

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
APR 2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
CrossTalk: The Journal of Defense Software Engineering. Volume 18,
Number 4, April 2005

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
OO-ALC/MASE,6022 Fir Ave,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

36

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Estimating and Managing Project Scope for New
Development
This article walks the reader through the basic process and
considerations needed to determine the project scope for new
development, including maintenance builds.
by William Roetzheim

Software Cost Estimating Methods for Large Projects
Larger projects have a greater need for commercial software
estimating tools, which often outperform human estimates in terms
of accuracy, and always in terms of speed and cost effectiveness.
by Capers Jones

Creating Requirements-Based Estimates Before
Requirements Are Complete
While not recommended, guesstimating auditable and more
realistic numbers before requirements have been fully fleshed out
is possible using the practices outlined in this article.
by Carol A. Dekkers

A Method for Improving Developers’ Software Size
Estimates
These authors outline a model-based process for mapping
requirements to intermediate units to elementary units of work,
using the resulting output for estimating.
by Lawrence H. Putnam, Douglas T. Putnam, and Donald M. Beckett

COCOMO Suite Methodology and Evolution
Here is an overview of the models in the COCOMO suite, and
how they can be used together to support larger software system
estimation needs.
by Dr. Barry Boehm, Ricardo Valerdi, Jo Ann Lane, and A. Winsor Brown

Inside SEER-SEM
This article provides insight into the System Evaluation and
Estimation of Resources - Software Estimating Model’s inner
workings and basis of estimation, which are built upon a mix
of mathematics and statistics.
by Lee Fischman, Karen McRitchie, and Daniel D. Galorath

The Statistically Unreliable Nature of Lines of Code
This author uses a series of Personal Software Process courses to
contend that the line-of-code measure is a vague, ambiguous, and
unsuitable parameter for sizing software projects.
by Joe Schofield

Cost Cost EstimationEstimation

2 CROSSTALK The Journal of Defense Software Engineering April 2005

4

8

13

16

20

26

29

SoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

Open Open FForumorum

Cover Design by
Kent Bingham.

3

12

34

35

DeparDepar tmentstments

ON THE COVER

From the Sponsor
From the Publisher

Coming Events
Web Sites

CrossTalk 101
SSTC 2005 Conference

BackTalk

CrossTalk
OC-ALC/ MAS

CO-SPONSOR

OO-ALC/MAS
CO-SPONSOR

WR-ALC/MAS
CO-SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

Kevin Stamey

Randy Hill

Tom Christian

Tracy Stauder

Elizabeth Starrett

Pamela Palmer

Chelene Fortier-Lozancich

Nicole Kentta

Janna Kay Jensen

(801) 775-5555

(801) 777-8069

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

Oklahoma City-Air Logistics Center (OC-ALC),
Ogden-Air Logistics Center (OO-ALC), and Warner
Robins-Air Logistics Center (WR-ALC) MAS
Software Divisions are the official co-sponsors of
CROSSTALK, The Journal of Defense Software
Engineering. The MAS Software Divisions and the
Software Technology Support Center (STSC) are
working jointly to encourage the engineering develop-
ment of software to improve the reliability, sustainabil-
ity, and responsiveness of our warfighting capability.

The STSC is the publisher of CrossTalk, provid-
ing both editorial oversight and technical review of the
journal.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 25.

OO ALC/MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD . Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, or the STSC. All
product names referenced in this issue are trademarks
of their companies.

Coming Events: Please submit conferences, seminars,
symposiums, etc. that are of interest to our readers at
least 90 days before registration. Mail or e-mail
announcements to us.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-7026, or e-mail <stsc.
webmaster@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

April 2005 www.stsc.hill.af.mil 3

As a former System Program Management Office guy, or SPO dog, and now as a soft-
ware engineering manager, aka code toad, there has rarely been a software topic that

has given me pause more than cost estimating. Much attention has been focused on
software projects that have gone terribly awry with budget and schedule overruns.
These are truly unhappy situations that you never want to repeat. So what can you do?
One approach is to apply a factor of ignorance, i.e., pad the estimate so that there is
sufficient funding. Since estimation is by definition less than precise, this is ethically

allowable, and besides, everyone does it. The trouble is everyone does it so managers know it
and react to it. We may discount it to bid whatever it takes to win, or we may add to it to build
a management reserve that we can blame on software. Either situation is not good.

We owe our customers quality software within cost and on schedule. Few things are harder
for customers than trying to find more money for an over-budget project. Going to the well
twice means admitting you were wrong originally, something most of us don’t like doing. Then
there is the often bitter debate about where to find the money. Another project will be taxed
unfairly, or your project will be restructured, perhaps even be in danger of being terminated.
Regardless of where the money is found, everyone loses. The customer didn’t get what was
needed when it was needed, and confidence has been lost in the project team’s ability to deliver.

The sorry state of affairs that I have outlined above clearly needs to change. That is the
emphasis of this issue – how we can do better cost estimating. In my view, we all have a great
need for good cost estimation techniques. As a Capability Maturity Model® Integration Level 5
organization, WR-ALC/MAS is committed to constant process improvement. These techniques
will aid in that endeavor, and they are beneficial regardless of maturity or capability level. I hope
you will take the time not only to read about these techniques, but also apply them.

The Cost Estimation Conundrum

Thomas F. Christian Jr.
Warner Robins Air Logistics Center Co-Sponsor

From the Sponsor

Cost estimation is certainly one of the biggest challenges software managers face.
With large software development or sustainment efforts, developers are increas-

ingly dependent on automated tools to help quantify cost estimates. However, there is
not one silver bullet modeling tool. As Capers Jones reports this month, a best practice
for software cost estimation is to use a combination of estimation modeling tools in
conjunction with project management tools.
This month’s issue is aimed at increasing confidence in software estimates.

Furthermore, industry experts discuss how several cost models are evolving to address technol-
ogy and process improvements that impact the cost of developing military and commercial soft-
ware today. William Roetzheim discusses project scope estimation and the difficulties early in the
life cycle with indefinite requirements. Capers Jones defines estimation methods for large proj-
ects, including non-coding work. Carol A. Dekkers provides helpful guidance when working with
incomplete requirements. Barry Boehm et al. present an overview of the Constructive Cost
Model tool suite, which can now address commercial off-the-shelf integration, system engineer-
ing, and system of systems. Other authors address mapping requirements to units of work, an
overview of the SEER-SEM model, and the reliability of lines of code to indicate software size.

I hope we’ve provided a better understanding of cost estimation, and how estimating mod-
els are evolving to keep pace with industry changes. As Lee Fischman et al. states, “The future
of software project estimating has just begun.”

Increasing Confidence in Estimates

Tracy Stauder
Publisher

From the Publisher

4 CROSSTALK The Journal of Defense Software Engineering April 2005

The life cycle of software cost estima-
tion is made of many parts, beginning

with input parameters at the concept stage
and continuing through the function and
implementation stages. Many consider
estimating project scope to be the most
difficult part of software estimation. After
all, how do you input scope early in the life
cycle when the requirements are still
vaguely understood? Consider also that
scope must be estimated, quantified, and
documented in a manner that is under-
standable to management, end users, and
estimating tools. The focus in this article is
scope estimates for new development,
including maintenance builds

The Estimating Life Cycle
First, it is important to recognize the limi-
tations of software cost estimating at the
macro level. As shown in Figure 1, the
typical accuracy of cost estimates varies
based on the current software develop-
ment stage. Early uncertainty in the esti-
mate is largely based on variances in the
estimate’s input parameters. Later uncer-
tainty in the estimate is based on the vari-
ances of the estimating models.

The percentages shown in Figure 1
match this author’s personal experience
and are roughly comparable with figures
found in the Project Management
Institute’s “A Guide to the Project Man-
agement Body of Knowledge” [1].
However, actual numbers will vary widely
based on the type of applications

involved, the estimators’ experience and
policies, and other factors.

Initially, at the concept stage you may
be presented with a vague project defini-
tion. Though the requirements may not
yet be fully understood, the general pur-
pose of the new software can be recog-
nized. At this point, estimates with an
accuracy of ± 50 percent are typical for an

experienced estimator using informal
techniques (i.e., historical comparisons,
group consensus, and so on).

After the requirements are reasonably
well understood, a function-oriented esti-
mate may be prepared. At this point, esti-
mates with an accuracy of ± 25 percent
are typical for an experienced estimator
using the techniques described above.

Finally, after the detailed design is
complete, an implementation-oriented
estimate may be prepared. This estimate is
typically accurate within ± 10 percent.

Estimating Program Scope
The first step in preparing an estimate is
to determine an estimate of the project
scope, or volume. Scope is typically esti-
mated using a variety of metrics, as dif-
ferent portions of the application may be
compatible with different scope metrics.

One measure of program scope is
the number of source lines of code
(SLOC). A source line of code is a
human-written line of code that is not a
blank line or comment. Do not count the
same line more than one time even if the
code is included multiple times in an
application1. We typically work with a
related number – thousands of SLOC
(KSLOC) – when estimating. The
Constructive Cost Model (COCOMO)
popularized SLOC as an estimating met-
ric. The basic COCOMO model and the
new COCOMO II model remain the
most well-known estimating approaches
because of their prevalence in both aca-
demic research settings and as models
embedded into estimating tools.

