla: typel;
arg2a: type2;

begin
sequence of statements
RECURS_EXAKPLE(argla=>argl arg2a => arg2);
more statements

end RECURS_EXAMPLE;

Mutual recursion involving two or more subprograms can also occur. Depending on the
arrangement and physical location of the source code for these subprograms, mutual
recursion can be difficult to detect from source code. For example:

procedure P(....) is
begin

Q(.. .)

end P;

and

procedure Q(....) is
begin

P(....)

end Q;

Do not instantiate generic units during runtime. If generic units are used, they should be
instantiated only during initialization (Jones, 1988). However, as will be described in the
section on traceability (section 3.3.3), generic units are not desirable in safety significant
software.

Minimize use of local large composite objects. A memory allocation problem on the stack
can occur if large composite objects are declared as local objects of a subprogram. Avoid the

3-3 NUREG/CR-6463 Rev. 1

use of dynamic arrays asinP (array(<>) of ...).

Minimize use of unconstrained types. Unconstrained types such as record types with
unconstrained dynamic bound, and string types must be used with caution because of the
impact on memory allocation.

Use length clauses if dynamic memory allocation is necessary. If dynamic memory
allocation is necessary in a safety application, a length clause reserves in advance a pool
of specified size of dynamic memory for any allocated objects of a given datatype. To take
full advantage of this feature, the programmer must keep track of the number of objects
currently allocated from the pool and ensure that this number does not exceed the capacity
of the pool.

Provide handlers for the predefined exception STORAGA_ERROR if dynamic memory
allocation is necessary. If dynamic memory allocation is necessary in a safety application,
providing handlers for the STORAGE,_ERROR exception allows for graceful recovery from
the situation of running out of dynamic memory. Without such handlers, the exception is
propagated to the run-time executive and will most likely result in a crash of the system. The
handlers should be provided for all program unit bodies in which memory is dynamically
allocated, as well as in recursive subprograms (SPC, 1989; pp 77-78).

Explicitly handle dynamic memory deallocation if dynamic memory allocation is necessary.
Any automatic garbage collection facility provided by a compiler should not be used because
it may affect timing. The pragma ComtmomLED is provided so that the program can disable
automatic garbage collection (reclamation of unused memory)4 . If dynamic memory
allocation is necessary in a safety application, the application program should take full
control for dynamic memory allocation and deallocation. Avoid the use of dynamic arrays,
asinProcedure P(A:array(<>) of ...).

Do not assign values of dynamically allocated access objects to other access objects. If
dynamic memory allocation is necessary in a safety application, the application program
should not use multiple variables pointing to the same memory location. The danger is that
when the shared memory space is deallocated, another variable may still point to the released
memory space unless each one is explicitly set to null by the application program. If an
application (e.g. a linked list) necessitates such multiple accesses, it must be justified and
documented.

4 It should be noted that according the language definition, there is no mandatory garbage collection

requirement. It is up to the compiler implementation to provide such a facility.

NUREG/CR-6463, Rev. 1 3-4

procedure update_X is
type three-D-Type is

record
x_coord array(l..100) of float;
y_coord array(l..100) of float;
z_coord array(l..100) of float;

end record;

type three.D_pointer-type is access three_D_Type;

procedure Dispose is new Unchecked_Deallocation(object => three_D_type,
Name => three_D_pointer_type);

p,q three_D_pointer_type;
three_D_display : other_3D_type; -- a 3-D subtype defined elsewhere

begin
p:=new three-D-pointer_type;-- dynamically allocate access objects p and q

-- p is assigned a value somewhere in the code
q:=p;-- q has been set to the value of p

-- this is the source of the problem

Dispose(p); -- p has been set to null - now q contains an illegal value

three_D_display :=q.x_coord;
-- annunciator-display will have unintended contents.
-- program may continue execution with undetected error

three_D_display := p.x_coord;
-- CONSTRAINT_ERROR exception will be generated by this statement

lend update X;

The above example instantiates a procedure called Disposo to handle integers from the
generic procedure Unchecked_deallocation for deallocating dynamically allocated
memory units. It then allocates two access objects (p and q) on the stack, sets the value of
p, sets the value of q based on p, deallocates p but leaves q pointing to inaccessible
memory. Somewhere later in the code, the value of q is used in an assignment statement.
The result may be technically invalid, but if it is within the constraints of the type, it will be
displayed with no external manifestation of an error condition. On the other hand, if the
explicitly deallocated access object (p) is used in a different assignment statement, the error
will be detected and an exception will be raised. While neither condition is desirable, an
undetected incorrect data value is far worse than a detected incorrect data value which causes

3-5 NUREG/CR-6463 Rev. 1

an exception to be generated (and hopefully handled without causing an unacceptable system
state). The above example demonstrates not only the potential dangers in dynamically
allocated variables but also the need to understand the detailed behavior of the
Unchecked,_deallocation procedure and how its use can lead to subtle errors.
Important points of its behavior include:

(a) After completion of its execution, the value of the given parameter is null.
(b) If the given parameter is null, the call has no effect.
(c) If the given parameter is not null, the memory pointed by it is returned to the

heap.

This last point is of the greatest significance to the above example. Because Ada has no
runtime support such as a reference counter, it is possible to define two or more access
objects (pointers) to a given location and free the space using only one of those access
objects. The other access object(s) would still have an illegal access value(s) and might
cause a hazard if used in subsequent processing.

3.1.1.2 Minimizing Memory Paging and Swapping

The generic guidelines are applicable on the system level. Ada itself contains no features for
memory paging and swapping.

3.1.2 Predictability of Control Flow

Base level attributes related to the predictability of control flow in Ada are as follows:

*Maximizing structure
-Minimizing control flow complexity
-Initializing variables before use
*Single entry and exit points for subprograms
*Minimizing interface ambiguities
*Use of data typing
*Accounting for precision and accuracy
'Order of precedence of arithmetic, logical, and functional operators
'Avoiding functions or procedures with side effects
'Separating assignment from evaluation
'Proper handling of program instrumentation
'Controlling class library size
'Minimizing use of dynamic binding
'Controlling operator overloading.

NUREG/CR-6463, Rev. 1 3-6

These attributes and their relevance to safety are discussed in the following subsections.

3.1.2.1 Maximizing Structure

Maximizing structure means minimizing the explicit transfer-of-control statements that change the
control flow from the basic set of sequential, conditional, and loop constructs. Most such statements
can result in unreachable code. The following guidelines are applicable.

Do not use goto statements. The generic guideline on maximizing structure by avoiding
goto statements applies to Ada. The use of gotos can obscure program flow logic. This
statement should be used only when there is no alternative. In Ada, where certain types of
transfer of control have been incorporated into the language under other names such as exit,
there is no real reason to use a goto in an Ada program (Sanden, 1994). Consider the
following example.

<<B_Label>> statement_1;
goto A_Label;
statement_2; -- unreachable code
statement_3; -- unreachable code
statement_4; -- unreachable code

<<A_Label>> statement_5;
statement_6;
statement_7;
goto B_Label;

statement_8; unreachable code

Use only one exit statement per loop. At least one exit statement is needed in loops
without iteration schemes (LRM, 1995). Thus, only one exit statement should generally
be used for the loop within the loop or for any nested loops.

Use only one roturn statement per function. Multiple return statements can make the
meaning of a subprogram confusing. Thus, function subprograms should have only one
return statement and procedure subprograms should either use the normal exit at the end
of the body or have only one return statement if the end of the body is inaccessible, for
example, an infinite loop just before the end of the body.

While maximizing structure is desirable for normal program flow, different rules apply to exception
handling as discussed in Section 3.2.2. When exceptions are raised, other considerations (e.g.,
timing, intermediate operations, etc.) dominate. The guidelines on exception handling discuss
raise statements in more detail.

3-7 NUREG/CR-6463 Rev. 1

3.1.2.2 Minimizing Control Flow Complexity

The generic guideline applies to Ada. The language-specific guidelines for minimizing control flow
complexity are as follows:

Limit nesting levels. As noted in the generic report, there should be explicit organizational
or project-specific limits on nesting. These limits may be determined in part with respect to
a particular language and execution platform. The style guidelines for Ada published by the
Software Productivity Consortium recommend a maximum nesting level of three to five
(SPC, 1989; pp 83 - 84).

Use if.. elsif instead of nested if.. else. Use of an if..,elsif in place of
nested if.. else statements helps avoid program structural and logical errors (Barnes,
1984; p 62), as shown in the following example:

-- Use
if condition_1 then
statement 1;

elsif condition_2 then
statement-2;

end if;

-- instead of
if condition_1 then

statement 1;
else

if condition_2 then
statement_2;

end if;
end if;

Always provide an else branch to if statements if there is a remote chance that the
conditions specified by the other if statements are exhaustive.

Use case statements for multiple branches. The came statement serves as a switch for
multiple branches and allows one evaluation for them. It is a powerful alternative to the if
statement when the branch to be taken depends upon the value of a discrete expression, and
it is preferred if more than two conditions or branches are called for in the software design.
To avoid a syntax error, the when others construct must be included if there are any
possible values not given in other alternatives, as seen in the following example (SPC, 1989;
p 85):

NUREG/CR-6463, Rev. 1 3-8

-- Use
case thermal_alarm is

when core ,> core_thermal_alarm(sensor_value);
when inlet => inlet_thermal_alarm(sensor_value);
when outlet => outlet_thermal_alarm(sensor_value);
when others -> do_something;

end case;

-- instead of
if thermal_alarm = core then
core_thermal_alarm(sensor_value);

elsif thermal_alarm = inlet then
inlet_thermal_alarm(sensor_value);

elsif thermal_alarm = outlet then
outlet_thermal_alarm(sensor_value);

else
do_something;

end if;

It should be noted that the case statement is not an all purpose replacement for the if..
then... else construct. A case statement is only possible if the cases depend on the
different values of one expression with a limited range of possible values. (In the example
on this page, therzoal_alarm is an enumerated type with a limited set of possible values.)
In that situation, the case construct is always preferable over an if.. then... else
unless the number of branches is small.

3.1.2.3 Initialization of Variables before Use

The generic guideline with respect to initialization of all variables applies to Ada. Variables should
be initialized to some known value at the beginning of an execution cycle before using them. A
compiler cannot be depended on to reset variables automatically (Gottfried, 1993; SPC, 1989, pp
103-104). However, even if the compiler could be relied on to initialize values, the safety concern
would still exist because the compiler cannot be expected to initialize all objects with suitable
values.

Ada provides a variety of syntaxes for data initialization upon elaboration of a variable as shown in
the following example:

3-9 NUREG/CR-6463 Rev. 1

subtype Number_Of_Widgets is Natural range 0 .. 1_000;
Accumulator : Number_Of_Widgets := 0;

type Coefficients is array (1 .. 3, 1 .. 3) of Weights;
Example_Coefficients : Coefficients

1.0, 0.5, 0.1),
0.5, 1.0, -0.3),
0.1, -0.3, 1.0));

type Complex_Numbers is record
Real_Part Float := 0.0;
Imaginary-Part: Float 0.0;

end record;
Zero : Complex_Numbers; -- Automatically initialized to(0.0, 0.0)

-- when elaborated (unreliable)

Square_Root_Of_Minus_l Complex_Numbers
:= (Real-Part => 0.0, Imaginary_Part => 1.0);

type A is array (1 .. 100) of Character;
AA :A := (others => 'x');

-- Aggregate initialization:
-- multiple elements
-- of an array can be given initial values
-- by means of the construct 'others ==>'

type B is array (years, months) of Integer;
BB: B := (others => (others => 0));

-- Without this construct,
-- it would be impractical to initialize
-- a large array.

The following are Ada-specific initialization guidelines.

Initialize in function body if initialization occurs via a function call. If initialization occurs
via a function call, initializations should be done in a program body rather than in the
variable declaration since the function body may not have been elaborated when the variable
declaration was encountered (SPC, 1989; pp 103-104).

Restrict use of aggregate assignments for initialization of large objects. As shown in the
above example, aggregates are a useful way of initializing large arrays. However, the
initialization of large objects via aggregates should occur with caution. The reason for this
guideline is that some compilers accomplish aggregate assignments by first building a
temporary version of the object with the specified values in system memory and then copying
the contents into the actual object. If the size of the temporary version exceeds available

NUREG/CR-6463, Rev. 1 3-10

memory, the result could be a system crash.' In such cases, testing should be done to ensure
that the aggregate assignment can be performed acceptably under operational conditions. An
alternative is to perform initialization in the program unit body rather than in the objects'
declarations for large objects.

There are two cases in Ada where explicit initialization of a variable need not be done to comply
with the guideline. First, all objects of access type (i.e., pointers) are automatically initialized to
null by the compiler. Second, type definitions for records may contain default initialization values
for all components; whenever objects of those record types are elaborated, their components are set
to the defaults in the absence of an explicit initialization (DoD-STD-1815A; Section 3.7).

3.1.2.4 Single Entry and Exit Points for Subprograms

Although the generic guideline is applicable with respect to one normal entry and exit point per
subprogram, the guideline has limited applicability due to Ada's exception handling and tasking
features. Ada-specific guidelines are:

One normal entry and exit per subprogram. Subprograms (procedures and functions) should
have one normal (as opposed to exception) entry and one normal exit. The word return
should appear exactly once in each function and not be used in a procedure. In exceptional
cases, however, multiple exits can be used if they increase readability.

Limit the number of exception entry/exit points. The number of these points should be kept
as low as possible. Each of these exception propagation exit/entry points should be
documented clearly. The propagation of an exception raised in a subprogram to the caller
of the subprogram should be limited or not used at all because such propagation creates an
additional exit point for the first subprocedure and an additional entry point for the caller's
exception handler. More points on propagation of exceptions are discussed in Section 2.2.2.

Avoid multiple task entry points. Each active program unit (i.e., task) may have multiple
interaction points with other active program units. The number of these interaction point
should be designed to minimize program complexity both within the task and the entire
program. Additional points on tasking are described in Section 2.2.

5Such a situation actually occurred in the experience of one of the writers of this section. In an image
processing application, a 1024 x 1024 array of pixels was initialized by an aggregate of the form ((others =>

0), others => 0). This caused the entire system, including the operating system and the other jobs being
executed concurrently, to crash without any error messages. Determining the cause was complicated by the fact that
the Ada code was syntactically and semantically correct.

61t is more appropriate to refer to entry and exit points in program unit bodies rather than in subprograms in
the case of the Ada language.

3-11 NUREG/CR-6463 Rev. 1

3.1.2.5 Minimizing Interface Ambiguities

The generic guideline to minimize interface ambiguity applies to Ada. Ada automatically provides
features that eliminate many interface errors. For example, constraint checking is performed on
values of actual input parameters to ensure they are not out of range. Another example is that the
indices of the first and last elements in an array or array slice-parameter are automatically passed in
with the actual array parameter. Nevertheless, the language does not eliminate interface ambiguities.

The following are specific guidelines:

Specify argument modes. Arguments with procedures and entries should have their modes
specified in their declarations rather than relying on the default mode (SPC, 1989; p 68).
Specifically:

procedure Quadratic(a, b, c: in Float; rootl, root2 : out Float);

rather than:

procedure Quadratic(a, b, c : Float; rootl, root2 : out Float);

While the latter declaration is acceptable syntax (and in that sense, is unambiguous to the
compiler), explicit use of modes avoids confusion to programmers and reviewers.

Restrict use of the in out mode. The in out mode should be used only for parameters
whose value will be changed by the procedure. It should not be specified for parameters used
exclusively as either in or out parameters. When used in place of an in mode, it is
possible to modify a value that should be constant unintentionally. Using in out for an
out mode causes fewer problems, but it does obscure the intent of the parameter. This
mode is frequently used in the case of an output parameter whose value is read inside a
subprogram; when this situation leads to a compilation error, many programmers will change
the mode from out to in out rather than taking the trouble to declare and use a local
variable.7 For example, programmers will code as follows:

7In Ada 95 reading an out mode parameter is allowed. According to the Ada 95 rationale, too many
programmers were forgetting to copy the value of the local variable into the output parameter at the end of
procedures.

NUREG/CR-6463, Rev. 1 3-12

procedure Find.Max (In_The_List in Some_Array-Type;
Maximum in out Element-Type) is

begin
Maximum := Element-Type'first;
for List_Index in In_The_List'range loop

if In_The_List(List_Index) > Maximum then -- value read here
Maximum := In_The_List(List_Index);

end if;
end loop;

end Find.Max;

instead of coding:

procedure Find_Max (In_The_List in Some_Array-Type;

Maximum out Element-Type) is

Local_Max : Element_Type := Element-Type'first;

begin
for List_Index in In_The_List'range loop

if In_The_List(List_Index) > Local_Max then
Local_Max := In_The_List(List_Index);

end if;
end loop;
Maximum := Local_Max;

end Find-Max;

Use named parameter associations. Named parameter associations should be used by the
calling routine for functions, procedures, and task entries whenever there are two or more
parameters of the same type in the parameter list. Using named parameter associations
improves readability and reliability (Booch, 1983; p 106). The following example shows the
use of named parameter associations for a quadratic equation evaluation procedure.

Quadratic(a => second_order_coefficient,
b => first_order_coefficient,
c => constant_term,
root_1 => first-root,

root_2 => second-root;
OK => status)

Refer to the target data type rather than the pointer's type when referencing data. When data
referenced by a pointer are to be read or modified in a subprogram and the value of the

3-13 NUREG/CR-6463 Rev. 1

pointer itself is not to be used, the declaration and call of the subprogram should refer to the
target data type rather than the pointer's data type as shown below.

type Target-Type is array (1 .. 100) of Component_Type;

type Pointer_Type is access Target_Type;

The_Data : Pointer-Type := new Target-Type' (others => 0);

-- Better subprogram declaration
procedure Print(The-Data : in Target-Type);

-- Better subprogram call
Print (The_Data.all);

-- Worse subprogram declaration
procedure Print(The_Data : in Pointer-Type);

-- Worse subprogram call
Print (The_Data);

This practice removes ambiguity about which data are to be processed in a subprogram, that
is, the data being pointed to or the pointer. For in mode parameters, this practice removes
the possibility of modifying data meant to remain unchanged, since it is possible to modify
data pointed to by an in mode access type parameter. The practice also allows checking for
out-of-range data values. However, care must be taken when passing a large object by value
to avoid memory overflows.

Avoid aliasedparameters. Aliased parameters should be avoided. They can arise from using
the same actual parameter for more than one formal parameter (and calling both by
reference), using overlapping array slices, referencing global variables, and using pointers
referencing the same data for different actual parameters. Results can be dependent on
compiler-specific implementations such as the order of evaluation of actual parameters.
Even when called by value, passing the same actual to two formal parameters or passing a
global variable to a procedure is discouraged.

3.1.2.6 Use of Data Typing

The generic guidelines for data typing apply to Ada. Ada was made a strongly typed language in
order to provide the potential for increased safety. Code should take advantage of this feature to the
maximum extent possible. The following specific guidelines are related to the full use of data
typing:

NUREG/CR-6463, Rev. 1 3-14

-Use of built-in functions
-Use of compiled libraries
-Use of generics.

Because readability is also an intermediate attribute of maintainability, it is discussed in Section 3.4.
Ada-specific guidelines for the other attributes are discussed in the following sections.

3.3.1 Use of Built-In Functions

The generic guidelines have limited capability. The only built-in functions in Ada are those that are
Ada operations. These operations may be overloaded. Because Ada does not provide an extensive
number of built-in functions, each project builds or acquires (either -through reusing or purchasing)
additional functions. It should be noted that a separate guideline on the use of compiled libraries
recommends that externally developed libraries be acquired as source code.

Externally developed software should be subjected to at least the same degree of developmental
control and verification as the project-specific code. This would include assessment of the accuracy,
limitations, robustness, and exception handling of the functions. Test cases, procedures, and results
of previous testing should also be maintained for these libraries. The test cases should assess
behavior for out of bounds and marginal conditions (e.g., negative arguments on a square root
routine, improperly terminated strings for a string copy routine, and similar conditions) in the
specific run-time environment.

3.3.2 Use of Compiled Libraries

The generic guidelines related to controlled use of compiled libraries are applicable to Ada. The
reasons for limiting or avoiding the use of compiled libraries in safety systems are as follows:

eLack of visibility. Libraries can be used to shield the programmer from the details of the lower level
implementation; however, it is exactly that feature that prevents the programmer from knowing the
accuracy, limitations, robustness, and exception handling of the built-in functions. Programmers and
designers must consider how to handle error conditions such as invalid parameters, numerical
instability of the calculation, non-convergence of a result, arithmetic overflow, and underflow.
These different forms of failure may well require handling in different ways according to the severity
of the impact of the error on the calculation. In compiled libraries, the error handling mechanisms
may not provide the needed visibility to allow programmers to handle these situations (Tafvelin,
1987).

*Inconsistency in error handling. A basic consistency data and control flow for error handling is
necessary for developing and maintaining reliable systems. However, there is no guarantee that
libraries will have consistent methods of handling exceptions.

3-31 NUREG/CR-6463 Rev. 1

*Difficulties during maintenance and upgrades. As software is maintained and new versions of
compilers are acquired, libraries may become outdated.

If compiled libraries are used, then thorough testing and error tracking are necessary as described in
the generic guidelines.

3.3.3 Ada Run-time Environment

The Ada RTE plays a critical role in ensuring the timing and correct execution of the compiled Ada
code. However, it is not directly accessible by the programmer and falls into the category of built
in functions or compiled libraries from that perspective. The concerns related to testing, error
tracking, documentation, and development control described in the previous two sections also hold
true for the Ada RTE.

3.3.4 Maintaining Traceability Between Source Code and Compiled Code

For a safety application, it is vital to ensure that the source code in a project baseline corresponds
to the compiled object code. Traceability between source and object code is needed to avoid the
uncertainty of what versions of separately compiled units are included. However, the support of the
Ada language for separate compilation can pose a challenge to this traceability. When possible, the
entire source (with the exception of compiled libraries, see Section 3.3.2) should be compiled on one
occasion. This is the most authoritative way to establish complete traceability between source and
executable.

However, it may not be possible to perform a single compilation because:

1. The source code is too large.

2. To support portability, implementation dependent source code is being placed in separate
compilation units from other Ada source code.

3. It may be desirable or necessary to incorporate externally developed components in compiled
rather than source form.

If separate compilation is needed the following guidelines apply:

Partitioning of compilation. Only those compilation units required for execution of a
compilation undergoing compilation unit should be made visible (using a with clause) to
each unit, i.e. the with clauses should not include superfluous compilation units (Jones,
1988).

NUREG/CR-6463, Rev. 1 3-32

Use of tools. Tools should be acquired that maintain the libraries in a sufficiently transparent
manner to allow such traceability without the need to compile all the source code be at one
time.

3.3.5 Minimizing Use of Generic Units

The Ada language includes generic units (packages or subprograms) to enhance reusability.
However, their use in safety systems is problematic because they obscure the traceability between
source code and executable. They are templates, not packages or subprograms, and it is not
immediately clear from reading the source exactly what is running in the executable code. Use of
generic units should therefore be minimized (Sanden, 1994).

However, generics may be necessary in Ada-particularly predefined generic units. If generics are
used, they are subject to the following guidelines.

Instantiation only during initialization. This guideline was discussed in section 3.1.1 on
predictability of memory management.

Use only the parameter list for transferring data. No global variables should be used to
supplement the parameter list and used in the bodies of other subprograms. The parameter
list should be comprehensive for all intended uses.

Document restrictions on parameters. The use of and restrictions on generic parameters
should be identified and documented (Jones, 1988).

3.4 Maintainability

This section discusses the Ada-specific attributes of the following intermediate attributes related to
maintainability:

• Readability
* Data abstraction
* Functional cohesiveness
* Malleability
* Portability.

Base-level attributes and Ada-specific related guidelines are discussed in the following sections.

3.4.1 Readability

The following base attributes are related to readability:

3-33 NUREG/CR-6463 Rev. 1

* Conformance to indentation guidelines
* Descriptive identifier names
* Comments and internal documentation

Limitations on subprogram size
* Minimizing mixed language programming
* Minimizing obscure or subtle programming constructs
* Minimizing dispersion of related elements
* Minimizing use of literals
* Controlled use of renaming.

The Ada-specific guidelines associated with these attributes are discussed in the following
subsections. It should be noted that the controlled use of renaming is an Ada-specific attribute that
was not included in the generic guidelines.

3.4.1.1 Conformance to Indentation Guidelines

The generic indentation guidelines are applicable. The following additional guidelines apply:

* Data structures. Indent and align beginnings and endings of data structures.

• Line Continuation use different levels of indentation to distinguish between indentations for
statements and for line continuation (SPC, 1989, pp. 9-11; DoD-STD-2167A, App. F).

3.4.1.2 Descriptive Identifier Names

The guidelines developed for the generic descriptive identifier names attribute are applicable to
Ada. The following additional guidelines apply:

Follow project-specific guidelines on naming. Project specific guidelines on the use of
names for variables, type definitions, procedures, functions, records, arrays, slices,
exceptions, constants, generic instantiations, access objects, and other identifiers should be
developed and followed in each program. The guidelines should also address naming of
items in different packages (if applicable), how names change based on scope, and other
project-specific considerations.

Separate words. Words in compound names should be separated with underscores as
indicated in the following example (SPC, 1989; p. 17)

NUREG/CR-6463, Rev. 1 3-34

Rads_Per_Second
Core_Temperature

Use underscores with larger numbers. Underscores should be used with large numbers to
promote readability on numbers (SPC, 1989; p. 20). This is shown in the following example:

type Populations is range 0 .. 10_000_000000;

type Social_Security_Numbers is range 000_00_0000 .. 999_99_9999;

Use care in abbreviations. Abbreviations should not be used if they can be misunderstood.
For example, Tim.of-Day should be used instead of TOD (SPC, 1989; p 20).

3.4.1.3 Comments and Internal Documentation

The guidelines associated with the generic attributes are applicable. In addition, the following Ada-
specific guidelines apply:

Relate the code to higher level design considerations. Explanatory comments should not
duplicate the Ada syntax or semantics, but should clarify the coded data structures or process
algorithms at a more descriptive level than the code. "Comments should be technically
corret and should address a reader who is an Ada programmer" (DoD-STD-2167A).

Use blank lines. Related code such as declarations, loops, blocks, cases, and exception
handlers should be grouped, separated with blank lines, and described with Ada comments
(DoD-STD-2167A).

Identify "escapes" from language restrictions: Escapes from Ada language restrictions
(suppression of type checking, unchecked conversions, use of other languages, etc.) are
discouraged in other portions of this chapter. However, if they are used, they should be
clearly indicated in the comments together with rationale and impact.

Use comments when renaming. The scope of renaming should be indicated in comments
physically adjacent to the renaming statements.

Comment exception raising and handling. Comments should be used to facilitate the tracing
between exception raising and handling, and to provide traceability back to design
documents where the exceptions and handlers were designed.

Identify dynamic memory allocation with comments. As noted earlier, dynamic memory
allocation is not desirable in a safety system. If used, however, there should be comments
to identify when memory is allocated and released.

3-35 NUREG/CR-6463 Rev. 1

Identify tasking with comments. As noted previously, tasking and intertasking
communication poses many safety challenges. Comments should provide traceability to a
design, and the design itself should clarify issues associated with timing, intertask
communication, and avoidance of the risks associated with tasking.

3.4.1.4 Limitations on Subprogram Size

The guidelines associated with this generic attribute are applicable. There are no additional specific
guidelines.

3.4.1.5 Minimizing Mixed Language Programming

The guidelines associated with this generic attribute are applicable. The use of machine-level 2

language or a non-Ada higher-level language should be avoided in Ada program units. The reasons
for avoiding other languages are listed below.

I. There is no uniform way to implement machine-level code in an Ada source program, There
will be differences in lower-level details, such as register conventions, that would hinder
implementation and portability.

2. The problems with employing pragma INTERFACE are complex 3 . These problems include
pragma syntax differences, conventions for linking/binding Ada to other languages, and
mapping Ada variables to foreign language variables, among others.

3. Other languages do not provide a means of expressing low-level machine features in a high-
level fashion as well as Ada does (Booch, 1983; p 264).

If use of other languages cannot be avoided, it should be minimized and controlled. The following
are Ada-specific guidelines:

Isolate and clearly document machine language inserts. If machine-level code inserts must
be used to meet a project requirement, isolate the platform-specific implementations in a
separate package. Include the commentary that a machine-level code insert is being used and
state what function the insert provides and (especially) why the insert is necessary.
Document the necessity of using machine-level code inserts by delineating what went wrong
with the attempts to use other higher level constructs (SPC, 1989; p 146).

12In Ada the term "machine-level" language is equivalent to "assembly" language.

13A subprogram written in another language can be called if all data transfer is via parameters and function
results. The Interface pragma is the mechanism for achieving this.

NUREG/CR-6463, Rev. 1 3-36

Isolate Higher-level language inserts, document the XNTMFACZ pragma, and account for
interface limitations: Subprograms employing the pragma inTu RFACz should be isolated
to an implementation-dependent (interface) package. The requirements and limitations of
the interface and pragma INTuaR.Acz usage should be clearly documented (SPC, 1989; p
146). As noted above, the conventions used by other compilers are not specified by Ada.
Thus, validating the interface and ensuring that it is free from potential interface problems
can be a complex undertaking. However, a thorough examination is required for safety
significant systems.

3.4.1.6 Minimizing Obscure or Subtle Programming Constructs

The guidelines associated with this generic attribute are applicable. There are no additional
language-specific guidelines.

3.4.1.7 Minimizing Dispersion of Related Elements

The guidelines associated with this generic attribute are applicable. There are no additional
Ada-specific guidelines. In Ada, appropriately designed packages can minimize dispersion of related
elements. This is so since a data structure and any subprograms operating on it can be collected in
an information-hiding package in such a way as to give other parts of the software controlled access
to the data exclusively via a well-defined interface.

3.4.1.8 Minimizing Use of Literals

The guidelines associated with this generic attribute are applicable. The following are additional
Ada-specific guidelines:

Use constants instead of literals. The use of constants supports maintainability by assuring
that all values referencing a constant are automatically changed by a single change to the
constant declaration. The exception to this guideline is that numeric literals may be used in
well-established formulae or conversions where such values will not change and where
readability will be enhanced by the use of such literals (e.g., in the quadratic equation).

Use attributes. An additional Ada-specific guideline is that Ada attributes should be used
wherever possible in place of literals, as indicated in the following example. This practice
facilitates the propagation of consistent changes when objects related to the constant are
changed.

3-37 NUREG/CR-6463 Rev. 1

MAX-LINE_LENGTH : constant := 132;

type Lines is array (1 .. MAYX_LINE_LENGTH) of Character;
Line : Lines;

-- Use
for Column in Line'range loop

if Column = Line'first then

elsif Column = Line'last then

endif;

-- instead of
for Column in 1 .. 132 loop

if Column = 1 then

elsif Column = 132 then

end if;

3.4.1.9 Controlled Use of Renaming

Renaming is frequently used to reduce the length of unwieldy, fully qualified names and to make
clear ambiguous or inappropriate names. The renamed identifier can also be an aid to understanding
the use of a routine. However, renaming also complicates and obscures the traceability from the
procedure or function call to the source code. This makes debugging and maintenance harder.
Renaming of subprograms can cause unintended overloading that the designers, programmers, and
maintainers may not realize or fully understand.

The following example (from Mil-Std-1815A) illustrates the problem:

funation ROUGE return COLOR renames RED
function ROT return COLOR renaes RED
function ROSSO return COLOR rena=es ROUGE

The function IUM has been renamed as ROUGE in the first line and ROT in the second. In the
third line, the renaming on the first line (ROUGE) has itself been renamed to ROSSO. This
renaming makes it difficult to understand where a problem occurs if the function RED needs to be
debugged.

NUREG/CR-6463, Rev. 1 3-38

The following guidelines can mitigate these problems while preserving the benefits of renaming:

There should be only one level of renaming. A renamed identifier should not be renamed
a second time.

All renaming should be done in accordance with project-specific conventions. Project-
specific conventions should be developed for variable naming and renaming.

Maintain a centralized list of names. A "registry" of renaming should be maintained for
each project. The scope of each renaming should also be clearly indicated in the registry.

3.4.1.10 Use representation clauses for bit mapping.

In many safety systems, there is an interface to a set of hardware discrete switches that affect the
state of the system. Such bit maps are typically stored internally as integers. However,
representation clauses and enumeration types can be used to effectively represent this status
information in a meaningful way, which facilitates review and also reduces the possibility of coding
errors as the following example demonstrates.

Type Line_Status_Type IS
(Valve-lA._Open, Valve_2A._Open, Valve_3A.Open,
Valve_lB_Open, Valve-2BOpen, Valve_3B_Open)

FOR Line_Status_Type USE
(Valve_lA_Open => 2#0000_0001#,
Valve_2A_Open => 2#0000_0010#,
Valve_3A_Open => 2#0000_0100#,
Valve_lB_Open => 2#0001_0000#,
Valve_2B_Open => 2#00100000#,

Valve-3BOpen => 2#0100_0000#);

The array must be sorted in strict ascending order. It is better to use a name than a positional
association (Cohen, 1986, p. 780).

3.4.2 Data Abstraction

This section discusses Ada-specific data abstraction guidelines for the following attributes:

* Minimization of global variables
* Minimization of the complexity of interfaces
* Use of the Ada package for encapsulating programs and data.

3-39 NUREG/CR-6463 Rev. 1

3.4.2.1 Minimization of Global Variables

A global variable in Ada can be declared in the main procedure or in a package specification. Unless
the entire program is small, neither should be used. A variable that must remain in existence and
retain its value longer than the execution of a single subprogram should be declared in a package
body. The package specification should include those procedures and functions that operate on the
variable in the package. Such information hiding ensures that the variables are not updated in
unintended ways.

3.4.2.2 Minimization of Complexity of Interfaces

The generic guidelines apply to this attribute. There are no additional Ada-specific guidelines.

3.4.2.3 Use of the Ada Package for Encapsulating Data and Related Programs

The Ada package feature was developed to control visibility of names and access to data. As such,
it is a useful mechanism to prevent inadvertent alteration of data or execution by other programs.
Some examples of appropriate use of the package construct in safety systems are contained in
guidelines elsewhere in this chapter. A full discussion of this topic, however, is a design issue and
beyond the scope of this document. It is covered extensively in other publications on the Ada 83
language (Shumate, 1989; Cohen, 1986, SPC, 1989).

The only implementation-specific guideline is that the project programming guidelines and the
system design itself should identify standards and conventions for:

Defining interfaces, type definitions, and data structures (including records, arrays and
strings) in packages

Organization of compilation units

Use of predefined compilation units (e.g., SYSTEM and STANDARD).

3.4.3 Functional Cohesiveness

Functional cohesion measures the degree to which a subprogram performs a single, problem-related,
well-understood function. The generic attributes relating to (1) a single design level function per
subprogram element and (2) each identifier having a single purpose both apply to Ada. There is no
additional language-specific guidance.

NUREG/CR-6463, Rev. 1 3-40

3.4.4 Malleability

The generic attribute applies to Ada. There is no additional language-specific guidance.

3.4.5 Portability

The generic attribute applies to Ada. From the perspective of safety, the benefits of portability are
the adherence to standard programming constructs that yield predictable and consistent results across
different operating platforms. Code that has been designed to be portable will be easier to maintain
when it is reused or converted to run on a different platform. The general principle is avoiding use
of nonstandard, or "enhanced", constructs specific to a particular compiler by itself or in combination
with the target execution platform. Where nonstandard constructs are necessary, they should be
clearly identified together with the rationale, limitations, and version dependencies (SPC, 1989; pp.
127-155).

Attributes related to portability, which have been discussed elsewhere, include the following:

* Minimizing the use of built-in functions
* Minimizing the use of machine code and foreign languages
* Minimizing the use of compiled libraries
* Minimizing dynamic binding
* Minimizing tasking
* Minimizing asynchronous constructs (interrupts).

The following are additional language-specific guidelines:

-Do not use busy loop to suspend execution. Aside from the fact that a busy loop wastes processor
resources, the timing of a standard loop cannot be determined when the code is ported to a different
compiler, different machine, or even different operating systems. For example:

-- Use

delay 3.74

-- Do not use following because of timing differences

for I in 1 .. 6874 loop
null ;

end loop

Also, any knowledge of the execution pattern of tasks should never be used to achieve timing
requirements, because of the uncertainty during porting (SPC89, p. 141).

Validate assumptions about the implementation of language features when specific
implementation is not guaranteed or specified. For example, there may or may not be a

3-41 NUREG/CR-6463 Rev. 1

correlation between SYST M TICK and package CusNhR or type DmAnIo.
Although such a correlation may exist, it is not required to exist (SPC, 1989; p 141).

Avoid the use of package SYSTEM constants except in attempting to generalize other
machine dependent constructs. Since the values in this package are implementation
provided, unexpected effects can result from their use (SPC, 1989; p 146). The values of the
constants in the SYSTEm package should not be changed.

Use only pragmas and attributes defined by the Ada Standard. The Ada LRM (Mil-Std-
1815A) defines the following pragmas: controlled, elaborate, inline,
interface, list, memory-size, optimize, pack, page, priority,
shared, storage_unit, suppress, system_ame and the following attributes:
address, base, callable, constrained, count, first, first_bit, last,
last_bit, pos, prod, range, size, small, storage_size, succ,
terminated, val, value, width. However, the Ada standard permits an
implementor (compiler vendor) to add pragmas and attributes to exploit a particular hardware
architecture or software environment. Although potentially attractive, non-standard pragmas
and attributes are not only non-portable, their limitations may not be as well understood nor
tested as are the predefined counterparts. It should be noted that predefined pragmas and
attributes in and of themselves may not be totally portable because of the latitude allowed
in their interpretation by compiler implementors.

Avoid the direct invocation of, or implementation dependence upon, an underlying host
operating system or Ada run-time support system. Features of an implementation not
specified in the Ada LRM will usually differ between implementations. Specific
implementation-dependent features are not likely to be provided in other implementations.
Even if a majority of vendors eventually provide similar features, they are unlikely to have
identical formulations. Indeed, different vendors may use the same formulation for
(semantically) different features.

Minimize and isolate the use of the predefined package LOW_LvL_10. This package is
intended to support direct interaction with physical devices that are usually unique to a given
host or target environment. In addition, the data types provided to the procedures are
implementation defined. This allows vendors to define different interfaces to an identical
device (SPC, 1989; p 152).

Restrict and isolate variables of type sYST=. ADmmB or with the attribute Ammzss.
These are hardware-specific variables that should be kept in a "maintenance location" in the
code.

NUREG/CR-6463, Rev. 1 3-42

References

International Standard ANSIISO/IEC-8652, Ada 95 Reference Manual, Intermetrics, Inc.,
Cambridge, MA, 1995.

Ada 95 Rational, Intermetrics, Inc., Cambridge, MA, 1995.

American National Standards Institute/U.S. Department of Defense, Reference Manual for the Ada
Language, ANSI/DoD-STD-1815A, 1983.

Barnes, J. G., Programming In Ada, Second Edition, Addison-Wesley Publishing Company, Menlo
Park, CA, 1984.

Booch, G., Software Engineering with Ada, California, The Benjamin Cummings Publishing
Company, Menlo Park, CA, 1983.

Cohen, N., Ada as a Second Language, Prentice Hall, Englewood Cliffs, NJ, 1986

Gall, J., Systematics: How Systems Work and Especially How they Fail, The New York Times Book
Company, New York, NY, 1975.

Gottfried, R. and D. Naiditch, Using Ada in Trusted Systems, Proceedings of COMPASS 93, May,
1993, National Institute of Standards and Technology, Washington, DC, 1993.

Hutcheon, A., et al., A Study of High Integrity Ada, (UK) Ministry of Defense contract: SLS3 lc/73
Language Review, Document Reference SLS31cf73-1-D, Version 2, 9 July 1992.

Jones, S, K. Mitchell, M. J. Mardesich, et. al., BCAG Digital Avionics Ada Standard, Boeing
Company, Document No. D6-53339, November, 1988

Kernighan, B. and P. J. Plauger, The Elements of Programming Style, McGraw-Hill, New York,
1974.

Page-Jones, M., The Practical Guide to Structured System Design, Yourdon Press, Prentice-Hall,
Englewood Cliffs, NJ, 1980.

Pyle, I., Developing Safety System : A Guide Using Ada, Prentice Hall, Englewood Cliffs, NJ, 1991.

Sanden, B. I., Software Systems Construction with Examples in Ada. Prentice-Hall, Englewood
Cliffs, NJ, 1994.

3-43 NUREG/CR-6463 Rev. 1

Software Productivity Consortium (SPC), Ada Quality and Style Guidelines for Professional
Programmers, Van Nostrand Reinhold, New York, NY, 1989.

Tafvelin, S., ed, Ada Components: Libraries and Tools, Cambridge University Press, Cambridge,
MA, 1987.

U.S. Department of Defense, Defense Systems Software Development, DoD-STD-2167A, Appendix
D, 1 August 1986.

NUREG/CR-6463, Rev. 1 3-44

4 C and C++

This section discusses the safety issues of C and C++ languages in safety systems. The languages
are discussed together because of the C heritage in C++ and because they may be used together in
a safety application. However, the applicability of the discussion to one or both languages is clearly
indicated in the text 4. The discussion is primarily independent of the underlying execution
platforms, that is, hardware, kernel, and/or operating system. Exceptions to this generalization are
noted in the text.

This chapter is organized in accordance with the framework of Chapter 2. Section 4.1 discusses
reliability-related attributes; Section 4.2 discusses robustness-related attributes; Section 4.3 discusses
traceability-related attributes; and Section 4.4 describes maintainability-related attributes. A
summary matrix showing the relationship between generic and language-specific guidelines, together
with weighting factors, is included in Appendix B.

4.1 Reliability

In the software context, reliability is either (1) the probability of successful execution over a defined
interval of time and under defined conditions, or (2) the probability of successful operation upon
demand (IEEE, 1977). The reliability of software means the ability of a system or component to
perform its required functions under stated conditions for a specified period of time (IEEE, 1990).
The reliability depends on the run-time predictability of the following:

" Memory utilization
• Control flow
• Timing.

C-specific guidelines derived from these generic attributes are described in the following sections.

4.1.1 Predictability of Memory Utilization

Unpredictable memory utilization can cause the loss of programs, instructions, and data which, in
turn, can cause system failures. Unpredictable memory utilization can be categorized into two main
categories: (a) violation of available memory restrictions and (b) unauthorized use of memory
blocks. The first four base attributes refer to the first category and the remainder to the second.

14It should be noted that what is applicable to C is generally applicable to C++; however the reverse is not
true.

4-1 NUREG/CR-6463 Rev. 1

• Minimizing dynamic memory allocation
• Minimizing memory paging and swapping
• Minimizing memory usage caused by inefficient parameter passing mechanisms
* Minimizing recursive function calls
• Utilizing boundary checking for memory-related functions
* Utilizing functions with well-defined behavior
* Using wrappers for memory-related functions
• Proper array indexing.

4.1.1.1 Minimizing Dynamic Memory Allocation

IFollowing guidelines are applicable to both C and C++

Although dynamic memory allocation increases memory utilization efficiency, it can cause
unpredictable memory utilization which, in turn, could result in system failure (Hatton, 1994, p149).
The potential problems caused by dynamic memory allocation include:

1. Allocating memory without subsequently freeing it.
2. Attempting to access memory that has not been allocated.
3. Utilizing memory that has already been freed.
4. Insufficient available memory for the dynamic memory requirements.

Thus, dynamic memory allocation should be avoided. If dynamic memory must be used, the related
functions should be used defensively, and the allocated memory should be explicitly released as soon
as possible.

IFollowing discussion applies toC __

In C the dynamic memory allocation and deallocation functions are calloc, nalloc, realloc,
strdup, and free. In addition to the above problems, other dynamic memory allocation potential
problems arise in C because of two reasons: (1) dynamic memory allocation functions provide
different services depending on the values of input parameter (Maguire, 1993) and (2) dynamic
memory management functions are not sufficiently protected against potentially incorrect input.

The following function serves as an example:

void *realloc(void *pv , size_t size).

The function will perform one of the following actions depending on the input (Maguire, 1993):

(a) If the new size of the memory block is smaller than the old size, realloc releases

NUREG/CR-6463, Rev. 1 4-2

the unwanted memory at the end of the block and pv is returned unchanged;

(b) If the new size is larger than the old size, the expanded block may be allocated at a
new address and the contents of the original block copied to the new location. A
pointer to the expanded block is returned, and the extended part of the block is left
uninitialized.

(c) If one attempts to expand a block and realloc cannot satisfy the request, NULL
is returned.

(d) If Vv is NULL, then realloc behaves as malloc (size) and returns a pointer to
a newly allocated block, or NULL if the request cannot be satisfied.

(e) If the new size is 0 and pv is not NULL, then realloc behaves as free (pv) and
NULL is returned.

(f) If pv is NULL and size is 0, the result is unknown.

Use library copy and move functions with specific lengths. As will be discussed below,
library copy and move functions with specific lengths (e.g., strncopy rather than
strcpy) should be used.

The following discussion aplies to C++ only

In C++, the functions to dynamically allocate and free memory are new and delete. The following
guideline applies.

Ensure that all classes include a destructor. To avoid memory leaks, all classes must
include a destructor that releases any memory allocated by the class. Constructors must
themselves be defined in a way to avoid possible memory leaks in case of failures. Ensure
that for all derived classes there are virtual destructors.

4.1.1.2 Minimizing Memory Paging and Swapping

Followin guidelines are applicable to both C and C++

The generic guidelines apply. There are no additional language-specific guidelines.

4-3 NUREG/CR-6463 Rev. 1

4.1.1.3 Controlling Parameter Passing to Routines

lFollowing discussion aplies to C

The generic guidelines apply. Of particular concern in the use of C or C++ with small
microcontrollers is the limited stack size. Passing of many arguments or large structures may cause
a stack overflow (particularly in microcontrollers where stack memory may be limited) that, in turn,
would cause a system failure. The following are language-specific guidelines:

Limit the number and size of parameters. The ANSI/SO C standard only guarantees 31
parameters in one function call (section 5.2.4.1 of ANSI/ISO 9899-1990), and this
establishes an upper limit on the number of arguments that can be passed in a call. If this
number of parameters is limiting for the application, alternate means of passing data should
be considered. These alternatives include the use of arrays, structures, or global variables.
Arrays are always passed by reference (i,.e., using a pointer) and therefore, the limitation
becomes a function of the heap space. Structures can be passed on the stack or using
pointers. As is described in the following guideline, use of pointers is preferred for larger
structures to minimize the possibility of a stack overflow. Global variables are also a less
desirable means of passing data because of the undesirability of passing data by means of
side effects. However, use of global variables may prove to be a more desirable alternative
than using a structure or array if the variables have no well defined interrelationship. Section
4.4 contains additional guidelines on using global variables as a means of data interchange.

Use pointers to conserve stack space for larger variables. In C and C++, parameters are put
on stack when calling a subroutine. As noted above, stack memory is a limited resource, and
overflowing the stack has unpredictable (and nearly always undesirable) results. ANSI C
requires converting an array to a pointer when it is passed to a subroutine (Section 6.7.1,
ANSI/ISO 9989-1990). However, C structures can also require a large amount of memory.
Because automatic conversion to pointers is not automatically in ANSI C done for unions
and structures, this conversion must be perform by the programmer as shown in the
following example:

NUREG/CR-6463, Rev. 1 4-4

#define SSN_LEN (12)
#define DAYS_PER_MONTH (31)

typedef struct employee_struct
{
char ssn[SSN-LEN];
short dept-id;
short working_hours[DAYS_PER_MONTH];
short vacation-hours;
double vacation_ratio;

I

void update_vacation_hours(employee_struct *worker)
(
short i;
short total_hours=O;

for (i=0; i<DAYS_PER_MONTH; i++)
total_hours += worker->working_hours[i];

worker->vacation_hours = total_hours+worker>vacation_ratio;
)

int main(int argc, char *argv[])

employee_struct employee;

update_vacation_hours(&employee); /* passing the pointer */

I

Dereferencing should be done inside the receiving function to manipulate the structure.
When a pointer to a variable is passed to a function, any modifications to the variable inside
the function are reflected in the original variable itself.

4.1.1.4 Minimizing Recursive Function Calls

Followin idelines are aplicable to both C and C++

4-5 NUREG/CR-6463 Rev. 1

Recursion is a process in which a software module calls itself (IEEE, 1990).

Although they normally generate efficient code, recursive function calls can cause unpredictable
stack memory utilization and are sources of stack overflow. Unbounded recursive function calls
should be avoided in safety systems. If a recursive function has to be utilized, the stack usage should
be minimized by minimizing both the number of parameters to the function and the automatic
variables in the functions.

If recursion must be used, a compiler option to check for stack overflows during runtime should be
invoked. This option generates code with stack checking to avoid overwriting memory when stack
overflow occurs. An explicit exception handling routine should also be written to handle the stack
overflow condition. If the compiler does not have stack overflow checks, an upper bound on the
number of recursive function calls should be established (e.g., a limit on the length of an array being
sorted), which is an appropriate fraction of the space.

4.1.1.5 Utilizing Memory-Related Functions with Boundary Checking

IFollowing discussion applies to C

Utilizing functions with boundary checking can reduce unpredictable memory usage. Functions with
a boundary limit should be used in place of functions without such a limit. Functions with a
boundary limit are strncat, strnemp, and me .ov.

Although the functions st-cpy and memovy also have boundary limit checks, they should not be
used in safety systems for the reasons described in sections 4.1.1.6 and 4.1.1.7. Functions without
a boundary limit are stzcat, stzrcp, and strepy. Using these functions can overwrite
memory outside the intended range of addresses.

In the following example, xtr2 is longer than str1; therefore, the execution of the function can
overwrite 10 bytes of memory outside str1.

char strl[20], str2303J;

strcpy(strl, str2);

Variables in those locations can be unintentionally changed. The function nmmove can be used
to correct this problem, as seen below.

#define STRI_LEN (20)
#define STR2 LEN (30)

NUREG/CR-6463, Rev. 1 4-6

char strl[STR1_LEN], str2 [STR2_LEN];

memove(strl, str2, STR1_LEN);

The function call here limits the bytes copied to strl to be STR1_Lz, which is the size of strl.
No matter what the contents of str2 are, it cannot write outside stri.

This does not mean that the use of functions with boundary checking completely eliminates safety
problems. Most memory management functions in C are confusing and could pose a safety risk if
not carefully understood and protected against. As an example, consider the following function call
(Spuler, 1994):

strncpy(sl, s2, 20);

This function call has a hidden danger in that s. will not have the NuLL character (indicating the
end of string) if s2 contains more that 19 characters. One possible solution is that the programmer
can assign the NULL character to the end of sI immediately after the function call. The best possible
solution for avoiding this type of unsafe behavior is for the programmer to create a safe and specific
function for each needed memory-related action. The following example depicts such a version of
the st=cpy function (Spuler, 1994).

void safe-strncpy (char *sl, char *s2, int n)
(

int i;
for (i=0;(i<n-1) && (s2[i] != '\0'); i++)

sl[i) = s2[i];
)
sl[i] = '\0';

This will provide the programmer with a function that can be tested in advance. Where
non-overlapping objects are guaranteed, the bounded forms of string library functions are safe.

A similar fault avoidance technique can be used for input functions such as gets as shown in the
following example (Spuler, 1994):

4-7 NUREG/CR-6463 Rev. 1

char s [5] ;
char *result;

result = gets(s);

if (result == NULL)

If the user enters more than 4 characters, gets will overwrite the memory which does not belong
to string .. The solution is to use a function that has a specific limit on the number of characters to
be read. For this example function, fgets provides a more desirable alternative. The programmer can
safely use fgets(s,5,stdin). However, with fgets the newline (i.e., \n) will be included at the
end of the string parameter, which should be replaced with a null character after the function calls.

Followin discussion applies to C++ only

In C++, bounds checking may be integrated into the class definition so that the low-level functions
need not carry the overhead. This is especially true for numerical analysis routines where functions
like the inner product are called many times. For example, if the lengths of vector arguments are
already checked against the bound before being passed to an inner product function, there is no need
to add bounds checking to the function.

4.1.1.6 Use of rienwve for Moving Blocks of Memory

IFollowing guidelines are applicable to both C and C++

The memory move function menove, should be used instead of the memory copy function
nmmpy (Plum, 1991). The reason is that the moove function first copies the source to a
temporary area, then copies the temporary area to the destination area. Thus, even if part of the
source and destination overlap, the result will not be affected, and the required contents of the source
will be copied to the destination. Where non-overlapping objects are guaranteed, the bounded forms
of string library functions are safe.

4.1.1.7 Examining Memory at Power Up

Followin idelines are applicable to both C and C++

NUREG/CR-6463, Rev. 1 4-8

For C and C++ embedded system programs, volatile memory should be examined at power up. This
reduces the possibility of a system running on unreliable data. The program of an embedded system
should also be checked by some type of checksum code to prevent program corruption after the
system is delivered.

4.1.1.8 Wrapping of Built-in Functions for Memory-Related Operations

IFollowini zuidelines are applicable to both C and C++

In order to prevent problems, built-in functions should be contained within a programmer-defined
"wrapper" function which checks for input and other exception conditions (Hatton, 1994; p. 200).
Another solution is for the programmer to create application-specific functions for memory related
actions such as copying memory blocks.

Following discussion applies to C

The following discussion provides an example for the string copy and get string functions. Although
it was noted that use of bounded functions such as strncpy are preferable to unbounded functions
such as strepy, it is not a sufficient condition in all circumstances. In the following call:

strncpy(sl, s2, 20);

there is a potential problem when w2 does not have a NULL character (indicating the end of the
string) if it contains more than 19 characters. The "wrapper" function created by the programmer
should ensure that there is a NULL character to the end of o. immediately after the function call
and should check for other exception conditions. Wrapping should be used for other built in
functions such as fgetpos, f tell, bsearch, qaort, and time (Hatton, 1994; pp. 48 and
200).

The most fundamental solution for avoiding uncertainty from potentially undefined behaviors is that
the programmer accepts a more conservative option and creates his/her own safer and possibly
application-specific functions for memory-related actions such as copying memory blocks.

A example of a programmer-defined string copy function was given in section 4.1.1.5.

4.1.1.9 Proper Array Indexing

4-9 NUREG/CR-6463 Rev. 1

Following guidelines are applicable to both C and C++

Automatic boundary checking in C and C++ is not as strong as in some other languages. For
example, there is no boundary checking for an array index during runtime. If the index of an array
is outside the array boundary, it will not be detected during runtime. In C and C++, the array index
starts from 0 rather than 1. In an array of 100 members, the valid indices for the array are from 0 to
99.

The following is an example of incorrect array indexing. The two last assignment statements for the
data_-ray will insert values in an area of memory which are not part of the intended array.

#define BUF_LEN (100)
int data_array[BUF_LEN], i;
/* initialize buffer */
for (i=1; i<=BUF_LEN; i++)

data_array(iJ = 0; /* wrong */
data_array[BUF_LEN = i; /* wrong, BUF_LEN is outside of the array */

If the intent was to assign the final value of the array with a value of 0, then the following is the
corrected code

#define BUF_LEN (100)
int data_array[BUF_LEN], i;

/* initialize buffer */
for (i=0; i<BUF_LEN; i++) /* start from 0, end at BUF_LEN -1 (< not <=) */

data_array(i] = 0;

data_array(BUF_LEN-i] = i;

4.1.2 Predictability of Control Flow

The order in which statements in a program are executed is determined by the flow of control (Meek,
1993). Predictability of control flow is the capability to determine easily and unambiguously which
path the program will execute under specified conditions.

The guidelines in this section are as follows:

-Maximizing structure
-Minimizing control flow complexity
*Initializing variables before use

NUREG/CR-6463, Rev. 1 4-10

-Single entry and exit points for subprograms
*Minimizing interface ambiguities
*Use of data typing
-Accounting for precision and accuracy
-Order of precedence of arithmetic, logical, and functional operators
eAvoiding functions or procedures with side effects
*Separating assignment from evaluation
*Proper handling of program instrumentation
'Controlling class library size
'Minimizing use of dynamic binding
'Controlling operator overloading.
*Protecting macros to reduce side effects
'Eliminating mixing signed and unsigned variables
-Enabling and heeding compiler warnings.

The final three guidelines do not appear as generic attributes and are specific to C and C++.

4.1.2.1 Maximizing Structure

IFollowing guidelines are applicable to both C and C++

The generic guidelines apply. The instruction goto should be eliminated in safety systems. In

addition, functions such as setimp and longjmp, should also be eliminated, unless it can be

guaranteed that the function that invoked setJmp has not terminated when longjmp is called. Since

these two functions can jump from one subroutine location to another subroutine, they can cause

more serious problems than the goto instruction (e.g. leaving variables unpopped in the stack). If

a goto must be used, its use should be documented and justified.

The use of goto should be avoided except when used to jump to code processing a common error

condition (usually at function exit).

4.1.2.2 Minimizing Control Flow Complexity

IFollowing guidelines are applicable to both C and C++

The generic guidelines apply. Complicated control flow makes the program difficult to understand

and maintain and is the source of unpredictable control. The following are specific guidelines.

Use the switch construct. In safety systems, the switch ... case construct should be used to

replace multiple if... else if... else if... statements if possible (Porter, 1993). In the example

4-11 NUREG/CR-6463 Rev. 1

below, test_value is the only term used for evaluation.

if (test_value == 0)
(

e
else if (test-value == 1)
(

I
else if (test_value == 2)
{

I
else

Thus, the code could be replaced by the following:

switch (test_value)

case 0:

break;

case 1:

break;

case 2:

break;

default

break;
)

Use brackets. When utilizing if ... else statements, the code block should be bounded
by brackets to avoid mismatches between if and else. A mismatch example is shown
below.

NUREG/CR-6463, Rev. 1 4-12

if (.)
if (

else

The programmer may have intended to match the .ls with the second if, which is

quite different from the above code. By utilizing brackets, this problem could have been
avoided.

In safety systems, brackets should be utilized to bound all code blocks in if ... else
statements, as shown below.

if ()
(

if (
{
I

I

else
{

Define defaults. When utilizing the switch .. case construct, a default case should
be explicitly defined as shown in the following example.

4-13 NUREG/CR-6463 Rev. 1

#define DRAW_CIRCLE (1)
#define DRAW_RECTANGLE (2)
#define DRAW_TRIANGLE (3)
#define DRAW_LINE (4)

switch (condition)
(

case DRAW_CIRCLE
/* draw circle */

break;

case DRAW_RECTANGLE
/* draw rectangle */

break;

case DRAW_TRIANGLE
/* draw triangle */

break;

case DRAW_LINE

/* draw line */

break;

default
/* display wrong condition */

break;

To avoid forgetting a break when another case statement is added, the default should have
a break statement to terminate it (Porter, 1993).

Check for dead code. Code that is inside the switch construct but does not belong to any
of specified branch is unreachable or "dead" code. This type of code is usually located
between the beginning of the switch and its first case branch. The programmer using switch
should check the possibility of unreachable code inside switch.

NUREG/CR-6463, Rev. 1 4-14

4.1.2.3 Initialization of Variables and Pointers Before Use

Following guidelines are aplicable to both C and C++

The generic guidelines apply. All variables and pointers should be initialized before use (Porter,
1993; Kernighan, 1978). There are three basic types of variables in C and C++: global variables,
static variables, and automatic variables. Although the compiler will initialize all static variables to
zero, variables with an automatic scope will contain "garbage" before the program explicitly
initializes them. Global variables may or may not be initialized by the compiler. The following are
specific guidelines:

Reinitialize automatic variables. In the C and C++ languages, automatic variables lose their
locations and their values after each function return; therefore, they should be re-initialized
before they are used again. Variables should be initialized as soon as practical after their
declaration.

Initialize global variables in separate initialization routines. Initialization of global
variables and static variables should occur in initialization routines rather than in variable
declarations in real-time safety systems for the following reasons:

1. Such routines ensure that the variables are properly set during a warm reboot. Such
rebooting is a common practice and is included in a design to prevent overflows of
counters and timers and to ensure that systems will not get into an infinite loop.
Warm reboots are also triggered by watchdog timers and are part of recovery from
infinite loops and deadlocks.

2. To ensure deterministic reinitialization times. The timing for initialization during
declarations is unspecified in the ANSI C standard.

Initialize global variables only once. Global variables should be initialized once. Multiple
initialization of global variables in different modules should not be done---even if allowed
by the compiler and linker.

Do not use pointers to automatic variables outside of their scope. Pointers to automatic
variables should not be used outside of their declared scope. The value stored in a pointer
to an automatic variable will contain garbage outside the function scope.

Initialize pointers. Initialization problems can also occur in pointers. In safety systems, all
pointer variables in C should be initialized to NML, and all pointer variables in C++
language should be initialized to 0 (Plum, 1991). The pointer should then be tested for a
valid value before being used. In C and C++, when a pointer is defined, it does not have a
memory location associated with it. Using an uninitialized pointer will overwrite an
unintended portion of memory. Incorrectly overwriting memory can cause serious problems,
including system crashes.

4-15 NUREG/CR-6463 Rev. 1

An example of using an uninitialized pointer is shown below:

long *buf_ptr;

*buf_ptr = some-value;

Because buf__ptr is not initialized, it will contain an undetermined value based on the
previous use of that memory location. This undetermined value will determine where the
value sme_value will be placed.

The correct code is as follows:

#define some_value (13L)
long *buf_ptr;
long value;

buf_ptr = &value;
/* initialize the pointer */
*buf_ptr = some-value;

/* assign a value */

Because buf_ptr is initialized to point to the value, the number will be written to the

memory location of the variable rather than to an unspecified memory location.

The above example should be rewritten as follows:

long *buf_ptr=NULL;
long value;

buf_ptr = &value;
/* initialize the pointer */

if (buf_ptr != NULL)
/* test initialization *1
*buf_ptr = 13;

Ensure that the indirection operator is present for each pointer declaration. Each pointer
should have an indirect operator (*) when it is declared (Porter, 1993). The following
example shows how the C syntax facilitates omitting the indirection operator:

NUREG/CR-6463, Rev. 1 4-16

long *member-ptr, group_ptr; /* wrong, group_ptr doesn't havel
indirect operator (*) */ j

The correct declaration is as follows 5 :

long *member_ptr;

long *group-ptr; /* correct */

Use the - operator when initializing to all l's. When initializing all bits of an integer type
to all l's, use bitwise not 0. That is, use the following:

all_1_variable = -0;

If the variable type size changes from 16 to 32, it will initialize all 32 bits to 1.

IFollowing discussion applies to C

C assists programmers in initialization by providing the facility of specifying initial values along

with declarations. However, It does not require that all objects 6 be initialized (Eckel, 1995).

Moreover, in some cases, the initialization of an object is not only to assign a specific bit-pattern

value to the object location, but it might need taking special actions to facilitate smooth initialization

of the object's life (e.g., allocating corresponding resources to the objects).

[The following discussion applies to C++ only

In C++ it is possible to consider any correlated data set as an object and provide facilities for
constructing an instance of the data set and destroying the current instance of the data set in a
systematic way.

15To reduce the possibility of forgetting the indirect mark (*), it is recommended that each pointer

declaration be written in a separate line.

16That is, variable, structures, or arrays

4-17 NUREG/CR-6463 Rev. 1

4.1.2.4 Single Entry and Exit Points in Subprograms

IFollowing guidelines are applicable to both C and C++

The generic guidelines apply. Use of single entry and exit points in functions can facilitate their
validation checks. The programmer can easily use these two points to check the validity of input
data entering the function and also the validity of the actions taken by the function. Multiple entry
and exit points in subprograms introduce control flow uncertainties similar to those caused by the
goto instruction (Plum, 1991; Kemighan, 1978). The following are specific guidelines.

Avoid multiple return statements. Single exit points for functions is especially important in
C, since C does not provide return consistency checks for functions. Some compilers will
accept a function that has one branch of the code reaching the end of the function code (i.e.,
the last bracket) without executing any return statement (Spuler, 1994). For example, in the
following routine, the returned value is undefined if the argument is negative.

int positive(int x)
{

if(x>O) return TRUE
else
I

/* a set of statement without any return */
)

Although acceptable within the function definition of C, this routine is unacceptable from
the perspective of safety. Having only a single exit point, which is reached by all branches,
eliminates the possibility of mistakenly omitting one of many return statements. If there
is a compelling need for multiple entry and exit points, say to avoid goto or convoluted
control flows, all such points should be clearly documented, and a rationale provided.
Multiple return statements must be clearly tagged with comments. Implicit return
statements should be avoided.

Avoiding xetjnp and longu p. The ANSI C functions, satin=V and long:MVp should
not be used in place of a normal return statement, since they can jump outside a function
and deviate from the normal control flow. 7 An addition problem in using goto, aetimp,
or long zqp is that the initialization of the automatic variables is not performed (ANSISO
9989-1990, section 6.1.2.4). The longimp and setjmp should be used only for
exception handling-and with care.

17It may be acceptable to use these ANSI C functions for exception handling as discussed later in this
report.

NUREG/CR-6463, Rev. 1 4-18

Avoid function pointers. Although C does not allow multiple entry points, it does allow a
pointer value to be used as the address of a function to be called. Thus C allows any address
to be called by assigning an integer to the function pointer." Function pointers should be
avoided.

The following discussion applies to C++ only

Restricting use of ebow and catch. The C++ catch and throw exception handling
mechanism should be used with caution and tested thoroughly to verify the maturity and
reliability of the compiler implementation.

4.1.2.5 Minimizing Interface Ambiguities

Followin idelines are aplicable to both C and C++

The generic guidelines apply as indicated below. Interface errors account for a large portion of
coding errors (Chillarege, 1992; Thayer, 1976). An example of such errors is reversing the order of
arguments when calling a subroutine. The coding style that can reduce or eliminate the probability
of misusing an interface enhances safety. The following guidelines can reduce interface ambiguities:

Use function prototyping (Porter, 1993; Kernighan, 1978; Hatton, 1994). The ANSI C
standard requires function prototypes with parameter definitions which make it possible to
perform data type checking on parameters (ANSI/ISO 9989-1990, section 6.5.4.3). If there
are no parameters, the parameter list should be declared as void to ensure proper data type
checking. Also when a function has no return value, its type should be declared as void.

The following example shows a function prototype for a function with a return type of
integer and three parameters.

19 However, this can be considered an unconstrained call rather than multiple entry points.

4-19 NUREG/CR-6463 Rev. 1

/* function prototype */
int Functionl(int first-param,

long second_param,
int third_param) ;

/* function definition */
int Functionl(int first_param,

long-second_param,
int third_param)

i
ret return_value;

return return_value;

A function without a return type and parameters is shown below.

void Function2(void); /* function prototype */

void Function2(void) /* function definition */
{

Do not use functions that accept an indefinite number of arguments. A function with a
variable number of arguments is difficult to verify. Moreover, the behavior of a function that
accepts a variable number of arguments and is called without a function prototype that ends
with an ellipsis is also undefined (Hatton, 1994; p. 50).

Order parameters so that different data types are alternated. This practice reduces the
chance that two adjacent parameters will be placed in an incorrect order. Judicious use of
structures or classes may reduce the number of function arguments by grouping together
several items of similar kind, e.g., height/ width/length or row/ column.

Ensure that arguments are of a compatible type with the function prototype. The behavior
of a function called with a function prototype when the function is not defined with a
compatible prototype is not defined in C (Hatton, 1994; p. 50).

Avoid use of variable length argument lists. It is preferable to use default values for function
arguments than to use a variable number of arguments. Exceptions can be made in the case

NUREGICR-6463, Rev. 1 4-20

of printf, scanf, and other similar library functions. 9

Test the validity of input arguments at the beginning of a routine and test the validity of the
results before returning from the routine. Such testing is important for avoiding errors that
can compromise the integrity of the system (Kernighan, 1978). An example is shown below.

double value, result;

/* check for valid input range */
if ((value > -1.0) && (value < 1.0))

result = acos(value);
else

/* report input range error */

Range checking inside a function is preferred. The checking in the example above is outside
the function acon because the function is an ANSI C library function and is provided by
compiler manufacturers.

Using byte alignment of compilers.2 Most C and C++ compilers allow programmers to
determine how a variable is aligned in structures and unions. These structures and unions
can be parameters, passed by their pointers, or can be written to files to interface with other
programs. A consistency-of-alignment method should be included in the project software
development guidelines. Byte alignment, which saves resources such as memory and disk
space, should be utilized in small-scale safety systems with limited resources. Using word
alignment or double-word alignment when required by the CPU is acceptable.

Eliminate expressions in parameter passing to subroutines or macros. Since the order of
evaluating parameters is unspecified in the C language (Annex G of ANSIIISO 9989-1990),
using expressions as parameters raises safety concerns. For example:

short paraml, param2;

functionl(paraml++, param2 = paraml + 1); /* wrong */

19 lowever, see the earlier guideline on the use of wrapper functions

the storage of the adjacent data in the following byte (as opposed to the following word or double word).

4-21 NUREG/CR-6463 Rev. 1

The following section of code corrects the problem in the above example.

short paraml, param2;

paraml++;
param2 = paraml + 1;
functionl(paraml, param2);

* Eliminate Increment (++) and decrement (--) operators from macro and function calls.
Removing the increment and decrement operators from macros and functions eliminates the
possibility of undefined expressions. Although they provide a more efficient way of adding
1 or subtracting 1 to a variable, their use in argument lists raises safety concerns. They should
only be used in isolated expressions for incrementing loop counts. Table 4-1 illustrates
problems caused by increment and decrement operators in function calls.

Table 4-1 Examples of Problems Caused by Increment and Decrement Operators
Problem Problem Syntax and Corrected Syntax Comment on Problem Syntax

Unspecified Problem Syntax: Whether the variable i is increased before the
behavior function._call (i++); function call or after is unspecified (Spuler,

Corrected Syntax: 1994).
i++;
function_call(i);

Unspecified Problem Syntax The extra parentheses do not guarantee when
behavior function_call ((i++)); the variable L is increased. The variable still

may be increased before starting the
Corrected Syntax: function-call, or after the function isi++;

function_call (i); executed (Spuler, 1994).

Unintended Problem Syntax: This expression will be expanded by thechange #define MAX(x, y)(x>y)? x:y preprocessoras:up-limit = MAX(++i, j);

CorrectedSyntax uplimit = (++i > j) ? ++i : J;

++i; Variable £ could be increased by 2. The first
uplimit = MAX(, J increment happens at (++i > j); the second

one happens when the comparison is true, and
++:. is assigned to up_l"u.t. Depending
upon the values of L and J, L can be
increased by 1 or 2, which is unlikely to be
the intent of the programmer.

NUREG/CR-6463, Rev. 1 4-22

Use bit masks, not bit fields. Bit fields and masks are used for reading setting status registers
in hardware and for reporting status to other portions of the system. Bit field assignment is

implementation defined (Section 6.5.2.1 ANSI/ISO 9989-1990). When a bit field is defined
in a program, a compiler can assign any bit(s) to it, either higher bit(s) in a memory or lower
bit(s). This may create interface problems when bit field variables are written to a file and
the file is accessed by another program written in another language or compiled by another
compiler (Porter, 1993; Hatton, 1994). Problems may also be created when the variable is
communicated to another system. Bit field variables should not be utilized in safety systems,
a bit mask should be instead. The following is an example of the use of bit field variables
in which short integers are used to store the value of a send and receive flag.

#define BUFSIZE (1024)
typedef struct comm_struct{

short send_flag 1;
short receive_flag 1;
unsigned char buf[BUFSIZE];

1;
comm_struct commy_var;

if (comm_var. send_flag)(

if (comm _var.receive_flag){

I

The problem with this code is that should there be a need to port it to another system or
compiler, it us unclear whether the placement of the bits will be properly interpreted by the
CPU during runtime. A better practice is to explicitly place and check bits using a bit mask
as shown below:

#define BUFSIZE (1024) /* buffer size */
#define SEND_FLAG (OxOl) /* bit 0 */
#define RECEIVE_FLAG (0x02) /* bit 1 */
typedef struct conmm_struct
{

int flag; /* bit 0: SEND_FLAG, bit 1: RECEIVE_FLAG*/
unsigned char buf[BUFSIZE];

I;
comm_struct conm_var;

if (conmkyar.f lag & SEND_FLAG)

4-23 NUREG/CR-6463 Rev. 1

}

if (comm_var.flag & RECEIVE_FLAG)
(

}

4.1.2.6 Controlled Use of Data Typing

IFollowing guidelines are applicable to both C and C++

Acceptance of data that differ from those intended for use by a program can cause system failures.
The following measures should be taken to reduce data typing errors.

Limit the use of implementation-dependent types. Data types whose sizes are machine- or
compiler-dependent types should be used with caution. For C, these types are float,
char, and int. Unrestricted use of these data types could cause interface and portability
problems. The utilization of these data types as Input/Output variables or as structure and
union fields should be avoided in safety systems. Data type float should be replaced by
double and data type char should be replaced by either signed char or unsigned
char. In many cases, data type int should be replaced by short int or long int
if the actual size of these types are known. This data type is used in many built-in function
and procedure calls, as well as in externally developed libraries. Thus, it is not possible to
eliminate int from safety-critical code. However, int should be used with care, and all
occurrences should be clearly documented. When possible, variables should be declared as
short or long (which are of known size for all machines with a given word length), and
then cast to the required int type for interfacing. Though popular, the data type int is
not machine- or compiler-independent. If the lengths of implementation-dependent (integer
or floating point) types have an impact on the operation of the software, this must be
documented.

Minimize the use of type conversions and eliminate implicit or automated type conversions.
In addition to the general guideline to limit the number of explicit conversions, a tighter
restriction should be placed on conversions of pointers. Use of one pointer should not cast
a different type of pointer (Plum, 1991).

Avoid the use of mixed-mode operations. Operations using multiple data types should be
avoided. If such operations are necessary, they should be clearly identified and described
using prominent comments in the source code. Explicit casts should be used if practical in

NUREG/CR-6463, Rev. 1 4-24

order to make the designer's intentions clear.

The following example demonstrates the potential problems:2

#define BUF_SIZE (32)
signed char count, in_buf[BUF_SIZE];
int scale, result;

count = in_buf[0];
scale = 2;
result = 2 * count * scale;

Since the range of a signed char type is from - 128 to 127, the expression can generate
unexpected results. For example, when count is 127, 2 * count is 254 which is - 2 as a
signed cha:r variable. The result is -4 after -2 * ocale, which is different from the
expected 2 * 127 * 2 or 508.

The following are two possible corrections:

Correction 1: Changing the variable type

#define BUF_SIZE (32)
signed char in_buf[BUF_SIZE];
int count, scale, result; /* count is int now */

count = (int) in-buf(0];
result = 2 * count * scale;

Correction 2: Casting the variable type

#define BUF_SIZE (32)
signed char count, in_buf[BUF_SIZE];
int scale, result;

count = in-buf[0];
result = 2 * (int)count * scale;

The first correction approach (changing the variable type) is preferred since it reduces the
type conversion when the variable count is used in multiple places.

21The reader should note the recommended restrictions on the use of int in the previous paragraph

4-25 NUREG/CR-6463 Rev. 1

Use a single data type in evaluations and relational operations. Expressions involving
arithmetic evaluations or relational operations should have either a single data type or the
proper set of data types for which conversion difficulties are minimized (Porter, 1993). This
guideline is related to the above discussion on minimization of mixed-mode operations.

Avoid the use of typodef for unsized arrays. Although legal, such constructs are obscure
badly supported, and error-prone (Hatton, 1994, p. 75).

Avoid multiple declarations of one identifier with several types. Even if multiple declarations
result in no compiler errors, they may be a source of confusion or even of undefined
behavior.

*Avoid mixing signed and unsigned variables. Mixing signed and unsigned variables in arithmetic
and logical operations raises safety concerns and should be avoided in safety systems. Explicit casts
should be used if practical in order to make the designer's intentions clear. Mixing signed and
unsigned variables in arithmetic and logical operations can create unexpected results (Porter, 1993).
A hexadecimal number FFFF is - 1 in a signed 16-bit integer and is 65535 in an unsigned 16-bit
integer. This difference can change the outcome of a comparison and the result of an arithmetic
operation. Mixing signed and unsigned variables in arithmetic operations can also create overflow
problems. Table 4-2 illustrates two problems with mixing signed and unsigned variables.

Table 4-2 Problems in Mixin Signed and Unsigned Variables
Problem Problem Syntax Comment on Problem Syntax

Comparison int i; When comparing a signed variable with an unsigned variable, the
unsigned int ui;problem i= compiler will automatically convert the signed value to an unsigned
ui = 2; value. The result is just the opposite of what the programmer
if (i > ui intended to do. In this example, variable uL needs to be cast as a

/* do A * / signed integer. In some other cases, the signed variables need to be
el cast as unsigned variables. Sometimes, both variables need to be cast

as a long integer. A signed 16-bit variable can be cast as an unsigned
/* do B * / variable only when its value is greater than or equal to zero

(nonnegative number), and an unsigned 16-bit variable can be cast as
a signed variable only when its value is less than hexadecimal 7fff or
decimal 32767.

Division int i, result; When there is a signed and an unsigned variable in a division, the
problem unsigned int ui; compiler will automatically convert the signed value into an

i = -1; unsigned value. The value -1 will be interpreted as 65535. Theui = 2; result is 32767, not the expected 0. To solve this problem, the
result = i / ui; unsigned variable ud needs to be cast as a signed variable. In some

other cases, casting the unxLgned it to signed may not be
correct. The proper solution is to eliminate mixing signed and
unsigned variables in division operations.

NUREG/CR-6463, Rev. 1 4-26

Limit use of indirect addressing. Validation of indirectly addressed data should be performed

prior to setting or using it to ensure the correctness of the accessed locations. Use of void

pointers should be limited.

Do not declare the same identifier for multiple incompatible types. The behavior of a

program using a data type or a function with incompatible types is not defined (Hatton, 1994;

p. 49).

4.1.2.7 Precision and Accuracy

IFollowinguidelines are applicable to both C and C++

Safety related software must provide adequate precision and accuracy for the intended application

(IEEE Std-7-4.3.2-1993). At the same time, the software must also tolerate the inconsistencies

emerging from operations on floating point numbers. The following are specific guidelines for C
and C++.

&Use double precision. Data type double should be used for floating point

variables in safety systems. As noted earlier, the float data type should not be used because it may

not provide adequate precision and accuracy and because it limits portability.

*Account for floating point properties in relational operations. The equality comparisons on

floating-point numbers should be avoided in safety systems since the machine representation of

floating-point numbers may lack precision and may have a small residual error. Inequality

comparisons should be utilized and equality comparisons should be avoided on floating-point

numbers (Porter, 1993; Kernighan, 1978).

The following example demonstrates the potential problems.

double value; /* temporary variable for return value */

if (value == 0.0)
(

/* calculate something */

The condition valuo -- o. 0 in the above example is likely to be false because of rounding
errors, even if the value is expected to be zero. The condition should be modified as follows:

4-27 NUREG/CR-6463 Rev. 1

#define FLOATINGPOINT-TOLERANCE (0. 00001)
if((value < (0.0 + FLOATING_POINT_TOLERANCE)) &&

(value > (0.0 - FLOATING_POINT_TOLERANCE)))
(

/* calculate something */
}

Account for truncation in integer operations. If a floating-point arithmetic operation can
generate truncation and rounding errors, integer arithmetic may generate such errors more
often. Integer truncation errors are generated by division. In C and C++ languages, the
results of integer divisions are always truncated (e.g. 5/3 = 1). If a result is negative, even
the method of truncation is implementation dependent. The result of - 5/3 can be -2 or - 1,
depending upon the compiler. The truncation method that a compiler uses may not be the
same as the truncation method that a developer or a reviewer assumes is being used.
Truncation errors can cause safety concerns when the results with truncation are used in
comparisons and conditions for control decisions. Therefore, a rounding-off technique
should be utilized. A typical rounding-off method is to perform the division in double, add
0.5 to the result, and cast the result back to an integer, as seen in the following example.

long int result;
long int total-energy;
long int stations;

result = (long int) ((double) total_energy / (double) stations + 0.5);

However, this rounding off method may apply to positive results only. Whether it applies
to negative results will depend on the combination of how the compiler handles the division
and how a developer wants the rounding off to be performed. The negative results may
require subtracting 0.5 instead of adding 0.5 for rounding off.

Account for optimization. Within the rules of precedence, order of evaluation of
sub-expressions in C is implementation-defined. This may lead to unexpected results in the
presence of optimized code being generated by the compiler. This is especially an issue with
floating point computations. A compiler might replace ((1.0+x)-x) with 1.0 at compile time,
when the floating point rounding error is what the program is trying to compute. Note that
the above optimization is guaranteed to always be correct for integer types.

Ensure that arithmetic conversion produces a result that can be represented in the space
provided. When conversion or casting is necessary, care must be taken to ensure that enough
memory space is available. For example, if an integer floating-point expression is cast down

NUREG/CR-6463, Rev. 1 4-28

or converted to a shorter data type, care must be taken to ensure that the value is
representable in the shorter type (Hatton 1994, pp. 55 and 56).

4.1.2.8 Use of Parentheses Rather Than Default Order of Precedence

IFollowing guidelines are applicable to both C and C++

Generic guidelines apply. The default order of precedence of arithmetic, logical, and other
operations varies between languages. Developers and reviewers may make incorrect precedence
assumptions when explicit precedence relations are not used, particularly in complex expressions
(Kernighan, 1986). Also, an overloading operator in C++ may change the precedence. (Section

4.1.2.13 for a related discussion.). The following are specific guidelines.

Use parentheses in bitwise operators. In the C and C++ languages, bitwise operators have
lower precedence than logical operators. Parentheses must be utilized in comparisons and
conditions that have bitwise operators. For example :

if ((I & 0x01) == (j I 0x02))
/* do something */

Use parentheses in comparisons and conditions. Parentheses must also be utilized in

comparisons and conditions that have assignment operators (Plum, 1991) because

assignment operators have lower precedence than logical operators. This is shown in the
following example.

/* read a key from keyboard */
if ((key = getcho) == FUNCTION_KEYS)

key = getcho;

Use parentheses in macros. Parentheses can be used to protect macros to reduce side effects.
Using macros can make code more readable and can reduce repetitive code. However,
without proper parentheses, macros can introduce side effects, as shown below.

4-29 NUREG/CR-6463 Rev. 1

#define square(x) x * x

int delta;
int sqr;

sqr = square(3+delta); /* problem */

The preprocessor will expand the above expression as:

sqr = 3 + delta * 3 + delta;

which is equivalent to:

sqr = 3 + (delta * 3) + delta;

This is completely different from the square of 3 + delta. The problem shown in the
example is that the macro square (x) is not protected. To ensure that a macro is fully
protected, the expression should be parenthesized as follows:

#define square(x) ((x) * (x))

In some cases, use of parentheses may result in lower readability. If parentheses are
excessive, then macros should not be used and alternative forms should be employed to
achieve readability.

Ensure that the values of expressions do not depend on the order of evaluation. As noted
above, within the rules of precedence, order of evaluation of sub-expressions in C/C++ is
implementation-defined. Unlike some other languages, for example, FORTRAN, parentheses
in C/C++ only override precedence, and have no other effect on order of evaluation. Where
order of evaluation is critical, for example, in floating point computations, expressions
should be broken up into multiple statements, since the end of a statement is a sequence point
in C/C++, and the ordering of sequence points is guaranteed to be preserved.

NUREG/CR-6463, Rev. 1 4-30

Any expression potentially having side-effects, e.g., containing a function evaluation, should
not depend upon order of evaluation. Generally speaking, integer expressions without
side-effects are independent of order of evaluation. Both C and C++ use "short-circuiting"
(Spuler, 1994) in the evaluation of logical expressions. That is, as soon as the final value of
an expression is determined (for example, a zero value in an AND expression is
encountered), the remaining sub-expressions are not evaluated. Other unevaluated parts of
the expression are ignored. Although short-circuiting increases the efficiency of the
evaluation procedure, it may have unexpected results if not used carefully as illustrated in
the following example:

if (x < y && (ch=getcharo) != EOF)
(

4.1.2.9 Avoiding Functions or Procedures with Side Effects

Generic guidelines are applicable.

4.1.2.10 Separating Assignment from Evaluation

Followin zuidelines are applicable to both C and C++

Generic guidelines apply to C and C++. The following are language-specific guidelines.

Separate relational and assignment operators. The assignment operator is one equal sign,
"'; the relational operator is a double equal sign "= =" . An assignment statement, such as
asign_this w value should be separated from an evaluation expression such as
if (valuel ou value2) (Porter, 1993). The following two valid statements (in both C
and C++) illustrate the potential problem:

/* Example 1 */
while (evaluation = 1)
{ valuel == value2;

I

/* Example 2 */
while (evaluation == 1)
{ valuel = value2;

4-31 NUREG/CR-6463 Rev. 1

Example 1 causes an infinite loop in the program because the evaluation occurring
immediately after the while is always true.

If it is not possible to avoid separation of assignment and evaluation statements, the following
mitigating measures should be used:

1. Parenthesize any embedded assignment in an evaluation expression.

2. Ensure that the order of evaluation does not affect the value of the assignment statement.
This includes accounting for the "short circuit" evaluation mechanism used in C and C++.

4.1.2.11 Proper Handling of Program Instrumentation

Following guidelines are applicable to both C and C++

Generic guidelines apply. Program instrumentation collects and outputs certain internal state values
of a program during execution and allows the developer to ascertain that particular aspects of the
specification have been correctly implemented (Liao, 1991).

4.1.2.12 Control of Class Library Size

The following discussion applies to C++ only

Generic guidelines apply to C++. There are two specific guidelines.

*Limitation of class library size. Limiting the library size minimizes the chance of a system
becoming unmanageable or having large performance penalties because it has too many classes and
objects (Cuthill, 1993).

-Avoiding multiple inheritance. Multiple inheritance should not be used in safety systems (Porter,
1993) because of ambiguities (Cargill, 1992) and maintenance problems (Hatten, 1994). An
example of ambiguity is shown below:

class file_base
(

protected:
void Inito;

class io_port

NUREG/CR-6463, Rev. 1 4-32

public:
void Initialization
(

Init ();

private:
void Inito;

I;

class file-io: public file_base, public io_port
{

public:
file-io ()
{

Inito; // ambiguous
)

I;

This ambiguity may be detected by some compilers, but it may not be detected by others.

4.1.2.13 Minimizing Use Of Dynamic Binding

The following discussion applies to C++ only

The generic guidelines apply. Binding denotes the association of a variable with a class. Dynamic
binding allows the name/class association to be deferred until the object designated by the name is
created at runtime. The unpredictability of the name/class association creates safety concerns,
reduces the predictability of the runtime behavior of an object oriented program, and complicates
debugging, understanding, and traceability.

4.1.2.14 Control of Operator Overloading

The following discussion aplies to C++ only

Generic guidelines apply to C++. Operator overloading can improve readability and reduce
complexity by allowing an object behavior to be used for different data types. However, overloading
can also be problematic from the perspective of predictability because the precedence of one operator
may not be consistent (as will be described below). When using operator overloading, the following
guidelines should be followed (Porter, 1993):

4-33 NUREG/CR-6463 Rev. 1

The meaning of an overloaded operator should be natural, not clever (Cargill, 1992.
Binkley, 1995). It is generally recognized that there are advantages to localizing related
elements in a single module. If any of the operators for a class are redefined, the operator's
original meaning should be preserved. That is, if addition operator + is redefined for a class,
the operator should still have the sense of adding something to the class instance. This is a
case where operator overloading is useful for achieving uniformity across data types.

Operation order should be ensured by parentheses (Porter, 1993; Kernighan, 1978). When
performing floating-point arithmetic, bitwise exclusive OR operator A may be redefined as
an exponentiation operator. However, a bitwise exclusive OR operator has different
precedence than an exponentiation operator.22 When a floating-point exponentiation operator
is overloaded to a bitwise exclusive OR operator, it changes the precedence of such operators
for exponentiation, as seen in the following example.

double basel, base2, sum_.of-squares;

basel = 3.0;
base2 = 4.0;
sum_of_squares = baselA2.0 + base2A2.0;

Since an addition operator has higher precedence than a bitwise exclusive OR

operator, the compiler will evaluate the expression as:

sunL_of_squares = (baselA (2.0+base2)A 2.0);

which is different from the expected result of 25.0. To get the correct results, parentheses
should be used to keep the precedence of the exponentiation operator, as indicated by the
following:

basel = 3.0;
base2 = 4.0;
sun_of_squares = (baselA2.0) + (base2A2.0);

oExplicitly define class operators. Since the default constructor, copy constructor, destructor, and
the operators operator-, operator&, and operator<con--a> all have default meanings,
they should be explicitly defined in every class. To avoid unwanted implicit calls to these functions,
declare them private (Binkley, 1995).

22 A bitwise exclusive OR operator has lower precedence than an addition operator while an
exponentiation operator has higher precedence than an addition operator.

NUREG/CR-6463, Rev. 1 4-34

-Ensure consistency of pointer operators. For a class that defines the operators operator->,
operator*, and operator [l, ensure the equivalences between p->m, (*p).u, and p [O0 .m
. Otherwise this will avoid unexpected errors when programmers assume the equivalence (Binkley,
1995).

eEnsure consistency of increment operators. For a class that defines the operators operator+,
operator-+, operator++, and operator++ (int), ensure the equivalence of xmx+l,
x+ni, and ++x and their relationship to x++. Note that the use of ++ is generally discouraged
(Binkley, 1995).

4.1.2.15 Enable and Heed Compiler Warnings

Following guidelines are applicable to both C and C++

Both C and C++ are complex enough that programmers should employ all available mechanisms to
create a safe programs. Although relying on compilers alone is not a useful practice, warnings
produced by compilers are a valuable source of information on abnormal and potentially dangerous
parts of the program. All optional compiler warning should be enabled. Every warning messages
should be analyzed carefully.