Let us jump ahead and look at how
we can convert from the number of
KSLOC to an estimate for the project.
We will then discuss approaches to esti-
mating KSLOC in more detail.

Begin with the simplest estimate as
shown in Table 1. If you are aware of the
number of KSLOC your developers
must write, and you know the effort
required per KSLOC, you then could
multiply these two numbers together to
arrive at the person months of effort
required for your project. This concept is
the heart of the estimating models. Table
1 shows some common values that Cost
Xpert researchers have found for this
linear productivity factor. The COCO-
MO II value comes from research by
Barry Boehm [2] at the University of
Southern California. The values for
embedded, e-commerce, and Web devel-
opment come from the Cost Xpert
Group’s [3] research working with a vari-

Estimating and Managing Project Scope for
New Development

William Roetzheim
Cost Xpert Group

Many consider estimating project scope to be the most difficult part of software estimation. Parametric models have been shown
to give accurate estimates of cost and duration when given accurate inputs of the project scope, but how do you input scope
early in the life cycle when the requirements are still vaguely understood? How can scope be estimated, quantified, and docu-
mented in a manner that is understandable to management, end users, and estimating tools? This article focuses on scope esti-
mates for new development, and is applicable for the new development portion of maintenance builds.

Concept
Oriented
Estimate

Concept -
Oriented
Estimate

Function -
Oriented
Estimate

Implementation
Oriented
Estimate

Implementation-
Oriented
Estimate

50% 25% 10%

Typical Cost Estimating Accuracies

Macro Life Cycles

± ± ±

Figure 1: Macro Life Cycle

Cost Estimation

“The first step in
preparing an

estimate is to determine
an estimate of

the project scope,
or volume.”

Estimating and Managing Project Scope for New Development

April 2005 www.stsc.hill.af.mil 5

ety of organizations, including IBM and
Marotz.

Now, let us apply this approach.
Suppose we were going to build an e-com-
merce system consisting of 15,000 LOC.
How many person-months of effort
would this take using just this equation?
The answer is computed as follows:

Effort = Productivity x KSLOC =
3.08 x 15 = 46 Person Months

If all of your projects are small, then
you can use this basic equation.
Researchers have found, however, that
productivity does vary with project size. In
fact, large projects are significantly less
productive than small projects. The prob-
able causes are a combination of increased
coordination and communication time
plus more rework required due to misun-
derstandings.

This productivity decrease with
increasing project size is factored in by
raising the number of KSLOC to a power
greater than 1.0. This exponential factor
then penalizes large projects for decreased
efficiency. Table 2 shows some typical size
penalty factors for various project types.
Again, the COCOMO II value comes
from work by Boehm [2], and values for
embedded, e-commerce, and Web devel-
opment come from work by Cost Xpert
Group [3] and its customers. These values
have been validated by hundreds of Cost
Xpert Group customers/projects, and are
updated over time as warranted by the
research. Note that because the size factor
is an exponential factor rather than linear,
it does not change with project size, but
changes in impact on the end result with
project size.

After we do a size penalty adjustment,
how many person-months of effort would
our 15,000 lines of code e-commerce sys-
tem require? The answer is computed as
follows:

Effort = Productivity x KSLOCPenalty =
3.08 x 151.030 = 3.08 x 16.27 =

50 Person Months

All of this is pretty straightforward. The
next logical question is, “How do I know
my project will end up as 15,000 SLOC?”

There are two approaches to answering
this question that I will address: direct esti-
mation and function points (FPs) with
backfiring. Using either approach, the fun-
damental input variables are determined
through expert opinion, often with your
developers as the experts. The Delphi tech-
nique, involving multiple experts iterating
toward a consensus decision, is a good way

to cross-check the input variables.
Normally, the first step in estimating

the number of LOC is to break down the
project into modules or some other logical
grouping. For example, a very high-level
breakdown might be front-end processes,
middle-tier processes, and database code.
Your developers then use their experience
building similar systems to estimate the
number of LOC required.

We strongly recommend that you
obtain three estimates for each input vari-
able: a best-case estimate, a worst-case esti-
mate, and an expected-case estimate. With
these three inputs, you can then calculate
the mean and standard deviation as follows:

(best + worst + (4 x expected))
Mean = --

6

(worst - best)
Standard Deviation = -----------------------------

6

The standard deviation is a measure of
how much deviation can be expected in the
final number. For example, if the statistical
description of the project is correct and we
ignore risk factors not included in the sta-
tistical spread, the mean plus three times
the standard deviation will ensure that
there is a 99 percent probability that your
project will come in under your estimate.

For more information, refer to [4].

Estimating Function Points
An alternative to direct SLOC estimating
is to start with FPs, then use a process
called backfiring to convert from FPs to

SLOC. Backfiring is described on page 6,
and consists of converting from FPs to
SLOC using a language-driven table look-
up function. FPs were first utilized by
IBM as a measure of program volume.
Counting FPs has evolved over time as
computer programming techniques and
user interface metaphors became more
complex; correct function point counting
is defined in [5] and is often accomplished
using certified FP counting specialists.
The original, basic idea is simple and illus-
trates how it works at a simplified level.
True FP counts are more complicated, of
course. The program’s delivered function-
ality (and hence, cost) is measured by the
number of ways it must interact with the
users.

To determine the number of FPs, start
by estimating the number of external
inputs, external interface files, external
outputs, external queries, and logical inter-
nal files. External inputs are largely your
data-entry screens. External interface files
are file-based inputs or outputs. External
outputs are your reports and static out-
puts. External queries are message or
external function-based communication
into or out of your application. Finally,
logical internal files are the number of
tables in the database, assuming the data-
base was third normal form or better. As
mentioned earlier, these definitions are
simplified, but they serve to illustrate the
basic concept.

To convert from these raw values into
an actual count of FPs, you multiply the
raw numbers by a conversion factor from
Table 3 on page 6 (again, this approach is
a simplification).

Project Type Linear Productivity Factor
(Person Months/KSLOC)

COCOMO II Default 3.13
Embedded Development 3.60
E-Commerce Development 3.08
Web Development 2.51

Project Type Exponential Size Penalty
Factor

COCOMO II Default 1.072
Embedded Development 1.111
E-Commerce Development 1.030
Web Development 1.030

Raw Type Function Point Conversion
Factor

External Inputs 4
External Interface files 7
External Outputs 5
External Queries 4
Logical Internal Tables 10

Language SLOC per Function Point

C++ Default 53
COBOL Default 107
Delphi 5 18
HTML 4 14
Java 2 Default 46
Visual Basic 6 24
SQL Default 13

Table 1: Estimate Example

Typical Cost Estimating Accuracies

Project Type Linear Productivity Factor
(Person Months/KSLOC)

COCOMO II Default 3.13
Embedded Development 3.60
E-Commerce Development 3.08
Web Development 2.51

Project Type Exponential Size Penalty
Factor

COCOMO II Default 1.072
Embedded Development 1.111
E-Commerce Development 1.030
Web Development 1.030

Raw Type Function Point Conversion
Factor

External Inputs 4
External Interface files 7
External Outputs 5
External Queries 4
Logical Internal Tables 10

Language SLOC per Function Point

C++ Default 53
COBOL Default 107
Delphi 5 18
HTML 4 14
Java 2 Default 46
Visual Basic 6 24
SQL Default 13

Table 2: Typical Size Penalty Factors

Cost Estimation

6 CROSSTALK The Journal of Defense Software Engineering April 2005

So, if we had a system consisting of 25
data-entry screens, five interface files, 15
reports, 10 external queries, and 20 logical
internal tables, how many FPs would we
have? The answer is computed as follows:

(25 x 4) + (5 x 7) + (15 x 5) + (10 x 4) +
(20 x 10) = 450 FPs

Backfiring
The only remaining step is to use backfir-
ing to convert from FPs to an equivalent
number of SLOC. This is done using a
table of language equivalencies. Some
common values are shown in Table 4
(C++, COBOL, and SQL from work by

Capers Jones [6] and other values from
research by Cost Xpert Group [3]):

So, to implement the above project
(450 FPs) using Java 2 would require
approximately the following number of
SLOC:

450 x 46 = 20,700 SLOC

and would require the following effort to
implement, assuming that this was an e-
commerce system:

Effort = Productivity x KSLOCPenalty =
3.08 x 20.71.030 = 3.08 x 22.67 =

69.8 Person Months

There are also other approaches to cal-
culating equivalent SLOC from a higher-
level input value. These other approaches
include Internet points, Domino points,
and class-method points to name just a
few. All of them work in a fashion analo-
gous to FPs as just described.

Heuristic Approaches to
Approximating Scope
Estimating Scope by Analogy
This is the software equivalent of market
comps in appraising real estate: You look
for a project that is as close as possible to
your project. Count the physical LOC or
function points in that application. Then,
use a detailed analysis to adjust things up
or down based on differences between the
proposed project and this historic project.

You might find that a new proposed
project is much more complicated than
your database of historic projects. Perhaps
you can combine multiple historic proj-
ects, each corresponding to a piece of the
new project, to arrive at a total estimate of
the scope.

Note that it is better to use this
approach to estimate scope and then use
an estimating tool to estimate effort,
rather than using this approach directly to
estimate effort. Basically, the scope will be
somewhat consistent between similar
projects; however, the effort will have a
high degree of variability due to things
like the people doing the work, the stan-
dards and life cycles used, and the devel-
opment environments. By using historic
data to approximate scope and then using
project-specific data for all of these other
variables, you obtain a much more accu-
rate effort estimate.

Design to Budget and Time-Box
Approaches
It is not unusual for a software develop-
ment budget to be defined before the
requirements are defined or perhaps even
understood. Market factors might drive
the budget. Competitors might define the
budget. Resource limitations might deter-
mine the budget. In these cases, does esti-
mating make any sense? In fact, estimates
are particularly critical under these cir-
cumstances.

The approach is to initialize an esti-
mating tool with appropriate values for all
of the environmental variables (e.g., devel-
opment team capabilities, development
language, life cycle, standard, etc.). Then,
start plugging in values for scope until you
obtain a scope estimate that meets the
external budget constraint. This then
becomes the amount of functionality that
you can deliver for the specified budget.

Throughout the development process
you must manage expectations to ensure
that each step in the process is defining a
system that is no larger in size than the
budgeted scope. The requirements must
be managed along with the design effort,
the physical implementation, and so on.

Project Type Taxonomies
It is possible to use project type tax-
onomies to approximate the FP count of
a system to be built (this approach was ini-
tially proposed by Capers Jones in
“Estimating Software Costs” [6]). The val-
ues shown in Table 5 come from Cost
Xpert Group research and vary somewhat
from the specifics in [6]. It works as fol-
lows: In Table 5, select the numerical value
that corresponds to your selected project

E-Commerce Development 1.030
Web Development 1.030

Raw Type Function Point Conversion
Factor

External Inputs 4
External Interface files 7
External Outputs 5
External Queries 4
Logical Internal Tables 10

Language SLOC per Function Point

C++ Default 53
COBOL Default 107
Delphi 5 18
HTML 4 14
Java 2 Default 46
Visual Basic 6 24
SQL Default 13

Table 3: Function Point Conversion Factor

Object 2

Object Library 4

Proof of Concept 5

Evolutionary Prototype 6

Internal Application 8

External Application 9

Shrink-Wrap Application 10

Component of System 11

New System 12

Compound System 13

Table 5: Project Scope Table

Individual Use 1

Shareware 2

Academic/Engineering 3

Single Location -
Internal

5

Multilocation - Internal 6

Contract Project -
Civilian

7

Contract Project -
Local Government

8

Marketed Commercially 9

State Government 11

State Government -
Federally Funded

13

Federal Project 14

Military Project 15

Function 1

Table 5: Project Scope Table

Embedded Development 1.111
E-Commerce Development 1.030
Web Development 1.030

Raw Type Function Point Conversion
Factor

External Inputs 4
External Interface files 7
External Outputs 5
External Queries 4
Logical Internal Tables 10

Language SLOC per Function Point

C++ Default 53
COBOL Default 107
Delphi 5 18
HTML 4 14
Java 2 Default 46
Visual Basic 6 24
SQL Default 13

Table 4: Language Equivalencies

Estimating and Managing Project Scope for New Development

April 2005 www.stsc.hill.af.mil 7

scope. In other words, are you simply
developing a function? Are you writing an
object? Are you writing a library of
objects? Is this a new shrink-wrap applica-
tion, or a completely new system (e.g.,
missile system)?

Using Table 6, select the numerical
value that corresponds to your selected
project class. In other words, is this devel-
opment for your personal use? Is it share-
ware? Is this a civilian-contract program-
ming project? Is this a military project?

Using Table 7, select the numerical
value that corresponds to your selected
project type. In other words, is this a drag-
and-drop fourth generation language
development? Is this a batch program? Is
it a client-server application? Is it a math-
ematical application? Is it a new social
services program?

Add the three values just obtained
together, and then raise this number to the
2.35 power as shown in the following
equation:

FPs = (ValueScope + ValueClass + ValueType)2.35

This will give you an approximate
value for the number of FPs in the final
delivered application. The actual values
(e.g., 2.35) are simply mathematical curve-
fitting techniques to force this early esti-
mation equation to fit databases of his-
toric projects.

Let us look at a few examples. Suppose
we were asked by a commercial communi-
cation company to estimate the effort
required to create an object that would
perform some signal processing functions.
This object will be our deliverable. We
would use the following values:

Scope = Object
Class = Contract Project - Civilian
Type = Communications

FPs = (ValueScope + ValueClass + ValueType)2.35

= (2 + 7 + 11)2.35 = 1,141 FPs

Now, suppose we were asked to create a
user interface proof-of-concept for a fixed-
asset tracking system for internal use only:

Scope = Proof of Concept
Class = Single Location-Internal
Type = No Programming (4GL/Drag

and Drop)

FPs = (ValueScope + ValueClass + ValueType)2.35

= (5 + 5 + 1)2.35 = 280 FPs

Finally, suppose we need to estimate the
effort required to build a new welfare sys-
tem to be used by a single state with con-

solidated rules (e.g., there would be no
requirement to deliver tailored versions
for different counties within the state):

Scope = External Application
Class = State Government-Federally

Funded
Type = Social Services

FPs = (ValueScope + ValueClass + ValueType)2.35

= (9 + 13 + 15)2.35 = 4,845 FPs

Conclusion
While determining the scope of new
development is never easy, there are tech-
niques that should help you get into the
right ballpark. Once there, it becomes a
matter of tracking and managing to that
scope, either by ensuring that require-
ments do not grow to exceed the budget-
ed scope or by using engineering change
proposals to obtain additional resources
and time when the requirements do
exceed the planned scope.u

References
1. Project Management Institute. A

Guide to the Project Management
Body of Knowledge (PMBOKGuide).
3rd ed. Newton Square, PA: PMI, 2004.

2. Boehm, Barry, et al. Software Cost
Estimation With COCOMO II. Upper
Saddle River, N.J.: Prentice-Hall, 2000.

3. Cost Xpert Group. “Data Load
3.3(b).” Internal Report. Rancho San
Diego, CA: Cost Xpert Group, 2004.

4. Boehm, Barry. Software Engineering
and Project Management. IEEE Press,
1987.

5. ISO [International Organization for
Standard iza t ion]/Interna t iona l
Electrotechnical Commission 20926:
2003 <www.iso.org>.

6. Jones, Capers. Estimating Software
Costs. McGraw-Hill, New York, 1998
<www.iso.org/en/prods-services/
IOSstore/store.html>.

Note
1. This is a slightly simplified version of

the definition from the Software Engi-
neering Institute’s Definition Checklist
for a Logical Source Statement by R.
Park in “Software Size Measurement:
A Framework for Counting Source
Statements” SEI, Pittsburgh, PA,
1992.

Table 6: Project Class Table

No Programming
(4GL/Drag and Drop)

1

Batch 2

3GL Programming 4

Embedded -
Single Board

5

Database Oriented 6

Client-Server 8

Mathematical 9

Systems 10

Communications 11

Process Control 12

Embedded - Multi-Board 13

Embedded -
Complete System

14

Social Services 15

Table 7: Project Type Table
Table 7: Project Type Table

Object 2

Object Library 4

Proof of Concept 5

Evolutionary Prototype 6

Internal Application 8

External Application 9

Shrink-Wrap Application 10

Component of System 11

New System 12

Compound System 13

Table 5: Project Scope Table

Individual Use 1

Shareware 2

Academic/Engineering 3

Single Location -
Internal

5

Multilocation - Internal 6

Contract Project -
Civilian

7

Contract Project -
Local Government

8

Marketed Commercially 9

State Government 11

State Government -
Federally Funded

13

Federal Project 14

Military Project 15

Table 6: Project Class Table

No Programming
(4GL/Drag and Drop)

1

Batch 2

3GL Programming 4

Embedded -
Single Board

5

Database Oriented 6

Client-Server 8

Mathematical 9

Systems 10

Communications 11

Process Control 12

Embedded - Multi-Board 13

Embedded -
Complete System

14

Social Services 15

Table 7: Project Type Table

Function 1

Table 6: Project Class Table

About the Author

William Roetzheim has
25 years experience in
the software industry
and is the author of 15
software-related books
and over 100 technical

articles. He is the founder of the Cost
Xpert Group, Inc., a Jamul-based organ-
ization specializing in software cost-esti-
mation tools, training, processes, and
consulting.

Cost Xpert Group
2990 Jamacha RD STE 250
Rancho San Diego, CA 92019
E-mail: william@costxpert.com

8 CROSSTALK The Journal of Defense Software Engineering April 2005

Software Cost Estimating Methods for Large Projects©

Capers Jones
Software Productivity Research, LLC

For large projects, automated estimates are more successful than manual estimates in terms of accuracy and usefulness. In
descending order, the costs of large projects include defect removal, production of paper documents, coding, project manage-
ment, and dealing with new requirements that appear during the development cycle. In addition, successful estimates for large
projects must be adjusted to match specific development processes, to match the experience of the development team, and to
match the results of the programming languages and tool sets that are to be utilized. Simple manual estimates cannot encom-
pass all of the adjustments associated with large projects.

Software has achieved a bad reputation
as a troubling technology. Large soft-

ware projects have tended to have a very
high frequency of schedule and cost over-
runs, quality problems, and outright can-
cellations. While this bad reputation is
often deserved, it is important to note that
some large software projects are finished
on time, stay within their budgets, and
operate successfully when deployed.