4.1.3 Predictability of Timing

Predictability of timing is crucial in a safety system used in real time control (Kopetz, 1993;
Leveson, 1994). Some related guidelines were discussed in the previous subsections including:

* Control of class library size (section 4.1.2.12)
* Minimizing dynamic binding (section 4.1.2.13)
* Control of operator overloading (section 4.1.2.13).

Two additional guidelines are:

* Minimizing the use of tasking
* Minimizing the use of interrupt-driven processing.

These additional guidelines are discussed below.

4-35 NUREG/CR-6463 Rev. 1

4.1.3.1 Minimizing the Use of Tasking

IFollowing guidelines are applicable to both C and C++

Although multitasking provides an attractive model for concurrent processing, its use is undesirable
in safety systems for the following reasons:

1. Multitasking creates uncertainties in execution, timing, and resource utilization.

2. C and C++ do not support multitasking. Their standard library functions may not be
reentrant functions (ANSI 9984-1990, section 5.2.3). Using those functions in
multitasking environments may therefore cause unanticipated results.

Tasking requires compelling justification.

4.1.3.2 Minimizing the Use of Interrupt Driven Processing

IFollowing guidelines are applicable to both C and C++

Using interrupt-driven processing to handle the acceptance and processing of plant and operator
input can reduce average response time, but usually leads to nondeterministic maximum response
times. If an interrupt-driven processing has to be used, the processing time within interrupt service
routine should be minimized.

When interrupt driven processing must be used, the following guidelines mitigate the associated risk:

Limit interrupt processing. The code and processing time within the interrupt service routine
should be minimized. Any data checking and data processing should be done after the
interrupt processing. Typically, a circular buffer can be used to store the incoming data
(buffers should be large enough to avoid data overruns).

Limit function calls. Function calls within interrupt service routines should be minimized,
and only reentrant functions should be called by interrupt service routines. ANSI/ISO C
standard does not guarantee any standard library functions to be reentrant (ANSI/ISO 9989-
1990, section 5.2.3).

For example:

/* data buffer size */
#define BUFSIZE (2048)

NUREG/CR-6463, Rev. 1 4-36

/* Buffer index wrap around mask. This wraparound method works only when
the buffer size is a power of 2 */
#define BUF_INDEX_MASK (BUFSIZE - 1)

/* COM port address */

#define COM_PORT_ADDR (0x2f8)

/* COM port interrupt vector address */
#define COM_ISR_ADDR (12)

/* time out in 2 second */
#define TIMEOUT_LIMIT (2*CLOCK_PER_SECOND)

/* local variables */

static int data_in_index;
static unsigned char data_buf[BUFSIZE];

/* local function prototype(s) */
static void Init(void);
static interrupt new_com_isr(void);

/*...

Description: This function initializes the COM port, interrupt
vector, and buffer index variables.

input var: none
output_var: none
return: none
global var:

.--- /

static void Init(void)
{

data_in_index = 0;

/* other initialization */

/* ---

Description : This function is called when there is an RS232 (COM
port) interrupt. It reads a byte from the COM port and
saves it in the data buffer.

input var: none
output var: none
return val: none
global var: data_buf -- new data is save int the buffer

data_in_index -- used and modified.
.-- /

static interrupt new com isr(void) {

4-37 NUREG/CR-6463 Rev. 1

data_buf [data_in_index++] = inp (CON-PORT-ADDR);
data_in_index &= BUF_INDEXJ(ASK;
I

main ()

int return_code = 0;
interrupt orig_com_isr;
cloct_t last_time;

/* save the original interrupt service routine address */
orig-com-isr = get_vector(CO_ISR_ADDR);
data_out_index = 0;
Inito;

/* set new interrupt service routine */
set_vector(new_com_isr);

last_time = clocko;
while ((clock() - last_time) <= TIMEOUT_LIMIT)

if (datain_index != data_out_index)

/* process new data */
data = data_buf[data_out_index++];
data_out_index &= BUF_INDEX_MASK;

/* update time out count */
last_time = clocko;

/* restore original interrupt service routine */
set_vector(orig_com_isr);

/* exit this program */
return return_code;

Interrupt routines may be required to handle inputs from external devices, but such routines should
be kept as short and simple as possible. Masking of interrupts, nested interrupts, and interrupt
processing in general all cause non-deterministic behavior. Also, some form of locking or mutual
exclusion may be required when using interrupts.

NUREG/CR-6463, Rev. 1 4-38

4.2 Robustness

Robustness refers to the capability of the software to survive off-normal or other unanticipated
conditions, or the degree to which a system or component can function correctly in the presence of
invalid inputs or stressful environmental conditions (IEEE, 1990). Since unanticipated events can
happen during an accident or excursion, it is vital for a safety system to survive an accident and
continue working. This section discusses the following topics related to robustness:

* Controlled use of software diversity
* Controlled use of exception handling
* Input and output checking.

4.2.1 Controlled Use of Software Diversity

lFollowing guidelines are applicable to both C and C++

The generic guidelines apply to both internal and external diversity. There are no additional
language-specific guidelines.

4.2.2 Controlled Use of Exception Handling

An exception is an event that causes suspension of normal program execution (IEEE, 1990).
Exception handling deals with abnormal system states and input data (IEEE, 1993). This section
discusses guidelines related to the following attributes:

* Local handling exceptions
• Preservation of external control flow
• Uniformity of exception handling.

4.2.2.1 Local Handling of Exceptions

IFollowing guidelines are applicable to both C and C++

The generic guidelines apply. Exceptions should be handled locally.

Propagation of exceptions through several levels of a program can cause the precise nature of the
exception to be misinterpreted at the place where the exception handling is implemented. This cause
of system failure can be avoided if exceptions are handled locally. This section describes suggested

4-39 NUREG/CR-6463 Rev. 1

approaches to local handling of the following types of exceptions: addressing, data, input/output,
overflow/underflow, operation, and protection.

Addressing exceptions. Addressing exceptions can be caused by an uninitialized or
improperly set pointer. For example, an uninitialized static pointer will have NULL as its
value. Writing to the uninitialized pointer will overwrite system memory which can cause
catastrophic system failure. There is no way to recover from such a condition. Hence,
addressing exceptions must be prevented as described in section 4.1.1.

-Data exceptions. Data exceptions can be data-domain errors or data-range errors. Both categories
can occur when calling a library function. After calls to any mathematics functions in the standard
library, the variable ezrno, which is declared in the error.h file, should be checked for possible
data exceptions.

*Input/output exceptions. Input/output exceptions can be related to files. After a function call to
open a file (fopen) or to seek a location in a file (f seek), the result should be checked to verify
if the function call is successful. Function fopon can fail when the file does not exist or when the
file open mode and the file attributes do not match (e.g., to open a file in write mode, but the file is
read only). Function f seek will fail if the specified location does not occur in the file. If the
function call fails, the program should not continue without handling the exception condition related
to the failure.

Before closing a file, the program should verify whether the file is currently open to avoid
accidentally closing another stream. If the file is not currently open, the file pointer is xULL,
and a catastrophic failure may occur. For example, NULL can be interpreted as stream
number 0 which is the keyboard in MS-DOS. Closing a NULL pointer can lock up the
keyboard and disable the user interface. When the system requires a user input, it cannot
receive it because the keyboard is locked. The system cannot do anything until it is reset.

An input/output exception handling example is shown below:

#define DATA_FILE "safety.dat"
#define OPEN_FILE_ERROR "ERROR==>cannot open file %s"

FILE *fp;

fp = fopen(DATA.FILE, "w+t");
if (fp == NULL)
{

/* report file open error */
cprintf (OPEN_FILE_ERROR, DATA_FILE);

/* exception handling */

NUREG/CR-6463, Rev. 1 4-40

I

else
{

/* if the file is opened, close it */
if (fp != NULL)

fclose(fp);

-Overflow and underflow exceptions. Some overflow and underflow exceptions can also be checked
by examining the variable error, especially after calling a mathematics library function. Without
checking the variable error, the result cannot be assumed to be correct. One of the most common
such exceptions is divide by zero. To avoid this condition, the denominator should be verified as
being nonzero before a division is be performed.

'Operation exceptions. Operation exceptions can be race condition, data or address bus busy, device
busy, device idle, or lack of memory. A timer with an expiration time (deadline) is a technique to
handle operation exceptions. For example, there should be a deadline or "time out" when the system
is waiting for a response from a remote station. The action after the time-out should be well defined.

-Protection exceptions. A protection exception is an abnormal event caused by system locks on
shared resources such as files. An example is that an application is trying to open a file while the
file is locked by another application. When such an exception happens, a retries should be
performed up to a predefined limit. The likelihood of such an exception can be reduced by opening
files only when they are needed, locking only required records rather than the entire file, or opening
a file in the correct mode (i.e. do not open read-write mode when the operation only requires a file
read).

If it is not possible to place exception handling locally, thorough testing and analysis is necessary
to verify the proper behavior of the program in the exception state.

4.2.2.2 Preservation of External Control Flow

IFollowing guidelines are applicable to both C and C++

Generic guidelines apply. Interruption of control flow external to the routine in which the exception
was raised creates uncertainty in the execution subsequent to the exception handling. Safety is
enhanced by preservation of control flow external to the module responsible for the exception.
When an exception occurs, the external control flow should be preserved. This requires the module
not only to handle the exception internally, but also to set flags. These flags are used for external

4-41 NUREG/CR-6463 Rev. 1

communication. If it is not possible to preserve external control flow, then thorough testing and
analysis should be used to verify behavior.

Asynchronous exceptions can only be handled by catching signals. The effect of handling the
exception in this way can be localized to the module containing the handler, and flags can be used
to communicate the error to other modules. Additional related comments on the use of
setjmp/longjmp in error handling are in section 4.1.2.1.

4.2.2.3 Uniformity of Exception Handling

IFloing guidelines are applicable to both C and C++

Generic guidelines apply. Exceptions should be handled uniformly. Section 4.2.2.1 described the
likely types of exceptions to be encountered in C and C++ and how they can be handled locally. The
following are additional language-specific guidelines on handling exceptions uniformly.

Rely on signals and traps rather than operating system features for handling of exceptions.
Some commercial real-time operating systems that may be incorporated into safety systems
have additional support for exception handling. However, in order to ensure uniform and
predictable handling of exceptions, these operating system features should be used only as
a last resort in safety systems. It is preferable that signals and traps related to exceptions be
intercepted and handled by the safety software unless the exception handling standard and
methods of an operating system are well documented and understood.

Use throw and catch infavor of setjmp and longjztp in C++. C uses setjimp and
longjmp in the Standard C library for exception handling purposes. The problem with
these functions is that it is virtually impossible to recover effectively from a complicated
exception condition (Plauger, 1995). However, C++ provides a cleaner exception-handling
mechanism using the throw, catch mechanism (Plauger, 1995). C++ programmers should
make use of this uniform exception-handling mechanism, although compiler
implementations may need to be validated.

4.2.3 Input and Output Checking

IFollowing guidelines are applicable to both C and C++

Generic guidelines apply. A specific guideline relating to the use of pointers for input or output
operations.

NUREG/CR-6463, Rev. 1 4-42

Check pointers before use. Pointers should be checked before use to ensure that the location
from which data are being read is valid. Such checking is shown in the following example:

FILE *fp; /* define a pointer */

fp = (FILE *) NULL; /* initialize the pointer */

fp = fopen(...); /* assign the pointer */

if (fp (FILE *) NULL) /* check the pointer */(

if (fp 1= (FILE *) NULL) /* check the pointer */
(

fclose(fp);
fp = (FILE *) NULL; /* clear the pointer */

4.3 Traceability

Traceability refers to attributes of safety software that support verification of correctness and

completeness as compared to the software design. The intermediate attributes for traceability are
as follows:

-Readability
-Minimizing use of built-in functions
*Minimizing use of compiled libraries
oUtilizing version control tools
*Utilizing comments and internal documentation

Because readability is also an intermediate attribute of maintainability, it is discussed in Section 4.4.

C and C++ specific guidelines for the latter two attributes are discussed below.

4.3.1 Minimizing the Use of Built-In Functions

IFollowing guidelines are applicable to both C and C++

The generic guidelines apply. C and C++ include built-in functions, sometimes called intrinsic

functions (Koeman, 1995) for frequently used programming tasks in order to maximize programmer

productivity. The use of these functions raises safety concerns for the following reasons:

4-43 NUREG/CR-6463 Rev. 1

1. The requirements for developing those built-in functions may not be the same as those of the
safety systems.

2. The input and output data validation and exception handling may not be the same as that
needed in safety systems.

3. The number of built-in functions may vary from one compiler to another. A function
supported by one compiler may not be supported by another compiler. For example,
compilers for embedded systems generally do not support all ANSI C standard functions.

Because of these concerns, the use of built-in functions should be minimized. When built-in
functions are used, their use should be supported with documented testing and tracking of anomalies.
Although the built-in functions should be minimized in safety systems, it may not be possible to
eliminate all built-in functions because a language is not complete without those functions and some
task may not be able to be performed. When built-in functions are used, only functions in ANSI C
Standard should be called. Wrapper functions should be used for potentially problematic standard
functions (Hatton, 1994).

4.3.2 Minimizing the Use of Compiled Libraries

IFollowing guidelines are applicable to both C and C++

The generic guidelines apply. Compiled libraries can be supplied by compiler vendors or third
parties to support input/output operations or mathematical operations which are not defined
constructs within the basic language. All concerns discussed in sections 4.3.1 and 4.4.1 also apply
to compiled libraries. Like built-in functions, the use of compiled libraries should be minimized.
In addition, libraries provided by commercially oriented vendors may not have been developed with
the same safety standards as the project for which they are used. The following are additional
language-specific guidelines.

Ensure that names in externally developed libraries are distinct from those in the compiler
or those developed within the project. Functions with the same names but different
purposes--or even the same purpose and different characteristics---can cause unintended
behavior.

Document all cases of dynamic binding to externally developed libraries. As was noted in
section 4.1, dynamic binding should generally be avoided in safety systems. However, if
dynamic binding with an externally developed library is needed in a safety function, all
should be justified and documented. Each use should be supported with documented testing
and tracking of anomalies.

NUREG/CR-6463, Rev. 1 4-44

Ensure that development and runtime shared libraries are identical. Shared libraries, i.e.
those which exist on the target machine and are linked at run time, should be used only if
they are guaranteed to be identical to libraries on the developer's machine.

4.3.3 Utilizing Version Control Tools

Following guidelines are aplicable to both C and C++

All C and C++ software should be kept under configuration management utilizing version control
tools. Version control tools ask the author to document the changes when he/she makes changes,
thereby minimizing the possibility of interface errors due to incompatible versions. A good version
control package also provides a comparison utility that allows a user to compare the changes between
source files of any two versions.

4.4 Maintainability

This section discusses the C and C++ specific attributes of the following intermediate attributes
related to maintainability:

* Readability
• Data abstraction
* Functional cohesiveness
• Malleability
* Portability.

Base-level attributes and specific C and C++ guidelines are discussed in the following sections.

4.4.1 Readability

Readability allows software to be understood by qualified development personnel other than the

4-45 NUREG/CR-6463 Rev. 1

author. Readability is an important characteristic of programs, as almost all programs are modified
or debugged by someone other than the original author at some time during the life of the program.
Although readability should in large measure be based on project-specific guidelines, there project-

independent issues that should be addressed. These issues and related guidelines are discussed in
the following subsections.

4.4.1.1 Conformance to Indentation Guidelines

IFollowing guidelines are applicable to both C and C++
The generic guidelines apply. Appropriate indentation facilitates the identification of declarations,
control flows, nonexecutable comments, and other components of source code. Spaces are preferred
to tabs for indentation since tabs may have different spaces on different file editors or printers.
Indentation guidelines are as follows:

* Programming blocks should be bounded with brackets.
* Comments should have the same indentation as the objects being described.
* Branching constructs (i.e., if ... el.se ... j and switch ... case,)

should be indented.
* Looping blocks (i.e., for, while, and do ... while) should be indented.
* Automatic variables should be indented.
* Compiler directives should be indented.

The following example shows a function with recommended indentation:

NUREG/CR-6463, Rev. 1 4-46

top level -->main()
(

/* loop variable */
second level ---> int i;

/* sub-block ,/
for (i=O; i<MAX_LOOPS; i++)
(

third level ---------- > if (...)
{

fourth level ---------------- >while (...)

fifth level ---------------------- > ...
I

I
I

second level ---> switch
(

third level ---------- > ...

4.4.1.2 Descriptive Identifier Names

Followin Lruidelines are applicable to both C and C++

The generic guidelines apply. The names of variables, routines, macros, and labels should be
descriptive and closely related to the entities that are represented. Short and cryptic names should
be avoided. The single additional guideline relates to variable names. Differences between variables
with related names should occur early within the name (e.g. leve12_snsor rather than
unzo_eve32). Although the ANSI/ISO C standard only guarantees the number of significant
characters for an internal identifier and macro names to be 32, the number of significant characters
for an external identifier should be limited to 6 (ANSISO 9989-1990, section 5.2.4.21).

4.4.1.3 Comments and Internal Documentation

lFollowin2 Puidelines are aplicable to both C and C++

The generic guidelines apply. Inadequate comments impede review and maintenance (Kernighan,
1978). The commenting guidelines in Chapter 2 are relevant. The following are additional
guidelines for internal documentation:

4-47 NUREG/CR-6463 Rev. 1

A routine should have a header that describes the input and output variables, the return type
of the routine, the meaning of the return value if there is a return value, referenced and
modified global variables, and an explanation of any arithmetic equations and algorithms in
the routine. It should also document the modules it accesses.

Comments should be used where subtle programming tricks are used or where critical steps
are executed.

Nested comments should not be used. When a block of code is no longer used, it should be
removed from the source code to avoid confusion to developers and reviewers. For instance
#if (0) ... #endif should be used to temporarily comment-out a block of code (Porter
1993). Some compilers have an option that allows nested comments. This option should not
be enabled in safety-system development.

Use care in mixing comment delimiter styles. Some C compilers allow C++ style comment
"Ir'. When using it in C language, cautions should be taken. A code with ("/* II This is a
comment */") may work with C compilers, but it may not work with C++ compilers.

The end brackets of loops and if blocks should be tagged with comments.

4.4.1.4 Limitations on Subprogram Size

IFollowing guidelines are applicable to both C and C++

The generic guidelines apply. Subroutines should be limited in size, depending largely on project
guidelines. The ANSIISO C standard limits are 127 identifiers within the block scope declared in
a block and 31 parameters in a function definition (ANSISO 9989-1990, section 5.2.4.2.1).
Subroutines in C must not exceed these limits.

4.4.1.5 Minimizing Mixed Language Programming

IFollowine guidelines are applicable to both C and C++

The generic guidelines have limited applicability. It may be acceptable, necessary, or desirable to
mix C and C++ programs. However, other types of mixed language programming are a safety
concern because (1) they present difficulties for reviewers and maintainers and (2) they cause
interface errors because of different calling conventions and different data representations.

When this practice cannot be avoided, risks can be mitigated by the following measures:

NUREG/CR-6463, Rev. 1 4-48

Physicalproximity. Placing the "foreign" language code adjacent to the dominant language
routine with which it interfaces.

Use of the asm directive. The asm directive should be used where possible to include
assembly code in C. Where separate assembly code must be used, macros should be defined
to hide calling convention details.

4.4.1.6 Minimizing Obscure or Subtle Programming Constructs

Following guidelines are aplicable to both C and C++

The generic guidelines apply. Obscure or subtle programming can generally be characterized as the
use of indirect techniques to decrease the amount of coding or processing time required to achieve
a result. Such coding practices present problems in review and maintenance and hence are a safety
concern.

The guidelines for minimizing obscure or subtle programming are (Kernighan, 1978):

a) Write clearly; do not be too clever,
b) Make it correct before making it faster,
c) Make it clear before making it faster, and
d) Do not sacrifice clarity for efficiency.

When obscure code cannot be avoided (e.g., due to timing or memory constraints), comments
should minimize the impact. The following are specific guidelines for C and C++

Following discussion applies to C

Avoid use of the ?: operator. The ?: operator is another form of the if-then-else
statement. The ? : operator makes the code more difficult to read should be avoided in
favor of the more conventional if-then-else construct.

Use table-driven alternatives when appropriate. The following is an example to determine
the next state of a state-machine with the following state-transition: 0->1, 1->0,
2- >3, 3- >4, and finally 4- >2 (Maguire, 1993). The following three equivalent code
fragments illustrate the effect of chosen language features in the safety and simplicity of the
code:

11* option 1 : use of ?: "/

4-49 NUREG/CR-6463 Rev. 1

((x<=l)?(x?0:1) (x==4)?2:(x+1))

option 2 : use of nested if */
if (x<=1)
(

if(x!=0)
x=0;

else
x=l;

)
else
{

if (x==4)
x=2;

else
X=X+1;

/* option 3 : use of table-driven selection */

static const nextvalue[]=(1,0,3,4,2)

x = nextvalue[x];

IThe following discussion applies to C++ only

*Avoid using default parameters to combine functions. For example, the use of the single function
lookup(char *name, int code--I)- where the value of code determines whether
lookup should fail if name is not found - may not be clear to the reviewer. The more appropriate
way is to define a new function for this purpose. Note that use of default parameters is acceptable
in general (Binkley, 1995).

*Avoid complex expressions inside a condition. For example, if (i&mask--O) is equivalent to
if (i& (mask-nO)) and not to if((i&mask)) ==O). In this case the reviewer is expected to
remember the operator precedences to verify the intent of the programmer. Replace it with long
masked_i=i &mask; if (masked_i-mO) (Binkley, 1995).

-Maximize the use of the scope resolution operator. The scope resolution operator: should be used
to indicate explicitly which of a collection of functions or variables is being used. This includes
globals accessed as : : global_variable (Binkley, 1995).

*Avoid pointers to members. They unnecessarily complicate the code. Use virtual functions or
redesign (Binkley, 1995).

NUREG/CR-6463, Rev. 1 4-50

-Use the virtual keyword wherever necessary. For a C++ member function declared in a base class
the keyword virtual should be used explicitly in the declaration of the function and all declarations
and definitions of the functions in each derived class (Binkley, 1995).

4.4.1.7 Minimizing Dispersion of Related Elements

IFollowing guidelines are applicable to both C and C++

The generic guidelines apply. If related elements of the code are dispersed in a program, this makes
it necessary to refer to multiple locations within a source listing in reviewing or modifying the source
code. The following are specific guidelines

Place include directives at the beginning of each program. *include compiler
directives for header or other files should be located at the beginning of each program. If it
is necessary to include files in the middle of a program, this must be clearly tagged with a
comment.

Place all external function prototypes in physical proximity. External function prototyping
should be in one place, e.g., a header file. Prototypes should not be in each individual file
where the function is referenced. For functions with static scope, the prototypes should be
in the same module where they are defined and used, and the function should be declared as
static.

The followin discussion aplies to C++ only

Segregate base from derived classes. In C++, it is desirable to segregate base classes from

derived classes.

4.4.1.8 Minimizing Use of Literals

IFollowing guidelines are applicable to both C and C++

Literals, also called hard-coded numbers or hard-coded strings, are more difficult to identify than
names to which a constant value or a string is assigned at the beginning of the module. Safety
systems should utilize symbolic values (using the const identifier or if necessary, #define)
instead of literals that have some extrinsic meaning or that may be changed in the future. The
following specific guidelines apply:

Parentheses. In safety systems, all expressions for #def ine should be place in parentheses,

4-51 NUREG/CR-6463 Rev. 1

even for a single number. The reason for using parentheses on a single number is that
#def ins value may be changed later to an expression and consistency is always desired.
It makes systems maintenance easier. As mentioned earlier, defining a variable with the
const identifier is preferable to #define.

Enumeration. When there are several sequential integer numbers, enumeration constants are
preferred to separate #def in. statements (Porter, 1993). Enumeration makes it easier to
modify when a new number needs to be inserted to the sequence.

For example, in the following statements:

#define templ-sensor (10)
#define flowl_sensor (11)
#define flow2_sensor (12)

The equivalent enumeration constants are:

enum instrument_labels
(

templ-sensor = 10,
flowl_sensor
flow2_sensor

To add an additional temperature sensor before flowl_sensor, all the numbers after
t.mpl_sensor need to be changed in the #def ine statements. However when using
enumeration only one change is needed: inserting the new label between tenpl_sensor
and flowl_sensor.

The new code will be:

#define templ-sensor (10)
#define temp2-sensor (11) /* add new operation */
#define flowl_sensor (12) /* 11 changed to 12 */
#define flow2_sensor (13) /* 12 changed to 13 */

The equivalent enumeration constants are:

NUREG/CR-6463, Rev. 1 4-52

enum instrument-labels
{

templ_sensor = 10,
temp2_sensor, /* this is the only change */
flowl_sensor,
flow2_sensor

1;

If literals are used, comments should be associated to facilitate search and replace efforts.

4.4.2 Data Abstraction

Data abstraction is the combination of data and allowable operations on that data into a single entity,
and establishment of an interface which allows access, manipulation, and storage of the data only
through the allowable operations.

4.4.2.1 Minimizing the Use of Global Variables

IFollowine discussion ant)lies to C

Generic guidelines apply to C. Because of the potential for unintended side effects, use of global
variables in safety related programs should be limited (Parnas, 1990). Readability is enhanced when
variables are declared, set, and used in the same routine. If global variables are to be used, the
following language-specific guidelines can mitigate the associated safety concerns.

Keep global variables and associated functions in the same file. If a limited number of
functions need to share a certain variable, those functions can be included in the same file
and the shared variable given file scope.

Declare global variables in one header file. When a global variable has to be used, it should
be declared in one header file. There should not be multiple reference extern declarations
for a variable. The following example shows how multiple references create maintenance
problems and safety concerns:

4-53 NUREG/CR-6463 Rev. 1

static int i;
main()

extern int i;
{

extern int i; /* Scope? */
}

Initialize global variables in one place. As noted earlier, global variable initialization should

occur in exactly one place in the program.

4.4.2.2 Minimizing the Complexity of Interfaces

IFollowing guidelines are applicable to both C and C++

The generic guidelines apply. Interfaces are a frequent cause of software failures (Thayer, 1976).
Complex interfaces are difficult to review and maintain and are therefore not desirable in safety-
related programs. The following are specific guidelines:

Limit the number of parameters. In the C and C++ languages, the number of parameters of
a function or a macro should be minimized. Large numbers of parameters can make
interfacing complex.

Use structures. When there many parameters and some of those parameters are related, they
should be defined in a structure, and a pointer to the structure should be passed as a
parameter to reduce stack usage.

Avoid expressions in parameter lists. Since the order of parameters being evaluated is
unspecified in the ANSI C standard, the expressions should be eliminated in parameter
passing to a subroutine or a macro, as shown in the following example:

calculate_area(length=2, width=length+2);

Because the second parameter, "width," may be evaluated first when the routine is called, it
may produce an unintended result. A possible correction for the above function call is:

NUREG/CR-6463, Rev. 1 4-54

length = 2;

width = length + 2;

calculate_area(length, width);

4.4.3 Functional Cohesiveness

Cohesiveness is the manner and degree to which the tasks performed by a single software module
are related to one another (IEEE, 1990). Functional cohesiveness refers to a clear correspondence
between the functions of a program and the structure of its components.

IFollowing guidelines are applicable to both C and C++

The generic guidelines apply to C and C++. Review and maintenance are when a given function
implements only one well understood purpose.

[Following discussion applies to C++ only

The rationale for the design of class libraries should be obvious and related to the objective. Objects
defined in C++ should have a single identifiable purpose. Specific guidance is a design level issue
which is beyond the scope of this document.

4.4.4 Malleability

Following guidelines are applicable to both C and C++

Malleability is the ability of a software system to accommodate changes in functional requirements
(Parnas, 1990). Malleability extends data abstraction with the motivation toward isolating areas of
potential change. The generic guidelines apply to both C and C++. There are no additional
language-specific guidelines.

4.4.5 Portability

Portability is the ease with which a system or component can be transferred from one hardware or
software environment to another (IEEE, 1990). From the perspective of safety, the benefits of
portability are the adherence to standard programming constructs that yield predictable and

4-55 NUREG/CR-6463 Rev. 1

consistent results across different operating platforms (Witt, 1994). Thus, code that is reused or
converted to run on a different platform will be easier to maintain and will be more exhaustively
tested.

The following portability-related guidelines relevant to C and C++ have been discussed previously:

* Minimizing the use of built-in functions (section 4.3.1)
* Minimizing the use of compiled libraries (section 4.3.2)
• Minimizing interface ambiguities (section 4.1.2.5)
* Minimizing dynamic binding (section 4.1.2.12)
* Minimizing the use of tasking (section 4.1.3.1)
* Minimizing the use of interrupt driven-processing (section 4.1.3.2).

The following additional specific guidelines will be discussed in this section:

• Minimizing anonymous data types
* Avoiding reserved words and keywords
* Minimizing hardware dependencies.

4.4.5.1 Minimizing Platform-Dependent Data Types.

Following guidelines are applicable to both C and C++

This topic has been partially discussed in previously (section 4.1.2.6 Use of Data Typing).
Implementation-dependent data types may create problems across different platforms or compilers.
The related guideline discussed in that section is the use of the integer and floating point data types.
A typical example of this data type is int, which is 16 bits in some compilers and 32 bits in others.

4.4.5.2 Avoiding Reserved Words

tFollowing guidelines are applicable to both C and C++

The following are portability-related guidelines on the use of reserved words in C and C++:

Avoid underscores. Identifiers with starting underscore or underscores should not be used.
According to the ANSI C standard ((ANSI 9989-1990), section 7.1.3) all identifiers that
begin with an underscore and either an uppercase letter or another underscore are always
reserved for any use. Identifiers that begin with an underscore are reserved for use as
identifiers with file scope in both the ordinary identifier and tag name spaces. Identifiers

NUREG/CR-6463, Rev. 1 4-56

starting with double underscores __LIK_TxS and identifiers starting with an underscore
and followed by an upper case letter _SUCH_AS_TIS are reserved words. Identifiers
starting with an underscore _like_this are reserved for file scope variables. C++
reserves identifiers with double underscores for implementation and libraries. Using
identifiers with starting underscore and double underscores can cause unspecified results if
they are reserved words (such identifiers can also cause unspecified results later even if they
are not reserved words for the current revision of the compiler).

Avoid use of C++ keywords even though that language is not used. C programmers should
avoid using names that are keywords in C++ since C programs may later be converted to
C++ programs. Examples are catch, class, delete, friend, inline, now,
operator, private, protected, public, tewlate, thi., throw, try,

and virtual.

Do not use the names of functions in the standard library. The names of the functions in the
standard library should be treated as reserved words (Plum, 1991).

4.4.5.3 Minimizing Hardware Dependencies

IFollowing guidelines are aplicable to both C and C++

Define hardware-dependent address symbolically. In a control system, it may be possible
to avoid directly accessing hardware by means of a vendor supplied device driver. However,
it may be necessary or desirable for the safety system software to directly interface to the
hardware for the purposes of traceability. If writing to hardware is necessary, the addresses
should be clearly documented and defined in a manner that minimizes the possibility of
change errors. This may be using symbolically as defined earlier in this section (or by
means of class definitions (in C++) for potential future changes.

Use volatile attribute for data items that are mapped to hardware. Data items that are
mapped to actual hardware must have the volatile attribute. This attribute ensures that
the compiler will not use optimization and leave the value in a CPU register, but will read
it from the memory location each time it is set or used (Harbison, 1987, p. 265). The
rationale for the use of volatile is that the value may have changed since the last time it was
set or used by the CPU (e.g., a bit set to busy subsequently was set to not busy). When such
an item is referenced, its pointer should be a pointer-to-volatile.

Avoid the use of bit fields. Bit fields are dependent on the compiler and the "little-endian/big-
endian" nature of the CPU. They should therefore not be used. Shifting and masking should
be used instead. Additional guidelines on the use of bit masks in place of bit fields are found
in section 4.1.2.5.

4-57 NUREG/CR-6463 Rev. 1

Do not measure time intervals by counting clock cycles. Generating delays by counting clock
cycles should also be avoided since the timing of a clock cycle can will differ on a different
platform.

NUREG/CR-6463, Rev. 1 4-58

References

American National Standards Institute, ANSI C Standard, American National Standard for
Programming Languages-C, ANSI/ISO 9899-1990.

Binkley, D.W., "C++ in Safety Critical Systems", NIST-IR 5769, National Institute of Standards
and Technology, November, 1995.

Cargill, T., C++ Programming Style, Addison Wesley, 1992.

Chillarege, R., "Orthogonal Defect Classification", IEEE Transactions on Software Engineering,
1992.

Cuthill, B., "Applicability of Object Oriented Design Methods and C++ to Safety Critical
Systems", Proceedings of the Digital System Reliability and Nuclear Safety Workshop, NUREG
CP-0136, NIST SP 500-216, 1993.

U.S. Department of Defense, Software Development Standard, MIL-Std-2167A, August, 1986,

Appendix C.

Eckel, B., "Exception Handling in C++", Embedded Systems Programming, Vol.8, No. 1,
January, 1995.

Harbison, S.P., and G.L. Steele, C: A Reference Manual, Prentice Hall, Englewood Cliffs, NJ,

1987

Institute of Electrical and Electronics Engineers, IEEE Std 100-1977, IEEE Standard Dictionary
of Electrical and Electronic Terms.

Institute of Electrical and Electronics Engineers, IEEE Std 610.12-1990, IEEE Standard

Glossary of Software Engineering Terminology.

Kernighan, B.J and P. J. Plauger, The Elements of Programming Style, Second Edition, McGraw-
Hill, New York, 1978.

Koeman, S. and S. Ross, "Optimize Your Code to Run Faster and Jump Higher with the Visual
C++ 2.0 Compiler," Microsoft Systems Journal, 1995.

Liao, Y., "Requirements Directed Automatic Instrumentation Generation for Program
Monitoring and Measuring," In IEEE Transactions on Software Engineering, 1991.

Meek, B.L., "Early High-Level Languages," In Software Engineer's Reference Book, J.D.
McDermid, ed., CRC Press, Inc., 1993.

4-59 NUREG/CR-6463 Rev. 1

Parnas, D.L., A.J. van Schouwen, and S.P. Kwan, "Evaluation of Safety Critical Software,"
Comm. ACM, Vol. 33, No. 6, p. 636, June, 1990.

Plauger, P.J., "Under Construction", Embedded Systems Programming, Vol.8, No.4, Apr. 1995,
pp. 125-128.

Plum, T. and D. Saks, C++ Programming Guidelines, Plum Hall, 1991.

Porter, A., The Best C/C++ Tips Ever. Osborne McGraw-Hill, New York, 1993.

Spuler, D.A., C++ and C Debugging, Testing, and Reliability, Prentice Hall, Englewood Cliffs,
New Jersey, 1994.

Thayer, R., "Software Reliability Study," Rome Air Development Center report RADC TR 76-
238, March 1976.

Witt, B.I. and F.T. Baker, and W.W. Merritt, Software Architecture and Design, Van Nostrand
Reinhold, New York, 1994.

NUREG/CR-6463, Rev. 1 4-60

5 PLC Ladder Logic

This chapter discusses use of Programmable Logic Controller (PLC) Ladder Logic in safety systems.
The chapter is organized in accordance with the framework of Chapter 2. Section 5.1 discusses
reliability-related attributes of PLC Ladder Logic; Section 5.2 discusses robustness-related attributes
of Ladder Logic; Section 5.3 discusses traceability-related attributes; and Section 5.4 describes
maintainability-related attributes. A summary matrix showing the relationship between generic and
language specific guidelines, together with weighting factors, is included in Appendix B. Language-
specific weighting factors were based on the special nature of the language with its industrial control
and hardware orientation together with limited data types.

At present, Ladder Logic is the principal problem solving (application) language for PLCs23.
Although programming considerations are largely common, the variety of PLC models and the
absence of a single standard that unambiguously defines Ladder Logic complicate the issue of
defining some guidelines and providing examples. Most of the programming examples in this

chapter and Appendix A use the Allen Bradley PLC-5 variety of Ladder Logic. However, the use of
this PLC as an example should neither be interpreted as an endorsement or criticism of that product
line.

5.1 Reliability

The reliability of a PLC Ladder Logic program means its ability to perform its required functions
under stated conditions for a specified period of time (IEEE, 1990). Reliability depends on the
runtime predictability of the following:

*Memory utilization
-Control flow
-Timing.

PLC Ladder Logic-specific guidelines are described in the following sections.

5.1.1 Predictability of Memory Utilization

The key element in predictability of memory utilization is to avoid the use of dynamic memory
allocation. However, PLC Ladder Logic does not specifically allow for dynamic memory allocation.
In general, memory required by the program is static at runtime. For each variable that the program

23A PLC is a special purpose computer for industrial control applications. More complete descriptions of
both PLCs and the Ladder Logic programming language are provided in Appendix A.

5-1 NUREG/CR-6463 Rev. 1

uses, there is a specified memory location in a data table file. Each program is stored in a program
file whose size is determined during compilation or translation. Thus, the generic guidelines are not
relevant for Ladder Logic programs.

The only memory allocation that is not defined prior to runtime is memory utilization by the
"operating system" (PLC firmware) for stack and queue purposes. However, this memory allocation
is beyond the scope of the PLC Ladder Logic controller. In general, stack allocation should not be
a cause of program crashes due to restrictions imposed by the Ladder Logic programming
environment. In some PLC models these restrictions are limits on the number of parameters passed
to a subroutine or on nesting levels, in other PLC models, other controls are used. The intent of these
is to prevent the PLC programmer from causing failures due to memory management problems.

5.1.2 Predictability of Control Flow

Predictability of control flow is the capability to determine easily and unambiguously what path (i.e.,
which set of branches and in what order) the program will execute under specified conditions. This
subsection discusses guidelines related to the following attributes:

-Maximizing structure
-Minimizing control flow complexity
-Initializing variables before use
-Single entry and exit points for subprograms
*Minimizing interface ambiguities
*Use of data typing
-Accounting for precision and accuracy
*Order of precedence of arithmetic, logical, and functional operators
-Avoiding functions or procedures with side effects
-Separating assignment from evaluation
*Proper handling of program instrumentation
*Controlling class library size
-Minimizing use of dynamic binding
'Controlling operator overloading.

5.1.2.1 Maximizing Structure

The generic guidelines apply. Use of goto or equivalent statements resulting in an unstructured shift
of execution from one branch of a program to another should be avoided because such programs are
difficult to trace and understand.

Ladder Logic language allows the programmer to use goto statements. In Ladder Logic language,
there is no mechanism to force the programmer to develop a structured program. A sample use of

NUREG/CR-6463, Rev. 1 5-2

the goto (JMP) command is shown in Figure 5-1. Whether goto statements should be banned in a
project depends on the characteristics of the selected PLC. Some versions of Ladder Logic allow
the maximization of structure by the use of block structured code and calls to subroutines. When
available, these constructs should be utilized.

However, not all PLC Ladder Logic LOL
implementations support subroutines, (JM,)
especially in smaller models. Fewer still
support parameter passing to subroutines or
subroutines with local memory. In the case
of a PLC without subroutine support, the LOGIC RUNGS

jump to label illustrated in Figure 5-1 may
be the only mechanisms available to pro-
vide control flow over program segments. LBL

If goto statements are used, it is necessary Figure 5-1 Use of goto
to justify why such statements are needed
and why alternative programming methods
could not be used. The following specific guidelines are applicable if the goto (or JMP) is used:

Use watchdog timers or scan counters with backward jumps. The PLC does not limit
direction, so that the program can jump backwards. This backward movement could result
in an internal watchdog timer expiration, causing the PLC to enter a fault state. This is
another reason to require a timer or a scan counter to protect the integrity of the program (see
guidelines below).

Ensure that data initialization has occurred before making the jump. Since logic between
the JMP and the LBL instructions are not scanned by the PLC, data table words and bits can
be left in an non-initialized state. This could breach a safety-critical application.

5.1.2.2 Minimizing Control Flow Complexity

The generic guidelines are applicable. The control flow in Ladder Logic is controlled by "if..then"
structures, making it is easy to predict run-time behavior of a single statement. Even a relatively
complex control flow structure, as shown in Figure 4.2, is reviewable in PLC Ladder Logic.
However, it is not always so easy to predict behavior on the program level, when many rungs are
involved. A further complication is the complexity/feature set of the specific Ladder Logic
implementation being used. There are significant differences in various models of PLCs.

The specific guidelines related to control-flow are as follows:

Decomposition. The Ladder Logic program should be subdivided into cohesive subroutines.

5-3 NUREG/CR-6463 Rev. 1

Nesting level limits. Care should be taken to ensure that nesting levels are not excessive.
The maximum nesting level may be defined on a project-specific basis. For some PLCs,
there is a limit on the maximum number of levels.

-- Al I ()

--- (I)

I €)

I ()

II ()

Figure 5-2 Sample of "Complex" Control Structure

Limitation for use other than Boolean functions. PLC Ladder Logic should be limited to its
primary intended purpose, i.e., interlocks and other Boolean applications. The above
diagram is a good example of how Ladder Logic used in such a manner can be quite clear
and easy to understand, even when expressing a complex boolean relationship. The same
cannot be said for the use of Ladder Logic for mathematical functions or other purposes. In
such cases, the code can be more complex and difficult to understand. If Ladder Logic is
needed for such code, extensive documentation is necessary to make its purpose clear in a
production system.

Impact of the underlying PLC data base. Predictability of the behavior of entire PLC
programs depends not only on the Ladder Logic program itself but also on the interaction
with the PLC data base. It is not unusual for PLC programs to consist of dozens of rungs of
logic applied to a single global variable base. There is a significant potential for
programming errors. Proper and strict management of this variable base, or PLC memory
map, and adherence to a methodology for using these variables are required for the safe
programming of PLCs. These guidelines are discussed later.

NUREG/CR-6463, Rev. 1 5-4

5.1.2.3 Initialization of Variables Before Use

Proper variable initialization is critical for Ladder Logic programs. However, the generic guideline
is applicable in a manner somewhat different from other high-level languages because of the
differences in which initialization must occur in different Ladder Logic implementations. The
following are specific guidelines.

Initialization of variables in Ladder Logic programs. Where supported, variables should be
initialized in the Ladder Logic code. Explicit initialization of variables in Ladder Logic, or
any of the other PLC Languages, is one of the requirements of the IEC 1131-3 PLC
Language Specification. Unfortunately, few if any currently available PLC systems support
this concept at the source code level. It is anticipated that the feature will become more
common in future implementations.

Initialization at program load time. Many, but not all, PLC development environments
allow the programmer to set initial values for PLC variables, which are then subsequently
uploaded to the PLC. Others simply initialize the variable pools to zero. Both the PLC
programmer and auditor should be aware of how the particular PLC system chosen for a
safety-critical application operates in this regard, which should be noted in the PLC program
documentation. Relying on the development environment to upload initial values of variables
does not automatically ensure that all variables were correctly initialized. Also, the
programmer normally has the capability to initialize the data table files manually, not through
explicit assignment in the Ladder Logic program.

Initialization at power up. Initialization should be performed every time the system is
powered up, restarts operation, or recovers from a failure. An initialization subprogram can
handle all the program initialization issues, not only variables, when the PLC is turned into
RUN mode. This procedure is recommended unless other means for ensuring correct
initialization are in place.

The following is an example of initializing some words to an explicit value (e.g, the boiling
point of a liquid) into the calculation:

I Move 1
Source: 2321
Dest: N7:10

- --- 232]

5-5 NUREG/CR-6463 Rev. 1

Another example is the executive program that calls an initialization subroutine shown in
Figure 5-3. Many PLCs have a mechanism similar to the SYSTEM_INITIAL shown in the
figure: a flag from the operating system signals the first scan of the PLC. Some PLCs
further distinguish this first scan as a either a Cold Start, when initialization of variables may
be necessary, or a Warm Start, in which all variables have successfully retained their values
since the PLC was powered down. Specific initialization actions are required in these
circumstances, depending on the application. However, critical variables should be explicitly
initialized in the program in a start up scan subroutine.

Accounting for mode changes. Initialization may also be a concern when an operator
changes the mode of operation. The program should not rely on assumed prior conditions
to initialize after a mode change.

5.1.2.4 Single Entry and Exit Points in Subprograms

The generic guidelines apply. Ladder Logic implementations supporting subroutines generally allow
only a single entry point to those subroutines. When the program jumps to such a subroutine, the
entry point will always be the first rung. However, Ladder Logic allows the use of multiple exits by
placing a RETURN rung at different locations along the execution path. An example of multiple
exits is shown in Figure 5-4; an equivalent program with a single exit is also presented. It should be
noted that the end of program statement acts as a RETURN rung so that it is not necessary to
explicitly include one. When passing parameters, however, the program needs the RETURN
statement complete with the parameter return address.

In the case of a PLC system without explicit subroutine support, it is even more critical that all
subprograms (implemented with JMP to label) have a single entry and exit point. Not only will this
simplify understanding of the program, but it will also contribute to correct operation. On many PLC
systems, overlapping or nested JMP commands could cause counter-intuitive and difficult-to-
understand results at run time.