The successful software projects differ
in many respects from the failures and dis-
asters [1]. One important difference is
how the successful projects arrived at their
schedule, cost, resource, and quality esti-
mates in the first place. From an analysis
of the results of using estimating tools
published in “Estimating Software Costs”
[2], using automated estimating tools leads
to more accurate estimates. Conversely,
casual or manual methods of arriving at
initial estimates are usually inaccurate and
often excessively optimistic.

A comparison of 50 manual estimates
with 50 automated estimates for projects
in the 5,000-function point range showed
interesting results [2]. The manual esti-
mates were created by project managers
who used calculators and spreadsheets.
The automated estimates were also creat-
ed by project managers or their staff-esti-
mating assistants using several different
commercial-estimating tools. The compar-
isons were made between the original esti-
mates submitted to clients and corporate
executives, and the final accrued results
when the applications were deployed.

Only four of the manual estimates
were within 10 percent of actual results.
Some 17 estimates were optimistic by
between 10 percent and 30 percent. A dis-
maying 29 projects were optimistic by
more than 30 percent. That is to say, man-
ual estimates yielded lower costs and
shorter schedules than actually occurred,
sometimes by significant amounts. (Of
course several revised estimates were cre-

ated along the way. But the comparison
was between the initial estimate and the
final results.)

In contrast, 22 of the estimates gener-
ated by commercial software estimating
tools were within 10 percent of actual
results. Some 24 were conservative by
between 10 percent and 25 percent. Three
were conservative by more than 25 per-
cent. Only one automated estimate was
optimistic, by about 15 percent.

One of the problems with performing
studies such as this is the fact that many
large projects with inaccurate estimates are
cancelled without completion. Thus, for
projects to be included at all, they had to
be finished. This criterion eliminated
many projects that used both manual and
automated estimation.

Interestingly, the manual estimates and
the automated estimates were fairly close
in terms of predicting coding or program-
ming effort. But the manual estimates
were very optimistic when predicting
requirements growth, design effort, docu-
mentation effort, management effort, test-
ing effort, and repair and rework effort.

The conclusion of the comparison was
that both manual and automated estimates
were equivalent for actual programming,
but the automated estimates were better
for predicting non-coding activities.

This is an important issue for estimat-
ing large software applications. For soft-
ware projects below about 1,000 function
points in size (equivalent to 125,000 C
statements), programming is the major
cost driver, so estimating accuracy for
coding is a key element. But for projects
above 10,000 function points in size
(equivalent to 1,250,000 C statements)
both defect removal and production of
paper documents are more expensive than
the code itself. Thus, accuracy in estimat-
ing these topics is a key factor.

Software cost and schedule estimates
should be accurate, of course. But if they
do differ from actual results, it is safer to
be slightly conservative than it is to be
optimistic. One of the major complaints
about software projects is their distressing
tendency to overrun costs and planned
schedules. Unfortunately, both clients and
top executives tend to exert considerable
pressures on managers and estimating per-
sonnel in the direction of optimistic esti-
mates. Therefore, a hidden corollary of
successful estimation is that the estimates
must be defensible. The best defense is a
good collection of historical data from
similar projects.

Because software estimation is a com-
plex activity there is a growing industry of
companies that market commercial soft-
ware estimation tools. As of 2005, some
of these estimating tools include COCO-
MO II, CoStar, CostModeler, CostXpert,
KnowledgePlan, PRICE S, SEER, SLIM,
and SoftCost. Some older automated cost-
estimating tools are no longer being
actively marketed but are still in use such
as CheckPoint, COCOMO, ESTIMACS,
REVIC, and SPQR/20. Since these tools
are not supported by vendors, usage is in
decline.

While these estimating tools were devel-© 2005 Capers Jones. All Rights Reserved.

“The conclusion of the
comparison was that

both manual and
automated estimates
were equivalent for
actual programming,
but the automated

estimates were better
for predicting

non-coding activities.”

April 2005 www.stsc.hill.af.mil 9

Software Cost Estimating Methods for Large Projects

oped by different companies and are not
identical, they do tend to provide a nucleus
of common functions. The major features
of commercial software-estimation tools
circa 2005 include these attributes:
• Sizing logic for specifications, source

code, and test cases.
• Phase-level, activity-level, and task-

level estimation.
• Adjustments for specific work periods,

holidays, vacations, and overtime.
• Adjustments for local salaries and bur-

den rates.
• Adjustments for various software proj-

ects such as military, systems, commer-
cial, etc.

• Support for function point metrics,
lines of code (LOC) metrics, or both.

• Support for backfiring or conversion
between LOC and function points.

• Support for both new projects and
maintenance and enhancement projects.

Some estimating tools also include more
advanced functions such as the following:
• Quality and reliability estimation.
• Risk and value analysis.
• Return on investment.
• Sharing of data with project manage-

ment tools.
• Measurement models for collecting

historical data.
• Cost and time-to-complete estimates

mixing historical data with projected
data.

• Support for software process assess-
ments.

• Statistical analysis of multiple projects
and portfolio analysis.

• Currency conversion for dealing with
overseas projects.
Estimates for large software projects

need to include many more activities than
just coding or programming. Table 1
shows typical activity patterns for six dif-
ferent kinds of projects: Web-based appli-
cations, management information systems
(MIS), outsourced software, commercial
software, systems software, and military
software projects. In this context, Web
projects are applications designed to sup-
port corporate Web sites. Outsource soft-
ware is similar to MIS, but performed by
an outside contractor. Systems software is
that which controls physical devices such
as computers or telecommunication sys-
tems. Military software constitutes all
projects that are constrained to follow var-
ious military standards. Commercial soft-
ware refers to ordinary packaged software
such as word processors, spreadsheets,
and the like.

Table 1 is merely illustrative, and the
actual numbers of activities performed
and the percentages of effort for each

activity can vary. For estimating actual
projects, the estimating tool would present
the most likely set of activities to be per-
formed. Then the project manager or esti-
mating specialist would adjust the set of
activities to match the reality of the proj-
ect. Some estimating tools allow users to
add additional activities that are not part
of the default set.

Cost Drivers for Large
Software Systems: Paperwork
and Defect Removal
In aggregate, large software projects
devote more effort to producing paper
documents and to removing bugs or
defects than to producing source code.
(Some military software projects have
been observed to produce about 400
English words for every Ada statement.)
Thus, accurate estimation for large soft-
ware projects must include the effort for
producing paper documents, and the
effort for finding and fixing bugs or
defects, among other things.

The invention of function point met-
rics [3] has made full sizing logic for paper
documents a standard feature of many
estimating tools. One of the reasons for
the development of function point met-

rics was to provide a sizing method for
paper deliverables. (For additional infor-
mation on function points, see the Web
site of the non-profit International
Function Point Users Group <www.ifpug.
org>.)

Table 2 (see page 10) illustrates select-
ed documentation size examples drawn
from systems, Web projects, MIS, out-
source, commercial, systems, and military
software domains.

At least one commercial software-esti-
mating tool can even predict the number
of English words in the document set, and
also the numbers of diagrams that are like-
ly to be present. The document estimate
can also change based on paper size such
as European A4 paper. Indeed, it is now
possible to estimate the sizes of text-based
documents in several national languages
(i.e. English, French, German, Japanese,
etc.) and even to estimate translation costs
from one language to another for projects
that are deployed internationally.

Software Defect Potentials and
Defect Removal Efficiency Levels
A key aspect of software cost estimating is
predicting the time and effort that will be
needed for design reviews, code inspec-
tions, and all forms of testing. To estimate

Activities Performed Web MIS Outsource Commercial System Military

01 Requirements 5.00% 7.50% 9.00% 4.00% 4.00% 7.00%

02 Prototyping 10.00% 2.00% 2.50% 1.00% 2.00% 2.00%

03 Architecture 0.50% 1.00% 2.00% 1.50% 1.00%

04 Project plans 1.00% 1.50% 1.00% 2.00% 1.00%

05 Initial design 8.00% 7.00% 6.00% 7.00% 6.00%

06 Detail design 7.00% 8.00% 5.00% 6.00% 7.00%

07 Design reviews 0.50% 1.50% 2.50% 1.00%

08 Coding 30.00% 20.00% 16.00% 23.00% 20.00% 16.00%

09 Reuse acquisition 5.00% 2.00% 2.00% 2.00% 2.00%

10 Package purchase 1.00% 1.00% 1.00% 1.00%

11 Code inspections 1.50% 1.50% 1.00%

12 Independent verification
and validation

1.00%

13 Configuration
 management

3.00% 3.00% 1.00% 1.00% 1.50%

14 Formal integration 2.00% 2.00% 1.50% 2.00% 1.50%

15 User documentation 10.00% 7.00% 9.00% 12.00% 10.00% 10.00%

16 Unit testing 30.00% 4.00% 3.50% 2.50% 5.00% 3.00%

17 Function testing 6.00% 5.00% 6.00% 5.00% 5.00%

18 Integration testing 5.00% 5.00% 4.00% 5.00% 5.00%

19 System testing 7.00% 5.00% 7.00% 5.00% 6.00%

20 Field testing 6.00% 1.50% 3.00%

21 Acceptance testing 5.00% 3.00% 1.00% 3.00%

22 Independent testing 1.00%

23 Quality assurance 1.00% 2.00% 2.00% 1.00%

24 Installation/training 2.00% 3.00% 1.00% 1.00%

25 Project management 10.00% 12.00% 12.00% 11.00% 12.00% 13.00%

Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Activities 7 18 21 20 23 25

Table 1: Typical Software Development Activities - Six Types of Application (Data indicates the percentage of work
effort by activity.)

Web MIS Outsource Commercial System Military Average

Requirements 0.25 0.50 0.55 0.30 0.45 0.85 0.48
Function
Specifications 0.10 0.55 0.55 0.60 0.80 1.75 0.73
Logic
Specifications 0.50 0.50 0.55 0.85 1.65 0.81

Test Plans 0.10 0.10 0.15 0.25 0.25 0.55 0.23

User Guides 0.05 0.15 0.20 0.85 0.30 0.50 0.34

Reference 0.20 0.25 0.90 0.34 0.85 0.51

Reports 0.15 0.50 0.60 0.40 0.65 2.00 0.72

Total 0.65 2.50 2.80 3.85 3.64 8.15 3.60

Table 2: Document Pages per Function Point for Six Application Types (Data expressed in terms of pages per
function point.)

Table 1: Typical Software Development Activities for Six Application Types (Data indicates the per-
centage of work effort by activity.)

10 CROSSTALK The Journal of Defense Software Engineering April 2005

Cost Estimation

defect removal costs and schedules, it is
necessary to know about how many
defects are likely to be encountered.

The typical sequence is to estimate
defect volumes for a project and then to
estimate the series of reviews, inspections,
and tests that the project utilizes. The
defect removal efficiency of each step will
be estimated also. The effort and costs for
preparation, execution, and defect repairs
associated with each removal activity also
will be estimated.

Table 3 illustrates the overall distribu-
tion of software errors among the same
six project types shown in Table 1. In
Table 3, bugs or defects are shown from
five sources: requirements errors, design
errors, coding errors, user documentation
errors, and bad fixes. A bad fix is a second-
ary defect accidentally injected in a bug
repair. In other words, a bad fix is a failed
attempt to repair a prior bug that acciden-
tally contains a new bug. On average,
about 7 percent of defect repairs will
themselves accidentally inject a new
defect, although the range is from less
than 1 percent to more than 20 percent
bad fix injections.

The data in Table 3, and in the other
tables in this report, are based on a total of
about 12,000 software projects examined
by the author and his colleagues circa
1984-2004. Additional information on the
sources of data can be found in [2, 4, 5, 6].

Table 3 presents approximate average
values, but the range for each defect cate-
gory is more than 2-to-1. For example,

software projects developed by companies
who are at Capability Maturity Model®
(CMM®) Level 5 might have less than half
of the potential defects shown in Table 3.
Similarly, companies with several years of
experience with the Six Sigma quality
approach will also have lower defect

potentials than those shown in Table 3.
Several commercial estimating tools make
adjustments for such factors.

A key factor for accurate estimation
involves the removal of defects via
reviews, inspections, and testing. The
measurement of defect removal is actually
fairly straightforward, and many compa-
nies now do this. The U.S. average is about
85 percent, but leading companies can
average more than 95 percent removal
efficiency levels [7].

It is much easier to estimate software
projects that use sophisticated quality con-

trol and have high levels of defect removal
in the 95 percent range. This is because
there usually are no disasters occurring
late in development when unexpected
defects are discovered. Thus, projects per-
formed by companies at the higher CMM
levels or by companies with extensive Six
Sigma experience often have much greater
precision than average.

Table 4 illustrates the variations in typ-
ical defect prevention and defect removal
methods among the six domains already
discussed. Of course, many variations in
these patterns can occur. Therefore it is
important to adjust the set of activities and
their efficiency levels to match the realities
of the projects being estimated. However,
since defect removal in total has been the
most expensive cost element of large soft-
ware applications for more than 50 years, it
is not possible to achieve accurate esti-
mates without being very thorough in esti-
mating defect removal patterns.

The overall efficiency values in Table 4
are calculated as follows: If the starting
number of defects is 100, and there are
two consecutive test stages that each
remove 50 percent of the defects present,
then the first test will remove 50 defects
and the second test will remove 25 defects.
The cumulative efficiency of both tests is
75 percent, because 75 out of a possible
100 defects were eliminated.

Table 4 oversimplifies the situation,
since defect removal activities have vary-
ing efficiencies for requirements, design,
code, documentation, and bad fix defect
categories. Also, bad fixes during testing
will be injected back into the set of unde-
tected defects.

The low efficiency of most forms of
defect removal explains why a lengthy
series of defect removal activities is need-
ed. This, in turn, explains why estimating
defect removal is critical for overall accu-
racy of software cost estimation for large
systems. Below 1,000 function points, the
series of defect removal operations may
be as few as three. Above 10,000 function
points, the series may include more than a
dozen kinds of review, inspection, and test
activity defect removal operations.

Requirements Changes and
Software Estimation
One important aspect of estimating is
dealing with the rate at which require-
ments creep and, hence, make projects
grow larger during development. Fortu-
nately, function point metrics allow direct
measurement of the rate at which this

Web MIS Outsource Commercial System Military Average

Requirements 1.00 1.00 1.10 1.25 1.30 1.70 1.23

Design 1.00 1.25 1.20 1.30 1.50 1.75 1.33

Code 1.25 1.75 1.70 1.75 1.80 1.75 1.67

Documents 0.30 0.60 0.50 0.70 0.70 1.20 0.67

Bad Fix 0.45 0.40 0.30 0.50 0.70 0.60 0.49

Total 4.00 5.00 4.80 5.50 6.00 7.00 5.38

Table 3: Average Defect Potentials for Six Application Types (Data expressed in terms of defects per function point.)

Table 3: Average Defect Potentials for Six Application Types (Data expressed in terms of defects per
function point.)

® Capability Maturity Model and CMM are registered in the
U.S. Patent and Trademark Office by Carnegie Mellon
University.

“One important aspect
of estimating is dealing
with the rate at which

requirements creep and,
hence, make projects
grow larger during

development.”

1

Table 1: Typical Software Development Activities - Six Types of Application (Data indicates the percentage of work
effort by activity.)

Web MIS Outsource Commercial System Military Average

Requirements 0.25 0.50 0.55 0.30 0.45 0.85 0.48
Function
Specifications 0.10 0.55 0.55 0.60 0.80 1.75 0.73
Logic
Specifications 0.50 0.50 0.55 0.85 1.65 0.81

Test Plans 0.10 0.10 0.15 0.25 0.25 0.55 0.23

User Guides 0.05 0.15 0.20 0.85 0.30 0.50 0.34

Reference 0.20 0.25 0.90 0.34 0.85 0.51

Reports 0.15 0.50 0.60 0.40 0.65 2.00 0.72

Total 0.65 2.50 2.80 3.85 3.64 8.15 3.60

Table 2: Document Pages per Function Point for Six Application Types (Data expressed in terms of pages per
function point.)

Table 2: Document Pages per Function Point for Six Application Types (Data expressed in terms of
pages per function point.)

phenomenon occurs since both the origi-
nal requirements and changed require-
ments will have function point counts.

Changing requirements can occur at
any time, but the data in Table 5 runs from
the end of the requirements phase to the
beginning of the coding phase. This time
period usually reflects about half of the
total development schedule. Table 5 shows
the approximate monthly rate of creeping
requirements for six kinds of software, and
the total anticipated volume of change.

For estimates made early in the life
cycle, several estimating tools can predict
the probable growth in unplanned func-
tions over the remainder of the develop-
ment cycle. This knowledge can then be
used to refine the estimate and to adjust
the final costs in response.

Of course, the best response to an esti-
mate with a significant volume of projected
requirements change is to improve the
requirements gathering and analysis meth-
ods. Projects that use prototypes, joint
application design (JAD), requirements
inspections, and other sophisticated require-
ments methods can reduce later changes to
a small fraction of the values shown in
Table 5. Indeed, the initial estimates made
for projects using JAD will predict reduced
volumes of changing requirements.

Adjustment Factors for
Software Estimates
When being used for real software proj-
ects, the basic default assumptions of esti-
mating tools must be adjusted to match
the reality of the project being estimated.
These adjustment factors are a critical por-
tion of using software estimating tools.
Some of the available adjustment factors
include the following:
• Staff experience with similar projects.
• Client experience with similar projects.
• Type of software to be produced.
• Size of software project.
• Size of deliverable items (documents,

test cases, etc.).
• Requirements methods used.
• Review and inspection methods used.
• Design methods used.
• Programming languages used.
• Reusable materials available.
• Testing methods used.
• Paid overtime.
• Unpaid overtime.

Automated estimating tools provide
users with abilities to tune the estimating
parameters to match local conditions.
Indeed, without such tuning the accuracy of
automated estimation is significantly re-
duced. Knowledge of how to adjust esti-
mating tools in response to various factors is

the true heart of software estimation. This
kind of knowledge is best determined by
accurate measurements and multiple regres-
sion of analysis of real software projects.

Summary and Conclusions
Software estimating is simple in concept,
but difficult and complex in reality. The
larger the project, the more factors there
are that must be evaluated. The difficulty
and complexity required for successful
estimates of large software projects
exceeds the capabilities of most software
project managers to produce effective

manual estimates. In particular, successful
estimation of large projects needs to
encompass non-coding work.