Guidelines for a single exit requirement can be established in the programming manual. Use of
multiple exit points may be justified by the developer by showing that a single exit causes more
problems than it fixes. When using multiple exit points, it is necessary to ensure that the state of the
data tables will be unambiguously known at all exit points.

NUREG/CR-6463, Rev. 1 5-6

Pilo #2 Main ProjsXKX3 Pagelyry 14s46 12/07/94

SUBROUTINS: KRIN - RZVx8I03 I

on the first scan of the program,XINXTXALZZ subroutine is called
to met all programable paraemters. It sets the variable XYBTZKLIXNTXAL
high for one additional mcan. RraD STATUS subroutine is called
to provide the required information to XNXTXALXKZ subroutine.

SUBROUTIMS: INITIALIZZ

INPUTS: N14.1 BYBJLBTAT_WORD RMURNs 314 :1 SYBTLRTAT_WORD
31411/5 IMMOUMATIO31 N14*1/10 EYNTZK_INTXAL
N14il/6 IN37RJXLTI0N2 N14:1/12 A-OR_SLOIC
N14t1/7 XNFORMLTION3 314s:2 CANIME 3NSME
N14i1/10 BYBTULINXTXAL 314t:3/0 LMP_YT PROCESS
8:1/15 PLC-5 performing First Scan

A masked mhove is used to pasothe first 8 bit* of word N14t0 to word
N14:1 SYSTILBTAT-WORD. This is to prevent overwriting other status
bit* that are stored in W14tl.

PXOC-5
performing
First
Program Scan

READ-STATUS
8:1/13JE

SYSINPUTITIAL

N14il/10

Figre -3 se f n itiliztio SBrotineA-WR

5-7 ~~NURGCR6N Rv

0 SUBROUTINE
INPUT PAR: N10: 0
INPUT PAR: M1021

INPUT-1 OUTPUT
N10:010 N10:410

RICT
uZTURN

RETURN PAR: N10:4

INPUT-2 OUTPUT
N10:1/0 N10:510

2

RZT

RETURN

[7fMZTURN PAR: N10.5

4 (ZND)

ALTZRNhTIVX SINGLE EXIT PROGRAN

- SRI

0 SUBROUTINX
nWUT PAR: N10: 0
INPUT PAR: K10: I

INPUT-1 OUTPUT
N10tolo N10:4/0

1 i

INPUT j INPUT-2 OUTPUT
N102010 N10t110 N10:4/0

2

RZT
3 RETURN

[RETURN PAR: N10:4

"F (ZND)-]

Figure 5-4 Ladder Logic Multiple RETURN

NUREG/CR-6463, Rev. 1 5-8

5.1.2.5 Minimization of Interface Ambiguities

The generic guidelines have limited applicability. Interface errors account for a significant portion
of coding errors. Unfortunately, Ladder Logic has limited support for avoiding such errors. The
following are specific measures that can be used:

Validity checking.: The preferred approach is testing for the validity of input arguments
before they are passed to the data table addresses used by the subroutine. Typically, such
validity checking would be a range check done in the rung previous to the subroutine jump
(JSR) call. As an alternative, it can be done at the beginning of the subroutine. In the
example in Figure 5-4, each input parameter is in the range [0,1], but is stored as a 16-bit
integer. A validity test is required to verify if the actual input is limited to the valid range.

Comments. Internal comments and documentation of interfaces are important to avoid
interface ambiguities and errors.

Type Checking. Type checking can be used to detect some basic types of interface
incompatibilities. However, it is the least effective since most variables are integers.

5.1.2.6 Use of Data Typing

The generic guidelines have limited applicability. In general, most Ladder Logic implementations
are weakly typed. It is therefore not possible to gain the advantages of strong data typing. The
following are specific guidelines.

Ensure that the data table properly accounts for variable types. The data tables must be
constructed to account for the differing lengths and storage characteristics of data types. For
example, in the TSX PLC line sold by AEG/Schneider, identifiers W3, DW3, and FW3 all
refer to the same location in memory, but are treated as a 16-bit integer, a 32 bit integer (in
conjunction with the next location, W4), or a 32-bit floating point value (again with W4)
respectively. Care must be taken, in the event that DW3 is used as a 32 bit integer, that
neither W3 nor W4 is used as 16-bit integers elsewhere in the program, as this would result
in corrupted data. Data types supported by the Allen Bradley PLC5 line are floating point,
integer, binary, BCD/HEX, and ASCII. A problem can exist in certain instructions where
the result of a calculation is incompatible with the resulting data table constructs, such as a
negative integer being written into a BCD (or decimal) data table area. In this case, the data
would be stored incorrectly, which could result in a latent failure that would be manifested
subsequently. However, should the number being written into the resulting word be too large
in quantity, and a file type instruction is being used, the risk exists that the PLC will fault
(typically, a 'BAD OPERAND' fault would occur) immediately.

5-9 NUREG/CR-6463 Rev. 1

Ensure that type conversion will not result in an error. For example, a floating point
word/file transfer to an integer data type will result in rounding, and in fact, some floating
point words may be truncated.

Develop project-specific guidelines. The nature and extent of data typing varies from PLC
implementation to implementation. It is therefore imperative that project-specific guidelines
on the use of available data types and appropriate safeguards be developed. These guidelines
should reflect specific PLC characteristics, and compliance with these guidelines should be
monitored.

5.1.2.7 Precision and Accuracy

The general guidelines are applicable. The specific guideline is to ensure that the accuracy required
by the algorithm is supported. Most Ladder Logic programs handle integer and bit variables.
Algorithms that require floating point arithmetic must be analyzed on a case by case basis to verify
that the processor and language provide the accuracy required by the algorithm.

5.1.2.8 Order of Precedence of Arithmetic, Logical, and Functional Operators

Ladder Logic implementations vary in how they handle order of precedence in arithmetic and logical
expressions. Many implementations perform arithmetic operations by means of dedicated ADD,
SUBTRACT, MULTIPLY and DIVIDE blocks, etc, as illustrated in the Allen-Bradley and Modicon
example programs illustrated here. These blocks only accept a predetermined number of parameters,
and so order of precedence is not an issue in systems of this type.

Other PLC systems do allow complex mathematical statements by means of "operation blocks" or
compute and transfer (CPT) blocks. Here, the order of precedence of arithmetic operators can be an
issue. Unfortunately, there is no consensus among PLC implementations of this type as to the order
of precedence of arithmetic operators. Hence, the liberal use of parenthesis (when available) is
recommended to force the desired execution order. An example follows:

I0 0 --- OPERATE---------
--. :1

:1 : (W1+W2/W3) * (W53 (W3))/W34->W34

The operate block in this Ladder Logic example contains the complex expression footnoted as : 1:.
In the case of the Allen Bradley PLC5 controller, a complex expression in a COMPUTE (CPT) block
instruction can also be entered. As an example, a unit conversion could be done in one CPT block

NUREG/CR-6463, Rev. 1 5-10

[(N7:0*2) - 32]. Again, parentheses are needed. Order of evaluation of expressions on systems that
support this type of construct will vary by make and manufacturer. In this instance, order of
evaluation of the calculations was explicitly indicated by the use of parentheses. Both the
programmer and the auditor should be aware of what the requirements are for the specific PLC
system used.

Order of execution of logical elements is controlled by the Ladder Logic network itself. Whereas
all Ladder Logic implementations execute each network of Ladder Logic sequentially, the order of
execution of each network of logic varies from implementation to implementation. The specific
nature of the PLC system used in a safety-critical application must be explicitly known by both the
programmer and auditor. Use of Ladder Logic constructs that depend for their correct operation
upon the specific nature of the Ladder Logic network execution order should be avoided.

5.1.2.9 Avoiding Functions or Procedures with Side Effects

Generic guidelines are applicable.

5.1.2.10 Separating Assignment from Evaluation

Some Ladder Logic implementations do not allow external assignment or even expression evaluation
as part of conditional statements. On these systems, conditional statements are restricted to simple
variable comparisons, and the generic guidelines do not apply.

However, expression evaluation within comparison blocks is allowed on many PLC systems. For
example, on the Allen Bradley PLC5, the CMP instruction accepts expressions for data comparisons.
The Modicon 984 line has no separate compare instruction, but utilizes a side effect of the subtract
block to implement comparison functions. On these systems, it is not possible to separate
assignment from evaluation of conditional statements.

In such cases, the specific guidelines are as follows:

Use buffer variables or output coils. A conditional statement in a PLC requiring an
assignment should use a designated dummy variable as a buffer. This variable is used for no
purpose other than as a memory buffer for unwanted assignments. This practice is easily
auditable, and prevents confusion of assignment and evaluation of conditionals. Many (but
not all) PLCs require that each network of Ladder Logic contain an output coil, even though
the boolean result of the network is meaningless in the context of the application.

Develop project-specific guidelines for separating assignment from evaluation. The features
and functionality of the PLC system used for a safety critical application regarding the
separation of assignment from evaluation should be documented and conformance should
be monitored.

5-11 NUREG/CR-6463 Rev. 1

5.1.2.11 Proper Handling of Program Instrumentation

The generic guidelines described in Chapter 2 are applicable. The following are specific guidelines.

Do not perform on-line modification. Most PLCs provide a facility that allows the
modification of the PLC program while the PLC is executing that program. The operational
consequences of utilizing this feature during operation can be quite dangerous. First, a
programmer could accidentally introduce errors into a running PLC program by using this
feature. Secondly, the added communications load on the PLC processor during the program
change transfer could also result in delays that prevent needed actions from happening in
time.

Do not activate on-line monitoring facilities for time critical operations. There should be
no use of debuggers, instrumentation, or monitors during PLC operation of time-critical
functions unless such monitoring is part of the baseline design and its impact on timing has
been accounted for. If such monitoring is necessary, it should be done in an off-line mode
or using a simulator/emulator. If operations are not time critical, then on-line monitoring
may be performed, but with caution and only under conditions where it can be guaranteed
that monitoring of non-time-critical functions will not affect time-critical functions.

5.1.2.12 Control of Class Library Size

Ladder Logic does not support classes and objects. Therefore, the generic guidelines are not
applicable.

5.1.2.13 Minimizing Dynamic Binding

Ladder Logic does not support dynamic binding. All structures must be defined by the programmer
before compilation. Therefore, the generic guidelines are not applicable.

5.1.2.14 Control of Operator Overloading

The generic guidelines are not applicable. Ladder Logic prohibits operator overloading and does not
support polymorphism.

NUREG/CR-6463, Rev. 1 5-12

5.1.3 Predictability of Timing

Predictability of timing is crucial in a safety system used in real-time control. Timing-specific
concerns relevant to PLCs include:

0 Minimizing the use of tasking
0 Minimize the use of interrupt-driven processing
• Input/output timing
0 Avoidance of self-modifying code

5.1.3.1 Minimizing the Use of Tasking

While some PLC systems do not support multitasking in any form, many support it either implicitly
or explicitly. Implicit multitasking occurs where only one Ladder Logic program can be run, but the
firmware manages handling the Ladder Logic program scan, remote I/O scan, block data transfers,
and other communications asynchronously (i.e., each as an independent task). Limited multitasking
allows the PLC programmer to create a timed interrupt, a distinct Ladder Logic program (or section
of Ladder Logic code) designated to be executed at fixed intervals (usually expressed in msec),
regardless of the state of the main program. Other PLCs have complete multitasking capabilities,
with each task having a defined periodicity and separate I/O scan.

The generic guidelines on minimizing the use of tasking apply at the application level. Where
multitasking is supported, caution and prudence must be exercised. The decision of whether or not
to use explicit multitasking (i.e., the simultaneous running of multiple-Ladder Logic programs in a
single PLC) should not be taken lightly. Multitasking is an attractive programming model and may
be simpler at the application level than coding a single task to perform the same functions. However,
worst case execution times, latencies, and coordination of data access may introduce uncertainties
that are unacceptable in safety applications. System-level alternatives, such as the use of multiple
PLC's should be considered if design of a single task is unduly complex.

Specific guidelines for PLC multitasking are as follows:

Account for processing capacity. The PLC program must limit PLC CPU utilization and
provide generous margins to account for variation. CPU bandwidth usage should be
explicitly calculated and shown to be within specified margins. The results of these
calculations should be included in the PLC documentation along with the periodicities of the
various tasks derived from them. Manufacturer's guidelines for CPU bandwidth utilization
should be strictly followed. For implicit multitasking, the Ladder Logic application should
allow a sufficient margin for PLC firmware overhead tasks and for variations in scan times
due to hardware latencies. Where explicit multitasking is used, margins must also include
variations in the application tasks. For example, a 10 msec timed interrupt task may
normally execute in one msec. However, under some cases, 10 msec might be required.

5-13 NUREG/CR-6463 Rev. 1

This situation will prevent other applications and system overhead tasks from being
executed, which will cause a PLC failure. Worst-case conditions must be defined, and
measurements of execution times under these conditions for each task must be made. If it
is not possible to characterize such worst case conditions authoritatively, multitasking should
not be used.

Account for concurrent access to global variables. Another safety related issue in regard to
multitasking in PLCs is that, in many cases, each task accesses the same global variable base
rather than a separate variable base for each task. The potential for programming errors when
global variables can be accessed at different periodicities is significant. For example, an
input that is updated by a 500 msec auxiliary task can be directly referenced by a 10 msec
fast task. Both of these tasks can read or write to the same internal bits and words. The PLC
memory map must be carefully designed, documented, and verified to ensure that concurrent
data access has been properly implemented. If it is not possible to model and represent this
concurrent access authoritatively, multitasking in conjunction with a global database should
not be used.

5.1.3.2 Minimizing the Use of Interrupt-Driven Processing

Ladder logic programs in themselves are not normally implemented using an interrupt driven
architecture. However, they do exist within an interrupt driven runtime environment. The indirect
impact of interrupt driven processing must be considered in the design of the Ladder Logic
application. The following guidelines apply:

Account for interrupts in critical response times. PLC response times can be affected by
timer interrupts, local input interrupts, 1/O scan interrupts, and other event-driven interrupts.
Such interrupt processing may not be under the control of the application programmer.
However, since this adds execution time and overhead time (for stack maintenance, etc.) to
the overall system response, it must be considered where response times are critical. This
issue is further discussed in the following section on I/O timing.

Use of interrupts for exception handling and recovery. Interrupt-driven processing can be
an asset to safety when used to recover from processor hangs (via a watchdog timer) or more
general processor failures (via a fault routine). These issues are discussed in Section 4.2.

5.1.3.3 Input and Output Timing

The programmer must ensure that the order of program execution is such that variables are updated
prior to their use and that the values of inputs or the result of the previous step are current. Timing
issues that should be verified in an audit or review of a real-time PLC system depend strongly on
factors specific to the methods used by various PLC operating systems for scanning the real world

NUREG/CR-6463, Rev. 1 5-14

I/O. Generally speaking, these methods can be classed into four categories:

1) PLC has no separate 1/0 scan - 1/0 is updated as required by each rung of

Ladder Logic ("Immediate I/O update").

2) PLC 1/0 scan occurs asynchronously from Ladder Logic scan ("Asynchronous").

This allows values of inputs to change during the course of a single Ladder Logic

scan.

3) PLC I/O scan occurs asynchronously from Ladder Logic scan, but input and

output values are "captured" in a buffer to eliminate the possibility of variance during

the Ladder Logic scan ("Captured Asynchronous").

4) PLC 1/0 scan is fully synchronous with the Ladder Logic scan ("Synchronous").

In addition, PLC systems vary widely in the delay time (i.e., latency) between when an event related

to a sensor occurs and when it is seen by the Ladder Logic system. Similarly, there is a latency

between when an actuator is commanded by the Ladder Logic program and the actual activation.

These delay times are influenced by:

* The type of sensor signal used
* The input modules' input filter delay
* The I/O scan type mentioned above
* The data rate between the PLC processor and its I/O racks.

Thus, the PLC program design and documentation should explicitly address the 1/0 impact of

response time. Timing issues that may need to be reviewed include:

Accounting for multiple scans of the same variable. In a multitasking software system, an

input variable might be read by segments of the program in different scans on PLC systems

that allow this (e.g., Immediate I/O and Asynchronous 1/0 types).

*Accounting for the effect of hardware-induced latency of input and output signals. This delay and

its characteristics should be known (i.e., measured) and documented as part of the PLC program

documentation.

*Accounting for the effect of sensor induced latency. Sensors themselves have different response

times in differing states. For example, if a proximity switch has a latent response time on both sides

(blocked and not blocked), then the software coistructs need to be cognizant of this delay, especially

when this data is used in conjunction with other data and certain programming methodologies such

as one shots.

5-15 NUREG/CR-6463 Rev. 1

* Accounting for the effect of /O data rates. Input/output data rates can vary from less than 38.4
kilobits per second (KBPS) to greater than 12 megabits per second (MBPS).

*Synchronization of replicated PLCs. Multiple PLCs in safety systems might be used in redundant
configurations based on hot backup (dual redundant) m out of n voting or median selection (for triple
redundancy and higher). Some of these applications might require that the programs executed on
different PLCs be synchronized. If this is indeed the case, care should be taken to ensure selection
of a redundant PLC system that supports the desired degree of synchronization. Hot backup, or triply
redundant, PLCs have varying types of synchronization, ranging from none to twice per PLC scan
as well as explicit synchronization of PLC program execution and variable pool data after the
execution of each network of Ladder Logic. As the PLC programmer has little or no control over
the synchronization algorithms used, the usage of synchronization of Ladder Logic programs on
PLCs of this type is not a direct application-level issue. However, the strengths and limitations of
the redundancy management and synchronization design should be well documented and understood.
The impact in the design should be explicitly documented, and a rigorous testing program (also
beyond the scope of this document) need to be considered.

5.1.3.4 Avoidance of Self-Modifying Code

Most Ladder Logic implementations do not provide any features that allow the program to modify
itself. However, modification of run time environment parameters is possible. The following
specific guidelines apply to these parameters:

-No changes to system configuration parameters. System configuration parameters should
be accessed only by the appropriate routines. This can be verified by the use of cross reference
tables generated by the programming tool to determine which subroutines are accessing the
configuration variables. However, cross reference information WILL NOT show usage of data table
areas accessed by indirect and indexed addressing programming techniques. Configuration
parameters depend on the specific processor used and should be identified in the design documents.

* No changes to task periodicities or running tasks. If multitasking is to be used, there should
be no changes to task periodicity, even if it is possible to modify these periodicities from the
application program. Some PLCs also allow other types of control over PLC operation, e.g.,
stopping the PLC program execution or stopping/starting individual tasks. These features should
not be utilized in safety critical systems.

5.2 Robustness

Robustness refers to the capability of the software to survive abnormal or other unanticipated
conditions. The intermediate attributes of robustness are:

NUREG/CR-6463, Rev. 1 5-16

-Transparency of functional diversity
-Controlled Use of Exception Handling
-Input and Output Checking
*Error Containment.

These are discussed in the following sections.

5.2.1 Transparency of Functional Diversity

There are no specific guidelines for functional diversity. The generic guidelines apply.

5.2.2 Exception Handling

The generic guidelines are not directly applicable due to the unique software architecture of PLCs

and the interaction with the hardware. The following are specific guidelines for exception handling

supported by PLCs:

'Use of system status information for recovery
'Accounting for shutdown behavior
'Use of watchdog timers.

These are described below.

5.2.2.1 Use of System Status Information for Recovery

When available, system status information should be used as part of the detection and recovery

process. The nature and extent of the PLC system status monitoring varies among manufacturers and

models. Some PLCs provide Ladder Logic software commands which output status bits that indicate

abnormal conditions of execution (not restricted to hardware faults). Examples of these problems

are arithmetic overflow, full communication queues, bad addresses, and program assembly errors.

These bits can be used by the Ladder Logic program to initiate exception handling similar to that for

hardware faults. Most PLCs immediately shut down if a RAM memory checksum error or other seri-

ous system error occurs, thereby eliminating the need for a status bit for this condition. Figure 5-5

shows a monitoring routine in an Allen Bradley PLC-5 that checks the status of error bits and

annunciates to the operator that the system experiences problems. The information can also be used

by the programmer to write an exception handling routine which either handles the problem or

directs the Ladder Logic application program to a predefined state, such as shutting down the

controlled system.

5-17 NUREG/CR-6463 Rev. 1

Specific guidelines for use of system status information are:

°Completeness. All relevant information should be used to detect and determine the
appropriate recovery action.

-Correctness. The recovery action should be appropriate for the condition.

sObservability. The Ladder Logic program should annunciate and log the condition.

NUREG/CR-6463, Rev. 1 5-18

PLC-5 IADMU LOXZ?XCX ReProt header (C) XONS ZaC. 1967-1991

File 043 33VNUW_1 P=JZZZZXPC5 adr itn Pagetyry 10:55 12/08/94

SMUaozuu mwNu=zATM - NMEXsON 0

NMIk 1043:0 STE!_STA_WORD 104302/5 m_pONNLD_EAAWD
343:0/1 PRM_.PS_.OK 343t2/4 B_TB_XT_X=xOD
343:0/2 SZCW_PI_OK 343s2/7 BI3.PO XZ!XM
1043:0/10 ETBML_XX"XAL 304302/8 2-70V=PRzs=T
U43s0/l1 P=_L.XNXOUT 3s32/9 I_yoa=_3NABUW
343:1 BTAUB-.W=OR. 343s32/11 S_PZR_.M.l.pRo
34331/0 N_CURAT 34303 EMAtTE_-OOL-2
U431l/1 2_OVMVDXR_^.VOW U330/11 N_Aaoa=a_l
343t2 ETTXV_ORD-1 343t3/12 #_AWR=9_2
343:2/0 B_pA.1LCUOCKEW3 34303/13 B_XLO&D_X=Ljlpm3
W432/ O_RULOWh 343:3/14 6-RAN-AhowU
U43t2/2 x_PROGJW=D U43t3/13 x_PALPPAn%=!
U43t2/3 E..3..3D

PROCU8EZ3 A=W"ZATOR receive* the status information listed above and calculate* output
bits which are forced high If any ebnornsl cndition is detected. The
ANMXIATOR word Is packed and returned to RM subroutine to be passed to the
Plant cmuter and Annunciator. This subroutine checks for acm-critical/soft
failure* that do not affect the proaceof the system, but notify the
operator that the system requires Maintenance.

AI XAT_1ER= AMMAOM

313PA0/1 43

U43:0/2 4o/

2 W1
EYTMLXKXTXAL _TTNMT

3 i
PtLL_ZOUW-OL-ZOO

U43sOl :0/11/
4 i

a_CUM RRYZcm

5 U41/

343:2/0U3t/

Figure 5-5 Health Monitoring Routine Sample Program

5-19 NUREG/CR-6463 Rev. 1

S-RUN_.ODE PLC._XODE_ERR
343t2/1 N43:4/77----I / I)
B-PROC_NODE

343 :2/2

_EBTNODZ
N43:2/3

S_DOWX_LD.IKhLD
343:2/5

S_TIT._EDZT_NODE
343:t2/6

9_REtLPOSTZON PLC R=U_POBITION
N43:2/7 N43:4/8

8 i I)
B_FORCZ_PRZBSNT FORCEZSPRESET

N43:2/8 N43:4/9
9 I C)

B_FORC'_KE lLED FORCES_NEBLED
N43:2/9 N43:4/10

10 s

B_PER_ONLIM_PRO PER]_ONLINLPROG
N43t2/11 N43:4/11' - I ()

S_JU)DRXSS_1 BCPILSWM_ZRR
N43:3/11 N43:4/12

2 - I l)
8-ADDR.EB_2
N43:3/12

S_LOAD _mLEPRK
343 :3/13

--- I-I--
RA-A CKUP
N43:3/14

BJULPROTZCT
N43:3/15

N43:4 ANNUNCIATOR
N43:4/1 PRIKX_PS_ERR

N43:4/2 SECOND_PE_ERR

N43:4/3 _SYSTEM_INTIAL
N43:4/4 _POwL_TINEOUT
K43:4/5 ARXTMTIC ZRR
N43:4/6 RMLCRCSMLMU_ER
N43:4/7 PLCJI0DZ_ERR
N43:4/8 PLCREN_POBSTION
N43:4/9 FORCZB_PREENT
N43:4/10 FORCES_XERBLED
N43:4/11 PERF_ONLIX_PROG
N43:4/12 BCXPLU-SWCM_ERR ANNUNC-I_RET

13 RTN

=WmPARt N43t=4

14 (END)-

Figure 5-5 Health Monitoring Routine Sample Program (continued)

NUREG/CR-6463, Rev. 1 5-20

5.2.2.2 Accounting for Shutdown Behavior

The Ladder Logic program should properly account for PLC behavior at shutdown. Generally, all
outputs turn off, but this is not always true. The PLC system is designed so that such a shutdown
places the system in a fail-safe condition.

Some PLCs have the capability to run a designated Ladder Logic subroutine which the processor
automatically executes when it encounters a condition that will cause execution of the main Ladder
Logic routine to stop. In the PLC5, this subroutine is called a "fault routine". It allows the designer
to decide on the appropriate action, including shutting down the system in a safe manner. An
example of a simple fault routine is shown in Figure 5-6. The routine annunciates to the operator
that the system is experiencing problems and brings the system to a halt. Another example, shown
in Figure 5-7, clears the major fault error bits and restarts operation by forcing the PLC to perform
a startup procedure. Should the fault still exist, then the fault word will be set to reflect this, and the
fault routine will be executed again. It may be desirable to limit the number of times the fault
routine runs in some cases.

The following specific guidelines apply to exception handling fault routines:

* Completeness. The fault routine cannot be relied on to detect all instances of program
crashes. Additional provisions that may be required by the specific safety requirements of
the application for PLC major faults must be specified.

* Observability. The fault routine should annunciate and log the condition. The execution of
the fault routine should not be masked.

* Validity checking. The conditions under which the fault routine is running may have
corrupted program memory, data files, or I/O. The fault routine must ensure the validity of
its environment before proceeding to execute.

0 Fail safe properties in the absence of the fault routine. The fault routine cannot be relied
upon to operate under every major failure condition. The PLC may be so disabled that this
is not possible. Thus, the system design should ensure a safe state in the absence of the
successful execution of the fault routine.

5-21 NUREG/CR-6463 Rev. 1

File #47 FAULT Proj:XXXXX3= - Pages 165 I0:12 12/08/94

EMOtOUTZ s_- FAULT _FILZ_ - RZV_ION 0

GLOBAL OUTPUTBs 0:030/16

The FAULT ROUTIME File # is met in the ITILXZ]I subroutine.
This is done by moving the integer 47 (N7:12) into the status
word 8:29. The FAULT file implements the following actions:

1) Unlatch the STATUX (&larm condition) and use an XOT
instruction to write the outout imediately.

BTATUB
0:030/16

Use Zsmediate Output (1OT) instructions to force the status outputs imediately.

30
1 [XOTI--
2 [M)__

Figure 5-6 Fault Routine That Alarms and Halts Sample Program

NUREG/CR-6463, Rev. 1 5-22

File 047 FAULT ProjsZZ]X= Pagesl6S 10l12 12/08/94

FAULT? FXLZ

The PAUT file will complete the followings

i) unlatch annunciator (alarm conditions) and use an lOT
instruction to write the output imedLiately.

2) Force every bit of the Major Fault Flag, 1:11, to 0 in an
attempt to clear the fault.

3) Latch 8il/15 PLC Performing First Program Scan. This will force
MhXN program to call restart. Dot in Service

Ala=m

0:001/00

0 ()-
OAM

Force every bit of the Major Fault Flag word, B11, to 0. This
will attemt to clear any major faults so that operational
scanning may continue. Status Word 11

NA- MMO

MAerfor n

0

The PLC First Program Scan in forced high.

PXOC-5
performing

First
Program Scan

5:1/15

Write Annunciators immediately. 1

3 EzOTI-
OAR

4 IB- _

Figure 5-7 Fault Routine That Restarts Operation (Sample Program)

5.2.2.3 Watchdog Timer

The PLC system provides an internal watchdog interval timer which is either fixed or set by the
program (depending on PLC manufacturer). The fixed watchdog timer is typically utilized to protect
against a stopped or hung CPU. The timer expiration will shut down the PLC explicitly. The

5-23 NUREG/CR-6463 Rev. 1

software-based watchdog timer is typically utilized to protect against excessive scan times caused
by infinite loops and related failure modes. If under program control, the timer interval should be
set during initialization. If the program scan time exceeds this value, the interval timer expires.
Once the timer interval expires, the PLC halts and declares an error condition. This provides a
mechanism for identifying each scan during which the program exceeds its expected execution time.

Both the Ladder Logic program and the system design should contain provisions to recover from the
timer expiration condition. Ladder Logic provisions include programming the fault routine to handle
the watchdog timer fault bit. System design measures can include an external watchdog timer,
independent of the PLC, that will handle the fault (e.g., by alarming) in case the PLC crashes and
cannot execute the fault routine. The external timer is a second line of defense in the event of a
failure of the Ladder Logic recovery.

5.2.3 Error Containment

The generic guideline has limited applicability. Depending on the capabilities of the PLC, it may
be possible to separate local variables from global variables that provide one line of defense. The
second line of defense is data validation when variables are passed among ladder logic routines, or
when input or output occurs. This was discussed earlier under avoiding interface ambiguities.

5.3 Traceability

Attributes specifically related to traceability include the use of built-in functions and compiled
program libraries.

5.3.1 Use of Built-in Functions

The generic guideline applies. Ladder Logic includes built-in function blocks for frequently used
functions. Ladder Logic applications rely on the PLC operating system and the supported function
set.

The robustness of the PLC operating systems is a function of the quality of the development process.
Generally speaking, PLC operating systems are produced under strict software quality controls, and
are extensively tested. The quality and integrity of operating systems must be affirmed by the
commercial grade dedication process that qualifies the use of the PLC in safety-related applications.

The function set is defined by the PLC manufacturer and these functions are implemented by the
PLC firmware. The quality and integrity of these built-in functions must be affirmed by the
commercial grade dedication process that qualifies the use of the PLC in safety-related applications.

NUREG/CR-6463, Rev. 1 5-24

The built-in functions provided by the PLC are usually simple building blocks and do not obscure
the traceability between the code and the design specification.

5.3.2 Use of Compiled Libraries

The generic guideline applies. Compiled libraries should be used with caution. Some PLCs support
external libraries as optional function blocks written in C or PLIM. In the case of Allen Bradley
PLC-5, they are called "custom application routines" or CARs. They perform functions such as mass
flow control. These routines are 68000 native code, which the PLC 5 executes. Data is passed back
and forth via the PLC data table. Add-on libraries may also be written in Ladder Logic, available
from the manufacturer and other vendors. The following specific guidelines apply:

Accounting for interfacing and integration issues. Where functions from these libraries are
used, special care must be taken to review the integration of these functions into the PLC
Ladder Logic program, such as unintended side effects.

Development process. The same testing, validation, documentation, and visibility into the
development process must be applied to the function blocks as the Ladder Logic software
resident on the parent PLC.

Assessing accuracy and robustness. The accuracy and robustness of the libraries must be
understood as part of the dedication process. This understanding can generally be gained
through testing. However, if source code is unavailable, the testing of necessity must be at
the functional or "black box" level. Careful judgement in assessing the results of such
testing is necessary.

Timing issues. The latency in passing data to the routines and receiving data from the
routines must be understood and documented.

Coprocessors offered by some PLC manufacturers are related to compiled libraries. Coprocessors
are separate processing boards installed in PLCs that accept conventional programming languages
such as C or BASIC. The software programs written in these languages and executed on a different
processor can be used by the ladder logic as function blocks. When coprocessors are used, the
following additional guidelines apply:

* Accounting for interface and integration issues. As was the case with compiled libraries,
special care must be taken to review the integration of coprocessors into Ladder Logic,
particularly with respect to the use of memory and for unintended side effects. Additional
issues are the extent to which hardware error checking is incorporated when data are passed
across a bus or via direct memory transfers. Additional validity checks in software may be
necessary. These considerations should be documented.

5-25 NUREG/CR-6463 Rev. 1

Development process. As was the case for compiled libraries, the same testing, validation,
documentation, and visibility into the development process must be applied to the function
blocks resident in coprocessors as the software resident on the primary PLC.

Failure behavior and robustness. The coprocessor hardware platform should have the same
hardware failure behavior robustness as the "parent" PLC. If not, the software design should
account for the differences.

5.4 Maintainability

The software maintainability lower-level attributes in this section are limited to those affecting
safety. These include the following:

*Readability
-Abstraction
-Functional cohesiveness
*Malleability
*Portability.

5.4.1 Readability

The generic guidelines apply. Readability is essential for review and maintenance of PLC Ladder
Logic safety systems. The graphical notation of Ladder Logic can facilitate understanding the
operation of a single Ladder Logic network. Understanding a complete Ladder Logic program,
however, requires the reader to understand the interactions between many Ladder Logic networks
operating on a global variable database. In many cases, the interaction occurs between Ladder Logic
networks that are pages apart in the documentation. Thus, the programs and databases must be
structured to facilitate understanding by individuals other than those who wrote the code. The
following specific guidelines apply:

Overview documents. Since there is no ladder logic overview function, the review of any
program for readability should include a general overview document. A program flow chart
can be used to document control flow. Documentation should not just explain the purpose
of each network but the purpose of each section of PLC program. The documentation must
be maintained together with the code as changes are made.

Documentation of PLC datafiles. An important component of documentation readability
concerns the documentation of usage of data files - particularly if they are global - with
a data flow description among the data tables.

NUREG/CR-6463, Rev. 1 5-26

5.4.1.1 Notation

The generic guidelines are not applicable. Ladder logic notation is determined by the characteristics
of the specific programming package used. This notation is not readily modifiable by the end user.

5.4.1.2 Conformance to Indentation Guidelines

The guidelines are not applicable to Ladder Logic.

5.4.1.3 Descriptive Identifier Names

Ladder Logic supports the use of descriptive identifiers or tagnames, with lengths between 7 and 32
characters being common. In addition to the identifier, each variable can be described by an address
description. A typical address description has 5 lines of 15 characters each.

The following are specific guidelines:

* Inputs and outputs. The identifiers should be as similar as possible to the names used
externally (e.g., P&I) numbers). Use of the same variable name for different purposes is not
allowed in Ladder Logic.

Consistency with project notation. Ladder Logic names should be consistent with design
documents.

5.4.1.4 Comments and Internal Documentation

The generic guidelines apply. Ladder Logic supports internal documentation by means of "rung
descriptions" and "section headers."

The following are specific guidelines:

Revision level. An important internal documentation feature is the revision level. In some
PLCs, if the revision level is recorded as a comment, it will be disassociated from the code
when it is downloaded to the PLC. To avoid configuration management problems in such
systems, it is recommended that the revision level be recorded as part of the program itself
by storing it in memory as a variable. Figure 4.3 is an example which shows the subroutine
version marked as a comment (not the preferred practice in this case) and not as a memory
location.

5-27 NUREG/CR-6463 Rev. 1

Interfaces. Detailed and unambiguous descriptions of subroutine interfaces and functions
are another important documentation feature that should be verified. As shown in Figure 4.3,
each subroutine should have a detailed description of the input parameters, global variables
(if any), the processing performed by the subroutine, output parameters returned, effect on
global variables, and side effects (if any).

Calling hierarchy. The level of documentation required for incorporation in the program
depends on the complexity of the program/subroutine and on the description provided in
other accompanying documents such as the software design description. Two important
issues to be documented are (1) the hierarchy of subroutines and who is calling whom, and
(2) the flow of data and information among subroutines. These two items, especially the
second one, are important to understand the system and enable independent review. Some
programming shells provide a database and cross references of all data-table variables used
by the program. The designer or an auditor can use these tables to track the flow of
information.

5.4.1.5 Limitations on Subprogram Size

The generic guidelines apply. Due to the limited number of Ladder Logic rungs that can fit on a
single page of documentation, limiting the size of subprograms is important. It is difficult for a
program auditor to follow operation of any program over more than a few pages. However, Ladder
Logic as a language does not enforce any limitations on subroutine size. Moreover, some PLCs only
support the division of programs via JMP to label instructions as there is no subroutine support.
Thus, decisions on program size limitations are dependent on the properties of the individual Ladder
Logic implementation and the project needs. The following are specific guidelines:

Use subroutines and subprograms. For Ladder Logic implementations supporting
subroutines and nesting, there should be a limit on the maximum number of rungs per
routine. Even for PLCs without subroutine capabilities, it should be possible to subdivide the
application into a set of manageably sized subprograms. (The distinction is that after a
subroutine is executed, control is transferred back to the calling program without an explicit
JMP statement). An upper limit might be 50 rungs, but even limits as low as 10 rungs may
be appropriate where visibility is important.

Avoid arbitrary program division. The basis for subdividing programs should be by
function, responsibility, or class of data. This guideline is related to functional cohesiveness
described below.

5.4.1.6 Minimize Mixed Language Programming

The guidelines on minimizing mixed language programs are partially applicable. IEC 1131-3
compliant systems support mixed language programming among the five defined languages in the

NUREG/CR-6463, Rev. 1 5-28

IEC 1131-3 specification. The reason why there are five languages is that each has strengths and
weaknesses. Ladder Logic, for example is an excellent tool for expressing Boolean relationships
between entities, as in an alarming function. However, it is not as clear as Sequential Function
Charts (SFCs) for sequencing operations, nor is it as readable as Structured Text (ST) for complex
mathematical operations.

Thus, readability and maintainability of PLC programs are enhanced when each of these languages,
if available, are utilized for their strengths. However, a judicious balance must be struck. The
following are specific guidelines:

Ensure that proper tools are within the development organization. Such tools include
compilers, debuggers, cross reference generators, testing, and documentation aids. A
multiple language safety application should not be contemplated without adequate support
for maintenance and enhancements for all languages used in the applications.

Use each language according to its strengths. Mixed languages should be used because the
resulting application is easier to maintain or more robust. Additional languages should not
be introduced gratuitously into a safety application. Justification for the use of each
additional language should be included in the documentation.

5.4.1.7 Minimize Obscure or Subtle Programming Constructs

Each make and model of PLC supports a number of obscure and sometimes counter-intuitive
programming constructs in their Ladder Logic implementations. These are normally peculiar to
specific implementations. There should be project guidelines relating to the specific characteristics
of the PLC. It may be advisable to consult the manufacturer's technical support organization to
obtain such information. The following are guidelines common to multiple PLCs (however, they
may not be applicable to all PLCs):

Avoid use of overlapping JMP to label statements or to labels that precede the JMP in the
code. Different systems will execute overlapping or backwards jumps differently, and
sometimes in unpredictable ways.

Minimize indirect addressing. Although program constructs can be more concise using these
addressing techniques, the addresses and functionality presented are not obvious. Without
the proper tools and documentation, however, the underlying logic could be overlooked.
Such indirect addressing should be used sparingly and with adequate documentation.

Use indexed addressing for repeated elements only. Indexed addressing should be used
where there are repeating elements (e.g., thermocouples on a single hot leg). They should
not be used for grouping elements with diverse meanings (e.g., a temporary storage variable
at one location, the value of a sensor at the second, etc.).

5-29 NUREG/CR-6463 Rev. 1

5.4.1.8 Minimize Dispersion of Related Elements

In general, PLC programs are stored by their development environments as a single file or group of
files. This precludes the dispersion of related elements among several files from being an issue with
the majority of PLC implementations.

However, there are PLC systems that do not conform to this general statement. When dealing with
a system of this type, it is important that logically related elements of the program remain in a single
file so as to minimize any confusion in locating and understanding them.

5.4.1.9 Minimize Use of Literals

The generic guideline is partially applicable. Most, but not all, Ladder Logic implementations
support an area of the global variable pool that is writable by the development environment but not
by the PLC program itself. The actual nature of these "Constant" variables (to use the IEC 1131-3
nomenclature) varies from implementation to implementation. When available, the use of variables
from this constant pool is preferred to the use of literals. However, Constant variables may not be
available on all PLC systems; in such systems, literals are necessary.

5.4.2 Data Abstraction

This principle depends on the following specific base attributes:

* Modularity
* Information hiding
* Minimizing the use of global variables
* Minimizing the complexity of the interface and defining allowable operations.

PLC Ladder Logic does not provide the advanced features of object-oriented languages, such as C++,
to support abstraction. However, Ladder Logic provides some tools that can help achieve
abstraction.

5.4.2.1 Modularity

The generic guidelines are applicable. Some Ladder Logic implementations support modularity
through the subroutine structure; however, the language does not enforce use of subroutines and
design of cohesive functions. Even in the absence of this supporting language features, all Ladder
Logic programs should be organized as a number of distinct subprograms, each with a particular
function, dedicated variable area, and each fully documented. Passing of information between these

NUREG/CR-6463, Rev. 1 5-30

subprograms should be accomplished via a well documented and consistent methodology (guidelines

are discussed under global variables).

In the event that subroutines are not available on the PLC system chosen for a particular project, the

Ladder Logic program should be arranged into a series of subprograms, each with a particular

function, in order to enhance the understanding of the program.

5.4.2.2 Information Hiding

The generic guidelines apply to those Ladder Logic implementations that support the concept of

information hiding through the use of local variables that no other subroutine can access or alter.

The Ladder Logic program should be designed to use parameter passing to subroutines through

formal parameter interfaces. Even if the parameter is a global variable that is visible inside the

subroutine, it should be passed to the subroutine as a parameter.

For PLCs that do not allow subroutine parameter passing or local variables (at the time of this

writing, most do not), information hiding through formal parameters cannot be supported. However,

as described in the next section, there are techniques using the global PLC data tables that can be

used.

5.4.2.3 Minimizing the Use of Global Variables

The generic guidelines apply only to those PLCs and implementations of ladder logic that support

local variables. Global variables can be accessed from any part of the Ladder Logic program. Thus,

they can cause side effects or unintended behavior through deliberate or inadvertent modification

by various programmers working on different parts of the program. Local variables should be

separated from global variables for those Ladder Logic implementations that support local variables.

In most PLC systems, local variables are static memory locations, that is, they maintain their value

after the subroutine returns. However, support for local variables is not common in current PLC

Ladder Logic implementations; most currently use a single global variable pool. The following

guidelines apply to the management of the global data memory area when local areas are not

supported:

Separate variables by usage. Usage of variables within this pool can be controlled by the

PLC programmer to separate the handling of local and global variables. This can be

achieved by setting aside distinct areas of memory for use only by single PLC subprograms

(i.e., local memory areas). Passing of variables to and from subprograms should be

accomplished by "transfer" variables used for this purpose only. The method for such

transfers should be consistent in all of the application subprograms.

* Use transfer variables. Interface to subroutines on PLCs that do not support parameter

passing is via the use of global variables. It is recommended that, on systems of this type,

5-31 NUREG/CR-6463 Rev. 1

that specific variables be explicitly designated for the input and output parameters associated
with each PLC subprogram.

Use support tools and documentation for global memory areas. A careful examination of
the PLC memory map, with the aid of the cross-reference features normally found in the PLC
program development environment, is mandatory to ensure safe PLC programming. The
exact features, layout, and composition of a PLC cross-reference listing vary between PLC
programming packages. For example, ICOM software has a feature that applies local/global
flags to data table files. (It is not part of the PLC firmware, and does not serve any purpose
when using another programming software package.) In general, these listings show which
PLC variables are being used, in what part of the program they are being used, and whether
they are being read from or written to.

Ensure proper index variable bounds. Some PLCs support treating the variable pool (or a
section of it) as a large array and allow indexing into this array. Expressions using this
indexing should be carefully audited to ensure that the index value remains within the value
of the array under all circumstances.

5.4.2.4 Minimizing Interface Complexity

The specific guidelines related to interface complexity are the same as the transfer variable, global
memory area partitioning, and documentation guidelines discussed above.

5.4.3 Functional Cohesiveness

The generic guidelines apply. Every subprogram should have one clearly discernable purpose with
input and output parameters related to that purpose. Two or more different functions should not be
combined in a single subprogram.

5.4.4 Malleability

Malleability is the ability of a software system to accommodate changes in functional requirements.
Ladder Logic allows programmers to create code which is hard to change. However, the guidelines
related to modularity, minimizing obscurity, interfacing, global memory management, and portability
can be used to achieve malleability.

5.4.5 Portability

Portability is a safety concern required by the need to minimize changes when replacing or upgrading

NUREG/CR-6463, Rev. 1 5-32

equipment. The features, functionality, syntax and semantics of the various implementations of
Ladder Logic for PLCs and PLC-like systems vary widely, more so than any of the other languages
considered in this report. It is difficult, therefore, to make sweeping statements about safety-related
aspects of portability. Nevertheless, over the plant life, it is unlikely that the same runtime
environment will be supported since every vendor only supports its own equipment and upward
compatibility (i.e., programs executed on an older processor will also execute on the newer processor
ladder) is not always provided. When new processors are introduced, the instruction set is usually
so different that the application should be re-written anyway to take advantage of the new firmware.
The objective of maximizing portability is to reduce the likelihood that changes will introduce
dangerous faults.

Unfortunately, conforming to the IEC 1131-3 standard at present will not guarantee portability.
Currently, this standard is vague in many areas where PLCs vary. Moreover, not all PLC
manufacturers have committed to supporting the standard even in its current form. However, as has
happened in other areas of computing, pressure for standardization will grow. As this occurs,
conforming to an extended IEC 1131-3 standard will enhance portability.

Although portability of the Ladder Logic program itself may not be possible, the design and
approach can be made portable. Candidate areas for such unified approaches are common PLC
functions including:

* Analog programming
• Alarm handling
• Fault/exception handling
* Operator interface
• Closed loop control programming
* Variable frequency drive interfacing
* Computer communications
* Data logging.

A consistent approach to these areas will provide common code and will result in greater portability
to new runtime platforms.

5.5 Security

Security in this context refers to the protection of computer software from accidental or malicious
access, modification, or destruction. The discussion in this section is restricted to security measures
associated with the Ladder Logic language and its associated program development environment.

The main concern of security when handling PLC systems is that an unauthorized person might gain
access to the program and:

5-33 NUREGICR-6463 Rev. 1

* Change the program or the data in the PLC memory
Change the PLC configuration
* Download a wrong program
0 Leave the system in the wrong "mode" after maintenance
• Force inputs and/or outputs.

Security concerns are particularly acute when program or hardware maintenance is performed. The
key issues are password protection and physical access. The latter is not a language feature, but it
is mentioned here because the PLC environment is vulnerable to security infringements by improper
change of ROM components.

Software maintenance on a PLC can be performed either by connecting an external PC to the PLC,
or from a user interface station that might run a Supervisory Control and Data Acquisition (SCADA)
package that interfaces with the PLC. The nature and level of this type of password protection vary
from PLC programming package to PLC programming package. In some cases, the interfacing
software packages provide password protection with multiple levels of access rights that allow
people with different skills and authority to perform only the functions for which they are authorized.
Other PLC systems come with keys and locks that only allow modification of the PLC program after
the key is inserted. However, PLC programming packages have no security provisions whatsoever.

The auditor should verify that the design requires minimum operator access to software. Whenever
operator access is necessary, the system should be designed to include security measures in the
application proper, rather than relying exclusively on interfacing software.

Some PLCs have implemented a security system which is part of the PLC firmware. This will limit
interaction with the PLC memory contents based upon access rights (Allen Bradley, 1991). Because
it is firmware-based, the passwords are also resident in the memory of the PLC. If this feature is to
be exploited, the runtime software package used to develop the ladder logic must support it.

NUREG/CR-6463, Rev. 1 5-34

References

Allen Bradley, PLC-5 Programming Software - Programming, Publication 6200-6.4.7 November
1991.

Allen Bradley, PLC-5 Programming Software - Software Testing and Maintenance, Publication
6200-6.4.10 November 1991 a.

ICOM PLC-5 Ladder Logistics, User's Manual, 1989.

International Electrotechnical Commission (IEC), Programmable Controllers General Information,
EEC Standard 1131, Part 1, 1992. (Available in the U.S. from the American National Standards
Institute, New York.)

International Electrotechnical Commission (IEC), Programmable Controllers Programming
Languages, IEC Standard 1131, Part 3, 1993. (Available in the U.S. from the American National
Standards Institute, New York.)

SoHaR Incorporated, Generic Attributes for High Level Languages, Task 1, SoHaR Inc., Contract
RES-04-94-046, Beverly Hills, CA, October 1994.

Institute of Electrical and Electronic Engineers, ANSI/IEEE 729-1983, Glossary of Software
Engineering Terminology, 1983.

5-35 NUREG/CR-6463 Rev. 1

6 Sequential Function Charts

PLC Sequential Function Chart (SFC) programs do not resemble traditional high-level languages.
Instead, SFCs are program structure tools that present a visualization of the underlying control flow.
The SFC structure includes both steps and transitions; each step and transition is implemented in an
underlying IEC 1131 language (ladder logic, structured text, instruction lists, or functional block
diagrams). The charts provide a higher level of abstraction that hides lower level details handled in
the underlying languages. An introduction and basic description of SFCs in the context of IEC 1131
is contained in Appendix A.3. As noted in that section, SFCs are best used in applications where the
execution can be partitioned into distinct steps.

This chapter discusses the applicability of the generic attributes to PLC SFCs. The chapter is
organized in accordance with the framework of Chapter 2. Section 6.1 discusses reliability-related
attributes of SFCs; Section 6.2 discusses robustness-related attributes of SFCs; Section 6.3 discusses
traceability-related attributes; and Section 6.4 describes maintainability-related attributes. A
summary matrix showing the relationship between generic and language-specific guidelines, together
with weighting factors, is included in Appendix B. Language-specific weighting factors were based
on the limited nature of the language, which has no variables, data types, or subroutines.

6.1 Reliability

Reliability is either (1) ability to perform the required functions under stated conditions for a
specified period of time (IEEE, 1990) or (2) the probability of successful operation upon demand
(IEEE, 1977; p. 584). The reliability of an SFC program depends on the run-time predictability of
the following:

* Memory utilization
* Control flow
* Timing.

SFC-specific guidelines derived from these generic attributes are described in the following sections.

6.1.1 Predictability of Memory Utilization

SFC programs do not directly allocate memory. Thus, the generic guidelines are not applicable at
the SFC level. However, they are applicable at the underlying language level. The previous chapter
has a discussion of these issues for Ladder Logic.

6-1 NUREG/CR-6463 Rev. 1

6.1.2 Predictability of Control Flow

Predictability of control flow is the capability to determine easily and unambiguously what path (i.e.,
which set of branches and in what order) the program will execute under specified conditions.
Related base attributes are:

-Maximizing structure
-Minimizing control flow complexity
-Initializing variables before use
eSingle entry and exit points for subprograms
*Minimizing interface ambiguities
-Use of data typing
*Accounting for precision and accuracy
*Order of precedence of arithmetic, logical, and functional operators
oAvoiding functions or procedures with side effects
oSeparating assignment from evaluation
-Proper handling of program instrumentation
-Controlling class library size
-Minimizing use of dynamic binding
oControlling operator overloading.

Guidelines related to predictability of control flow for SFCs are discussed in this section.

6.1.2.1 Maximizing Structure

The generic guidelines are applicable. Use of goto statements or equivalent execution control
statements that result in an unstructured shift of execution from one branch of a program to another
are difficult to trace and understand. Although SFCs allow the programmer to use goto statements,
they should not be used in safety-critical applications with one exception: handling out-of-sequence
events in an abnormal situation. This situation was discussed in Section 5.2.

6.1.2.2 Minimizing Control Flow Complexity

The generic guidelines are applicable. Although SFCs have a limited syntax, it is possible to create
SFCs that are quite complex. Hence, the following guidelines:

* Limit the number of parallel paths. The number of parallel paths at the beginning and end
of a logic zone should normally be limited to seven (Hughes, 1989; p. 178).

Limit use of SFC to sequential operations. Use of SFCs in non-sequential applications (e.g.,

NUREG/CR-6463, Rev. 1 6-2

state machines) will result in a large number of directed links and divergence of sequence
selections, resulting in an overly complex SFC. This should be avoided.

Use of Macro-steps as a means of simplifying the appearance of SFCs was discussed in Section 5.4.

6.1.2.3 Initializing Variables Before Use

SFCs do not handle initialization because they do not have variables. Thus, the generic guideline
is not directly applicable at the SFC code level, but is applicable at other levels. The following are
specific guidelines:

Accounting for initialization as part of the program design: SFC-specific variables, when
they exist, are typically initialized and maintained by the PLC system, and so there are no
application program initialization issues concerning them. These variables are maintained
in the same data table, using the same data types that the PLC uses. Thus, initializing
variables used in the languages that define the step actions and the transition conditions is
an issue. The SFC Initial Step is an appropriate place for code performing this initialization

Initialization ofprocess steps and transitions: Within each process step and transition, there
are initialization issues with the lower level IEC 1131 language (e.g., Ladder Logic).

6.1.2.4 Single Entry and Exit Points for Subprograms

The generic guideline is applicable. The SFC grammar allows only single entry and exit points
(called transitions) from each process step. Macro-Steps, as well, may only have single entry and
exit points. However, it should be noted that the control language in each one of the process steps
or transitions may involve multiple entry points. The previous chapter discusses these issues for
Ladder Logic.

6.1.2.5 Minimizing Interface Ambiguities

SFC does not support any interfaces. However, there is an issue of interfaces between steps with
respect to latching bits. In order to have a bit stay on between steps, the bit has to be latched since
all non-retentive bits are reset in the post scan. However, latching bits can cause a problem during
initialization as well as during runtime if the bits are not reset immediately'. The specific guideline
is therefore to avoid use of latching bits.

24An incident that occurred to one reviewer is that a main motor bit was latched 'ON'. When a circuit
breaker tripped, the motor came on immediately because the bit was not reset explicitly. This condition could have
caused a major accident.

6-3 NUREG/CR-6463 Rev. 1

6.1.2.6 Use of Data Typing

The generic guideline is applicable to the underlying languages, not to SFCs themselves. Some SFC
implementations do not have variables (Allen Bradley, 1989); therefore, there are no data types.
Other SFC implementations have variables associated with each step. In one such system, each step
has a step bit (XO, X1, etc.) that is on when that particular step is active. Each step may also have
a step timer (XO,V, X1,V, etc.) that indicates the length of time that step has been active. However,
the data types of these step-associated variables are fixed.

However, the underlying IEC 1131-3 languages do have varying degrees of support for data typing.
For example, as was described in the previous chapter, PLC Ladder Logic provides few data types.
The specific guideline with respect to SFC programs is to use data types to the maximum extent
possible.

6.1.2.7 Accounting for Precision and Accuracy

Some SFC implementations do not have variables; therefore, the guidelines are not applicable for
SFCs. However, the guidelines are applicable for the languages used within each step.

6.1.2.8 Order of Precedence of Arithmetic, Logical, and Functional Operators

The mail issue regarding order of precedence in SFC is what occurs when multiple transitions in a
divergence of sequence selection are evaluated as true simultaneously (i.e. on the same PLC scan).
Depending on how the SFC is implemented, the leftmost sequence may be selected, or all valid
sequences may be selected.

All transition conditions involved in a divergence of selection sequence should be programmed to
be mutually exclusive in order to exclude the possibility of multiple transitions involved in such a
structure being evaluated as true simultaneously. This is actually a requirement of the IEC 848 SFC
standard.

However, the guidelines are applicable for the underlying IEC 1131 languages used within each step.
If Ladder Logic is used within a step, the applicable guidelines are found in the previous chapter.

6.1.2.9 Avoiding Functions or Procedures with Side Effects

Generic guidelines are applicable.

NUREG/CR-6463, Rev. 1 6-4

6.1.2.10 Separating Assignment from Evaluation

As noted above, SFCs vary in their support for variables and assignment; therefore, the guidelines
are not applicable for SFCs. However, the guidelines are applicable for the underlying IEC 1131
languages used within each step. If Ladder Logic is used within a step, the applicable guidelines are
found in the previous chapter.

6.1.2.11 Proper Handling of Program Instrumentation

Program instrumentation generally depends on the programming support environment for the PLC
and not on the SFC itself; therefore, the generic guidelines are largely inapplicable. However, the
guidelines are applicable for the underlying IEC 1131 languages used within each step. For ladder
logic, the issue of program instrumentation discussed in the previous chapter (Section 5.1.2.11) are
applicable.

As mentioned above, some SFC implementations have variables associated with the execution state
and execution time of steps. These variables are a form of instrumentation. Tracking usage of these
variables, as well as all others in the PLC, is a major aspect of ensuring PLC program safety.

6.1.2.12 Controlling Class Library Size

Neither SFC nor the underlying IEC 1131 languages support classes and objects; therefore, the
generic guidelines are not applicable.

6.1.2.13 Minimizing Dynamic Binding

Neither SFC nor the underlying IEC 1131 languages allow dynamic binding. All structures must be
defined by the programmer before compilation. The generic guidelines do not apply.

6.1.2.14 Controlling Operator Overloading

Neither SFC nor the underlying IEC 1131 languages allow operator overloading or polymorphism.
The generic guidelines are not applicable.

6.1.3 Predictability of Timing

Predictability of timing is crucial in a safety system used in real-time control. This section discusses
SFC-specific issues related to:

6-5 NUREG/CR-6463 Rev. 1

* Minimizing tasking
* Minimizing interrupt processing
* Divergence of sequences
* Simultaneous sequences
• Accounting for scans and post scans.

6.1.3.1 Minimizing the Use of Tasking

At the source code level, SFC does not support multitasking; therefore, the generic guidelines are
not applicable. However, it should be noted that the operating system in the PLC firmware may
include a multitasking kernel which may support execution of multiple independent SFCs. Such
multiple independent SFCs should be avoided in safety applications.

6.1.3.2 Minimizing the Use of Interrupt Driven Processing

The generic guidelines have limited applicability. SFCs themselves do not support interrupts.
Should a condition occur which requires immediate attention, the SFC program cannot service the
request due to the sequential nature of execution. This issue is discussed further in the section on
exception handling.

It should be noted, however, that the firmware or runtime environment program associated with the
SFC might use interrupts. It is therefore necessary to demonstrate that the system/software can meet
all of its timing and safety function requirements under the most demanding conditions of interrupt
occurrence.

6.1.3.3 Divergence of Sequence

The following are specific guidelines for divergence of sequence A divergence of sequence selection
is represented in SFC by a single horizontal line under a step, followed by multiple parallel
transitions. Appendix A explains divergence of sequence.

Define mutually exclusive transition conditions. All transition conditions involved in a
divergence of selection sequence should be programmed to be mutually exclusive in order
to explicitly exclude the possibility of multiple transitions involved in such a structure being
evaluated as true simultaneously. This programming style is mandated by the EEC 848 SFC
standard.

Ensure convergence of sequence following divergence of sequence. Any divergence of
sequence selection must eventually be followed by a convergence of sequences, where the
alternate sequence paths reunite. This should be checked by the auditor, as well, although
most SFC editors enforce this.

NUREG/CR-6463, Rev. 1 6-6

Account for limits on the number of transitions. imits on the number of transitions that can
be placed in a divergence of sequence selection vary from implementation to
implementation. These limits should be accounted for in the design.

6.1.3.4 Simultaneous Sequences

In the event that multiple transition conditions evaluate as true simultaneously (i.e., on the same PLC
scan), different implementations of SFC will result in different behavior.

Avoid dependence on execution order. On some systems, the leftmost branch is selected; on
others, all of the sequences following true transition conditions are selected. Therefore, it
is considered poor programming practice to have the proper operation of a simultaneous
sequence depend upon the order of processing of active steps in these sequences within a
single scan. The PLC program auditor should check for this.

Use simultaneous sequences only where synchronization is required. Simultaneous
sequences are used when parallel processes need to be synchronized at their beginning and
their ending. Where asynchronous sequences that do not require this kind of synchronization
are desired, they should be coded as independent SFC Charts.

6.1.3.5 Accounting for Post-Scan Timing

Post-scan timing is unique to the SFC language. After a true transition, the processor scans a step
once more to reset all timer instructions and other variables and controls (Hughes, 1989; p. 178).
This extra step is called the post-scan. The new active step is scanned for the first time only during
the next scan. The following are specific guidelines related to this characteristic of SFCs:

* Post-scan timing requirements. The time required for the post-scan should be characterized
and shown to be in accordance with the safety requirements of the PLC and overall safety
system.

No timers in transitions. The processor never postscans a transition program file. Therefore,
timers should not be set in a transition because they will not be reset.

6.2 Robustness

Robustness refers to the capability of the program to survive off-normal or other unanticipated
conditions. This section discusses guidelines on functional diversity and exception handling.

6-7 NUREG/CR-6463 Rev. 1

6.2.1 Transparency of Functional Diversity

SFCs are well suited to implementing diverse algorithms or implementations given that the need for
such diversity has been established. An AND path can force several different process steps to
evaluate the same condition. An additional step can vote. An OR path can be used to cause a
transition if it is desired to program a system such that any number of diverse parallel algorithms
cause the transition. The following are specific guidelines:

Order of execution. The design should account for the safety impact of the order of
execution of diverse process steps. The ordering on the SFC should reflect the intention of
the design.

Interfaces. The safety system design should account for all local and global variables
necessary to support replicated processing in transition files. As part of the implementation,
it should be verified that no variables in transition files will be initialized or overwritten.

6.2.2 Exception Handling

The level, nature, and functionality of SFC exception handling varies significantly among SFC
implementations. Exception handling functionality in SFC ranges from none at all, through
activation of a designated fault sequence under certain conditions, to the ability to completely
override the activation status of an SFC chart under control of portions of the PLC program not in
the SFC (Allen-Bradley, 1989; PLC Direct, 1994; Telemecanique, 1994). It is necessary for project
and PLC SFC-specific guidelines to be created for exception handling to account for these specific
characteristics.

Although there are significant variations, the following guidelines apply to most SFC
implementations:

Use of GOTO or JMP statements to handle the interruption of control flow. Sequential
function charts do not support interrupt processing due to the sequential nature of execution.
Thus, should an abnormal condition or exception occur which requires immediate attention,
SFCs do not allow servicing of the request. GOTO or JMP statements can provide a method
of handling this abnormal asynchronous condition. For example, should a mixing sequence
not be completed because a valve failed to open, the mixer contents would have to be
dumped. Due to the sequential nature of SFC, it is not possible to exit the current transition
and start executing the dumping step without using JMPs or GOTOs. Although JMP or
GOTO statements can be used for this purpose, their use for normal control flow should be
minimized.

NUREG/CR-6463, Rev. 1 6-8

Avoiding conflicts. It must be determined that the two events, transition and exception-
handling, do not conflict with each other.

Behavior of the exception-handling mechanism during a process step. The exact behavior
of process steps interrupted by fault routines should be characterized and shown to be in
accordance with the safety requirements of the PLC and overall safety system. For example,
a fault routine may not interrupt a process step unless initiated by the PLC. This behavior
must be understood explicitly.

Behavior of the exception handling mechanism during a transition. The exact behavior of
transitions interrupted by PLC fault routines should be characterized and shown to be in
accordance with the safety requirements of the PLC and overall safety system. The transition
and exception handling mechanism must be evaluated as to whether they conflict with each
other.

Restart behavior. Care must be taken in design for power up and fault recovery conditions.
The exact behavior of SFC restart after an exception should be characterized and shown to
be in accordance with the safety requirements of the PLC and overall safety system. For
example, pre-scan and post-scan firmware logic employed when using SFCs only operates
when the step is entered and exited. The SFC reset instruction can be used to shut a system
down, however, there is no control for orderly shutdown should a fault occur. This behavior
may not be acceptable in a safety application.

6.2.3 Input and Output Checking

Data corruption in a process step or transition can have serious consequences if allowed to propagate
to other process steps. SFCs do not have explicit input and output checking mechanisms. However,
the generic guidelines apply to the underlying program steps and transitions.

The specific guideline is that input and output checking (error containment) should be handled at the
language level and not at the SFC level. The likelihood of error propagation can be reduced if a
process step uses reasonableness checks prior to setting variables used by other steps. Similarly, the
possibility of error propagation is reduced and safety is enhanced if a module using values set by
another module performs checks on acceptability before operating on these variables. When the
checks indicate that some assertions have been violated, exception handling can be used to bring the
system to a state defined in the higher level design. Specific guidelines for PLC ladder logic were
described in the previous Chapter.

6-9 NUREG/CR-6463 Rev. 1

6.3 Traceability

Traceability refers to attributes of safety software which support verification of correctness and
completeness compared with the software design. The intermediate attributes for traceability are:

* Readability
• Minimizing use of built-in functions,
* Minimizing use of compiled libraries.

Because readability is also an intermediate attribute of maintainability, it is discussed in the next
section. The following paragraphs discuss the latter two attributes.

6.3.1 Use of Built-In Functions

The SFC language does not explicitly support built-in functions. However, the underlying EEC 1131
languages used in process steps and transitions do support such functions. The use of built-in
functions raises safety concerns for the following reasons:

The requirements for built-in functions may not be the same as those for developing safety
systems.

The exception handling of the built-in function may not be as well characterized as portions
explicitly developed for the safety system.

The specific built-in functions may vary from one PLC platform to another thereby raising
portability and maintainability concerns.

Because of these concerns, the use of built-in functions should be minimized. When built-in
functions are used, the developers should conduct thorough testing and develop a means for tracking
errors. The details and acceptance criteria of such a testing and verification program are beyond the
scope of this document.

6.3.2 Use of Compiled Libraries

SFC does not support the use of external libraries. However, its runtime environment does consist
of libraries of compiled components the underlying languages may also support compiled libraries.
The concerns in the previous section also apply to compiled libraries. When compiled libraries are
used, the developers should conduct thorough testing and develop a means for tracking errors. The
details and acceptance criteria of such a testing and verification program are beyond the scope of this
document.

NUREG/CR-6463, Rev. 1 6-10

6.4 Maintainability

This section discusses safety-related maintainability attributes for SFCs. These include:

*Readability
*Data abstraction
-Functional cohesiveness
-Malleability
*Portability.

6.4.1 Readability

Readability allows software to be understood by qualified development personnel other than the

original developer. Readability is essential for safety because it facilitates reviews and reduces the

likelihood of errors during maintenance.

SFC was specifically designed as a notation for representing a sequence of operations. As such, it

fits a developer's cognitive model of machine sequencing. Thus, SFC programs for sequencing

operations are readable. In general, the SFC construct adds an additional level of abstraction to the

programming language.

The following specific guidelines are related to readability:

'Conformance to indentation guidelines
'Descriptive identifier names
'Comments and internal documentation
'Limitations on subprogram size
-Minimizing mixed language programming
'Minimizing obscure or subtle programming constructs
'Minimizing dispersion of related elements
'Minimizing use of literals
'Controlled use of macro-steps.

6.4.1.1 Conformance to Indentation Guidelines

Because of the structure and notation of SFC, indentation guidelines are not applicable.

6-11 NUREG/CR-6463 Rev. 1

6.4.1.2 Descriptive Identifier Names

The generic guidelines are applicable. Many SFC systems allow the naming of steps and transitions.
Identifiers are used to label the steps and transitions of the SFC. Each identifier refers to a program
file containing a process step or transition. The identifiers should be defined so that they provide
adequate information on the nature and content of each file. Specific guidelines should be developed
for each system and project, and the project-specific guidelines should be followed in the actual SFC
programs.

6.4.1.3 Comments and Internal Documentation

The generic guidelines apply. The following are specific guidelines:

Descriptions of steps. Clear and unambiguous descriptions of process steps need to be
provided. These descriptions should include the processing performed by the step, timers
set and reset, and other operations. The description should be, in accordance with the design,
traceable to higher-level requirements and design documents.

Description of interfaces. The interfaces for each step and transition should be described in
the preamble. This description should include a complete identification of the input
parameters, global variables (and any side effects), and output parameters. These
descriptions should be traceable to higher level design documents.

Description of transition conditions. The transition conditions should be clearly stated. All
input variables and global variables should be identified. These descriptions should be
traceable to higher-level design documents.

6.4.1.4 Limitations on Subprogram Size

The generic guidelines are applicable. SFC implementations vary in the limitations on the amount
of code that can be in a single step. These limitations range from a single network of Ladder Logic
to no limit whatsoever (other than memory capacity of the PLC). The following are specific
guidelines:

Limitation of a single step to a single function. The code in a single step should be limited
to performing a single action. Since each SFC step is typically a subroutine using a PLC
supported language, the rule for subroutines should apply to steps - one function which is
clearly definable. Multiple actions in a step are to be discouraged.

Limitation on transitions to a single expression. SFC transition conditions are limited to a
single expression.

NUREG/CR-6463, Rev. 1 6-12

6.4.1.5 Minimization of Mixed Language Programming

The generic guidelines are not applicable. Each of the IEC 1131-3 programming languages for PLCs
is specific to a particular aspect of the control problem domain. PLC programs that are simple have
lower incidence of programming errors, and are more maintainable than those that use the IEC 1131-
3 languages for their intended purposes.

The following are specific guidelines on the use of SFCs in a mixed IEC 1131-3 language
application:

Use SFC for sequencing. SFC is specifically intended for the programming of machine
sequences. The SFC notation for this purpose is clearer than Ladder Logic or Structured
Text.

Do not use SFC for interlocking or evaluation of logical relationships. Ladder Logic is well
suited for interlocking and other applications requiring evaluation of Boolean relationships.
SFC is not suited for this purpose.

Do not use SFC for mathematical operations or evaluation of mathematical relationships.
Structured text excels over SFC, Ladder Logic, or function blocks for mathematical
relationships.

6.4.1.6 Minimize Obscure or Subtle Programming Constructs

The guidelines associated with this generic attribute have limited applicability. The following are
specific guidelines:

Avoid nesting of subroutines within an SFC step. An SFC step suggests that a certain PLC
subroutine will be executed at that step. When the end of program statement or RET
statement is executed for that subroutine, the transition file is then checked, and the flow
continues from there. Calling nested subroutines of any language from within the called SFC
step is obscure because of the assumption that an SFC step is one subroutine.

Do not use SFC constructs that are not related to sequencing. SFC as a language is intended
for the programming of control sequences. There are some SFC constructs that allow other
uses for SFC. These constructs should be avoided.

Avoid backward directed links in parallel paths. This is demonstrated in the following SFC
construct (which should be avoided). The transition condition labeled ', when active,
allows the re-activation of step 0. This can lead to multiple steps in the same sequence being
active simultaneously. SFC programs that allow this can be difficult to program and
maintain.

6-13 NUREG/CR-6463 Rev. 1

I I

I I

1-1I

- I
II
I

I

- !

!A

:2

6.4.1.7 Minimize Dispersion of Related Elements

The guidelines associated with this generic attribute are applicable. Dispersion can be an issue with
SFC because of its graphical organization. Few details are presented at the SFC level, and specific
variables associated actions are contained within many step and transition files. A further degree of
dispersion can occur because a step can be organized as several subroutines, each of which could be
in a separate file. Project-specific guidelines on how to structure SFC programs to minimize the
dispersion of safety-critical components should be developed and adhered to during development.

6.4.1.8 Minimize Use of Literals

The generic guidelines are not applicable because the SFC language does not include literals. Use
of literals can occur in the underlying IEC 1131 languages. Specific guidance for PLC ladder logic
is contained in the previous chapter.

6.4.1.9 Controlled Use of Macro-Steps

Macro-steps (nested SFCs), when available in the SFC implementation, can enhance readability by
combining several smaller steps and transitions into a single larger step. However, the misuse of

NUREG/CR-6463, Rev. 1 6-14

macro-steps can make SFC programs difficult to understand. Macro-step use should be controlled
by project guidelines to ensure that undue complexity is not hidden through excessive use of such
nesting.

6.4.2 Data Abstraction

As described in Chapter 1, data abstraction is the combination of data and allowable operations on
that data into a single entity, and the establishment of an interface which allows access,
manipulation, and storage of the data only through the allowable operations. It reduces or eliminates
the potential side effects of changing variables either during runtime or in software maintenance
activities (Parnas, 1972). SFC programs provide an abstraction of the control sequence to be
executed by the PLC. This section includes guidelines on:

-Minimizing the use of global variables
-Minimizing the complexity of the interface defining allowable operations.

These attributes are discussed further in the following subsections.

6.4.2.1 Minimizing the Use of Global Variables

The generic guidelines have limited applicability because many PLCs allow only global variables.
Nevertheless, as noted previously, there are some implementations which do support a distinction
between local and global variables. If local variables are supported by the underlying language of
the process step or transition, they should be used for all internal operations.

6.4.2.2 Minimization of the Complexity of Interfaces

The generic guidelines are applicable. The primary interface issues are in the interaction between
process steps and transition files. These must be addressed through the underlying EEC 1131
languages.

6.4.3 Functional Cohesiveness

The generic guidelines are applicable. The following are specific guidelines.

A single function for each step. Every step should have one clearly discernable purpose
related to the time in which it should be executed. Two or more different steps should not
be combined in a single step if they handle different functions or processes.

6-15 NUREG/CR-6463 Rev. 1

Use macro-steps for related functions. When there are several related functions that are to
be performed in series, macro-steps can be used.

6.4.4 Malleability

Malleability is the ability of a software system to accommodate changes in functional requirements.
To implement a malleable software system, it is necessary first to identify what is expected to be
constant and what is expected to be changed, and then to segregate what is expected to be changed
into easily identifiable areas where alterations can be made with a minimum of collateral changes.
The segregation into steps provides some malleability.

6.4.5 Portability

The advent of IEC- 1131 software standards will create a common platform and a standardized
approach. However, this will be breached by hardware vendors trying to add extensions which only
they can interpret. This extensibility can be useful for an application, but useless in the desire for
standardization.

Only IEC 1131-3 compliant SFC systems should be used. Without the use of IEC 1131-3
constraints, an SFC will NOT be portable between platforms. The implementations of SFC are
varied. For example, European implementations, or GRAFCET, (Blanchard, 1985) differ from
domestic implementations. Allen-Bradley's SFC is not a complete implementation of the EEC 1131
standard; it also has unique features (Allen-Bradley, 1989).

NUREG/CR-6463, Rev. 1 6-16

References

Allen Bradley, PLC-5 Programming Software - Programming, Publication 6200-6.4.7 November,
1991.

Blanchard, M. Le GRAFCET de noveaux concepts, CEPAD (France), 1985.

Bossy, J.C., P. Brard, P. Fagere, and C Mwerlaud, Le GRAFCET sa pratique et ses applications,
Educalivre, France, 1979.

Hughes, T.A., Programmable Controllers, Instrument Society of America, Research Triangle Park,
NC, 1989.

Institute of Electrical and Electronic Engineering, IEEE Standard Dictionary of Electrical and
Electronic Terms, IEEE Std 100-1977.

Institute of Electrical and Electronic Engineers, Glossary of Software Engineering Terminology,
ANSI/IEEE Std 729-1983.

Institute of Electrical and Electronic Engineers, IEEE Standard Glossary of Software Engineering
Terminology, IEEE Std 610.12-1990.

International Electrotechnical Commission (IEC), Preparation of Function Charts for Control
Systems, IEC Standard 848, 1986. (Available in the U.S. from the American National Standards
Institute, New York.)

International Electrotechnical Commission (IEC), Programmable Controllers General Information,
IEC Standard 1131, Part 1, 1992. (Available in the U.S. from the American National Standards
Institute, New York.)

International Electrotechnical Commission (IEC), Programmable Controllers Programming
Languages, IEC Standard 1131, Part 3, 1993. (Available in the U.S. from the American National
Standards Institute, New York.)

PLC Direct Corp., PLC Direct Technical Overview, 1994

Telemecanique, XTEL PLC Programming Software Version 5.5, 1994

6-17 NUREG/CR-6463 Rev. 1

7 Pascal

This chapter describes guidelines for the application of Pascal in safety systems and is organized in
accordance with the framework of Chapter 2. Section 7.1 discusses reliability-related attributes;
Section 7.2 discusses robustness-related attributes; Section 7.3 discusses traceability-related
attributes; and Section 7.4 describes maintainability-related attributes. A summary matrix showing
the relationship between generic and language-specific guidelines, together with weighting factors,
is included in Appendix B.

Although Pascal was standardized by the IEEE 770 and ANSI X3J9 committees and is documented
by several standards (NIST, 1985), the language has several major variants. The most significant
of these is Pascal developed by Borland International Corp. running under versions of the Microsoft
MS-DOS and Windows operating systems (Microsoft, 1992; Borland, 1991). These are of
significance for this report because of their current and potential continued use as platforms for
testing Class 1E equipment. Guidelines that are specific to these latter variants are indicated as such
in this chapter.

Language-specific weighting factors were based on the key characteristic of Pascal designed for
safety, that is, strong data typing. Other factors were determined to be neutral from this perspective.
Recursion and interrupt handling through the run-time environment are felt to be important in the
negative sense; their use should be constrained and limited.

7.1 Reliability

This section discusses specific guidelines associated with intermediate attributes related to reliability.
The intermediate attributes are as follows:

* Predictability of memory utilization
* Predictability of control flow
• Predictability of timing.

These attributes are discussed in the following sections.

7.1.1 Predictability of Memory Utilization

Base-level attributes related to the predictability of memory utilization in Pascal are as follows:

* Avoiding dynamic memory allocation
• Minimizing memory paging and swapping
* Avoiding recursion

7-1 NUREG/CR-6463 Rev. 1

• Use of handles with pointers
* Avoiding the use of direct memory access.

Specific guidelines for these base attributes are discussed in the following subsections. It should be
noted that the final three guidelines are applicable to Pascal but are not included in the generic
guidelines. The final two guidelines are specific to Borland Pascal.

7.1.1.1 Avoiding Dynamic Memory Allocation

The generic guideline on avoiding dynamic memory allocation is applicable to Pascal. Dynamic
memory allocation should be avoided in safety systems written in Pascal.

The strong typing of ANSI Standard Pascal makes each array type with different bound a distinct
type. This can make handling variable-length data items, such as strings, a problem. Kernighan
(Kernighan, 1981) has pointed out that the way around this problem is to ensure that all strings of
a program are set to strings of predetermined lengths, with an associated string type for each length.
In a safety system, this approach is preferable to an alternative approach using dynamic memory
allocation. This issue is discussed further in the section on data typing.

The use of dynamic memory can be detected through the Pascal statements containing new (to
allocate), dispose (to free memory), and the Pascal pointer (A). An alternative form is
oeugm/freemem. It should be noted that these two methods do not allocate memory on the heap
in the same way. The use of these functions interchangeably could conceivably destroy the heap
thereby losing all the data and crashing the computer (Borland, 1991). Care must be taken to avoid
"dangling pointers," i.e., pointers to space which has been freed or deallocated.

If dynamic memory allocation is necessary in a safety application, the application program should
not use multiple variables pointing to the same memory location. The danger is that when the shared
memory space is deallocated, another variable may still point to the released memory space unless
each one is explicitly set to null by the application program. If an application (e.g. a linked list)
necessitates such multiple accesses, it must be justified and documented.

The following is an example of dynamic memory allocation using Borland Pascal 7.0:

NUREG/CR-6463, Rev. 1 7-2

-- Example 1 1
{ declaration)

VAR StrPtr ^STRING;

GenPtr : POINTER;

Then, that string pointer is allocated space within the program)

New(StrPtr);

The string pointer is copied to the general one }

GenPtr := StrPtr;

{-- Example 2
{ The program assigns this value to an ARRAY of variant records.

One of the elements of the record is of type POINTER: }

TYPE YYSType = record case Integer of
1: (yyInteger Integer);
2: (yyPointer : Pointer);

end;

If dynamic memory use is essential, the software should always release dynamic memory as soon
as possible.

7.1.1.2 Minimizing Memory Paging and Swapping

The generic guideline on minimizing paging and swapping is applicable to Pascal programs. There
are no Pascal-specific guidelines.

7.1.1.3 Avoiding Recursion

This guideline is not generic; however, it is applicable to Pascal. Recursive programs should not be
used in safety systems unless it can be definitively shown that there is always a terminating
condition within a deterministic time and number of iterations, and that the memory will not be
exceeded at the maximum level of recursion. The number of recursions can be large, even infinite,
because the terminating condition may not occur.

There are two types of recursion in Pascal: self-recursion and mutual recursion. Self-recursion can
be recognized by having a procedure call within a procedure of the same name. In mutual recursion,
two routines call each other. In the following example, functions A and B will call each other until
some termination criterion is met (unspecified in this example). Mutual recursion is rarely detected
by compilers.

7-3 NUREG/CR-6463 Rev. 1

function B(x integer) char ; forward
function A(y integer) char ;
begin

... B(I) ...
end ;
function B(x : integer) char
begin

... A(j) ...
end ;

7.1.1.4 Use of Handles with Pointers

The following guideline is applicable to Borland Pascal.

If pointers must be used, handles should be used whenever possible. Handles allow memory
management to recapture and compact free memory2. The memory block should be locked to
protect moveable blocks and should be unlocked as soon as possible thereafter. When data in a
moveable block needs to be changed, locking the block while the change is being made and then
unlocking the block protects the data. When a block is locked the block cannot be moved. Once the
block has been unlocked, memory management can then move the blocks for compaction. If the
handle is not unlocked in a timely manner, memory management is unnecessarily hampered.

This guideline is illustrated in the following example (Borland, 1991).

ItemGlobalHandle := GlobalLock(GlobalHandle)
ItemGlobalHandle^[0] := 255 ; (Process data

using ItemGlobalHandle }
GlobalUnlock (ItemGlobalHandle) ;
if ((DataRecord.bitOptions or DDE_Release) <> 0) then

GlobalFree (ItemGlobalHandle);
end;

Improper locking and unlocking of handles or failure to lock handles is a frequent source of errors
in Macintosh programming, which uses dynamic relocation and compaction of memory.

7.1.1.5 Avoid Use of Direct Memory Access

The following guideline is applicable to Borland Pascal under Windows and in Protected Mode
under DOS.

25 Compacting memory is a design issue that must be handled with care.

NUREG/CR-6463, Rev. 1 7-4

Direct memory access should not be used except in situations where hardware devices have memory-
mapped control registers that must be read or written. Although Borland Pascal permits access to
memory directly, this is not a safe practice under Windows at any time. Windows should manage
memory issues or the programs may crash (Borland, 1991). Protected mode does not allow direct
addressing. Instead, memory selectors should be used.

If direct memory access has to be used, it should be encapsulated, where possible, to avoid errors.

7.1.2 Predictability of Control Flow

This section discusses base-level attributes related to the predictability of memory utilization in
Pascal. These guidelines are

-Maximizing structure
-Minimizing control flow complexity
-Initializing variables before use
-Single entry and exit points for subprograms
-Minimizing interface ambiguities
-Use of data typing
-Accounting for precision and accuracy
9Order of precedence of arithmetic, logical, and functional operators
-Avoiding functions or procedures with side effects
'Separating assignment from evaluation
-Proper handling of program instrumentation
oControlling class library size
'Minimizing use of dynamic binding
'Controlling operator overloading.

These attributes and their relevance to safety are discussed in the following sections. It should be
noted that the avoiding-side-effects guideline is applicable to Pascal but not included in the generic
guidelines.

7.1.2.1 Maximizing Structure

The generic guideline on maximizing structure applies to Pascal. Maximizing structure means not
using gotos (jumps in program control). Three language-specific guidelines are related to goto

statements, if ... else if statements, and case statements.

7-5 NUREG/CR-6463 Rev. 1

Avoid goto statements except as early exits from loops. The use of goto clouds the structure
of the code in that it can obscure program flow logic and result in unreachable code. The
following is an example26 of a fragment of a Pascal program containing goto statements
resulting in unreachable code.

B_Label: statement-1;
got* ALabel;
statement_2; (unreachable code)
statement_3; (unreachable code)
statement-4; (unreachable code)

A_Label: statement-5;
statement_6;
statement_7;
goto B_Label;
statement_8; (unreachable code)

The rationale for the early loop exit exception to this guideline can be seen in the following
example. In Pascal the loops can be labeled in order to clarify the meaning of multiple loops
and the code structure. In the following example the_first_loop and inner_mostjoop are
loop names.

26 This rather trivial example is only included for the purpose of illustration.

NUREGICR-6463, Rev. 1 7-6

label : the_first-loop, after_the_first_loop, the_inner_most_loop,
after_inner_most_loop

the_first-loop
for i := 100 downto 1 do

begin
for alpha := 1 to 26 do

begin
for numbers := 5 to 11 do

begin
the_inner_most_loop:
for steps := 1 to 10 do

begin

if sample <= 10e-6 and bc-flag
then goto after_the_first_loop

if bc_flag or not op_flag
then goto after_inner_most_loop

end ; {the_inner_most_loop)
{loop name for readability)

after_inner_most_loop : j := 5
nd

end ;
end ; (the_first_loop) {loop name for readability)

after_the_first-loop : i := 1

It should be noted that standard Pascal allows only integers as labels, while Borland Pascal
has an extension to the language that also allows character strings as labels (Jensen, 1974;
Borland, 1991). It should also be noted that Borland Pascal 7.0 uses the keywords break
and continue, so that gotos with these constructs are not necessary.

Use of if... else if and case statements. The use of if ... else if is shown in the
following example:

7-7 NUREG/CR-6463 Rev. 1

if condition_1 then
statement_1 ;

else if condition_2 then
statement_2 ;

else if condition_3 then
statement_3 ;

else

statement_4 ;

The final else statement allows the handling of conditions not anticipated in the first three
conditions; it also serves as a default. This construct should be used in all situations even
if it can be guaranteed that the conditions specified by the other else if statements are
exhaustive.

The came statement serves as a switch for multiple branches and allows one evaluation for
the multiple branches. It is an alternative to the if statement under the circumstances that
all conditions within the case statement are exhaustive (Jensen, 1974, p 3 1; Grogono 1983,
p 161). It is a run-time error (of unspecified behavior) if the case selector does not equal one
of the case conditions. Some implementations of Pascal allow for a default selector, e.g.,
otherwise. However, if a default selector is used, the program is non-portable.

came thermal_alarm of
core core_thermal_alarm(sensor_value)
inlet inlet_thermal_alarm(sensor_value)
outlet outlet_thermal_alarm(sensor_value)

end

7.1.2.2 Minimizing Control Flow Complexity

The generic guideline with respect to nesting levels applies to Pascal. Specifically, control flow
complexity results from the use of too many nested levels of branching or looping. As noted in the
generic report, there should be explicit organizational or project-specific limits on nesting. There
are no specific guidelines with respect to Pascal.

7.1.2.3 Initializing Variables before Use

The generic guideline with respect to initialization of all variables applies to Pascal. Run-time
predictability requires that memory storage areas set aside for process data be set to known values
prior to being accessed (i.e., set and used). Variables should be initialized to some known value at

NUREG/CR-6463, Rev. 1 7-8

the beginning of an execution cycle before they are used. In Pascal all pointers must be initialized
to NIL.

The key characteristic of Pascal associated with this guideline is the lack of compile time

initialization. The lack of compile time initialization means that variables must be initialized

explicitly by assignment statements. Because initialization occurs at the beginning of the program,

initialized variables must be visible at the highest level of the calling hierarchy. The result is that

most variables to be initialized will have global scope (Kernighan, 1981). This is problematic

because excessive use of global variables conflicts with the data abstraction and visibility guidelines

described below.

The following guideline is applicable to Borland Pascal

When using separately compiled units with shared variables, initialization should occur in one and

only one place.

7.1.2.4 Single Entry and Exit Points for Subprograms

The generic guidelines apply to Pascal. Standard Pascal is a block-structured language in which

procedures and functions are defined by begin and end statements. This guideline is enforced by the

language (ANSI, 1983; p 66).

The following guideline is applicable to Borland Pascal

Borland Pascal provides the capability for multiple exit points. This capability should generally not

be used in safety-critical systems. When multiple exit points are unavoidable, the rationale should

be documented; and return value assignments must precede every exit point.

7-9 NUREG/CR-6463 Rev. 1

In standard Pascal, acceptable
function F: Boolean;
begin

if condition
then F:=true;
else
begin

°.=

end
end;

Borland Pascal (and some others), alternative form, not acceptable in
safety system)

function F: Boolean;
begin

if condition then
begin

F:=true; exit; { first exit }
end;

end; { second exit }

7.1.2.5 Minimizing Interface Ambiguities

The generic guideline with respect to interface ambiguity minimization applies to Pascal. Interface
ambiguities minimization can occur in both functions and procedures. The following additional
guideline applies:

Alternate data types in subroutine formal argument lists. Inadvertent switching of
parameters of the same type can be avoided by not listing the same types in consecutive order
when possible, as shown in the following example.

process_sensor_data(sensor_id : integer,
value : string[255],
calib_date : integer,
calib_tech : string)

NUREG/CR-6463, Rev. 1 7-10

7.1.2.6 Data Typing

The generic guidelines for data typing apply to Pascal. Pascal is a strongly typed language, and the
code should take advantage of this feature to the maximum extent possible. The following are
specific guidelines.

Use subtypes. When defining data types, it is generally good practice to use subtypes of the
predefined types to define the range explicitly, thus bounding the errors. When an object is
assigned a number outside its range, a run-time error is raised (Jensen, 1974; Grogono 1983).
The limits on data types should not be excessively constrained, forcing an unnecessary error
to be generated.

Minimize the use of implicit type conversions. All type conversions in Pascal are implicit.

Therefore, the programmer and the reviewer must be vigilant for these unannounced
conversions. An example with string assignments where the receiving string (right hand side
of an assignment statement) is a different size than the assigned string (left hand side).

The following is an example showing implicit type conversions in equations:

i integer

r real ;

r i + r ; (implicit conversion from integer to

real -- allowed}

i i + r ; {illegal)

Pascal ensures that expressions involving arithmetic evaluations or relational operations have a
single data type or the proper set of data types for which conversion difficulties are minimized. It
is not possible to assign the result of a real expression to an integer variable (Grogono, 1983,
p. 37).