The commercial software estimating
tools are far from perfect and they can be
wrong, too. But automated estimates often
outperform human estimates in terms of
accuracy, and always in terms of speed and
cost effectiveness. However, no method of
estimation is totally error-free. The current
best practice for software cost estimation is
to use a combination of software cost esti-
mating tools coupled with software project
management tools, under the careful guid-

Software Cost Estimating Methods for Large Projects

April 2005 www.stsc.hill.af.mil 11

Table 4: Patterns of Defect Prevention and Removal Activities

Table 5: Monthly Rate of Changing Requirements for Six Application Types (From end of require-
ments to start of coding phases)

Table 3: Average Defect Potentials for Six Application Types (Data expressed in terms of defects per function point.

Web MIS Outsource Commercial System Military

Prevention Activities

Prototypes 20.00% 20.00% 20.00% 20.00% 20.00% 20.00%

Clean rooms 20.00% 20.00%

JAD sessions 30.00% 30.00%

QFD sessions 25.00%

Subtotal 20.00% 44.00% 44.00% 20.00% 52.00% 36.00%

Pretest Removal

Desk checking 15.00% 15.00% 15.00% 15.00% 15.00% 15.00%

Requirements
review

30.00% 25.00% 20.00% 20.00%

Design review 40.00% 45.00% 45.00% 30.00%

Document review 20.00% 20.00% 20.00%

Code inspections 50.00% 60.00% 40.00%

Independent
verification and
validation

20.00%

Correctness
proofs

10.00%

Usability labs 25.00%

Subtotal 15.00% 15.00% 64.30% 89.48% 88.03% 83.55%

Testing Activities

Unit test 30.00% 25.00% 25.00% 25.00% 25.00% 25.00%

New function test 30.00% 30.00% 30.00% 30.00% 30.00%

Regression test 20.00% 20.00% 20.00% 20.00%

Integration test 30.00% 30.00% 30.00% 30.00% 30.00%

Performance test 15.00% 15.00% 20.00%

System test 35.00% 35.00% 35.00% 40.00% 35.00%

Independent test 15.00%

Field test 50.00% 35.00% 30.00%

Acceptance test 25.00% 25.00% 30.00%

Subtotal 30.00% 76.11% 80.89% 91.88% 92.69% 93.63%

Overall
Efficiency

52.40% 88.63% 96.18% 99.32% 99.58% 99.33%

Number of
Activities

3 7 11 14 16 18

Table 4: Patterns of Defect Prevention and Removal Activities

Web MIS Outsource Commercial System Military Average
Monthly
Rate 4.00% 2.50% 1.50% 3.50% 2.00% 2.00% 2.58%

Months 6.00 12.00 14.00 10.00 18.00 24.00 14.00

TOTAL 24.00% 30.00% 21.00% 35.00% 36.00% 48.00% 32.33%

Table 5: Monthly Rate of Changing Requirements for Six Application Types (From end of requirements to start of
coding phases)

Cost Estimation

12 CROSSTALK The Journal of Defense Software Engineering April 2005

International Function
Point Users Group
www.ifpug.org
The International Function Point Users
Group (IFPUG) is a non-profit organiza-
tion committed to increasing the effec-
tiveness of its members’ IT environments
through the application of function point
analysis (FPA) and other software meas-
urement techniques. IFPUG endorses
FPA as its standard methodology for soft-
ware sizing and maintains the Function
Point Counting Practices Manual, the
recognized industry standard for FPA.
IFPUG serves more than 1,200 members
in more than 30 countries.

COCOMO
http://sunset.usc.edu/research/
COCOMOII
The Constructive Cost Model (COCO-
MO) Suite is a collection of six COCO-
MO-related estimation models in various
stages of development. These models
attempt to estimate impacts on software
system cost, development schedule, and
even return on technology investment
associated with a variety of software devel-
opment approaches and processes.

Space Systems Cost
Analysis Group
http://sscag.saic.com
The Space Systems Cost Analysis Group
(SSCAG) is a non-profit, international
association of aerospace organizations
representing industry and government.
SSCAG members are involved in space
systems cost analysis, including hardware
or software related to launch systems,
spacecraft, payloads, experiments, and
space-related ground systems.

International Society of
Parametric Analysts
www.ispa-cost.org
The International Society of Parametric
Analysts (ISPA) is a non-profit educa-
tional society devoted to the promotion
of parametrics, risk analysis, economet-
rics, design to cost, technology forecast-
ing, and management. Many ISPA
members currently participate in the
Parametric Estimating Initiative, en-
abling them to rely on parametrics as the
primary basis of estimate. ISPA chapters
provide technical workshops, training,
and networking opportunities.

WEB SITES

About the Author

Capers Jones is founder
and chief scientist of
Software Productivity
Research (SPR) LLC. He
has almost 40 years of
experience in software

cost estimating. Jones designed IBM’s
first automated estimation tool in 1975,
and is also one of the designers of three
commercial software estimation tools:
SPQR/20, Checkpoint, and Knowl-
edgePlan. These software estimation
tools pioneered the use of function
point metrics for sizing and estimating.
They also pioneered sizing of paper doc-
uments, and the estimation of quality
and defect levels. To build these tools,
SPR has collected quantified data from
more than 600 companies.

Software Productivity
Research, LLC
Phone: (877) 570-5459
E-mail: cjones@spr.com

ance of experienced software project
managers and estimating specialists.u

References
1. Jones, Capers. “Software Project

Management Practices: Failure Versus
Success.” CrossTalk Oct. 2004
<www.stsc.hill.af.mil/crosstalk/2004/
10/0410Jones.html>.

2. Jones, Capers. Estimating Software
Costs. New York: McGraw Hill, 1998.

3. Albrecht, Allan. AD/M Productivity
Measurement and Estimate Valida-
tion. Purchase, NY: IBM Corporation,
May 1984.

4. Jones, Capers. Applied Software Mea-
surement. 2nd ed. New York: McGraw
Hill, 1996.

5. Jones, Capers. Software Assessments,
Benchmarks, and Best Practices. Boston,
MA: Addison Wesley Longman, 2000.

6. Kan, Stephen H. Metrics and Models
in Software Quality Engineering. 2nd
ed. Boston, MA: Addison Wesley
Longman, 2003.

7. Jones, Capers. Software Quality –
Analysis and Guidelines for Success.
Boston, MA: International Thomson
Computer Press, 1997.

April 18-21
2004 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

May 2-6
Practical Software Quality and

Testing (PSQT) 2005
Las Vegas, NV

www.qualityconferences.com

May 14-15
ACM Symposium on Software

Visualization

St. Louis, MO
www.softvis.org/softvis05

May 15-21
27th International Conference on

Software Engineering (ICSE)
St. Louis, MO

www.icse-conferences.org/2005

May 16-17
Military Embedded Electronics and

Computing Conference
Long Beach, CA
www.meecc.com

May 16-20
STAREAST 2005 International

Conference on Software Testing Analysis
and Review

Orlando, FL
www.sqe.com/stareast

May 23-26
2005 Combat Identification

Systems Conference
Portsmouth, VA

www.usasymposium.com/combatid

June 12-15
ACM Sigplan 2005 Programming

Language Design and Implementation
Chicago, IL

http://research.ihost.com/pldi2005

COMING EVENTS

April 2005 www.stsc.hill.af.mil 13

Project estimating is formidable from
the start – especially during/before

the requirements discovery process. Poor
requirements lead to poor estimates and
poor schedules. Subsequently, changes are
difficult to assess when the requirements
are poor. Sometimes a service request
ends up deferred to the next release due to
confusion about requirements – and the
next release fares no better. This leads to
classic project failure – over budget and
behind schedule – similar to the two-
thirds of projects cited in the 2003
Standish Group’s Chaos report. [1]

Estimators can start the process by
determining how big and how complex is
the user problem, how hard it will be to
build, and how much confidence is need-
ed in the estimate. Most often, however,
we do not estimate this way. We start with
a seemingly arbitrary end date and then
count backwards to get the schedule, cost,
and resources that can fit into the time-
frame. Called date-driven estimating by
author Steve McConnell, it is the most
commonly used method. [2]

To complicate matters, date-driven
estimates are usually task-based and rely on
the experience and mental models of team
members or cost estimators. Problems
emerge on new projects with new technol-
ogy or new subject matter where there is
no prior experience from which to draw.
An estimator is forced to seek other data
on which to base an estimate.

Sophisticated parametric-based esti-
mating models such as COCOMO II,
SLIM, and SEER/SEM serve to provide
the missing data with databases or proven
industry equations. In most cases, howev-
er, some form of project size is a required
input variable, along with other variables
covering functional, quality, design, and
technical drivers. Because any estimate is
only as accurate as its least accurate input
variable, we should not be surprised when
projects exceed estimates for cost, sched-
ule and duration. The Standish Group
report [1] proclaimed a mere 33 percent of
projects a success; however, this is double
the results a mere decade ago.

As one of the first authors to recog-
nize that software engineering differs
from traditional engineering, David Card
stated, “Engineering projects usually can
wait until after design to provide an esti-
mate, while software engineering requires
an estimate before design” [3].

In the author’s experience, software
projects can be even worse – some proj-
ects need estimates before requirements! If
we are to increase information technology
(IT) credibility, we need to figure out ways
to create auditable and reliable project esti-
mates from initial project realization all the
way through to project completion. One
of the best ways to do this is to augment
our current estimating method(s) with at
least one requirements-based estimate.
This additional approach serves to validate
or invalidate the other estimate(s) and
ensures that at least one method consid-
ered the size of the problem as an impor-
tant project estimating variable.

Requirements Demystified
Given that project requirements are the
source of 60 percent to 99 percent of
defects delivered into production [4], and
that project size based on requirements is
a key input driver for project estimates [5],
it makes sense to examine what can be
done to clarify and further exploit the dis-
covery of complete requirements early in
the project.

The requirements discovery and articu-
lation process should strive to maximize

the known requirements while managing to
minimize the unknowns. To clarify project
requirements, divide them into three types:
functional, non-functional, and technical
requirements, as outlined in the following
sections.

Functional Requirements
This type of requirements represents the
unit work processes performed or sup-
ported by the software, (e.g., software for
an altimeter records the ambient tempera-
ture). These requirements are part of the
users’1/customers’ responsibility to define,
even though they may abdicate the initial
specifications to the development team.
Functional requirements can be thought
of similar to a software floor plan – they
are independent of any design constraints
or technical implementation. Functional
requirements can be documented with use
cases and sized using functional size meas-
urement (function points).

Once the functional requirements are
sized, and other project requirements are
known (see non-functional and technical
requirements), cost estimates can be pre-
pared using a Project Cost Ratio for com-
parable completed projects (see Table 1).

Non-Functional Requirements
This type of requirements represents how
the software must perform once it is built.
Also referred to as quality requirements,
these requirements address the ilities: (suit-
ability, accuracy, interoperability, compli-

Creating Requirements-Based Estimates Before
Requirements Are Complete

Carol A. Dekkers
Quality Plus Technologies, Inc.

Despite advances in tools and techniques, it is interesting to note that on-time and on-budget projects account for a mere one-
third of projects today. While overly optimistic estimates are part of the problem, missing and incomplete requirements, and
poor estimating methods share the blame. Accurate estimating is further challenged when customers demand estimates before
requirements development begins.

Figure 1: The Three Types of Project Requirements

Metric Units Equation

Project Cost
Ratio (completed
projects)

$/Function Point
(FP)

Project Cost Rate =
(Total Hours x Hourly Cost) + Other Costs
 Project Functional Size

Annual Support
Cost Ratio

Actual Support
Costs per 1,000 FP
(or Full Time
Resources/Application)

Support Cost Ratio =
(Yearly Support Hours x Hourly Cost) + Other Costs

Application Functional Size

Repair Cost
Ratio

$/FP (or per fix) Repair Cost Ratio =
(Repair Hours x Hourly Cost)

Functional Size of Repair

DDD eeevvveeelll ooopppeeerrr ///
CCCooonnnssstttrrr uuuccctttiii ooonnn
RRReeeqqquuuiii rrr eeemmmeeennntttsss

111... FFF uuunnnccctttiiiooonnnaaalll (((UUUssseeerrr)))
RRReeeqqquuuiii rrr eeemmmeeennntttsss

222... NNNooonnn---FFF uuunnnccctttiiiooonnnaaalll
(((UUUssseeerrr))) RRReeeqqquuuiii rrr eeemmmeeennntttsss

333... TTTeeeccchhhnnniiicccaaalll (((BBBuuuiii lll ddd)))
RRReeeqqquuuiii rrr eeemmmeeennntttsss

SSSooofff tttwwwaaarrreee PPPrrrooojjj eeecccttt
RRReeeqqquuuiii rrr eeemmmeeennntttsss

UUUssseeerrr DDDrrr iii vvveeennn
RRReeeqqquuuiii rrr eeemmmeeennntttsss

Table 1: Project Requirements Size-Based Estimating Equations

ance, security, reliability, efficiency, main-
tainability, portability, and quality in use) as
described by ISO [International Organiza-
tion for Standardization] standards in [7]
and performance criteria.

More often, non-functional require-
ments are discussed only at a high level
and are often found scattered throughout
various requirements documents. Using a
construction analogy, the non-functional
requirements are like the contracted specifica-
tions for software and outline the necessity
for data accuracy (e.g., trajectory systems),
response time (e.g., service level agree-
ments), security (e.g., encryption), per-
formance (e.g., 24x7 operation with repli-
cated databases to prevent data loss), etc.

Technical (Build) Requirements
These project requirements are defined by
how the software will be built to satisfy the
functional and non-functional require-
ments. Technical requirements include the
physical implementation characteristics of
the project and include, for example, pro-
gramming language, Computer-Aided
Software Engineering (CASE) or other
tools, methods, work-breakdown struc-
ture, type of project, etc. In practice, it is
the technical requirements that document
the design, and with the functional and
non-functional requirements give rise to
project specifics like Gantt charts, devel-
opment methodology, reuse, etc.
Technical requirements are to software as
plumbing is to building construction.

All three types of project requirements are
necessary to do a realistic project estimate.
Functional size measurement strictly pertains only
to the size of the software’s functional user
requirements.

Modern software development ap-
proaches such as use cases and agile devel-
opment attempt to categorize and keep
these three types of requirements distinct
and separate. Unfortunately in a manner
similar to the contractor who only has a
hammer and everything looks like a nail,

some software developers cannot over-
come the need to insert technical require-
ments into modern method deliverables
such as use cases and agile user stories.

Estimating Challenges
The more information you know before
making an estimate, the better the estimate
should be. However, estimating faces chal-
lenges even with skilled estimators and
high-quality teams. A few challenges
include these: accuracy of input values
(size, complexity, technical requirements,
etc); availability of input variables; applica-
bility of historical databases; complete-
ness of the requirements (including func-
tional, non-functional, and technical);
tasks to be included; and risk factors. In
spite of the challenges, cost estimators do
produce estimates of duration, cost, and
effort, which are turned into project
schedules. Estimates made early in the
development life cycle face large variations
because of uncertainty. Estimates based
on guessed input values are unreliable, yet
many managers treat them as predictive
project forecasts. We can alleviate this
problem with a few guidelines: Frame the
guesstimate (an estimated guess) as preliminary.
When providing a guesstimate, frame it as
a range of values (e.g., based on assump-
tions, the project could cost $250,000 to
$600,000). Giving a range instead of an
exact answer provides greater traceability.

Overly optimistic estimates create
project failures because dates pass and
slip, functionality gets reduced, project
budgets get surpassed, and quality suffers
(i.e., testing time is cut out). Remember
that an estimate is only as good as its least
reliable input variable; garbage in equals
garbage out. While it is the American way
for faster, better, and cheaper solutions,
sometimes they are so compelling that
management will attempt the impossible
through the overly optimistic estimate.
The result is that the project will only be
done right the second time around [4].

Estimating During or Before
Requirements
When asked to perform an overall project
estimate using a requirements-based esti-
mating method, the first step is to decide
how many separate (sub)projects are
included within the scope of the overall
business project if more than one soft-
ware application is involved. If there is
only one software application involved,
this step can be skipped. If there is more
than one application to be enhanced or
developed, each usually has its own set of
requirements and will need its own
(sub)project estimate2. (Usually, each
application that undergoes new develop-
ment or enhancement will be classified
and estimated as its own (sub)project, and
the overall project effort, cost, and dura-
tion can be calculated as combined values.
Consider a single overall project with sev-
eral subprojects: (a) new development
project, and (b) two enhancement projects
(see Figure 1). Each one would be esti-
mated separately, and the results added
together. Additionally, the entire project
might also require an estimate for the inte-
gration testing of the component subpro-
ject pieces. The overall project estimate
for cost and effort would be the sum of
the subproject estimates, while the dura-
tion would depend on task dependencies
between and within subprojects3.

The second step is to identify and esti-
mate the size or impact of the three types
of project requirements for each of the
subprojects. Consider the fictional sub-
project 1.

Functional Requirements
The requirements for what the software
must do might not be defined in enough
detail to do functional sizing, but could be
approximated [5]. If even one functional
component (such as number of entities) is
known, an approximation can be done.
Several approximation methods are out-
lined in [6]. Documenting the assumptions
about the entities helps to substantiate the
estimate4. If there is enough data, the
functional size approximation can be
more accurate and use more accurate tech-
niques. For the two subprojects, each
would be assessed based on an approxi-
mation of how many function points
would be added (new functions as in sub-
project 3), modified (changed or renovat-
ed functions), or removed. The functional
size of the subproject is the sum of new
plus modified plus removed functions.

Non-Functional Requirements
Assessment of the ilities is based on a

14 CROSSTALK The Journal of Defense Software Engineering April 2005

Cost Estimation

Figure 1: Sample Project Components

Creating Requirements-Based Estimates Before Requirements Are Complete

April 2005 www.stsc.hill.af.mil 15

comparison to similar projects or a value
adjustment factor (which is part of a siz-
ing method such as IFPUG). If the non-
functional requirements are unknown, it is
best to overestimate their impact as usual-
ly they turn out to be more complex than
anticipated (e.g., security requirements).
Even if estimators and software develop-
ers intuitively know that estimates are too
low, customers and user managers have an
insatiable optimism that maybe, just this
once it might come true. Time and time
again, overly optimistic estimates become
self-fulfilling prophecies as dates slip,
functionality is reduced, and project budg-
ets are surpassed.