Limit the use of indirection (pointers). Lmiting the use of indirection, such as array indices

and access types, in Pascal to situations where there are no other reasonable implementation
alternatives and performing validation on indirectly addressed data prior to setting or use,
ensure the correctness of the accessed locations.

7.1.2.7 Accounting for Precision and Accuracy

Precision and accuracy generic guidelines apply to Pascal. Precision and accuracy issues include the
meaning and use of fixed point and floating point numbers, round off-errors, type declarations and
digital accuracy, and portability. The accuracy and precision necessary are a function of the project

7-11 NUREGICR-6463 Rev. 1

requirements in concert with the computer, the compiler, the hardware, the sensors, the observability
and the control requirements. The issues raised must be factored into the design of the software.
These are discussed in the generic guideline chapter of this report.

Within the rules of precedence, order of evaluation of expressions in Pascal is
implementation-defined. This may lead to unexpected results in the presence of optimized code
being generated by the compiler. This is especially an issue with floating point computations. A
compiler might replace ((1.0+x)-x) with 1.0 at compile time, when the floating point rounding error
is what the program is trying to compute (note that the above optimization is always guaranteed to
be correct for integer types).

7.1.2.8 Order of Precedence of Arithmetic, Logical, and Functional Operators

The generic guidelines for order of precedence apply to Pascal. The default order of precedence of
such operations as left to right with exponentiation, multiplication, and addition should not be
depended on. Hence, the following specific guidelines:

Use parentheses. Arithmetic, logical, and other operations should use parentheses or other
mechanisms for ensuring that the order of evaluation of operations is explicitly stated.

An expression should not depend on the order of evaluation. The Pascal standard permits
operands of an expression to be evaluated differently from the left to right order in which
they are written. For example, in the statement:

i := F(J) dlv G(J) ;

where F and G are functions of type Integer, G may be evaluated before F, since this enables
the compiler to produce better code. If F and G have side effects, in particular, changing the
value of J, (perhaps inadvertent - as described in the next section), the order of execution
may have an effect that the programmer had not intended and that may lead to a subtle and
difficult to find the bug (Borland, 1991; p 241).

7.1.2.9 Avoiding Functions or Procedures with Side Effects

Generic guidelines are applicable. The following specific guideline applies to Pascal:

Global variables should not be set or changed by procedures and functions for which that variable
is global in scope. This means using local variables within functions and subroutines for variables
that should not be visible outside the function or procedure, and using the var only for those
variables that the procedure should be changing.

NUREG/CR-6463, Rev. 1 7-12

7.1.2.10 Separating Assignment from Evaluation

The generic attributes apply to Pascal programs. Since there is no embedded assignment operator
for expressions in base Pascal, embedded assignment can only occur via side-effect producing
functions, which were discussed in Section 2.1.2.9.

7.1.2.11 Proper Handling of Program Instrumentation

The generic guidelines are applicable to standard Pascal. Borland Pascal and Turbo Pascal have
extensive instrumentation capabilities that can be implemented transparently in the source code using
the debugger supplied by the company. The additional guideline is to ensure that compiler switches
are set in a manner that does not disable debugging, such as $D-.

7.1.2.12 Controlling Class Library Size

The generic guidelines for this attribute are applicable to Borland Pascal but not to ANSI standard
Pascal, which is not object oriented.

7.1.2.13 Minimizing Use of Dynamic Binding

The generic guidelines for this attribute are applicable to Borland Pascal but not to ANSI standard
Pascal, which is not object oriented. The following specific guideline applies.

Dynamic binding and methods should be avoided if possible.27 The rationale for this guideline is that
dynamic binding forms unpredictable relationships which are hard to debug and difficult to test for
all possible configurations. If a class declares or inherits any virtual methods, then variables of that
type must be initialized through a constructor call before any call to a virtual method. Thus, any
object type that declares or inherits any virtual methods must also declare or inherit at least one
constructor method.

Dynamic method calls are dispatched at run time, as opposed to virtual methods whose invocation
is known at compile time. For all other purposes, a dynamic method can be considered equivalent
to a virtual method. An object is instantiated, or created through the declaration of a variable or
typed constant, or by applying the standard procedure new to a pointer variable of an object type.

27Methods are functions and procedures that are used to manipulate and retrieve data from the data objects in
the methods' class. Methods are by default static, but can, with the exception of constructor methods, be made virtual
through the inclusion of a virtual directive in the method declaration. The compiler resolves the calls to static methods at
compile time, whereas calls to virtual methods are resolved at run time. The latter is sometimes referred to as late
binding or dynamic binding.

7-13 NUREG/CR-6463 Rev. 1

It is important to note that assignment to an instance of an object type does not entail initialization

of the instance.

The following are examples of constructors:

constructor Field.Copy(vazr F : Field)
begin

Self := F
end ;
constzuotor Field.Init(FX,FY, FLen Integer ; FName String)
begin

X FX
Y FY
Len := FLen
GetMem(Name, Length(FName) + 1
Name^ := FName

end ;
constructor StrField.Init(FX,FY,FLen: Integer; FName String)
begin

Field.Init(FX, FY, FLen, FName)
GetMem(Value, Len)
Value^ := ,

end;

The following are examples of destructors:

destzuetor Field.Done
begin

FreeMem(Name, Length(NameA) + 1
end ;

destructoz StrField.Done
begin

FreeMem(Value, Len)
Field.Done

end;

Dynamic binding uses the heap and is therefore susceptible to the same types of memory problems
described in Section 7.1.1.1, Avoiding Dynamic Memory Allocation. Therefore, as with pointers,
dynamic memory should be avoided if possible. All cases requiring dynamic binding should be
documented and justified.

NUREG/CR-6463, Rev. 1 7-14

7.1.2.14 Controlling Operator Overloading

Pascal does not have operator overloading features; therefore, the guideline is not applicable.

7.1.3 Predictability of Timing

Predictability of timing is crucial in a safety system used in real-time control. Concerns over object-
oriented base attributes discussed in the previous sections (e.g., package library size, dynamic
binding, and operator overloading) also apply to timing. In addition, specific concerns related to
interrupts are discussed in Section 7.1.3.2.

7.1.3.1 Minimizing the Use of Tasking

Pascal does not have tasking features; therefore, the generic guidelines are not applicable.

7.1.3.2 Minimizing the Use of Interrupt Driven Processing

The generic guidelines for interrupt-driven processing apply to Pascal. It is not generally desirable
in safety-critical systems because it can lead to nondeterministic maximum response times and can
lead to unanticipated system states. Use of a deterministic approach to the monitoring and control
of multiple input sources is normally preferred. However, there may be some situations where
interrupt-driven processing has a significant design advantage over alternatives, for example, to
handle the acceptance and processing of plant input. When interrupt service routines are needed,
only the minimum processing needed to buffer the input should be performed by the interrupt driver.
All non-time-critical processing (e.g. units conversions) should occur in the main line code.

The following is the form of an interrupt handler in Borland Pascal under MS-DOS on Intel
processors:

procedure IntHandler(Flags, CA, IP, AX, BX, CX, DX, SI, DI,

ES, BP : Word);

interrupt
begin

end

Interrupt routines must be designed with care. Masking of interrupts, nested interrupts, and interrupt
processing in general can all cause non-deterministic behavior. Also, some form of locking or mutual
exclusion may be required when using interrupts.

7-15 NUREG/CR-6463 Rev. 1

In case of code that directly accesses hardware, it must be noted that Pascal lacks the volatile
attribute, so it is not possible to guarantee that memory accesses are not deleted and that they occur
in the specified order.

7.2 Robustness

Robustness refers to the capability of the software to survive off-normal or other unanticipated
conditions. The intermediate attributes for robustness are as follows:

*Controlled use of diversity
-Controlled use of exception handling
-Input and output checking.

This section describes Pascal-specific guidelines for the base-level attributes of software diversity
and exception handling.

7.2.1 Transparency of Functional Diversity

There are no Pascal-specific guidelines for functional diversity. The generic guidelines apply.

7.2.2 Exception Handling

Standard Pascal does not have exception handling. Therefore, this guideline is not applicable.
Borland Pascal has specific types of error handling, which are not as general as full exception
handling. The following guidelines apply to Borland Pascal:

Exit handling. Exit handling can be used to recognize run-time errors explicitly and plan for
their resolution, and for post-mortem analysis. Borland Pascal provides a method of
declaring run-time errors and of building the appropriate exit handling code. This is exit
handling, not exception handling. It is considered good practice to recognize these
conditions explicitly and plan for their resolution.

NUREG/CR-6463, Rev. 1 7-16

procedure TestExit
Var

ExitSave : Pointer

procedure MyExit
far
begin

ExitSave ExitProc (Always restore old vector first)

end;

begin
ExitSave : ExitProc
ExitProc : @MyExit

end

Use of lOresult. The built-in function Oresult returns MS-DOS error codes when
performing input and output operations through the operating system. This function is used
with input/output checking disabled (the $I compiler directive). Under these circumstances,
use of Oresult (for input and output made through the operating system) can result in more
robust code. For example, in the following code fragment, the procedure FileOCheck
would call the Oresult built-in function, determine whether the file-open was successful,
and take appropriate action, such as bypassing a routine and informing the operator, if it was
not successful (Borland, 1991).

($I-) (disable I/O Checking }
Assign(F, Filename);
Reset (F):
FileIOCheck;

It should be noted that input/output checking should normally be enabled. If it is disabled,
as in the example above, an error checking routine should be performed immediately after
the operation.

7.2.3 Input and Output Data Checking

The generic attributes for input and output data checking are applicable to Pascal.

7-17 NUREG/CR-6463 Rev. 1

7.3 Traceability

Traceability refers to attributes of safety software that support verification of correctness and
completeness compared with the software design. The intermediate attributes for traceability are

• Readability
• Use of built-in functions
* Use of compiled libraries.

Because readability is also an intermediate attribute of maintainability, it is discussed in Section 7.4.
Pascal-specific guidelines for the latter two attributes are discussed in the following subsections.

7.3.1 Controlling Use of Built-in Functions

The generic guidelines on the use of built-in functions apply to Pascal. Pascal functions defined in
the standard are portable to other compilers. The distinction between built-in functions and intrinsics
that may be implemented inline by the compiler is not always self-evident. Some "functions," e.g.,
ord, are really intrinsics. Some, such as sqrt, are really library functions.

The use of some built-in functions may be necessary or expedient. The decision is a design-level
issue that is beyond the scope of this report. However, for functions determined to be desirable for
inclusion in safety systems, the testing and related generic guidelines apply. An example of a
function whose behavior should be tested and understood because it is not uniform across compilers
is mod (modulo) (Grogono, 1983; p. 36).

7.3.2 Use of Compiled Libraries

The following guidance is specific to Borland Pascal

The generic guidance relating to limiting the use of compiled libraries is applicable to Pascal.
Although there is no reference to compiled libraries in the Pascal language specification (ANSI,
1983), Borland Pascal has extensive support for compiled libraries and for dynamic linked libraries,
which are part of the Microsoft Windows operating environment.

Borland Pascal units are program modules that make it possible to perform separate compilation.
A unit can contain code, data, type, and/or constant declarations, and can use other units. The unit
has a public section called interface and a private section called implementation (Borland, 1991).
Units are necessary because of a 64K code segment limit (Borland, 1991). However, because they
are compiled separately, they do not have the same visibility rules as text-based files, which are
included prior to compilation. Thus, global types, variables, and definitions must be compiled into
a separate global-level unit. Beneficial uses of units (even if not essential) include providing

NUREG/CR-6463, Rev. 1 7-18

common and enforceable data type declarations and module initialization. Constant definitions
enhance safety and are not a violation of the guideline. Units can also be used to include well-tested
and trusted libraries from the development organization. However, units used to include externally
developed code and dynamic link libraries should be minimized.

Units can be recognized by the reserved word "unit" appearing at the beginning of the Pascal source
code. The following is an example program that uses a precompiled unit called Mathfunc.

program calculate
{$R MATHFUNC)
un Mathfunc;
type

The following is the beginning of the source code unit for the Mathfunc unit.

unit Mathfunc;
interface

function add (X, Y): real;
function multiply (X, Y): real;

implementat ion

function add...
function multiply...

In addition to precompiled units written in Pascal, it is also possible to link in code written in other
languages, such as C, in Windows Dynamic Linked Libraries (DLLs) in a separate compilation unit
called a library. This unit is identified by a reserved word "library" at the beginning of the source
file. The functions which may be accessed by another routine can be recognized by the reserved
word "export." The following is an example:

library Mathfunc;
function Power(x,y: real): Real; export;
begin

Power:=Exp(y*ln(x));
end;

{ more functions here }

That a routine uses such library functions can be determined through the word "external." The
following is an example of "external."

7-19 NUREG/CR-6463 Rev. 1

unit Mathfunc;
conot Place: integer := 21;
interface
function add (X, Y): real;
function multiply (X, Y): real;

implenientation
function add; azternal 'Mathfunc' indez Place; (assuming this is the 21st

Function in the library
function multiply...

There are several different types of libraries that could be used, depending on whether the application
is running under MS-DOS only or MS-DOS and Windows; additional libraries may be used for
object classes shipped with the language (applicable to both the MS-DOS and Turbo versions). The
decision as to which libraries are necessary and which are expedient is a design-level issue that is
beyond the scope of this report. However, for libraries determined to be desirable for inclusion in
safety systems, the testing, configuration control, and related guidelines apply.

7.4 Maintainabflity

This section discusses the Pascal-specific attributes of the following intermediate attributes related
to maintainability:

* Readability
* Data abstraction
* Functional cohesiveness
* Malleability
* Portability.

Base-level attributes and Pascal-specific guidelines are discussed in the following sections.

7.4.1 Readability

The following base attributes are related to readability:

* Conformance to indentation guidelines
* Descriptive identifier names
* Comments and internal documentation
* Limitations on subprogram size
* Minimizing mixed language programming
* Minimizing obscure or subtle programming constructs

NUREG/CR-6463, Rev. 1 7-20

* Minimizing dispersion of related elements
* Minimizing use of literals.

The Pascal-specific guidelines associated with these attributes are discussed in the following
subsections.

7.4.1.1 Conformance to Indentation Guidelines

The guidelines developed for the generic indentation attribute are applicable to Pascal.

7.4.1.2 Descriptive Identifier Names

The guidelines developed for the generic descriptive identifier names attribute are applicable to
Pascal. The following additional guidelines apply:

Separate words in compound names with underscores.

Rads_Per_Second
Core_Temperature

Choose names that are as self-documenting as possible.

When separate compilation units exist, utilize prefixes. (The following guidance is specific
to Borland Pascal.) Where there are multiple modules, it is possible to have a convention
specifying that every export from a module have an identical descriptive prefix on the name.
This allows a person reading the code to see immediately where a particular imported
function, procedure, or variable came from.

7.4.1.3 Comments and Internal Documentation

The guidelines associated with the generic attributes are applicable.

7.4.1.4 Limitations on Subprogram Size

There are no Pascal-specific guidelines. The guidelines associated with the generic attributes are
applicable.

7-21 NUREG/CR-6463 Rev. 1

7.4.1.5 Minimizing Mixed Language Programming

There are no Pascal-specific guidelines. Since there is no separate compilation in ANSI standard
Pascal, there can be no mixed language programming. The guidelines associated with the generic
attributes are therefore not applicable.

However, in Borland Pascal, separate compilation is supported and use of mixed language
programming is, therefore possible (although non-portable). Since, generally speaking, there are
differences in calling conventions and data types between languages, mixed languages should be
used with caution, if at all.

7.4.1.6 Minimizing Obscure or Subtle Programming Constructs

There are no Pascal-specific guidelines. The guidelines associated with the generic attributes are
applicable. The guidelines on side effects, global variables, and order of evaluation are also related.

7.4.1.7 Minimizing Dispersion of Related Elements

The guidelines associated with the generic attributes are applicable. In addition, when elements are

dispersed throughout the code, it is hard to check, validate, and maintain the code.

The following guideline is specific to Borland Pascal.

Use compilation units to group related elements. Pascal has a strict order in which it accepts
declarations (i.e., label, const, type, var, procedure and function declarations, and finally
the main procedure). Thus, it is difficult to keep the declaration, initialization, and use of
types and variables close together in large programs in standard Pascal (Kernighan, 198 1)
• However, where separate compilation is supported, related variables and procedures can
be kept in separately compiled units.

7.4.1.8 Minimizing Use of Literals

The guidelines associated with the generic attributes are applicable. In addition, the following Pascal
specific guidelines apply:

Use constants for numeric literals. The use of numeric literals as hard coded constants,

Area := 3.14159265*sqr(radius) ;

instead of constant identifiers such as,

NUREG/CR-6463, Rev. 1 7-22

const
pi : real := 3.14159265 ;

decreases readability and complicates maintainability, particularly if the literal is associated
with a process parameter which may be tuned or a conversion factor which may be changed
upon recalibration of an instrument. It is far easier to change one value set at the beginning
of a source code file than it is to guarantee that all literals associated with such a parameter
have been changed completely and correctly throughout all relevant source code files. When
constants are not used, uniform comments should be associated with each constant to
facilitate search and replace operations.

7.4.2 Data Abstraction

Data abstraction is the combination of data and allowable operations on that data into a single entity,
and the establishment of an interface which allows access, manipulation and storage of the data only
through the allowable operations. This principle results in the following specific base attributes:

-Minimization of the use of global variables.

7.4.2.1 Minimization of the Use of Global Variables

The guidelines associated with the generic attributes are partially applicable. Standard Pascal does
not support external variables (local variables whose values persist in memory after the execution
of the routine has ended). Thus, any values which are necessary in the next invocation of a function
or procedure must be maintained at a higher scope. Moreover, as pointed out earlier, variables which
must be initialized early in program execution of necessity must be visible at a relatively high
position in the program hierarchy. Finally, there are appropriate uses for global variables, i.e.,
maintaining the state of data that must be accessed by many functions. The alternative is to pass
such values as parameters which increases the complexity of the function interfaces.

Nevertheless, global variables obscure the passage of data between subprograms and defeat the
benefits of data abstraction. They are a primary mechanism for side effects and the resultant subtle
bugs. Thus, a balance must be struck between the characteristics of Pascal, which tend to encourage
use of global variables (related to initialization and persistence of variables), and the principles of
data abstraction.

7.4.2.2 Minimization of Complexity of Interfaces

The generic guidelines are applicable to Pascal. No language-specific attributes apply.

7-23 NUREG/CR-6463 Rev. 1

7.4.3 Malleability

The generic guidelines apply. Malleability is the ability of a software system to accommodate
changes in functional requirements (Witt, 1994). Malleability extends data abstraction with the
motivation toward isolating areas of potential change. To implement a malleable software system,
it is necessary to identify what is expected to be constant and what is expected to be changed, and
to isolate what is expected to be changed into easily identifiable areas where alterations can be made
with a minimum of collateral changes.

7.4.4 Functional Cohesiveness

The generic guidelines are applicable. No additional guidelines apply.

7.4.5 Portability

The generic guidelines have limited applicability. From the perspective of safety, the benefits of
portability are the adherence to standard programming constructs that yield predictable and
consistent results across different operating platforms (Witt, 1994). However, the limitations of the
standard base Pascal language make it difficult to write real time control programs without
extensions. Some of the difficulties were discussed in this chapter (no external variables, no separate
compilation units, no default ("otherwise") in a case construct, etc.). As a result, almost all Pascal
compilers have language extensions to varying degrees. Thus, portability is difficult to achieve in
Pascal.

NUREG/CR-6463, Rev. 1 7-24

References

ANSIIIEEE77OX3.97-1983, American National Standards Committee Pascal, 1983.

Borland International Corporation, Borland Turbo Pascal 4.0, Scotts Valley, CA, 1987.

Borland International Corporation, Borland Pascalfor Windows Programmer's Guide, Scotts Valley,
CA, 1991.

Coad, P., "OOD Criteria, Part 1," Journal of Object-Oriented Programming, 4: 69-70.

Grogono, P., Programming in Pascal, 2nd Edition, Addison-Wesley Publishing Company, Reading,

MA, 1983.

Hutcheon, A., "A Study of High Integrity Ada," (UK) Ministry of Defence contract: SLS31c/73

Language Review, Document Reference SLS3 1c/73-l-D, Version 2, July 9, 1992.

Jensen, K. and N. Wirth, Pascal User Manual and Report, Second Edition, Springer Verlag, New

York, NY, 1974.

Kernighan, B. W. and P.J. Plauger, The Elements of Programming Style, McGraw-Hill, New York,
NY, 1974.

Kernighan, B. W. and P.J. Plauger, Software Tools, Addison-Wesley, Reading, MA, 1976.

Kemighan, B.W., Why Pascal is Not My Favorite Programming Language, April 2, 1981, Available

from Internet Universal Resource Locator (URL): http:llwww.ee.ryerson.ca:8080/-elflhack/
pascal.html.

National Institute of Standards and Technology, FIPS PUB 109 Pascal, 1985. (Available from
National Technical Information Service).
Page-Jones, M., The Practical Guide to Structured System Design, New York Yourdon Press,

Prentice-Hall, New York, NY, 1980.

Pyle, I. C., The Ada Programming Language, Prentice-Hall, Englewood Cliffs, NJ, 1981.

Software Productivity Consortium, Ada Quality and Style Guidelines for Professional Programmers,
Van Nostrand Reinhold, New York, NY, 1989.

Witt, B. I, F. T. Baker, and W. W. Merritt, Software Architecture and Design. Van Nostrand
Reinhold, New York, NY, 1994.

7-25 NUREG/CR-6463 Rev. 1

8 PL/M

This chapter discusses guidelines for the application of PIJM in safety systems. This chapter is
organized in accordance with the framework of Chapter 2. Section 8.1 discusses reliability-related
attributes; Section 8.2 discusses robustness-related attributes; Section 8.3 discusses traceability-
related attributes; and Section 8.4 describes maintainability-related attributes. Appendix A.4
provides additional information on the language including its history and variations across different
processors. A summary matrix showing the relationship between generic and language-specific
guidelines, together with weighting factors, is included in Appendix B.

Intel Corp., the company which originally sponsored development and promoted the use of PLJM,
discontinued support of their last PLUM compiler (PIJM-386) in December 1994. Since then, the
use of PLIM in real-time control systems has diminished, and the number of programmers with
proficiency in this language is also declining. Thus, conservative use of the language and its features
is advisable in development of safety-related applications.

8.1 Reliability

Reliability implies that the software executes to completion, produces expected results, and that the
output is within the required response time. Other attributes of reliability are as follows:

* Predictability of memory utilization
* Predictability of control flow
• Predictability of timing.

Further discussion on the relevance of these attributes as they relate to safe use of PLJM is found in
the sections below.

8.1.1 Predictability of Memory Utilization

PL/M and the supporting development environment provide compile-time features for enforcing the
predictability of memory utilization. These features do not depend upon nin-time support portions
of the compiler.

Unlike most other computer architectures, Intel's PL/M software development environment
encourages the separation of data and instructions into distinct contiguous segments (Intel, 1990;
Intel, 1992). The PL/M compiler generates relocatable object modules in which the various types
of memory are kept separated. At program link time, all program instructions are collected and
stacked together, followed by data constants, read-write variables, and stack allocation information.

8-1 NUREG/CR-6463 Rev. 1

After linking, Intel requires one last step before the program module is made executable in devices
with nonvolatile RAM. The last step, known as Locate, maps the various collected memory segments
by type into their final absolute memory addresses. All program instructions are mapped into a ROM
segment, or an EEPROM segment where they remain nonvolatile until reprogrammed. RAM
variables and the system stack are likewise mapped into an address space containing the read-write
memories. The Locate step is not required where PIJM programs are being used with an operating
system in volatile RAM. A loader performs the locate function in these cases.

8.1.1.1 Minimizing Dynamic Memory Allocation

The generic guideline applies. The PL/M language does not have built-in functions equivalent to
the C alloc and malloc, which dynamically allocate RAM at run-time. Any dynamic allocation
of RAM must be explicitly handled by the PIJM programmer. Such allocation is nevertheless
discouraged and should be identifiable as part of a review.

8.1.1.2 Minimizing Memory Paging and Swapping

The generic guideline applies. In embedded systems where the bulk of PLIM has been used, the
concepts of memory paging or process swapping are not likely to be used. In such systems, generally
all programs reside in fixed read-only memory. Likewise, sufficient read/write data memory should
be designed into a system. Removable or moving magnetic media are usually only used for data
collection, monitoring, and secondary storage.

If memory paging and process swapping are proposed for use in an embedded safety system, the
design should be reviewed and reconsidered in light of the above.

8.1.1.3 Minimizing Memory Bank Switching and Shadow Memory

The PLM linker and locator programs can be manipulated to produce sections of binary code that
have the same address space as other program modules, usually by means of a hardware bank-
switching mechanism devised by the system hardware designers. This mechanism is commonly used
in smaller micro-controller architectures (limited to 64k) when the complete address space has been
consumed.

Use of hardware bank-switching, and its associated software housekeeping, should be avoided if at
all possible because it is a source of unreliability. Great care must be taken to ensure that program
and data code is where it is thought to be. Interrupts and exceptions may cause the vectoring of the
program to an address page that has been switched out of working memory.

NUREG/CR-6463, Rev. 1 8-2

8.1.2 Predictability of Control Flow

Control flow defines the order in which statements in a program are executed. Control statements
determine sequential execution of code, conditional branching, iteration and looping, and procedure
invocation (Meek, 1993). A predictable control flow allows an unambiguous assessment of how the
program will execute under specified conditions. Attributes related to safe control flow include the
following:

-Maximizing structure
*Minimizing control flow complexity
*Initializing variables before use
-Single entry and exit points for subprograms
-Minimizing interface ambiguities
*Use of data typing
*Accounting for precision and accuracy
*Order of precedence of arithmetic, logical, and functional operators
-Avoiding functions or procedures with side effects
-Separating assignment from evaluation
-Proper handling of program instrumentation
-Controlling class library size
*Minimizing use of dynamic binding
'Controlling operator overloading.

These attributes and their relevance to safety are discussed in the following sections.

8.1.2.1 Maximizing Structure

The generic guideline applies. The PLIM language supports structured programming. Although
PLJM does have a goto statement, in almost all cases a structured programming construct can be
found to replace or eliminate it. Structure is maximized by eliminating goto statements and using
appropriate block structured code instead. The PIM constructs of DO.. CASE, DO.. WHILE,

iterative DO and IF.. THEN.. ELSE permit branching with a defined return without introducing the
uncertainty of control flow associated with the goto statement.

Guidelines, recommendations, and examples for enhancing a safe program using PL/M's structured
constructs are provided below.

8-3 NUREG/CR-6463 Rev. 1

DO..END Blocks. The simple DO.. END statement pair is a building block of structured
programming. The Do block in PUJM is sometimes confused with the active Do statements
described below. The following example of a simple Do block is provided to clarify program
blocks:

DO;
Statement 1
Statement 2
Statement 3

Statement n
END;

DO CASE Blocks. The Do CASE statement in PLUM is a simpler construct than the CASE or
SWITCH statement found in other languages and it must be used with care. The main
problem with the PLUM CASE statement is that it is unbounded. It is quite easy to generate
an out-of-bounds CASE value that will then branch into incorrect code. The code segment in
the example below will produce unexpected and possibly disastrous results if ETEST is not
in the range of 0 to 4.

ETEST = 5;
DO CASE ETEST;

TEST = TEST + 1; /* case 0 */
TEST = TEST * TEST; /* case 1 */

/* case 2 (null stmt)*/
TEST = TEST - 1; /* case 3 */
CALL NOTEST; /* case 4 */

END; /* End of DO CASE ETEST */

The reason for this construct is that the PlJM compiler generates an array of addresses
(pointers) for each of the cases defined. Each address in the array points to a section of code
for the particular CASE element. At the end of each code element, an absolute branch
statement takes the code to the next statement after the DO CASE. If evaluation of the CASE
index results in an out-of-range value, that incorrect value attempts to access a pointer to a
nonexistent array element fetching a pointer to "garbage". Left unbound by the IF...
THEN... ELSE statement, the DO CASE would subsequently perform a "wild" branch to
the location pointed to by the erroneous pointer.

NUREG/CR-6463, Rev. 1 8-4

In contrast, other languages have a bounded CASE-like statement. The SWITCH statement
in C, for example, will yield a default statement, or act as a null statement if the evaluated
switch index does not match a valid case statement. For programmers with a background in
C who are about to embark on a PIJM project, this statement may be a source of potential
problems.

This shortcoming of PLUM can be corrected by containing the DO CASE statement within
a condition (i.e., an IF statement) that checks whether the DO CASE index is within the
valid range. In the following example, if ETEST is negative or greater than 4, the ELSE
clause will catch and handle the exception. The DO CASE statement will be ignored when
ETEST is out of range.

IF (ETEST >= 0) AND (ETEST < 5) /* Confine cases to [0..4]*/
THEN DO CASE ETEST;

TEST = TEST + 1; /* case 0 */
TEST = TEST * TEST; /* case 1 */

/* case 2 (null stmt)*/

TEST = TEST - 1; /* case 3 */
CALL NOTEST; /* case 4 */

END; /* End of DO CASE ETEST */
ELSE CALL TEST_NUMBER_EXCEPTION /* handle exception */

An alternative to this construct is to limit the use of the DO CASE statement to binary (i.e.,
true/false) conditions.

DO WHILE Blocks and IF Statement. Relational comparisons normally result in 0FFH being

set for TRUE and OOH being set for a FALSE condition. DO WHILE only looks at the least
significant bit to determine TRUE (=xxxxxxxlB) or FALSE (=xxxxxxxOB) condition.
This may cause confusion when using both the DO WHILE statement and the IF statement
as shown in the following examples:

Improper assumptions: OOH is FALSE; 01H..OFFH is TRUE

OOH is FALSE; OFFH is TRUE;
01H.. 0FEH undefined.

Correct assumption: xxxxxxx0B is FALSE; xxxxxxxlB is TRUE.

8-5 NUREG/CR-6463 Rev. 1

Procedure Activation. In PLIM, there are three ways in which a procedure can be activated.
In the first two a procedure is invoked by name, and there is no problem (in these forms the
parameter list is optional):

CALL name ({parameter list)]; /* untyped procedure form */
name [(parameter list)]; /* typed procedure form */

A third type of procedure invocation is possible: by location. This method contains risks, as
the compiler does not fully check the number of parameters passed, nor does it provide
automatic type conversion for these parameters. The invocation form for call by location is
as follows:

CALL location[.member-identifier] [{parameter list)];

The location value can be a structure reference, but it cannot be subscripted. Use of the call-
by-location method of invocation is not recommended. If this style must be used, detailed
attention must be given to the parameter list. Since both type conversion and parameter
checking occur at compile time, checking these constructs can prevent problems.

goto Statement. The goto statement should be avoided because it leads to unstructured
code. Programming teams should be challenged to develop a complete software program
without using a single goto statement. There is almost always a way to structure code so that
a goto statement is not needed. goto statements sometimes crop up when a programmer
becomes frustrated with the handling of exception or error handling code. Generally, it is
better to handle errors and exceptions locally rather than to branch out of the middle of the
block. Exception handling is further discussed below.

Comments /* ... */. The method in which PI.M implements comments can sometimes
cause problems. In certain cases, unmatched comment pairs inadvertently "comment out"
sections of source code statements. If this occurs in code segments that are infrequently used,
such as safety handling exceptions, the fault can go unnoticed for a long period of time. In
the following example, statement2 has been inadvertently commented out by the missing
terminator of statementl. The compiler will not object as it is only scanning for the next
comment terminator */

statementi; /* This is a comment about these...
statement2; /* ...three statements and how statement 2...
statement3; /* ... has been accidentally commented out.

In the PLM-80 and PLM-86 compiler, unbalanced comment pairs are not caught and

NUREG/CR-6463, Rev. 1 8-6

flagged by the compiler when they occur at the end of a compiled module. In the following
case, statement3 does not produce code because it is inadvertently commented out. The
compiler also does not object and does not produce a warning or error. In this case, we have
a compiler weakness or shortcoming that does not object to unbalanced comment delimiter
pairs.

statementl; /* This is a comment about these... */
statement2: /* ... three statements and how statement 3...
statement3; /* ... has been accidentally commented out.

END;

8.1.2.2 Minimizing Control Flow Complexity

All generic guidelines under this heading apply to PLIM. Excessive nesting can usually be avoided
by the use of functions, subroutines, or CASE statements in place of in-line branches. Guidelines
specifying a limit on the nesting levels should be included in the project's programming handbook.

8.1.2.3 Initialization of Variables Before Use

The generic guideline applies in PLIM. In embedded systems, uninitialized variables can often be
the source of latent software bugs.

In PLIM, the variables initialized prior to execution are part of the CONSTANT segment and are
normally stored with the CODE segment. If a variable requires an initial value, but is not a constant,
then it must be initialized by the software. PUJM compilers do not contain built-in facilities to
provide initialization of variables automatically. The compiler will help partition the code into data
segments, but the user must write the code to move the data from a ROM segment into a RAM
segment to initialize it at run time. The reason is that most PL/M applications do not run under a
standard operating system, which would normally handle the initialization on program loading.

Certain debugging tools can mask initialization problems during development. In-circuit emulator
systems may test and initialize emulation memory as part of the power-up sequence. Hence, when
a user program executes in the emulation environment, every variable has unknowingly been
initialized to a known value (usually zero). When this same debugged code is moved to the actual
operating platform, the RAM values will likely be random. This condition can result in latent flaws
with safety significance -- particularly in rarely used exception and error handling code.

One method of avoiding the above condition is to clear all RAM areas to zero intentionally and
explicitly as part of the software initialization process. In embedded systems, the software often
performs some self-test on the hardware system well before the main program is entered. The

8-7 NUREG/CR-6463 Rev. 1

pseudocode shown in the example below illustrates how PIJM startup code can provide proper
"housekeeping" before beginning to execute.

PowerOnRESET:
/*---- Gain control of the System ----

Disable Interrupts;
Bring all peripherals to known state;
Perform system self-tests;

/*---- Setup operating environment ---- /
Set up interrupt vectors;
Initialize peripheral devices;
Clear all RAM to zeros;
Initialize program RAM variables;
Enable appropriate interrupts;

Main$Program$Loop: /* Drop into Main Program */
Statement-1;

8.1.2.4 Single Entry and Exit Points in Subprograms

The generic guideline applies in PUJM. Multiple entry and exit points in a subprogram introduce
uncertainties in the control flow similar to the use of goto statements. Control flow predictability
is enhanced when there is only a single entry point, and a single exit point from a subprogram.
Because predictability of execution flow is important to safety, multiple entry points in procedures
or functions should not be used even if the language supports them.

No calls to locations. When PLJM procedures are invoked by name, they can only have one
entry point, which is the name assigned to the procedure itself. However, PLIM also allows
a call to a location. This is dangerous as the compiler will not guarantee that the destination
location is even a procedure or that it has a valid RETURN statement. Repeated invocations
to this errant location will continue to PUSH data onto the system stack without a
corresponding POP of the same data off the stack on exit. The result will be a system crash
as the stack grows out of bounds.

The example below illustrates how a second entry point can be dangerously assigned to a
procedure.

NUREG/CR-6463, Rev. 1 8-8

DOITALL: PROCEDURE (A, B);

Statement-1;

DO$SOME: Statement_k; /* Label entry point */

RETURN;

For safety related reasons, it is recommended that the procedure call-by-location not be used. A
better method to accomplish the above is shown below. Here, two procedures are defined instead of
one with multiple entry points. Both procedures now have only one entry point and one exit point.

DO$ SOME: PROCEDURE
Statement-1;

Statement_n;
RETURN;

DOITALL: PROCEDURE (A, B);
Statement_l;

CALL DO$SOME;
RETURN;

8.1.2.5 Minimizing Interface Ambiguities

Interface errors in argument lists and messages passed to other program entities account for many
coding errors. These errors may appear syntactically correct to the compiler and hence go unnoticed
until runtime. An example of such an error is reversing the order of arguments when calling a
procedure. Unfortunately, PIJM offers limited safeguards to prevent such problems (i.e., a linker
check for the number and type of parameters).

8-9 NUREG/CR-6463 Rev. 1

The following specific guidelines apply:

Use templates during code development. A template can provide a useful mechanism for
preventing argument list errors. In the example below, each procedure when written includes
a calling sequence template stored as a comment in the procedure's header block. Each time
a procedure invocation is to be coded, the programmer should COPY the calling template
(three lines in the following example) and PASTE it where the invocation should occur. The
comment delimiters are then removed, and the associated parameters become part of the
program. Once the invocation has been coded, the remaining commented declaration lines
can be deleted. By having all of the information at hand at the coding point, the programmer
does not risk guessing at the parameter specifications. Templates should also be built for
system procedures and built-in functions. The following example shows a procedure CALL

template:

/* Calling Template:

/* CALL FIRE$LASER (CHANNEL, DURATION, POWER$LEVEL); */
/ * DECLARE CHANNEL BYTE; */
/* DECLARE DURATION, POWER$LEVEL REAL; */

/* */
/**/*
FIRE$LASER: PROCEDURE (CHANNEL, DURATION, POWER$LEVEL);

DECLARE CHANNEL BYTE;
DECLARE DURATION, POWER$LEVEL REAL;

Parameter Validity Checking. In any language, including PLIM, active checks can be placed
in the code to ensure that proper parameters have been passed. In the FiRE$LASER example
below, checks can be placed at the beginning of the procedure to ensure that all parameters
passed are valid. A compound IF statement is used to verify data before the actual procedure
logic is invoked in the following example.

NUREG/CR-6463, Rev. 1 8-10

FIRESLASER: PROCEDURE (CHANNEL, DURATION, POWER$LEVEL);
DECLARE CHANNEL BYTE;
DECLARE DURATION, POWER$LEVEL REAL;
DECLARE DURATION$LOW LITERALLY '0.0'; /* Minimize literals in...
DECLARE DURATION$HI LITERALLY '3.0'; /* ...code by declaring...
DECLARE POWER$LOW LITERALLY '0.0'; /* ...them centralized... */
DECLARE POWER$HI LITERALLY '100.0'; /* ...in the header. */

iF (((CHA L - 1) OR (CZWML - 2))
AIW ((DUILTION > DURLTXK$LOW) AND (DURLTXON < DTRATXON$NX))
AND ((OMM$LZVZL) > POW=$LwF AND (PONME$LVZL < PO MM$NX))

T1 DO;
... /* Code to fire the laser */

END;
END; /* End of FIRESLASER */

In areas of safety-critical applications, this overhead is justified to ensure that parameters
passed are within acceptable range. Although these parameters may have been checked
elsewhere, these checks add an extra level of safety if some of the calling code is modified
incorrectly during maintenance in the future.

8.1.2.6 Use of Data Typing

The generic guideline applies. Acceptance of data that is different from that intended for use by a
subprogram or procedure can cause failures. The PLIM language provides for simple data typing
of variables and constants. In PLIM the data types are fixed and predefined. Simple data typing
provides for memory length and simple data pattern format checking. Thus, the data types BYTE
and unsigned char or WORD and int can occupy the same number of bits, but have different
meanings when being evaluated. For example, WORD is 0...65535, but int is -32768..32767.

In PLM, only the constant data type is checked for a maximum and minimum range. This is only
to ensure that the compiler can properly fit the data value into the specified data type. No user-
specified range check is made. Strong Data Typing, which allows a user not only to specify a data
type but also to place valid range bounds on that data type, is not supported.

Specific guidelines are as follows:

Actively check all mathematical and index values prior to use. As PIJM does not
support strong data typing, this must be implemented manually. Calculated values
should be checked for their potential to overflow or underflow. Index values should
be checked to ensure that they do not attempt to access out-of-bound array or matrix
elements. Memory pointers should also be checked to ensure that they point to valid
memory areas.

8-11 NUREG/CR-6463 Rev. 1

Avoid automatic or implicit type conversions. For clarity, readability, and
comprehension, explicit type conversions should be used.

Avoid mixed mode operations. Mixed mode operations should also be avoided for
the same reasons as stated above.

Limit the use of indirection with indices, pointers, and based variables to situations
where no other reasonable alternatives exist. Validation should be performed on
indirectly addressed data to ensure correctness of the accessed locations.

Add explicit range checking. Adding explicit data checking when the data has not
been validated previously can be prudent. In the example below, the variable
DURATION is verified by the procedure CHECK$DURATION to ensure that its value
is within a valid range. Line 34 of this example uses a compound If statement to
ensure that all laser parameters are in range before allowing the laser instrument to
fire. The ELSE clause of this same statement on line 36 locally handles the case of
one of these parameters being out of range.

NUREG/CR-6463, Rev. 1 8-12

1 STRONGSDATA$TYPE: DO;

2 1 DECLARE TRUE LITERALLY 'OFFH';
3 1 DECLARE FALSE LITERALLY 'NOT TRUE';

4 1 CHECK$DURATION: PROCEDURE (DURATION) BYTE;
5 2 DECLARE CHKSFLAG BYTE, DURATION WORD;
6 2 DECLARE DURATIONSLOW LITERALLY '0';
7 2 DECLARE DURATION$HI LITERALLY '3';

8 2 IF ((DURATION > DURATIONSLOW) AND
(DURATION < DURATIONSHI))

THEN CHKSFLAG = TRUE;
9 2 ELSE CHKSFLAG = FALSE;

10 2 RETURN (CHK$FLAG);
11 2 END CHECKSDURATION; /* End of Procedure */

12 1 CHECKSPOWER$LEVEL: PROCEDURE (POWER$LEVEL) BYTE;
13 2 DECLARE CHK$FLAG BYTE, POWERSLEVEL WORD;
14 2 DECLARE POWERSLOW LITERALLY '0';
15 2 DECLARE POWERSHI LITERALLY '100';

16 2 IF ((POWERSLEVEL > POWERSLOW) AND
(POWER$LEVEL < POWERSHI))

THEN CHK$FLAG = TRUE;
17 2 ELSE CHKSFLAG = FALSE;
18 2 RETURN (CHKSFLAG);
19 2 END CHECKSPOWERSLEVEL; /* End of Procedure */

20 1 CHECK$CHANNELS: PROCEDURE (CHANNEL) BYTE;
21 2 DECLARE (CHKSFLAG, CHANNEL) BYTE;
22 2 DECLARE CHANSA LITERALLY '3';
23 2 DECLARE CHANSB LITERALLY '23';
24 2 DECLARE CHAN$C LITERALLY '19';
25 2 IF ((CHANNEL = CHANSA) OR

(CHANNEL = CHAN$B) OR
(CHANNEL = CHAN$C))
THEN CHK$FLAG = TRUE;

26 2 ELSE CHK$FLAG = FALSE;
27 2 RETURN (CHK$FLAG);
28 2 END CHECKSCHANNELS; /* End of Procedure */

29 1 LASERSSETUP$EXCEPTION: PROCEDURE;
/* ...exception handling code here... */

30 2 END LASERSSETUPSEXCEPTION;

31 1 FIRE$LASER: PROCEDURE (CHANNEL, DURATION, POWER$LEVEL);
32 2 DECLARE CHANNEL BYTE;
33 2 DECLARE (DURATION, POWER$LEVEL) WORD;

34 2 IF ((cCK$ cNAwL(cCmmL))
AND (CNCK*DMMATXO(DUXAT10K)
AIM (CNWC0PORU$ZaVZL($ WZR$XV NL)
THEN DO;

/* ... Code to fire the laser /
35 3 END;
36 3 ELSE CALL LASER$SETUPSEXCEPTION; /* handle exception */
37 2 END FIRESLASER; /* End of FIRESLASER */
38 1 END STRONGDATASTYPE; /* End of Program /

END OF PL/M-386 COMPILATION

8-13 NUREG/CR-6463 Rev. 1

8.1.2.7 Precision and Accuracy

The generic guideline applies. The software application must provide adequate precision and
accuracy for the intended safety application. Safety concerns are raised when the declared precision
of floating point variables is not supported by analysis, particularly when small differences between
large values are calculated. The following are specific guidelines:

Account for different hardware. The same data types, when used by different compilers, may
have different precision. For instance, the data type WORD is a 16-bit number in PLJM-86 and
PI/M-286, but becomes a 32-bit number in PLIM-386. Likewise DWORD is a 32-bit number
in PLM-86/286 and a 64-bit number in PLM-386.

Account for optimization in floating point computations. Unexpected results can occur
during compiler code optimization. This is especially an issue with floating point
computations. A compiler might replace ((1. 0+x) -x) with 1.0 at compile time, when the
floating point rounding error is what the program is trying to compute. Note that the above
optimization is always guaranteed to be correct for integer types.

Verify numeric precision in ported code. In porting code containing calculations, the range
of precision of the data types should be investigated and verified. This is particularly true
when porting code downward to a less powerful platform. Even though the data types may
be syntactically equivalent, their precision may be inadequate for the function to be ported.

Express precision in terms of numeric ranges. Comment block procedures with precise
numeric ranges (rather than data types) are shown in the following example.

/* Designed for the PL/M-386 platform. */
DECLARE DELTA$VOLTS WORD; /* Range: 0.. (2**32)-l */
DECLARE VOLT$1 HWORD; /* Range: 0.. (2**16)-l */
DECLARE LED$V BYTE; /* Range: 0.-.255 */

If the code in this example were to be run on both an 80286 and an 8086-based platform, the
values for DELTA$VOLTS and VOLT$1 would have be changed from WORD to DWORD, and
from HWORD to WORD, respectively, in order to maintain the same mathematical precision.
This becomes a simpler task if the intended data range has been expressed in comments by
the original designer of the procedure, such as in the example shown below.

NUREG/CR-6463, Rev. 1 8-14

/* Designed for the PL/M-86 or 286 platforms. */
DECLARE DELTA$VOLTS DWORD; /* Range: 0.. (2**32)-l -1
DECLARE VOLT$1 WORD; /* Range: 0.. (2**16)-l */
DECLARE LED$V BYTE; /* Range: 0..255

In the above example, expressing the variable only by data type leaves the issue of changing
the data type ambiguous. Without this information, the programmer inadvertently or
unknowingly may leave DELTA$VOLTS as data type WORD in the porting process.

8.1.2.8 Use of Parentheses Rather than Default Order Precedence

The generic guideline applies. The default order of precedence of arithmetic, logical, and other

operations varies among languages. Developers or reviewers may make incorrect precedence

assumptions when explicit parentheses are not used. In moving between languages with similar

statement definitions such as "C" and PLM, developers and reviewers are particularly vulnerable
to these wrong assumptions about order of operations.

The explicit use of parentheses and other mechanisms for ensuring a clear statement of the order of

evaluation of operations should be used. In some cases, complex statements should be broken down

into two or three simple statements to enhance clarity and readability and to ensure that the compiler

properly evaluates the statement expressions. This is particularly the case in floating point
computations when compiler optimization is used. Such expressions should be broken up into

multiple statements because the ordering of statements is usually preserved, even by optimizing
compilers.

8.1.2.9 Avoiding Functions or Procedures with Side Effects

Generic guidelines are applicable.

8.1.2.10 Separating Assignment from Evaluation

Separation of assignment statements from the evaluation of expressions is particularly important in
PLJM because the syntax defines two meanings for the token "=" (equal sign). The equals sign can
represent the logical relational operator "equals," or it can represent the assignment of a value to a
variable. PLIM attempts to compensate for this by defining an embedded assignment token of": ="
(colon, equals). The latter is explained below. Embedded assignment can also occur by invoking a
typed procedure within an expression.

8-15 NUREG/CR-6463 Rev. 1

Embedded assignment statements should be separated from the evaluation of expressions. The PIJM
language documentation (Intel, 1990) explicitly states that:

"...the rules of PLM do not specify the order in which subexpressions or operands
are evaluated. When an embedded assignment changes the value of a variable that
also appears elsewhere in the same expression, the results cannot be guaranteed."

Intel does not guarantee the order in which the following ambiguous expression will be evaluated.
In addition, the compiler may even interpret the statement differently in various levels of compiler
optimization. The expression:

A = (X:=X+4) + Y*Y + X;

could result in A being assigned either of the following:

(X+4) + Y*Y + (X+4);

(X+4) + Y*Y + X;

The ambiguity can be removed by separating out the embedded assignment statement, and recoding
explicitly as the programmer intended it to be:

X =X + 4;

Al = X + Y*Y + X; or,

X =X + 4;

A2 = X + Y*Y + (X-4);

In summary, safety concerns dictate that assignments be separated from evaluation in order to avoid
ambiguity and to improve readability of the code. Modem compilers do well in constructing
optimized code. The inclusion of a large number of terms in an expression in source code statement
rarely results in more efficient machine code than the same logic broken out into two or more lines
of code.

NUREG/CR-6463, Rev. 1 8-16

8.1.2.11 Proper Handling of Program Instrumentation

The generic guideline applies. Program instrumentation is used to collect and output certain internal
state values of a program during execution. Program instrumentation is one method that allows a
developer to check that particular aspects of a specification have been correctly implemented (Liao,
1991). Use of program instrumentation is often the only method for observing the operation of
systems containing proprietary and/or protected operating systems. Fortunately for the vast majority
of PLIM users, nonintrusive real-time methods of obtaining the same information exist through use
of the in-circuit emulator development tool.

In-circuit emulators (ICE) allow detailed data about a program's execution to be collected in a non-
invasive manner while the program executes in real-time. Since no code is necessarily added to the
program, the program being executed under the ICE unit can be the exact code to be run in the final
system.

If an ICE system is not available, or for some reason program instrumentation appears preferable,
the following guidelines and recommendations are offered:

Minimize run-time perturbations. Instrumentation that interferes with the normal execution
flow and timing rhythms is undesirable in safety applications because it will change the
normal operation pattern of the program. Less intrusive methods should be employed, such
as collecting data in memory and later processing them in a background task.

Instrumentation source code should remain visible. PLM does not provide any compiler
features that generate hidden or concealed code for a "debug" mode of operation. Compiler
directives may be used, however, to compile program instrumentation conditionally into the
code. This is generally acceptable if the two models do not depart as discussed above.

Conform to software instrumentation and test guidelines. Program review is facilitated and
safety enhanced if instrumentation and test procedures are described in the project- specific
handbook. Program instrumentation and test are often detailed in a separate test specification.
These test specifications should describe the program instrumentation and its scope in detail.

8.1.2.12 Control of Class Library Size

The generic guideline does not apply. Because PL/M is an older language, it does not contain any
of the features or concepts related to object-oriented methods, including classes, inheritance, operator
overloading, and polymorphism. Object-oriented characteristics can be enhanced by controlling
limits on subprogram and module sizes.

8-17 NUREG/CR-6463 Rev. 1

8.1.2.13 Minimizing Dynamic Binding

PLJM does not support dynamic binding of code segments. As P1JM is primarily an embedded
language that executes from nonvolatile ROM, the dynamic binding of code during run time is not
supported. However, bank switching, which is a hardware form of dynamic binding, sometimes
appears. Hence, the following specific guideline for this issue.

The PLIM object code linkers and locate programs do allow for the generation of overlay or shadow
ROM code (see section 8.1.1.2) by the use of hardware bank switching techniques. These represent
a risk and should therefore be eliminated. Bank switching is difficult to test and debug, particularly
in the areas of fault and interrupt handling.

Most cases of bank switching appear in modifications to a system when the complete address space
becomes full. From a safety standpoint, bank-switching is never worth the risk and effort. It is
preferable to upgrade the hardware to the next microcomputer architecture containing a larger
memory address space.

8.1.2.14 Control of Operator Overloading

The generic guideline does not apply. The PLIM language does not support the concepts of
polymorphism or operator overloading.

8.1.2.15 Compiler Optimization and Hardware Flags

PLM-86 and later compilers are capable of performing extensive optimizations on the object code
generated by earlier passes of the compiler. Such optimization changes the exact sequence of
machine code produced from a given sequence of PLM source statement.

One of the impacts is that the microprocessor hardware flags cannot be predicted or determined for
any given point in a program. As an apparent carry-over from the early unoptimized PIUM-80
compiler, the language provides built-in functions that attempt to return the current value of the
hardware flags. These built-in functions should be used with caution if used at all. They are listed
in the following table.

Table 8-1 ptimization and Hardware Flags.
Hardware flag bits CARRY, SIGN, ZERO, PARITY
Carry-rotation functions SCL SCR
Decimal adjust function DEC
Hardware register FIAGS
Arithmetic operators PLUS, MINUS

NUREG/CR-6463, Rev. 1 8-18

Functions that use these hardware flags should be programmed in assembly language so that
predictable control can be achieved. It is also recommended that, where warranted, a library of these
functions be developed in one module so that they might be isolated and better maintained.

8.1.3 Predictability of Timing

Predictability of timing is crucial in a safety system used in real time control (Kopetz, 1993;
Leveson, 1992). Response to asynchronous interrupt inputs must be predictable to ensure that

safety-related procedures are allowed to complete execution within their precise window of time
according to specification. In addition, output values must be computed and prepared according to
precise timing requirements.

8.1.3.1 Minimizing the Use of Tasking

Tasking is undesirable in safety systems unless there is a compelling justification. The PLIM
language does not provide any language facility for implementing concurrent processing. Intel does,
however, provide a compatible real-time operating system kernel known as iRMX.

If an operating system kernel such as Intel iRMX is used, it should be provided with complete source

code. Although the user documentation for such a system may be extensive, developers need to have
access to all aspects of this controlling code to avoid safety-related problems that may be hidden
from view.

8.1.3.2 Minimizing the Use of Interrupt-Driven Processing

Use of interrupts to handle the acceptance and processing of plant and operator inputs can reduce
average response times. It also usually leads to nondeterministic maximum response times. Improper
use of interrupt-driven processing has been implicated in at least one fatal accident (Leveson, 1992).
Documents and standards related to digital system safety generally discourage or prohibit the use of
interrupt-driven processing to facilitate analysis of synchronization and run-time behavior and to
avoid the nondeterministic response times inherent in interrupt-driven processing.

However, use of interrupts may be necessary to capture asynchronous data within a certain deadline.
Not doing so may allow the external data to change or become overrun with other new data. The
following specific guidelines are applicable.

Interrupt handlers should be as short and simple as possible. The processing associated
interrupts should be minimized. The interrupt handler should only access, queue, and flag
data for processing at a later time. There should be only a single path of execution with no
delays or waiting involved.

8-19 NUREG/CR-6463 Rev. 1

• Avoid nested interrupts. Nested interrupts should not be permitted in safety systems.

The interrupt handler should not set or otherwise alter shared data. In general, the interrupt
handler should write data into a dedicated memory area or buffer. However, if the handler
must access shared data, some form of locking or mutual exclusion may be required when
using interrupts.

The following is a descriptive example of an interrupt driven system. This basic design has been
used in a number of successful biomedical and process control instruments. A hardware timer
provides a system "heartbeat" of 30 ms. This heart beat time is arbitrarily chosen and could be set
to any reasonable time-slice interval.

Every 30 ms the timer interrupts the background task and performs any time
critical tasks. The interrupt duty cycle is designed to not exceed 50 percent.

Hardware signals are latched and generate a level two interrupt. Interrupt
handlers are designed to be low in overhead. They execute as a fast "store,
flag, and return." In other words, on interrupt they:

Fetch the waiting input data,
Store it in a queue,
Set a data available flag, and
return to processing.

This approach eliminates the use of interrupt processing and yet acknowledges
asynchronous input data quickly.

Every 30 ms the level one timer interrupts. The level one task then performs the
following:

• Checks critical areas of the system for validity.
• Looks for new queued input data.
* Calculates any new controlled output values.
* Outputs new values (if any).
• Returns from Interrupt.

When interrupt processing has been completed, the system returns to background
processing. Tasks that are not time critical are continuously processed in a
priority order in this task. Examples include writing data to a display buffer,
storing data in a data cartridge and similar tasks.

Tasking has been minimized in this system. In addition, and most important, the tasking that does
exist is explicitly controlled; it is not delegated to a black box operating system kernel. Interrupts are
used as necessary to capture (but not process) real-time events. They then terminate as rapidly as
possible. The timer-interrupt routine is efficient enough to complete all of its tasks within 15 ms.

NUREG/CR-6463, Rev. 1 8-20

8.2 Robustness

Robustness (or survivability) refers to the capability of the software to continue execution during
abnormal or other unanticipated conditions. Robustness is an important safety system attribute
because unanticipated events can occur during an accident or excursion. The ability of the software
to continue monitoring and controlling under such circumstances is vital. The intermediate attributes
for robustness are as follows:

• Controlled use of software diversity
* Controlled use of exception handling
* Input and output checking.

These attributes and their relevance to safety are discussed in the following sections.

8.2.1 Controlled Use of Software Diversity

The decision to employ diverse software implementations is a design-level function. The PLM
languages offer no features that require more than the generic concerns under this heading.

8.2.2 Controlled Use of Exception Handling

Exception handling deals with abnormal system states and input data. Exception handling provisions
in some languages facilitate the establishment of alternate execution paths in the event of conditions
that, although unexpected, result in states that can be defined in advance. Problems can arise in the
use of exception raising and handling, however, because execution flow during exception conditions
is often difficult to trace.

Attributes that pertain to safe exception handling include the following:

* Local handling of exceptions
* Preservation of external control flow
* Uniformity of exception handling.

PIM has no native facilities that support exception handling. Synchronous exceptions can be
handled locally, but asynchronous ones may require an interrupt or trap handler to process them.
Asynchronous exceptions can only be handled by interrupt or trap handlers. The effect of handling
the exception in this way can be localized to the module containing the handler, and flags can be
used to communicate the error to other modules. Sometimes polling can be used to turn an
asynchronous condition into a synchronous one.

8-21 NUREG/CR-6463 Rev. 1

8.2.3 Input and Output Checking

Input and output data should be validated before being used. Corruption of data, whether due to a
transient failure of a sensor, a flipped memory bit, or an invalid calculation, can have serious
consequences on subsequent processing if the error is allowed to propagate. PIJM does not offer
any specific language features to accomplish this checking. However, data can be validated as part
of the application software as shown in the following example.

The example incorporates both input/output checking and local exception handling. This procedure
checks and confines the input and output data to specific ranges. In addition, the exceptions raised
from data being out of range are handled by a local procedure.

Lines 6 through 18 in the example are nested local procedures that perform input and output data
checking. Also, the procedure HANDLE$EXCEPTIONS provides a local facility for handling the
exceptions encountered in this procedure.

The reason for using a procedure to accomplish this is that procedures provide isolation and
localization of the exception code. They also increase readability which promotes review and
maintenance. Although not shown in this example, the complete limits and default values for the
input and output data should be explicitly defined within the local procedure with a series of
DECLARE... LITERALLY statements.

Use of this format also provides some of the positive attributes of data abstraction and encapsulation.
All data and procedures necessary to handle data 1/O checking and exceptions are contained within
procedure CALCULATE$VELOCITY.

On line 20 of the example, the data input values are checked and adjusted. If any are out of range,
an exception can be raised that will be handled later in the procedure. Between lines 20 and 21, the
full calculation of velocity will occur. Line 23 then checks the results of the computations and
adjusts them before making the data available as output from this procedure.

During execution of this procedure, data input and output exception flags may have been raised by
either local procedures IN$CHECK or OUT$CHECK. Perhaps further processing of these noted
exceptions is necessary. A message may have to be sent to another module warning of a possible
degradation of the system. This might be done in local procedure HANDLE$ EXCEPTIONS.

If necessary in the design, an exception flag can be returned from the typed procedure
CALCULATE$VELOCITY.

NUREG/CR-6463, Rev. 1 8-22

3 1 CALCULATESVELOCITY: PROCEDURE (CHAN$1, CHAN$2, TIME) BYTE;
4 2 DECLARE (CHAN$l, CHAN$2, TIME) REAL;
5 2 DECLARE VSEXCEPT BYTE;

/* Local Procedure: IN$CHECK */
/* Checks that input data is within valid range. */
/* Substitutes Max/Min data for out of range data ...
/* .. so that calculations can continue. */

6 2 IN$CHECK: PROCEDURE BYTE;
7 3 DECLARE ISEXCEPT BYTE;

/* ... other statements ...
8 3 RETURN (ISEXCEPT);
9 3 END IN$CHECK;

/***t************/*
/* Local Procedure: OUT$CHECK */
/* Checks that output data is within valid range.
/* Adjusts as necessary so that computation and... */
/* ... control can continue as normal. */

10 2 OUT$CHECK: PROCEDURE BYTE;
11 3 DECLARE O$EXCEPT BYTE;

/* ... other statements ... *
12 3 RETURN (OSEXCEPT);
13 3 END OUT$CHECK;

/* Local Procedure: HANDLE$EXCEPTIONS */
/* ...code to handle the out-of-data-range exception */
/* ... locally so that calculations can continue. */

14 2 HANDLESEXCEPTIONS: PROCEDURE BYTE;
15 3 DECLARE CSEXCEPT BYTE;

/* ... Handle local exceptions here ...
16 3 CSEXCEPT = FALSE;
17 3 RETURN (CSEXCEPT);
18 3 END HANDLESEXCEPTIONS;

* .--

19 2 DECLARE (EXCEPT$IN, EXCEPT$OUT) BYTE;

20 2 EXCEPT$IN = IN$CHECK; /* Check data about to be used */
/* ...Perform all processing of data here...
/* ... other statements ...

21 2 EXCEPT$OUT = OUT$CHECK; /* Check data just computed */

22 VSEXCEPT = TRUE;
23 2 IF (EXCEPT$IN OR EXCEPT$OUT)THEN VSEXCEPT = HANDLE$EXCEPTIONS;

24 2 RETURN (VSEXCEPT); /* exception flags can also be...
/* ...returned to caller if desired. *I

25 2 END CALCULATE$VELOCITY;

8-23 NUREG/CR-6463 Rev. 1

The above design preserved the flow of the control logic while handling any exceptions. No goto
statements have been used to branch to other outside exception handling code, thus transferring flow
to another control path.

8.3 Traceability

As defined earlier, traceability refers to attributes that support and allow verification of correctness
and completeness when compared to the software design specifications. The intermediate attributes
for traceability are as follows:

" Readability
" Use of built-in functions
" Use of compiled libraries.

Readability is an intermediate attribute shared by traceability and maintainability; it is discussed
under that heading in Section 8.4 below. The latter two attributes and the PIJM features relevant
to safety are discussed in the following section.

8.3.1 Use of Built-in Functions

Generic guidelines apply to PLIM. Concerns over the use of built-in functions can be addressed by
controlling the use of built-in functions through organizational or project-specific guidelines.
Regression test cases make it possible to establish conformance with expected results for new
releases of compilers and runtime libraries. Therefore, regression test cases, procedures, and results
of previous testing for allowable built-in functions should be maintained. Test cases should assess
behavior for out-of-bounds and marginal conditions in the specific runtime environment. Examples
of these conditions include negative arguments on square root functions and improperly terminated
strings. The built-in functions included with PLM-386 are shown below.

LENGTH, LAST, SIZE LOW, HIGH
DOUBLE, REAL, FLOAT, FIX INT, SIGNED, UNSIGN
ABS, IABS BYTE, WORD, HWORD
CHARINT, SHORTINT, INTEGER SELECTOR, OFFSET, POINTER
Rotate (ROL, ROR) Log Shift (SHR, SHL)
Arith Shift (SAL, SAR) Move (MOVB, MOVW, MOVHW)
Compare (CMPB, CMPHW) Find (FINDB, FINDW)
String Mismatch (SKIP) Translate String (XLAT)
Set String (SETB, SETW) Copy Bit (MOVBIT)
Find Bit (SCANBIT) Time Delay (TIME)
Lock Set (LOCKSET) Interrupt ENABLE, DISABLE
CAUSES INTERRUPT HALT
CARRY, SIGN, ZERO, PARITY PLUS, MINUS
Decimal Adjust (DEC) STACKPTR, STACKBASE
INPUT, OUTPUT SET$REAL$MODE
GET$REAL$ERROR WAITFORINTERRUPT

NUREG/CR-6463, Rev. 1 8-24

8.3.2 Use of Compiled Libraries

The generic guidelines apply to PLJM. Compiled libraries are routines written and compiled by a
group or organization, usually outside and removed from the current development group. Compiled
libraries are often sold by third-party providers and are available only in object-code format with
detailed calling and usage documentation. For the most part they are documented "black boxes" with
their internal methodologies and algorithms hidden. Concerns for such libraries are similar to those
for built-in functions.

8.4 Maintainability

Attention given to maintainability issues in program design makes it easier and safer to make
changes to the program. These issues reduce the likelihood of errors inadvertently being introduced
during the change or upgrade process. Addressing these issues at design time is really an investment
in the future robustness of the program.

The following attributes are related to maintainability as it affects safety:

* Readability. These are attributes of the software that facilitate the understanding of the
software by project personnel.

0 Data Abstraction. This is the extent to which the code is partitioned and modularized
so that the collateral impact and probability of unintended side effects due to software
changes are minimized.

* Functional Cohesiveness. This is the appropriate allocation of design-level functions to
software elements in the code (i.e., one procedure, one function).

0 Malleability. This is the extent to which areas of potential change are isolated from the
rest of the code.

* Portability. The major safety impact is the avoidance of nonstandard functions.

These attributes are discussed in detail in the sections below.

8.4.1 Readability

The attribute of good readability allows the software to be understood by qualified personnel other
than the original author of the code. Readable source code adds to the documentation of the program
itself (self-documenting). Studies have shown that manual code reading is more effective than
structural testing or functional testing for finding code faults (McGarry, 1992). Therefore, it seems

8-25 NUREG/CR-6463 Rev. 1

that good readability will enhance the probability of locating faulty or weak code that could cause
failures in operation or problems during maintenance. The following attributes make source code
more readable:

* Conformance to indentation guidelines
* Use of descriptive identifier names
* Comments and internal documentation
* Limitations on subprogram size
* Minimizing mixed language programming
* Minimizing obscure or subtle programming constructs
• Minimizing dispersion of related elements
* Minimizing the use of literals.

PLIM aspects of these attributes are discussed below.

8.4.1.1 Conformance to Indentation Guidelines

Appropriate indentation facilitates the identification of declarations, control flows, nonexecutable
comments, and other components of source code. Indentation guidelines are generally part of a
project specification, organizational style, or standards document. In the paragraphs below,
indentation issues, guidelines, and recommendations are discussed as they pertain to PI.M program
blocks and control flow blocks.

" Program blocks. Program blocks separate sequences of statements. In PI.M, the Do and
END statements define the limits of a program block. In PLIM, program blocks can be
nested. Each program block, therefore, provides a natural method of expressing the
program logic by indenting. It is recommended that, for clarity and understanding, the
program segments and blocks be indented consistently throughout the program.

* Controlflow blocks. Program control statements of DO ... WHILE, DO CASE, iterative
DO, and IF... THE..... ELSE also provide natural indentation segments.

8.4.1.2 Descriptive Identifier Names

The generic guidelines apply. , an identifier is the name of a variable, procedure, symbolic constant,
or statement (label). Identifiers can be up to 31 characters long. The first character must be
alphabetic, and the remainder may be either alpha or numeric.1 There is no distinction between
upper and lower case letters. The "$" (dollar sign) can be used to improve readability; it is not

11 This applies to early versions of PLIM such as PLM-80. Later versions also allow the underscore

character and either alpha, numeric, or the underscore as the first character.

NUREG/CR-6463, Rev. 1 8-26

evaluated by the compiler as an identifier. An identifier containing a dollar sign is equivalent to the
same identifier without the dollar sign.

The following are language-specific guidelines:

Distinguish procedure and variable names. Variable names should be distinguished from
procedure names by some convention (this can be project-specific). It is often convenient
to give a hierarchy number to a module in addition to a name. The hierarchy number is used
primarily for documentation purposes and with the prefix/suffix notation. Use of an
identifier prefix (or suffix) allows information about the identifier to be attached or carried.

Loop variables should be given some standard nomenclature. As these variables are often
local counters and have no other meaning except their local use as a counter or index,
programmers may be tempted to choose any nondescript name that comes to mind. A
standard nomenclature, as in lines 5 and 6, allows these variables to be identified readily.

Label data from an external source. In general, data that is received from an external source,
such as a sensor or data port, should have a name descriptive of that source. VIBRATION$X,
VIBRATION$Y, VIBRATION$Z is a better descriptive label than Io$PoRT$1, IO$PORT$17,

and IO$PORT$23. The declaration of these might be as shown below.

DECLARE VIBRATION$X BYTE; /* X-axis vibration component from Port 01H */
DECLARE VIBRATION$Y BYTE; /* Y-axis vibration component from Port 017H */
DECLARE VIBRATION$Z BYTE; /* Z-axis vibration component from Port 023H */

Avoid reserved words or words similar to existing reserved word. PLIM, being an older
language, does not support features such as overloading and pre-compiled headers.
Reserved words or even identifiers containing reserved words should never be used as
identifiers. It is best to give wide berth to identifiers similar to reserved words. These
identifiers may become reserved words in the course of the code's lifetime due to compiler
changes.

8.4.1.3 Comments and Internal Documentation

Weak or lacking internal program documentation and comments raise safety concerns. Sparse,
incomplete, or outdated program comments can impede code review and mislead those performing
program modification and maintenance.

Comments are important elements of safety software that should be maintained with each revision
of the source code, no matter how minor the change.

8-27 NUREG/CR-6463 Rev. 1

Although the concerns with comments in PL/M are essentially generic language ones, the following
example may be helpful to reviewers in judging the adequacy of comments in the target of their
review This example shows basic information about the module as well as where additional
information can be found. Note how the -comments indicate that the outline of the software
documentation has been designed and space has been allocated in section 4.2.2 for detailed
documentation of this module.

RANGING$LASER: DO; /* Module *//**/
/* Module 4.2: RANGING$LASER
/* Revision #: 2.2
/* Revision Date: December 12, 1993
/* Revised by: Sally Newprogrammer, Approved by: Sarah Boss
/*

/* Function: This module contains all of the software functions
/* necessary to initialize, aim, arm, and fire the
/* main system ranging laser unit. All routines, data,

and declarations necessary to operate the laser are
contained in this module.

/*

/* Documentation: This module is documented in further detail in
/* section 4.2.2 of "ABC Systems Software Manual"

3-100422 Rev C (December 1993)
/*

/* Include Files: File LASER.EQU should be included in any
external module which uses the procedures
contained within.

/*

/* Associated Hardware: Apex 150 Ranging Laser #43-4568-01A
/*

/* Module author: John C. Programmer
/* Original Date: January 14, 1983
/***/*

.... statements ...

END; /* End of Module RANGING$LASER *1

In the above example, the complete module has been encapsulated; therefore the only outside
references are contained in the include file named "LASER. EQU." Other modules may not be so self
-contained and may require other types of header information. For instance, utility subroutines or
procedures are often used many places in a program. Routines such as BCDTOBINARY,

DISPLAY$TIME, etc. often have a "WHERE USED:" comment section in their header block.

The following example illustrates a comment header block for procedures. The function is described
narratively. The inputs are described in real measure units. The range of valid arguments is also

NUREG/CR-6463, Rev. 1 8-28

shown. Since this is a utility subroutine, the locations where it is used throughout the program are
shown.

/* Procedure: AIM$LASER X, Y, Z) BYTE PUBLIC;
/* Revision Date: December 1, 1992
/* Revised by: Sally Newprogranmer, Approved by: Sarah Boss/*
/* Function: This procedure physically aims the laser unit base
1* on coordinate input information X, Y, and Z. Servo
1* information is calculated, and the servos activated
/* by calling private procedure SET$SERVO located in
/* this module. If the status return for the servo
/* operation is OK, a TRUE indication is returned to
1* the Calling program./*
/* Inputs: Coordinates are in units of millimeters passed as real values.
/* Precision must be to three decimal places. Valid ranges are
/* as follows:
/* X: 0.000 .. 100.000
/* Y: 0.000 .. 24.750
/* Z: 0.000 .. 75.000/*
/* Where used: INIT.PLM: INIT$LASER
/* MAIN.PLM: GET$RANGE, DEACTIVATE$LASER
/* TEST.PLM: TEST$1, TEST$5, TEST$19/*
/* Documentation: Section 8.2.9 of "ABC Systems Software Manual"

3-100422 Rev C (December 1993)/*
/* Module author: John C. Programmer
/* Original Date: January 14, 1983/**

AIM$LASER: PROCEDURE (X, Y, Z) BYTE PUBLIC;
DECLARE (SX, SY, SZ, STATUS) BYTE;
DECLARE (X,Y,Z) REAL;

SX = SET$SERVO (CHANNEL$1, X); /* Return status of servo move */

SY = SET$SERVO (CHANNEL$2, Y);
SZ = SET$SERVO (CHANNEL$3, Z);
/* ... other statements... */
RETURN (STATUS); /* Combined status of servos */

END;

END AIM$LASER; /* End of AIM$LASER Procedure */

Other items that might be included in comment header blocks and in line comment blocks include
the following:

8-29 NUREG/CR-6463 Rev. 1

* Performance requirements for the procedure
• Unusual external interfaces and associated information
* Error handling and exception behavior and related information
* Inputs and outputs of the module and their range of values
• References to appropriate design documentation and charts
• Purpose and expected results of blocks of in-line code
" Expected results at branching junctures within a code segment
* Expected actions and results of exception code
• Detailed in-line comments explaining unusual constructs and deviations from normal

program practices.

8.4.1.4 Limitations on Subprogram Size

Only generic guidelines apply.

8.4.1.5 Minimizing Mixed Language Programming

The generic guidelines apply. Generally speaking, mixing programming languages is a source of
error because of different calling conventions, register usage, and data representations. None of the
Intel PIJM languages support in-line assembly language coding.

However, mixed language coding and linking is sometimes necessary. When functions must be
developed in a second language, they should be isolated and designed as loosely coupled as possible.
If at all possible, parameters should be passed to the routine rather than accessed as a global entity.

Where separate assembly code must be used, macros should be defined to hide calling convention
details.

8.4.1.6 Minimizing Obscure or Subtle Programming Constructs

The generic guidelines apply. Obscure or subtle coding techniques should be avoided if at all
possible. If they cannot be avoided and justification for their use exists, they should be isolated and
well commented. An example follows:

NUREG/CR-6463, Rev. 1 8-30

/* ---- NON-STANDARD CODE FOLLOWS -----------------------------------

/* The following code is used to increase performance by using */
/* a left shift by 3 to replace a multiply by 8.
/* -- *1

OPERANDI = SHL (OPERANDI, 3); /* OPERANDI = OPERAND1 * 8

/* ---- End of Non-Standard Code Section----------------------------

In this example, the code is clearly marked as nonstandard code. The surrounding comments describe
exactly what the code is attempting to accomplish. The end of the code block is also clearly marked.

8.4.1.7 Minimizing Dispersion of Related Elements

When related elements of code are dispersed in a program, it is necessary to refer to multiple
locations within the source listings during reviews and maintenance. Review is facilitated and safety
is enhanced if project-specific guidance is provided on the placement of related elements in the code.
Since the PLJM language is not complex, most cases of code dispersion occur with the use of the
DECLARE statement and general utility procedures.

Control dispersion of DECLARE statements. The DECLARE ... LITERALLY statement

is often used to give more meaningful names to numeric constants. These descriptive names

are then used throughout the program to enhance readability. Therefore, they should be

placed in a source-code file to be included in all program modules. All of these values are

then localized to one file making them easier to change. Compiler directives can then be set

as desired in each module, either to print or not to print the contents of this include file.

Similarly, the DECLARE ... EXTERNAL statement is used to declare a data type (and

length) for a variable or constant declared to be PUBLIC elsewhere. For procedures which

are dispersed throughout the program - such as those called from the main program - a

separate file of external declarations should be maintained and included in files as needed.

Some degree of control over these dispersed elements is thus maintained. An exception to

this is discussed in the paragraph below.

8-31 NUREG/CR-6463 Rev. 1

Dispersion of general utility procedures. Procedures that are general to the program and
used throughout to provide some minor function are referred to as general utility procedures.
These procedures are similar in nature to the built-in functions. General utility procedures
should be grouped together in one or more modules. For code review or maintenance
purposes, all of these routines will then be conveniently located in one listing. As a further
convenience in identifying these general subroutines, they may be prefixed with a lower case
character as in: uBCDTO$BINARY, or s$MULT$32 (see also Section 8.4.1.2).

The general utilities module(s) should maintain an $ INCLUDE file of external declarations
for these publicly declared routines. This file should be included in any module that calls or
invokes any of these general procedures. Thus, dispersion of these declarations is localized
to one source-file module.

Use of header files for imports and exports. Header files should be used to group module
exports. Imports should only use header files.

In summary, code element dispersion should be minimized where possible by proper grouping and
use of included files. These $ INCLUDE files should have adequate header comment documentation
describing the purpose of the include file and where each element is used.

8.4.1.8 Minimizing the Use of Literals

The generic guidelines apply. Use of literals in the PIJM source code impacts safety because it
decreases readability and complicates the maintainability of code. Use of literals often causes
different representations of the same value to be dispersed throughout one or more program modules.
It is far easier to change one set of values located at the beginning of a file, or included with the file
with an $ INCLUDE statement, than to guarantee that all literal values associated with an item have
been successfully located and properly changed.

Literals are often used by programmers because they show an actual value which is easier to use
during debug time. This often occurs when a certain bit pattern must be passed to a hardware port
to accomplish some I/O task, such as turning an LED indicator on or off. This code may be
convenient for a brief time while hardware and software team members debug a hardware unit. This
convenience is short lived, however, as the following two examples illustrate.

The first example below shows a section of code that is intended to turn on an LED indicator and
later turn it off. During a coding session, it is relatively easy for a programmer to glean information
from an electrical schematic diagram quickly, then directly code this information into the program.
Suppose later that some change has been made to the hardware requiring all of the code associated
with this LED to be modified. Using a text editor search for "OUTPUT(3)" would not find the
second occurrence, which is coded as "OUTPUT(03H)."

NUREG/CR-6463, Rev. 1 8-32

OUTPUT(3) = 0000010OB; /* Turn power LED on */

OUTPUT(03H) = OFBH; /* Turn power LED off */

The next example shows a better method of handling the above situation with literals. PLIM has a
DECLARE... LITERALLY statement that allows literals to be assigned to a label. In this example all
literal data are grouped together in one place, and all of the commands and data associated with that
1/O device are defined. Should a change be made later to the hardware system, all of the necessary
software changes can be accomplished by changing just three DECLARE... LITERALLY lines of
code.

/* Commands and data for Power LED device */
DECLARE PWR$LED LITERALLY '03H';
DECLARE LED$ON LITERALLY '04H';
DECLARE LED$OFF LITERALLY 'NOT LED$ON';

OUTPUT(PWR$LED) = LED$ON;

OUTPUT(PWR$LED) = LED$OFF;

In addition, the code is more readable and somewhat self-documenting. In larger programs, the
declaration of these literals would probably occur in a file that would be included with the INCLUDE

compiler control statement. The sequence for the example above might appear as follows:

$INCLUDE (IODEFS.PLM) /* Commands and data for Power LED device
*/

OUTPUT(PWR$LED) = LED$ON;

OUTPUT (PWR$LED) = LED$OFF;

Literals that are exported by a module should be grouped in the module's header file.

8-33 NUREG/CR-6463 Rev. 1

8.4.2 Data Abstraction

Data abstraction involves combining both the data and the allowable operation on that data
(procedures or functions) into a single entity. Furthermore, data abstraction calls for the
establishment of an interface that allows access to, manipulation of, and storage of the data only
through allowable operations. Data abstraction is an important contributor to safety in that it reduces
or eliminates the side effects of variables being changed inappropriately during run time or
inadvertently or incorrectly changed during software maintenance.

The PIJM language pre-dates the current concepts of data abstraction. Hence, PLJM does not have
any built-in mechanisms for implementing data abstraction directly. However, it will also be shown
that the PLM program module can provide an appropriate and acceptable container for data
abstraction as discussed in Section 8.4.3.

8.4.2.1 Minimizing the Use of Global Variables

The generic guidelines apply. It is desirable to limit the scope of variables in safety-related
programs. Variables that are made available to all program segments increase the potential for
unintended side effects. However, global variables may be the simplest way to represent some sort
of global state or other data that must be accessed by most or all functions. The alternative is to pass
the variable as a parameter, which increases the complexity of the procedure and function interfaces.
Global variables may also be necessary to share data from separately compiled modules.

The following are specific guidelines related to global variables.

Initialization of global variables. All global variables used in a program should be initialized
in exactly one place.

Imports and exports from separately compiled modules. All exports from a module should
be explicitly global, and everything else should be made local to the module by being
explicitly declared static. Exports from a particular module should be specified in one and
only one header file. All importing modules should use the header file. They should not
import variables, functions or procedures independently from the header file by using
externals. Headers should use prototypes unless there is a good reason not to, in which case,
the reason should be documented.

Use macros for local variables in emulators, simulators, and debuggers. In-circuit emulator
(ICE) tools, debuggers, and simulators complicate use of local variables because of the
length of their identifiers. One such emulator, the Intel I2ICE system, uses a naming
convention as follows:

(:module.-name.] [procedure-name.] [variable-name] (expr[,expr]]

NUREG/CR-6463, Rev. 1 8-34

However, it is also possible to construct a temporary macro which would reference this
variable with just one or two characters while debugging this code section.

8.4.2.2 Minimizing Interface Complexity

The generic guidelines apply. Interfaces between procedures, functions, and program modules are
often a source of software failures. If an interface becomes too complicated, it will be difficult to
review, understand, and maintain. Complex interfaces are not desirable in a safety-related program
and should be avoided. Specific guidelines include the following:

Limit the number of arguments used in the calling program. Requirements for a large
number of arguments can cause confusion and errors in a safety-related program. If a
programmer must set up a large number of parameters to invoke a procedure, some of the
choices may not be properly thought out. It is better to have a programmer understand the
meaning of the parameters than to require that they be blindly and rotely specified.

Procedures that require a number of arguments may be indicative of a design in which
excessive functionality has been allocated. A better design may be two or more smaller
procedures, each of which accomplishes a narrower task. The example in the section on data
abstraction illustrates this point by showing how one or more method procedures allows a
user to understand more clearly how laser ranging data are obtained. This method requires
the programmer to think through how the instrument obtains ranging data.

Do not use ambiguous or terse expressions. Use of meaningless expressions for modes or
options can confuse the programmer. Both of the example procedure invocations below will
accomplish the same results. However, the second form is better because it immediately
provides information on the parameters. A person reading and checking code is more likely
to question the correctness of a parameter choice in the second invocation than in the first.

(1) CALL FIRE$LASER (2, 3.0, 1000);

(2) CALL FIRE$LASER (CHANNEL$1, MSEC$3, ONE$WATT);

Explicitly state restrictions and limitations. Lack of easily understood restrictions and
limitations on the use of allowable operations can also complicate an interface. The above
example can be expanded to remove ambiguities about parameter usage and limitations. In
the following example, a table of valid parameter settings for invoking the FIRE$LASER

procedure is provided. In this example, we assume that the laser manufacturer only
recommends these settings for this model. By declaring a list of valid settings, an improper
invocation of the procedure is less likely.

8-35 NUREG/CR-6463 Rev. 1

/* VALID PARAMETER SETTINGS FOR THIS LASER UNIT */

/* There are only 3 Laser channels defined for this instrument */
DEFINE CHANNEL$1 LITERALLY '1';
DEFINE CHANNEL$2 LITERALLY '2';
DEFINE CHANNEL$3 LITERALLY '3';

/* There are 5 power settings defined for this instrument */
DEFINE ZERO$WATT LITERALLY '0';
DEFINE QUARTER$WATT LITERALLY '249';
DEFINE HALF$WATT LITERALLY '502';
DEFINE THREEQTRWATT LITERALLY '754';
DEFINE ONE$WATT LITERALLY '998';

/* The pulse width should always be set to 3 milliseconds *1
DEFINE MSEC$3 LITERALLY '2998';

8.4.2.3 Use Modules to Facilitate Data Abstraction

PL/M modules can be used to enhance maintainability through limiting data visibility and achieving
a measure of data abstraction in PLM. The following example of a laser ranging instrument
demonstrates this concept. To use the laser ranging instrument, the calling program need only turn
on the instrument, aim the instrument through an allowable range, and activate and receive the range
data. The methods used to obtain the range data are hidden from the calling program. The calling
program cannot misuse the instrument by tinkering with the laser power levels and pulse durations.
In addition, the calling program can aim the laser unit only through a valid domain of coordinates.

The laser functions are collected in a separate source module. In doing so, the procedures that are
public and available to the code outside of this module are controlled. Procedures not declared
EXTERNAL will remain hidden and private to this module. No other code except the laser control
code will be placed in this source module. In the example below, lines 3 through 11 define the
current constant parameters for the laser instrument. If these values change in the future, due to
hardware modifications, they can be easily modified. Line 12 has local variables that contain the
current power settings and pulse duration times for the instrument. The variables are local to this
module and cannot be "seen" or used by other routines outside this module, that is, these variables
are hidden or encapsulated within this module.

NUREG/CR-6463, Rev. 1 8-36

Lines 13 through 21 in the example contain two support procedures that are used only by the
procedures contained within this source module. The two procedures FIRE$LASER and SET$ SERVO

1 RANGINGULASER: DO; /- Nodule -/

2---- Private Procedures & Data -----------

3 1 DECLARE ZERO$WATT LITERALLY '5' /* Zero watt - 5 counts
4 1 DECLARE ONESNATT LITERALLY 123 One watt - 123 counts

5 1 DECLARE NSBC$0 LITERALLY 0 / 0 milliSec
6 1 DECLARE NSBC$3 LITERALLY '3000; /* 3000 uSec - 3 williS&c
7 1 DECLARE ONl LITERALLY '0FF7';
a 1 DECLARE 0FF LITERALLY 00OH'
9 1 DECLARE TI LITERALLY 12311:

10 1 DECLARE T2 LITERALLY '41H1
11 1 DECLARE T3 LITERALLY '84H';

12 1 DECLARE (L$POWER, L$DUJRATIOM) REAL;

13 1 SETSERVO: PROCEDURE (CHAN4, AMOUNT) BYTE;
14 2 DBCLARE AMOUNT REAL;
1 5 2 DECLARE (CHAN, STATUS) BYTE;

oer statements...
/chec k ofor valid coordinates

16 2 RETURN (STATUS);
17 2 END; /- SETSSERVD '

19 1 FIRE$LASER: PROCEDURE BYTE;

19 2 DECLARE STATUS BYTE;
.other statements... '

20 2 RETURN (STATUS);
21 2 END;

/-------- Public Procedures & Date ------------

22 1 OPERATESASER: PROCEDURE (ON$OFF) PUBLIC;

23 2 DECLARE ONSDFF BYTE;

24 2 IF (DNSOFF - aN) THEN
25 2 DO;
26 3 L$FOWER - OKUWATTr;
27 3 L$DURATIOH - NSBC$3;
28 3 EnD;

ELSE
29 2 DO;
30 3 L POWER *ZRSAI
31 3 L$DRTO SC$0;
32 3 END;

/other statements *
33 2 END;

34 1 AIR$IASER: PROCEDURE (X, Y, Z) BYTE PUBLIC;
3 5 2 DECLARE (SX, BY, SZ. STATUS) BYTE,
36 2 DECLARE M,Z) REAL;

37 2 SX SET$SERVO(1X;
38 2 SY -SETSSRVO (2. 'Y;:
3 9 2 51 SET$SKRVO (3 , Z);

.other statements... .
40 2 RETURN (STATUS)
41 2 END;

42 1 GET$RANGE: PROCEDURE REAL PUBLIC;
43 2 DECLARE RANGE REAL;

44 2 IF (FIRESASER) THEN
4 5 2 DO;

/' .. .Calculate RANE...
46 3 END;

47 2 ELN RANE E 0; /* Error /
48 2 RETURN (RANGE);
49 2 END;

50 1 EXCEPTIOMISASER: PROCEDURE EXTERNAL;
/..handle laser exception here...

51 1 END EXCEPTIONSLASER;

52 1 END; I- End of Ranging$Laser Nodule

END 0F PL/U CONPILATION

are hidden from other code outside this module and are thus protected from being used by other code
outside this module. Thus the laser can neither be aimed in an inappropriate direction nor

8-37 NUREG/CR-6463 Rev. 1

inadvertently fired. Lines 22 through 51 of the example shown are public procedures. These are the
methods available to code outside this module that allow the data to be properly manipulated and
the laser instrument to be used safely.

Thus module RANGING$LASER is the closest we can come to generating a software object in PIM.
We have forced a procedural language in a disciplined manner to behave like and produce some of
the benefits of, an object-oriented language. The short main program in the following example
demonstrates how this object will work. The main program is defined on line 1 of the example.
Lines 2 through 11 declare and define the external procedures located publicly within module
RANGING$LASER. These are the only procedures (methods) available to the main program to
manipulate and operate the laser instrument. Lines 14 and 15 define the meaning of ON and OFF
commands to the laser. These could be placed in a common INCLUDE file in a larger program. Line
16 defines a set of directional coordinates for the laser, and line 17 is a variable to contain the
distance data received from the instrument.

The laser can now be properly manipulated. It can acquire range data safely by using the code in
lines 18 through 24. Simply, if the coordinates of the target are valid, as determined by method
AIM$LASER returning TRUE, the code within the IF... THEN clause will execute, turn the laser ON,
fire the laser and obtain range data, and turn the laser unit OFF. If the coordinates are invalid, the
error exception handler EXCEPTION$LASER is called to correct, notify, or otherwise handle the
erroneous situation.

The code in this main program has no way of inadvertently changing the laser power levels and pulse
duration times.

NUREG/CR-6463, Rev. 1 8-38

PL/M COMPILATION OF MODULE MAINPROGRAM

1 MAIN$PROGRAM: DO; /* Main Program Module */

2/* ------- Declare External Procedures --------- *

3 1 OPERATE$LASER: PROCEDURE (ON$OFF) EXTERNAL
4 2 DECLARE ON$OFF BYTE;
5 2 END OPERATE$LASER;

6 1 AIM$LASER: PROCEDURE (X, Y, Z) BYTE EXTERNAL;
7 2 DECLARE (X,Y,Z) REAL;
8 2 END AIM$LASER;

9 1 GET$RANGE: PROCEDURE REAL EXTERNAL;
10 2 DECLARE RANGE REAL;
11 2 END GET$RANGE;

12 1 EXCEPTION$LASER: PROCEDURE EXTERNAL;
13 2 END EXCEPTION$LASER;

/* -------- Main Program Segment ---------*

14 1 DECLARE ON LITERALLY 'OFFH';
15 1 DECLARE OFF LITERALLY 'OOH';
16 1 DECLARE (Xl, Y1, ZI) REAL INITIAL (4.1, 5.7, -6.1);
17 1 DECLARE DISTANCE REAL;

18 1 IF (AIM$LASER (X1, Yl, Z1)) THEN
19 1 DO;
20 2 CALL OPERATE$LASER (ON); /* Turn on laser unit*/
21 2 DISTANCE = GET$RANGE; /* Fire & get range value*/
22 2 CALL OPERATE$LASER (OFF); /* Turn off laser unit*/
23 2 END;
24 1 ELSE CALL EXCEPTION$LASER; /* or handle exception*/

25 1 END; /* End of Main Program Module */

END OF PL/M COMPILATION

8.4.3 Functional Cohesiveness

There should be a clear correspondence between the function of a program and the structure of its
components. Review and maintenance of program codes are facilitated when every function is
implemented in a procedure and when that procedure implements only one function.

8-39 NUREG/CR-6463 Rev. 1

As a guideline for using PLIM in safety-oriented systems, it is further recommended that program
modules contain only procedures of like functions. Each PLIM module can limit the scope of
variables and procedures within that module. The following is an example of a recommended
structure:

MODULE$1: DO;
/* Global Declarations for MODULES1 */
PROCEDURE$ lA:
END;
PROCEDURES lB:
END;

END;

MODULE$2: DO;
/* Global Declarations for MODULE$2 */
PROCEDURE$2A:
END;
PROCEDURE$2B:
END;

END;

Each module above can contain one or more related functions or methods. The scope of the variables
and procedures defined in each module is limited to that module unless it is explicitly defined as
PUBLIC. Therefore, each PI/M module can cohesively contain related procedures and variables,
and it can make available to functions outside of this module only those entities that are explicitly
declared as PUBLIC. This concept is also discussed in the section on data abstraction.

8.4.4 Malleability

Malleability is a measure of the ease with which a software system can accommodate changes in
its function. Malleability depends upon data abstraction, encapsulation, and cohesiveness built into
the program. It extends those attributes in order to isolate and identify areas of potential change.
Most of these issues have already been discussed. Two topics that may be of interest to reviewers
are covered below.

8.4.4.1 Isolation of Alterable Functions

P1JM functions that are likely to be altered should be placed in separate DO; -END; modules within
the source code file to which they belong. Potentially alterable functions should, in most cases,
remain in the same module with related functions and code. Attempts to place all potentially
alterable functions in one file may result in a collection of unrelated procedures that only have

NUREG/CR-6463, Rev. 1 8-40

alterability in common. Such attempts may destroy the cohesiveness and data abstraction attributes
designed into the system. Functions likely to be altered should be isolated and marked as such with
comments within the module in which they were designed.

8.4.4.2 Isolation of Hardware-Specific Functions

Another area of possible change and alterability in embedded systems is hardware-specific functions,
such as those specific to a peripheral device or a model of an attached instrument. If, during
maintenance, a different or upgraded peripheral device replaces an existing device, the change over
will be easier and safer if the code is localized to a subset of modules or functions.

It is recommended that code for these peripheral devices be written in the form of device drivers, and
that they be loosely coupled to the remainder of the system. The associated CALLs to these device
drivers should remain transparent so that the calling code is not impacted by a change in the device
driver code.

8.4.5 Portability

The benefits of portability are that programming constructs yield predictable and consistent results
across different operating platforms. Thus, code that is to be reused or converted to run on a
different platform will be easier to maintain. Attributes related to portability discussed elsewhere in
this report include the following:

* Minimizing the use of built-in functions
" Minimizing the use of compiled libraries
* Minimizing dynamic binding
" Minimize tasking
* Minimize asynchronous constructs such as interrupts.

PLIM code is processor specific, and thus has inherently limited portability. Also, it is an
obsolescent language, and any new applications should plan for migration to another language (see
Appendix A.4).

8-41 NUREG/CR-6463 Rev. 1

References

U.S. Department of Defense, DoD Std 2167A, Software Development Standard, Appendix D, 1986.

Institute of Electrical and Electronics Engineers, IEEE-Std-7-4.3.2-1993, Appendix F, IEEE
Standard Criteria for Digital Computers in Safety Systems of Nuclear Power Generating Stations.

Intel Corporation, PLIM Programming Manual, 9800268B, Chandler, AZ, 1977.

Intel Corporation, PL/M-86 Programming Manual, 9800466-02B, 1980.

Intel Corporation, 8086 Software Tool Box, Volume 1, 122310-001, December 1984.

Intel Corporation, PL/M-86 User "s Guide, 121636-004, August 1985.

Intel Corporation, 8086 Software Tool Box, 122203-002, January 1985.

Intel Corporation, PL/M-96 User's Guide for DOS Systems, 481644-001, December 1988.

Intel Corporation, PLIM Programmer's Guide, pg 5-34, 452161-002, May 1990.

Intel Corporation, PL/M-386 Programmer's Guide, 611052-001, 1992.

Kopetz, H., "Real Time Systems," In Software Engineer "s Reference Book, J.D. McDermid, ed.,
CRC Press, Inc., Cleveland, OH, 1993.

Liao, Y., "Requirements for Directed Automatic Instrumentation Generation for Program Monitoring
and Measuring," In IEEE Transactions on Software Engineering, 1991.

Leveson, N.G, and C.S. Turner, An Investigation of the Therac-25 Accidents, University of
California, Irvine Technical Report 92-108, Irvine, CA, 1992.

McGarry, F., "The Impacts of Software Engineering," briefing presented to the NRC Advisory
Committee on Reactor Safeguards (ACRS), August 21, 1992.

Meek, B.L.,"Early High-level Languages," In Software Engineer 's Reference Book, J.D. McDermid,
ed., CRC Press Inc., Cleveland, OH, 1993.

NUREG/CR-6463, Rev. 1 8-42

9 Ada 95

This chapter discusses Ada 95-specific guidelines. The experience with Ada 95 is somewhat limited
so the guidelines in this chapter represent a merging of Ada 95 guidelines which have evolved thus
far with Ada 83 guidelines which should still apply. The Ada 95 information is based, in large part,
upon a report (Saaltink, 1996] of an analysis performed for the Canadian Department of National
Defence. The Canadian report was intended for the guidance of developers, not reviewers or other
personnel involved in the certification or approval of high integrity systems. The recommendations
and language of the Canadian report reflect this viewpoint. Since this is not the viewpoint of the
current report, the language and recommendations of the Canadian report have been adapted to the
current report's needs.

As pointed out previously (in the chapter dealing with Ada 83), there is a question about the limited
number of Ada 95 compilers, and whether or not any of them is sufficiently mature to be used in
safety-critical applications. Since there is a considerable Ada 83 legacy in Ada 95, many of the
guidelines presented earlier for Ada 83 apply equally to Ada 95.

Section 9.1 identifies reliability-related attributes; Section 9.2 discusses robustness-related attributes;
Section 9.3 discusses traceability-related attributes; and Section 9.4 describes maintainability-related
attributes. [A summary matrix is contained in Appendix B, together with language-specific
weighting factors. These factors were influenced by Ada's strong typing and exception handling
capabilities.] Because of the number of guidelines in this chapter, the guidelines for each
intermediate attribute are summarized in a box at the end of the section discussing that attribute.

9.1 Reliability

The intermediate attributes of reliability related to Ada are as follows:

* predictability of memory utilization
* predictability of control flow
* predictability of timing
* predictability of mathematical or logical result

Ada-specific guidelines are described in the following subsections.

'2Ada 95 differs from Ada 83 in several major areas, making Ada 95 potentially more suitable over the
long term for developing safety-critical systems. The most important improvements are (a) providing object-
oriented features, (b) new features for more responsive task communication such as protected types for emulating
the monitor structure, and (c) hierarchical library structuring. Where appropriate in the text, references have been
made to some of the differences between Ada 83 and Ada 95 which affect safety.

9-1 NUREG/CR-6463 Rev. 1

9.1.1 Predictability of Memory Utilization

Base-level attributes related to the predictability of memory utilization in Ada are as follows:

* minimizing dynamic memory utilization
o minimizing memory paging and swapping

Specific guidelines for these attributes are discussed in the following subsections. These guidelines
show that dynamic memory utilization may be invoked in many subtle ways in Ada95.

9.1.1.1 Avoiding Dynamic Memory Utilization

The generic 3 guidelines apply to Ada. Dynamic memory allocation should be avoided. Errors
resulting from dynamic memory allocation can include (SPC, 1989, pp 76, 112 - 113):

1. Memory leaks that can cause the software to run out of memory. This problem is very likely
to occur in Ada since an access object (pointer) ceases to exist when its scope is exited, but
the allocated memory it points to remains allocated.

2. Corruption of data due to multiple pointers to the same areas. Such corruption can be
difficult or impossible to correct or even detect. This error condition can lead to the system
crashing, frequently due to an exception being raised at a point distant from where the data
were corrupted. This makes tracing the cause of the crash very difficult.

The following are Ada-specific guidelines related to memory allocation. The final four guidelines
are mitigation approaches and are relevant if dynamic memory allocation is determined to be
unavoidable by the system designers. Also discussed at the end of this section are allocators and
other approaches serving to manage dynamic memory when the developer believes dynamic memory
is required. This discussion is intended to assist the reviewer in assessing the safety of the
developer's approach.

Avoid explicit dynamic memory allocation. The Ada primitive new causes memory to be
allocated during execution. The following Ada code is an example of the use of dynamic
memory for a linked list:

type Cell;
type Link is access Cell;
type Cell is

record
Value: Element;

"It should be noted that "generic guidelines" refers to the non-language specific guidelines of Chapter 2,

not to the Ada construct "generic".

NUREG/CR-6463, Rev. 1 9-2

Next : Link;
end record;

L: Link := null; -- initialization unnecessary
L:= new Cell; -- allocation of memory

Avoid dynamically created tasks. Tasks should be elaborated only at system initialization.
Dynamically created tasks also cause dynamic memory allocation in Ada. The dynamic
memory utilization problem is aggravated in this case because the generic subprogram the
programmer might have utilized to deallocate objects in memory, Unchecked.
Deallocation, does not apply to tasks or to objects that have tasks as components. This
issue of dynamic tasks is discussed further in Section 3.

Avoid recursion. Recursion also uses dynamic memory space. Therefore, recursive
procedures or functions should not be used. Recursion depth can be very large, even infinite
if the terminating condition does not occur. An unanticipated large number of recursive calls
can use up available memory (SPC, 1989; Hutcheon, 1992). Recursion can frequently be
recognized by having a subprogram call within a subprogram of the same name, as seen in
the following example.

procedure RECURS_EXAMPLE(argl: in typel arg2: in type2) is
argla: typel;
arg2a: type2;

begin
sequence of statements
RECURS_EXAMPLE(argla=>argl arg2a => arg2);

more statements
end RECURS_EXAMPLE;

Mutual recursion involving two or more subprograms can also occur. Depending on the
arrangement and physical location of the source code for these subprograms, mutual
recursion can be difficult to detect from source code. For example:

procedure P(....) is
begin

Q (....)

end P;

and

9-3 NUREG/CR-6463 Rev. 1

procedure Q(....) is
begin

P(....);

end Q;

Use aliased objects and components subject to restrictions. Aliased objects are the variables
that may be designated by general access types. The type-safe access to variables provides
a possible way of constructing "safe" pointer algorithms. There are a number of language
facilities that interfere and should be restricted (Saaltink, 1996):

1. Objects depending upon records with discriminants can be initially constrained but
have the discriminants inappropriately updated through access variables; hence, they
should be avoided.

2. Objects with aliased components can change the representation in ways that make
reading or writing through access variables unsafe. Do not use ' aliased on objects
or components of objects that have the following representation specifications applied:

a. 'size
b. 'component_size
c. pragma pack
d. ' alignment

3. Aliased objects that cannot be accessed by general access types can be created because
of Ada95's accessibility rules, which guarantee that it is impossible to access objects
after they are deallocated. Most of these checks can be done at compile time, but
interactions with generics mean that dynamic checks are sometimes present. The use
of aliased types or access types as formal generic parameters is not recommended,
unless it can be shown that these checks will not fail.

4. Access types designating unconstrained subtypes allow the creation of unconstrained
views of constrained objects. Operations on such views, such as assignment and
comparison, may require unpredictable temporary storage in some implementations.
This capability has to be used with caution.

To make aliased variables and general access types safe for use, it is necessary to prohibit
discriminants for all but limited objects, ensure that all aliased objects are at the outermost
accessibility levels, avoid generics, and prohibit representation clauses on any type or object that has
aliased components. There are also restrictions on the variables that may designate aliased objects.
See Section 5.3.10.3 of (Saaltink, 1996).

NUREG/CR-6463, Rev. 1 9-4

Avoid/restrict the use of access types. Ada95 provides three kinds of access types: pool
specific access types, that provide access to dynamic data created and manipulated by
programs; general access types that can also designate aliased variables and components of
variables; and access-to-subprogram types whose values designate subprograms. Pool-
specific and access-to-subprogram access types should not be used in high-integrity systems
and general access types require some care in their use (Saaltink, 1996). Variables of access
types (also known as pointers in other languages) have a type safety in Ada95 that is superior
to that found in most other languages, but there are still sufficient problems with both access
types that their use in critical or secure software is not recommended. Also, caution is
advised when access types are used in arrays or records because Ada95 specifies a default
initial value of null for access types.

Pool-specific access types should not be used in high integrity systems. This prohibition is
based on the unsafeness of dynamic memory techniques, and possible erroneous behavior
under some storage pool allocation schemes. There is a possibility that type-specific storage
pools (created by the for Access_Type' Storage_Size use XXX construct) are
viable in some implementations, but the implementer should ensure that there is no risk of
pool exhaustion or fragmentation.

Ada95's generalized access types (those declared with the access all construct) can
access constants and variables as well as allocated objects, and in this environment provide
a type-safe and accessibility-safe way of accessing data objects that cannot be replicated.
Some anomalies exist in the interaction with discriminated types, private types, and aliased
components of arrays or records that have been declared with representation clauses. Since
these other structures are prohibited for high integrity systems, general access types are
usable in this constrained environment. If used, it should be with caution, because they
adversely affect data-use analysis, and accessibility checks may be dynamic.

Generalized access types may be used with caution if the objects and aliased objects are
declared in the bodies of the same scope as the type of aliased object to which they can refer.
The passing of the access value, or of an address that represents the access value, outside of
the declaring package body, is not permitted. These restrictions are designed to make
data-use analysis of accessed objects tractable, and to eliminate security data access
violations.

Access-to-subprogram types should not be used in high integrity systems. This is based upon
the intractability of analysis for this paradigm. In addition, this paradigm has less
compile-time support than either tagged types or generic instantiations, and therefore may
be more error-prone in actual usage. Also, formal access parameters of subprograms should
not be used.

There are three alternatives to the use of access-types and dynamic storage pools.

9-5 NUREG/CR-6463 Rev. 1

1. Variables and subprogram parameters can be used to implement algorithms. Formal
parameters are rarely copied on call or return, unless type conversions also happen as part
of the call or return.

2. Create an array of the base type and use the index as the access variable. This method is safer
than generalized access types because the access variable (index) can be kept or used by units
that have no visibility to the storage pool (array), but these units should call subprograms that
have visibility to the storage pool to actually manipulate the data element.

3. Create an array of aliased components and use access all types (generalized access
types) to manipulate the data. This method permits the direct usage of pointer algorithms, but
also permits access to invalid objects or null values. These situations can be checked with
the ' Valid attribute, so pointer manipulation using these constructs is permissible, but not
recommended.

Avoid user-definedfinalization. User-defined finalization relies upon extending the tagged
type Ada. Finalization. Controlled. Since they are tagged types, all controlled
types suffer from the difficulties described in Section 5.3.9 of (Saaltink, 1996). The
requirement to finalize controlled types makes the closing of any master scope very difficult
to analyze. This is because the order of execution of finalization code is not specified tightly,
and the order of execution and time to complete all finalizations are bounded but not exact.

System-level finalization happens whenever a scope is left. It consists of operations such as
removal of stack frames, return of dynamic memory acquired by the run-time system, return
of storage pools declared in this scope, removal of exception handlers for this frame,
termination of any tasks dependent upon this scope, and finalization of any controlled
objects. Adherence to the guidelines in this document should eliminate any operation that
will cause unpredictable system-level finalization.

Do not instantiate generic units during runtime. If generic units are used, they should be
instantiated only during initialization (Jones, 1988). However, as will be described in the
section on traceability (Section 9.3.3), generic units are not desirable in safety significant
software.

Minimize use of local large composite objects. A memory allocation problem on the stack
can occur if large composite objects are declared as local objects of a subprogram. Avoid the
use of dynamic arrays as in P (array(<>) of ...).

The others clause for aggregates (see Section 9.1.4.1) should not be used. Any
expression appearing in a discret e_choice_l is t in an aggregate should be static, so
that the size of the aggregate object can be statically determined.

NUREG/CR-6463, Rev. 1 9-6

An aggregate may occur only in a context that imposes an "applicable index constraint" (see
ARM 4.3.3(10)) that can be statically determined, to avoid dynamically sized, temporary
storage. It is recommended that the implementation of aggregates be inspected to ensure that
no dynamic storage is used for aggregates.

Minimize use of unconstrained types. Unconstrained types such as record types with
unconstrained dynamic bound, and string types should be used with caution because of the
impact on memory allocation. Other restrictions (Saaltink, 1996) on the use of unconstrained
and indefinite objects are :

An object of a discriminated type with default discriminants takes the initial (default)
discriminant values, but this may be changed by assignment at any time. Discriminated types
with default discriminants should not be used in high integrity systems.

2. Objects of unconstrained string type with static bounds that are constrained by an initial
value (i.e., assigned to a static string as part of the declaration) are, however, acceptable.

3. Other objects of unconstrained array types that are constrained by the initial value should not
be used unless it can be shown that the initial value is static, and that the implementation
never uses dynamic memory techniques in accessing this object.

4. Parameters of unconstrained types in subprogram calls are acceptable, since all actual
references to the parameter become references to the original objects that should be
constrained (because no unconstrained objects may be declared). Some caution is advised,
however, because an implementation might use dynamically allocated temporary objects for
some operations.

5. Unconstrained and indefinite function return types should not be used, since no constrained
object exists to determine bounds before the return value is created, which means that
dynamic memory techniques are probably used. This includes class-wide function return
types.

6. For high integrity systems, the declaration of objects of class-wide types should not be used,
since an object of a class-wide type may be initialized by any extension of the type of the
object. Such an object should be constrained by an initial value, which in the general
language can be determined only dynamically. The use of dynamic storage management is
likely.

7. Parameters of class-wide types should be used with caution. In contrast to parameters of
unconstrained subtypes, there is no simple way to determine the underlying type of the actual
object that the parameter represents. Furthermore, some operations on the parameter may
require dynamically allocated memory. Some further issues are discussed in Section 5.3.3.4.2
of (Saaltink, 1996).

9-7 NUREG/CR-6463 Rev. 1

Alternative constructs may be seen by considering the following procedure:

procedure swap(Left: in out String; Right: in out String)is
C: String := Left; -- Prohibited for high integrity subsets
begin -- swap

Left Right;
Right : = C;

end Swap;

The declaration of C should not occur, since its storage cannot be statically allocated. An acceptable
swap procedure can be declared as

procedure swap(Left: in out String; Right: in out String)is
C :Character := ASCII.Nul;

begin -- swap
if Left'First/= Right'First
or Left'Last /= Right'Last then

-- raise some exception or log an error message, etc.
-- if exceptions not used, extend procedure
-- using error codes to notify of failures

else
for i in Left'Range loop

C := Left (i);
Left(i) := Right(i);

Right (i) := C;
end loop

end if;
end Swap;

This example moves one component at a time to avoid dynamic storage effects.

For class-wide parameter alternatives, consider the following procedure

type T is tagged record ... end record;
procedure swap(Left: in out T; Right: in out T) is

C : T : = Left;
begin -- swap

Left • = Right;
Right : = C;

end Swap;

The above procedure is a primitive dispatching subprogram that will be called for any extension of

NUREG/CR-6463, Rev. 1 9-8

T that has not overridden swap. Unfortunately, the routine as written will copy only those fields
defined for T, and leave untouched any additional fields defined by extensions. We could pass Lef t
and Right in as class-wide parameters, which makes the subprogram non-dispatching, or can
convert the parameters to the class-wide (indefinite) types, as shown below.

type T is tagged record ... end record;
procedure swap(Left: in out T; Right: in out T) is

C: T'Class := T'Class(Left); -- Prohibited for high integrity
subsets

begin -- swap
T'Class(Left) := T'Class(Right);

T'Class(Right) : C;
end Swap;

In the above example, the definition of C: T' Class is prohibited because the compiler cannot
determine until run time what the storage requirements are for this object.

The recommended workaround is to use the dispatching call given in the first example, and to ensure
that every extension has overridden such primitive subprograms. This will require extra-lingual
methods, such as annotations, to ensure that each level has overridden the original definition and has
provided a specific routine.

type Tn is new T with record ... end record;
procedure swap(Left: in out Tn; Right: in out Tn) is

C : Tn :=Left;
begin -- swap

C " = Left;
Left : = Right;
Right : = C;

end Swap;

See Section 9.1.4.3 for other issues related to data typing.

Mitigation Approaches: Guidelines

Use l ength clauses if dynamic memory allocation is necessary. If dynamic memory
allocation is necessary in a safety application, a length clause reserves in advance a pool
of specified size of dynamic memory for any allocated objects of a given datatype. To take
full advantage of this feature, the program should keep track of the number of objects
currently allocated from the pool and ensure that this number does not exceed the capacity
of the pool.

9-9 NUREG/CR-6463 Rev. 1

Provide handlers for the predefined exception STORAGE_ERROR if dynamic memory
allocation is necessary. If dynamic memory allocation is necessary in a safety application,
providing handlers for the STORAGE_ERROR exception allows for graceful recovery from
the situation of running out of dynamic memory. Without such handlers, the exception is
propagated to the run-time executive and will most likely result in a crash of the system. The
handlers should be provided for all program unit bodies in which memory is dynamically
allocated, as well as in recursive subprograms (SPC, 1989; pp 77-78).

Explicitly handle dynamic memory deallocation if dynamic memory allocation is necessary.
Any automatic garbage collection facility provided by a compiler should not be used because
it may affect timing. The pragma CONTROLLED is provided so that the program can disable
automatic garbage collection (reclamation of unused memory) 4 . If dynamic memory
allocation is necessary in a safety application, the application program should take full
control for dynamic memory allocation and deallocation. Avoid the use of dynamic arrays,
asinprocedure P(A:array(<>) of ...).

Do not assign values of dynamically allocated access objects to other access objects. If
dynamic memory allocation is necessary in a safety application, the application program
should not use multiple variables pointing to the same memory location. The danger is that
when the shared memory space is deallocated, another variable may still point to the released
memory space unless each one is explicitly set to null by the application program. If an
application (e.g. a linked list) necessitates such multiple accesses, it should be justified and
documented.

procedure update_X is
type three_Dffype is

record
x_coord : array(l..100) of float;
y_coord : array(l..100) of float;
z_coord : array(1..100) of float;

end record;
type three_D-pointer-type is access three_D_Type;

procedure Dispose is
new Unchecked_Deallocation(object => three_A_type,
Name => three_D-pointer-type);

p,q three_D_pointer_type;
three_D_display : other_3D_type; -- a 3-D subtype defined elsewhere

begin
p:=new three-D-pointer type;-- dynamically allocate access objects p and q

14 It should be noted that according the language definition, there is no mandatory garbage collection
requirement. It is up to the compiler implementation to provide such a facility.

NUREG/CR-6463, Rev. 1 9-10

-- p is assigned a value somewhere in the code
q:p;-- q has been set to the value of p

-- this is the source of the problem

Dispose(p); -- p has been set to null - now q contains an illegal value

three_D_display :=q.x_coord;
-- annunciator-display will have unintended contents.
-- program may continue execution with undetected error

three_D_display := p.x_coord;
-- CONSTRAINT_ERROR exception will be generated by this

statement
end update_X;

The above example instantiates a procedure called Dispose to handle integers from the
generic procedure Unchecked_deallocation for deallocating dynamically allocated
memory units. It then allocates two access objects (p and q) on the stack, sets the value of
p, sets the value of q based on p, deallocates p but leaves q pointing to inaccessible
memory. Somewhere later in the code, the value of q is used in an assignment statement.
The result may be technically invalid, but if it is within the constraints of the type, it will be
displayed with no external manifestation of an error condition. On the other hand, if the
explicitly deallocated access object (p) is used in a different assignment statement, the error
will be detected and an exception will be raised. While neither condition is desirable, an
undetected incorrect data value is far worse than a detected incorrect data value which causes
an exception to be generated (and hopefully handled without causing an unacceptable system
state). The above example demonstrates not only the potential dangers in dynamically
allocated variables but also the need to understand the detailed behavior of the
Unchecked_deallocation procedure and how its use can lead to subtle errors.
Important points of its behavior include:

(a) After completion of its execution, the value of the given parameter is nu 1.
(b) If the given parameter is nu 1, the call has no effect.
(c) If the given parameter is not nu 1, the memory pointed by it is returned to the

heap.

This last point is of the greatest significance to the above example. Because Ada has no
runtime support such as a reference counter, it is possible to define two or more access
objects (pointers) to a given location and free the space using only one of those access
objects . The other access object(s) would still have an illegal access value(s) and might
cause a hazard if used in subsequent processing.

9-11 NUREG/CR-6463 Rev. 1

Mitigation Aproaches: Use of Allocators and Explicit Storage Management

Allocators are one way that dynamic memory can be assigned by Ada. Memory assigned by an
allocator comes from a common pool of memory, usually called the "heap," or may come from
user-defined or system-defined storage pools.

Dynamic memory may also be assigned in the following circumstances:

when temporary objects are needed, for example, during type conversions or aggregate
assignment; or
when unconstrained variables are elaborated, initialized or updated.

The dynamic memory for these uses often comes from the stack, but some implementations may use
"heap" memory.

Allocators assign dynamic memory to access values in Ada95. There are three distinct methods of
managing dynamic memory in Ada95:

1. The normal heap.
2. Storage pools created and managed by the system. Each pool is a dedicated storage

area, not affected by other storage pools or the heap.
3. User-defined storage pools. Storage pools with user-defined storage management

algorithms.

The risks of storage exhaustion or fragmentation of global memory, possible storage leaks, and
potential covert channels cause the prohibition of dynamic memory in high integrity systems. The
normal heap and storage pools created and managed by the system are not suitable in these
environments. User-defined, dedicated storage pools for each type avoid most of the difficulties that
exist in the system-level storage pools and may be appropriate. The syntax used for creating these
pools is

type p_access-Type is Access P_Type;
for P_Access_Type'Storage_Size use nnnn;

Before being able to consider using user-defined storage pools, one should be sure that

* the objects being assigned are of a constrained base type (hence of one fixed size);
* The implementation dedicates one storage pool to each type, ensuring that no unin-

tended mixing, hence possible fragmentation, can occur;
0 Each new type declared using these paradigms has its own storage pool declared; and
* No type conversions are permitted from such a type to general access types. Conversion to

access types using other storage pools is prohibited by the language.

NUREG/CR-6463, Rev. 1 9-12

One should also ensure that the implementation guarantees dedicated allocation and use of the
memory in this case.

There are at least two ways of managing dynamic storage explicitly. The first approach uses an array
of aliased components and an explicit storage manager, and can be specified as follows:

generic
type T is private;
type T_ref is access all T;
pool-size: Integer;
package dynamic_Ts is

exception Usage_Error;
function Pool_Available return Integer;
function Create (initialValue: T) return T_ref;
procedure Release (p: T_ref);

end dynamic-Ts;

Users are expected to call Pool_Available to see if enough storage is available; then call
Create to obtain storage. Storage that is no longer required can be freed by calling procedure
Release. A possible implementation of these routines, which gives constant-time Create and
Release implementations, is as follows:

package body dynamic_Ts is
type Pool-Array is array (1 .. pool_size) of aliased T;
type Free_List.Array is array (1 .. pool_size) of T-ref;
pool: Pool.Array;
free_list: Free_List_Array;

space-available: Integer;
function Pool_Available return Integer is
begin

return space-available;
end Pool_Available;
function Create(initiaiValue: T) return T_ref is

P: T-ref;
begin

if space-available <= 0 then raise Usage_Error;
end if;
P := free_list(space_available);
space_available := space_available - 1;
p.all := initialValue;

return p;
end Create;

procedure Release(p: T_ref) is
begin

9-13 NUREG/CR-6463 Rev. 1

if space_available >= pool_size then raise Usage_Error;
end if;
space_available := space-available + 1;
free_list(space available) := p;

end Release;
begin

for i in 1 .. pool_size loop
free_list(i) pool(i) 'Access;

end loop;
space_available := pool_size;

end dynamic_Ts;

A second possible approach is to use array indices instead of access variables; users would then write
pool (i) instead of i. all to dereference their indices. Otherwise, the management of the storage
can be similar to the above example. A possible specification of such a package is:

generic
type T is private;
pool-size: Integer;

package dynamic_Ts is
exception Usage-Error;
subtype T_ref is Integer range 0 .. pool_size;
type Pool-Array is array (1 .. pool-size) of aliased T;
pool: Pool_Array;

function Pool_Available return Integer;
function Create(initiaiValue: T) return T_ref;
procedure Release (p: T_ref);

end dynamic_Ts;

This second approach has several advantages: access types are not used, and the data referenced by
pool (i) is obviously an element of the pool (in the first variant, p. all might be any object of
type T). On the other hand, dereferencing an access value may be faster than indexing into an array.

These packages offer an alternative to the use of allocators and Unchecked_Deal location and
have some advantages over them. For high integrity systems, however, it is probably more
appropriate to design storage managers at a higher level than this. For example, if the access values
are used to form linked lists, it might be more appropriate to provide a package that manages the
links as well as the basic allocation. Such packages can have interfaces and implementations that
eliminate the possibility of certain types of errors.

NUREG/CR-6463, Rev. 1 9-14

9.1.1.2 Minimizing Memory Paging and Swapping

The generic guidelines are applicable on the system level. Ada itself contains no features for
memory paging and swapping.

9.1.2 Predictability of Control Flow

Base level attributes related to the predictability of control flow in Ada are as follows:

-Maximizing structure
-Minimizing control flow complexity
-Single entry and exit points for subprograms
sProper handling of program instrumentation.

These attributes and their relevance to safety are discussed in the following subsections.

9.1.2.1 Maximizing Structure

Maximizing structure means minimizing the explicit transfer-of-control statements that change the
control flow from the basic set of sequential, conditional, and loop constructs. Most such statements
can result in unreachable code. The following guidelines are applicable.

Do not use go to statements. The generic guideline on maximizing structure by avoiding
goto statements applies to Ada. The use of gotos can obscure program flow logic. This
statement should be used only when there is no alternative. In Ada, where certain types of
transfer of control have been incorporated into the language under other names such as
exit, there is no real reason to use a goto in an Ada program (Sanden, 1994). If
statements, case statements, and loop statements can be used to express the desired flow
of control. In some cases, return statements, exit statements, or raise statements
can be used. Consider the following example:

<<B_Label>> statement_l;
goto A_Label;

statement_2; -- unreachable code
statement_3; -- unreachable code
statement_4; -- unreachable code

<<A_Label>> statement_5;

statement_6;
statement_7;

goto B_Label;
statement_8; -- unreachable code

9-15 NUREG/CR-6463 Rev. 1

Use only one exi t statement per loop. At least one exit statement is needed in loops
without iteration schemes (LRM, 1995). Thus, only one exit statement should generally
be used for the loop within the loop or for any nested loops. The following loop is
well-structured and is as readable as most alternatives

loop
Get-input;
exit when Input_exhausted;
Process_data;

end loop;

Use only one return statement per function. Multiple return statements can make the
meaning of a subprogram confusing. Thus, function subprograms should have only one
return statement and procedure subprograms should either use the normal exit at the end
of the body or have only one return statement if the end of the body is inaccessible, for
example, an infinite loop just before the end of the body.

A return statement can be used when it is determined that no further useful action is possible in
a subprogram body. A return is effectively a forward jump to the end of the subprogram body.
Return statements can make the normal flow of control of the subprogram more apparent, and thus
increase the readability of the code. However, a deeply nested, return statement is easily
overlooked, and the assessment or maintenance of code can suffer.

The return statement is used when leaving a master scope. Significant run-time activity can occur
in conjunction with this statement: specifically, termination of nested tasks, finalization of controlled
types, removal of exception handlers, return of temporary storage used by the run-time environment.
Almost all these activities are not applicable in the set recommended in this document because
language constructs that cause this behavior are prohibited. Activities still possible are exception
handlers in the program unit and anonymous storage pools, both of which require clean-up. In these
cases, the return should leave only the outermost scope.

While maximizing structure is highly desirable for normal program flow, different rules apply to
exception handling as discussed in Section 9.2.2. When exceptions are raised, other considerations
(e.g., timing, intermediate operations, etc.) dominate. The guidelines on exception handling discuss
raise statements in more detail.

9.1.2.2 Minimizing Control Flow Complexity

The generic guideline applies to Ada. The language-specific guidelines for minimizing control flow
complexity are as follows:

NUREG/CR-6463, Rev. 1 9-16

Limit nesting levels. As noted in the generic report, there should be explicit organizational
or project-specific limits on nesting. These limits may be determined in part with respect to
a particular language and execution platform. The style guidelines for Ada published by the
Software Productivity Consortium recommend a maximum nesting level of three to five
(SPC, 1989; pp 83 - 84).

Use if.. elsif insteadofnested if.. else. Use of an if.. elsif in place of nested
i f.. else statements helps avoid program structural and logical errors (Barnes, 1984; p 62)
as shown in the following example:

-- Use
if condition_1 then

statement-1;
elsif condition_2 then

statement-2;
end if;

-- instead of
if condition_1 then

statement_l;
0106

if condition_2 then
statement_2;

end if;
end if;

Always provide an else branch to if statements if there is a remote chance that the
conditions specified by the other if statements are exhaustive.

Use case statements for multiple branches. The case statement serves as a switch for
multiple branches and allows one evaluation for them. It is a powerful alternative to the if
statement when the branch to be taken depends upon the value of a discrete expression, and
it is preferred if more than two conditions or branches are called for in the software design.
To avoid a syntax error, the when others construct should be included if there are any
possible values not given in other alternatives, as seen in the following example (SPC, 1989;
p 85):

-- Use

case thermal_alarm is
when core => core_thermal-alarm(sensor_value);
when inlet => inlet_thermal_alarm(sensor_value);

when outlet => outlet_thermal_alarm(sensor_value);
when others => do_something;

end case;

9-17 NUREG/CR-6463 Rev. 1

-- instead of
if thermal_alarm = core then

core_thermal_alarm(sensor_value);
elsif thermal_alarm = inlet then

inlet_thermal_alarm(sensor_value);
elsif thermal_alarm = outlet then

outlet_thermal_alarm(sensor_value);
else

do_something;
end if;

It should be noted that the case statement is not an all purpose replacement for the if..
then.., else construct. A case statement is only possible if the cases depend on the
different values of one expression with a limited range of possible values. (In the example
on this page, thermal_alarm is an enumerated type with a limited set of possible values.)
In that situation, the case construct is always preferable over an if.. then... else
unless the number of branches is very small.

Timing analysis for a case statement is implementation-dependent; there are several
different implementation strategies. The most common strategy for case statements with
a relatively few elements that are contiguous is to build a jump table. In these cases, the
evaluation of the condition and transfer to the code for that case occurs in nearly constant
time.

9.1.2.3 Single Entry and Exit Points for Subprograms

Although the generic guideline is applicable with respect to one normal entry and exit point per
subprogram'", the guideline has limited applicability due to Ada's exception handling and tasking
features. In Ada, however, subprogram declarations and implementations may be separated; this
characteristic of Ada gives rise to additional guidelines arising out of the possibility that a
subprogram is called before the body has been elaborated. In addition, some restrictions are required
on parameter modes, default expressions, subprogram calls, and function results. Ada-specific
guidelines are:

One normal entry and exit per subprogram. Subprograms (procedures and functions) should
have one normal (as opposed to exception) entry and one normal exit. The word return
should appear exactly once in each function and not be used in a procedure. In exceptional
cases, however, multiple exits can be used if they increase readability.

Limit the number of exception entry/exit points. The number of these points should be kept
as low as possible. Each of these exception propagation exit/entry points should be

15It is more appropriate to refer to entry and exit points in program unit bodies rather than in subprograms
in the case of the Ada language.

NUREG/CR-6463, Rev. 1 9-18

documented clearly. The propagation of an exception raised in a subprogram to the caller
of the subprogram should be limited or not used at all because such propagation creates an
additional exit point for the first subprocedure and an additional entry point for the caller's
exception handler. More points on propagation of exceptions are discussed in Section 2.2.2.

Avoid multiple task entry points. Each active program unit (i.e., task) may have multiple
interaction points with other active program units. The number of these interaction point
should be designed to minimize program complexity both within the task and the entire
program. Additional points on tasking are described in Section 2.2.

Elaboration of a subprogram body should be shown to occur before a call to that
subprogram. (Saaltink, 1996) Ada's separation of subprogram declarations from subprogram
bodies introduces the possibility that a subprogram is called before the body has been
elaborated. If this occurs, the exception Program_Error is raised. Care should be taken
to avoid the possibility of such failures (and the need for run-time code to check for this
condition). In many cases, the subprogram declaration and definition can occur together,
which eliminates the possibility of this failure. In most other cases, it is possible to ensure
that no calls of a subprogram appear between its declaration and definition. For subprograms
declared in a library-level package, pragma (Elaborate-Body) can be used to ensure
that no code is executed between the elaboration of the specification and the elaboration of
the body.

Indefinite return types from functions should not be used. (Saaltink, 1996) A function may
have an indefinite return type. In such a case, the anonymous return object cannot be created
until a return statement is executed. In addition to possible control flow problems, the
storage for this object will need to be allocated dynamically, and the caller will need to
deallocate this object. In addition, tagged return types are problematic if the tag of the
returned object is not the same as that of the return type. The language rules are intricate, and
this feature should be avoided unless the returned object is known to have the tag of the
return type.

Indefinite formal parameters in procedures and functions should be used with care. As was
the case with indefinite return types, any expression involving parameters of indefinite type
may require dynamic storage of unknown size for temporaries. The following restrictions are
imposed to eliminate these cases as follows:

1. Subtype conversions in subprogram calls should not be used.

2. Concatenation of one-dimensional arrays should not be used.

3. Discriminated records should not be used.

9-19 NUREG/CR-6463 Rev. 1

The remaining situations, class-wide types and unconstrained arrays, have reasonable
implementations that do not need dynamic storage, but the implementation should be checked to
confirm this assumption. Access parameters are not allowed in high integrity systems, since they can
be used to pass or copy the access to an object whose lifetime is incompatible with the target of the
eventual assignment. Allocated objects in Ada95 always have the lifetime of the access type
definition, and generalized access types have explicit accessibility checks, but access parameters
could be used to avoid such checks and are therefore considered inappropriate.

Some indefinite return types can be avoided simply by using a constrained return type, without
changing the function. For example, if a function always returns a string of ten elements, its return
type can be specified as String (1.. 10) instead of String. Alternatively, it may be possible
to return a general access value (e.g., return the definite type access all String instead of
String), or to replace the function with a procedure which returns the value as an out parameter.

Instead of declaring an access parameter, a parameter may be declared to be of a previously declared
generalized access type.

The use of default expressions for some parameters is a convenience, but comes at a cost.
Implementations may differ in how they support default parameters, making time and space analysis
more difficult. Traceability of source code to object code is also impeded. Default expressions are
therefore to be discouraged.

Formal parameter modes provide a significant capability to provide extra protection to data that is
passed into subprograms. Data that is passed in as in cannot be updated within the subprogram.
Procedure parameters of mode out should either be initialized in order to guarantee that the
corresponding actual parameter receives a valid value when the procedure returns, or an analysis
performed to show that a valid value is always assigned.

Aliasing should not be used in procedure calls. To facilitate this, it is useful to document any
non-local variables used in a subprogram. (For a subprogram appearing in a package specification,
it should not be necessary to mention any variables declared in the subpackage body that are used
in the subprogram, as callers outside the package normally do not have access to these variables.)
An aliased variable declared outside a subprogram should not be used in the subprogram body.

For some types, it is unspecified whether the parameters of that type are passed by copy or by
reference. The choice can affect the semantics of a program; thus, programs using such types might
be non-portable.

In cases where the parameter passing mechanism is not specified (i.e., may be by copy or by
reference), bounded errors can arise if parameters are aliased with other parameters' or with globals.
Such aliasing should be avoided.

NUREG/CR-6463, Rev. 1 9-20

9.1.2.4 Proper Handling of Program Instrumentation

The generic attributes apply to Ada programs. However, there are no specific Ada guidelines for this

attribute.

9.1.3 Predictability of Timing

An Ada-specific guideline related to timing predictability was discussed with regard to recursion

in Section 3.1.1.1. Additional related guidelines are:

-Minimizing the use of tasking
-Minimizing the use of interrupt-driven processing
eCharacterization of timing for the Ada runtime environment
-Control of memory management from the application

These guidelines are discussed in the following sections.

9.1.3.1 Minimizing the Use of Tasking

The generic guidelines for tasking apply to Ada. The use of tasking in safety-critical applications

should either be avoided entirely or should be highly constrained because of the following reasons:

scheduling policy and timing uncertainties, implementation differences, race conditions,

asynchronous tasking problems, priority issues, and abort issues.

Since Ada is a language that defines a model of concurrency within the language, there is

considerable interest in using this model to manage the concurrency that occurs in a real system. To

date, this has not been possible; the complexity of the model and the lack of precision made exact

specification and analysis impossible. For Ada95, a limited subset consisting of library-level tasks

and protected types, but excluding entries, looks promising but has not yet been fully analyzed.

Some compiler vendors are attempting to certify run-time systems supporting limited forms of

concurrency, and research groups are studying models of concurrency and restricted subsets of Ada's

features that allow for strong predictions of program behavior.

A system can be designed to use a cyclic scheduler rather than tasks. Some programs that might

naturally be expressed using tasking can be rewritten (using loop inversion or some similar

technique), where each task is replaced by a package that represents the task state, and has a

procedure that makes some progress in the task's activities. A main loop can interleave the steps of

these packages to simulate the concurrent activity of the tasks.

It may be possible to implement a customized concurrency mechanism to be used instead of the

predefined tasking features.

9-21 NUREG/CR-6463 Rev. 1

Although tasking should generally be avoided in safety-critical software, there may be cases where
it is the only reasonable solution. The following guidelines will reduce the risks associated with
tasking identified above, but do not totally mitigate them.

Ensure that the concurrent software design is as simple as possible, but no simpler. That is,
there should be no more tasks than necessary and there should be no more task
synchronization and communication than necessary.

Avoid abort statements. Programs should avoid using the abort statement. The following
is an example of an abort command:

abort A_Short_Task, Temperature_Tracking(3), Sensor_Data_Collection.all;

Aborting a task can have many consequences, not all of which are obvious. If a task is
aborted, then all tasks dependent on it are aborted. Furthermore subprograms and blocks that
were called by it will also be aborted. If the task was suspended, the abort will cause it to
appear to have been completed. Delays are canceled by aborts, and tasks are removed from
entry queues. Accept and select statements will be left waiting for partners. Aborting a task
in rendezvous has complex consequences that depend on the situation (SPC, 1989, p. 121;
Barnes, 1984, p. 239).

Avoid dynamic tasking. All tasks should be elaborated only at system initialization. Dynamic
tasking complicates the predictability of the run-time behavior of a program for at least the
following reasons:

1. Allocated task objects referenced by access variables allow generation of aliases, that
is, multiple references to the same task object. Anomalous behavior can arise when
references to an aborted task are made using an alias.

2. A dynamically allocated task that is not associated with a name (i.e., a "dropped
pointer") cannot be referenced for the purpose of making entry calls, nor can it be the
direct target of an abort statement (SPC, 1989, pp. 76-78, 111-112). Note that there
may exist tasks that need not be referenced, such as a task which performs some
periodic function in the background.

Tasks created at runtime by means of the allocator new should not be used at all for the
following reasons:

3. Runtime-created tasking complicates debugging, understanding, and control flow
tracing.

NUREG/CR-6463, Rev. 1 9-22