Barry Boehm remarked on the impact
of non-functional requirements: “A tiny
change in NFRs [non-functional require-
ments] can cause a huge change in the
cost.” Boehm cited the tripling of a $10
million project to $30 million when the
response time (of a NFR) went from four
seconds to one. [8]. It is important to doc-
ument assumptions for NFRs, especially if
project complexity is likely to increase.

Technical Requirements
IT project teams often use a standard suite
of development tools and technologies.
The technical requirements are usually the
least risk prone of the three requirement
types – particularly technologies and sub-
ject matter are standard. For major
changes in technology, further care must
be taken to assess this requirements area.

Results should be documented along
with the method used, the date, and
source documents used for the estimate so
that guesstimates and estimates become
more traceable and auditable.

Need an estimate for a project that has
few or no known input variables? Are
there options for an estimator? He or she
could attempt these tactics: (a) refuse to
do an estimate, (b) delay the estimate
repeatedly until requirements are at least
partially done, (c) provide a wild guess
(which is common), (d) try to find similar
completed projects within your own envi-
ronment and use their actual values, (e)
cite professional ethics and hide out, or (f)
(this is the preferred method) document
assumptions and use them together with
the estimate (guesstimate) to substantiate
the estimation results.

What Can You Do to Improve
Project Estimates?
Project estimating can be more auditable
and more realistic by applying some of the
aforementioned practices. Document as
many of your assumptions about the proj-

ect as you can; revise them and the esti-
mate according to the same/updated
assumptions later. Separate, document,
and assess (approximation or count) the
project into subprojects according to
application; address each set of require-
ments clearly; and objectively split them
into the three types: functional, non-func-
tional, and technical. Use an established
requirements-based estimating tool or
benchmarking database such as COCO-
MO II or the International Software
Benchmarking Standards Group with
proven track records for your environ-
ment. Label results as preliminary. Teach
customers about the estimating process.
Educate them that an estimate too early in
the life cycle cannot remain fixed through-
out the project, nor can it be accurate.
And finally, combine the subproject esti-
mates into a single overall project esti-
mate. Present the guesstimate as a range
(when information is premature or miss-
ing) with a level of accuracy commensu-
rate with what is known about the project
at the time (e.g., rounded to the closest
$100,000).u

References
1. The Standish Group. “Latest Standish

Group CHAOS Report Shows Project
Success Rates Have Improved by 50
Percent.” Press Release, 25 Mar. 2003
The Standish Group, <www.standish
group.com/press/article.php?id=2>.

2. McConnell, Steve. “After the Gold
Rush.” 2004 Systems and Software
Technology Conference, Salt Lake
City, UT, 19-22 Apr. 2004.

3. Card, David N. The Role of Measure-
ment in Software Engineering. July
1998.

4. U.S. Army. Insight. Summer, 2003.
5. Hill, Peter R., Ed. Practical Project

Estimation. 2nd ed. International
Software Benchmarking Standards
Group, 2005 <www. isbsg.org>.

6. International Organization for Stan-
dardization/International Electro-
technical Commission. ISO/IEC
14143-1:1998 Information Technol-
ogy – Software Measurement –
Functional Size Measurement – Part 1:
Definition of Concepts. ISO/IEC
<www.jtcl-sc7.org>.

7. ISO/IEC. ISO/IEC 9126 Series of
Standards for Measuring Software
Quality. ISO/IEC <www.jtcl-sc7.
org>.

8. Robertson, Suzanne and James.
Preface. Requirements-Led Project
Management – Discovering David’s
Slingshot. By Barry Boehm. Pearson
Education, 2005.

Notes
1. Users refers to any person, thing, other

application, other software, hardware,
etc., outside the boundary of the soft-
ware that has the requirement to send
or receive data from the software [6].

2. Even if requirements are collectively
listed in a single document, specific
requirements will pertain to a specific
software application. It is important to
divide the requirements among various
applications within the overall project
to facilitate subproject estimates.

3. The overall duration may not be the
summation of the subproject dura-
tions; some tasks may proceed concur-
rently while others may have prece-
dence in other subprojects before they
can commence.

4. The one file model or rule of 31 is an
approximation technique whereby
each identified entity is assumed to
have add, change, delete, query, out-
put, and storage function. Using
IFPUG FP average values, the total is
31 FP for each entity. For three enti-
ties, this equates to 93 FP – or roughly
in the range of 100 FP.

About the Author

Carol A. Dekkers is
president of Quality Plus
Technologies, Inc., a
management consulting
firm that specializes in
helping companies im-

prove their software and systems success.
She is a past chair and founder of the
American Testing Board, a former presi-
dent of the International Function Point
Users Group, and is active in the Project
Management Institute, the American
Society for Quality, and the International
Organization for Standardization. She is a
Certified Management Consultant, a
Certified Function Point Specialist, a pro-
fessional engineer (Canada), an Infor-
mation Systems Professional, and an
International Software Testing Qualifica-
tions Testing Board Certified Tester –
Foundation Level.

Quality Plus Technologies, Inc.
8430 Egret LN
Seminole, FL 33776
Phone: (727) 393-6048
Fax: (727) 393-8732
E-mail: dekkers@qualityplus

tech.com

It is common to hear this question dur-
ing project development: “How large is

this project?”
One type of answer might be, “Oh,

let me see. I believe that this is about a
500 effort-hour project.”

In the world of software develop-
ment, size means different things to dif-
ferent groups of people. Those who
specify functional requirements – and
perhaps pay for the project, too – may
conceptualize size in financial terms.
Since project effort is a key component
of cost, sizing in effort-units allows them
to place the project in a cost-and-
resource framework.

Software developers, while keenly
aware of the effort required to complete
their tasks, are more likely to describe size
in terms of the things they have to pro-
duce to implement the requirements.
Their sizing units are screens to be devel-
oped and modified, reports, database
tables, Web pages, scripts, object classes,
and a host of others.

To the software estimator, size quan-
tifies what a project delivers or proposes
to deliver. Concrete measures such as
source lines of code or more abstract
ones such as function points are the esti-
mator’s size units, and are indeed the
ones needed to use a commercial estimat-
ing tool.

What is certain is that in software
development, the word size may mean
effort, programming artifacts, or elemen-
tary units of work depending on who is
using the term. This is a potential source

of confusion and miscommunication.
This article outlines a process for

mapping requirements to intermediate
units to elementary units of work, as
shown in Figure 1, and uses the resulting
output for estimating. The process is
flexible and uses historical data to tune its
algorithms.

Traditional Sizing and
Estimating
Historically, software estimating has fol-
lowed a pattern similar to the following:
• Requirements are broken down into

software elements.
• Effort-hours for the tasks to create

the software elements are estimated.
• The effort-hours are summed and a

management reserve (fudge factor) is
added to give an effort-estimate.

• Resources are leveled and a critical
path is determined that allow project
staff and duration to be estimated.

Unfortunately, this bottom-up approach
is fraught with problems:
• It underestimates the overhead

required and the non-software tasks
associated with a larger project, often
dramatically.

• Bottom-up estimating cannot be done
effectively early in the project life
cycle when bid/no bid or go/no go
decisions are made and money, time,
and staff are allocated to the effort.
There is simply insufficient detail to
determine all of the software ele-
ments, much less the project ele-
ments.

• It ignores the impact on schedule and
effort of different sized teams.
Schedule is simply effort divided by
staff.

• It does not account for the non-linear
impacts of time, cost, and quality
constraints.

• It is not suitable for rapid, cost-effec-
tive, what-if analysis.

A critical element is missing from this
approach and that element is project size.

An Alternative Approach to
Sizing/Estimating
Parametric or model-based estimating
takes the following different approach:
• It determines the size of the software

elements breaking them down into
common low-level software imple-
mentation units (IUs). (This will be
discussed in the following section.)

• It creates a model-based first cut esti-
mate using a productivity assumption
(preferably historically based), the
project size, and the critical con-
straints.

• It performs what-if modeling until an
agreed-upon estimate has been created.

• It creates the detailed plans for the
project.

Figure 2 illustrates this approach. Key to
the success of this methodology is an
accurate size and a productivity assump-
tion that is consistent with the organiza-
tion’s capabilities.

Translating Requirements
Into IUs
Customers have needs. These take the
form of requirements that software must
fulfill. Developers translate these require-
ments into intermediate units that they
must create or modify to implement the
requirements. These can be screens, pro-
grams, reports, tables, object classes,
interfaces, etc. The list is fluid.
Estimators must decompose the interme-
diate units into IUs to determine a size
for estimating.

16 CROSSTALK The Journal of Defense Software Engineering April 2005

A Method for Improving Developers’
Software Size Estimates

Lawrence H. Putnam, Douglas T. Putnam, and Donald M. Beckett
Quantitative Software Management, Inc.

Traditional software estimating is effort-based and follows a bottom-up approach. This approach does not show the impact of
different team sizes or the impact of schedule, cost, and quality constraints. The authors propose a method that decomposes pro-
gramming artifacts into elementary units of work that form the size used for model-based estimating. The process is simple to
implement, flexible, can be tuned with actual project performance data, and fosters developer buy-in by involving them in the
estimating process.

Units of Need Intermediate Units Units of Works

Need
Development

Process Product

Figure 1: Development Process

April 2005 www.stsc.hill.af.mil 17

A Method for Improving Developers’ Software Size Estimates

Conceptually, an IU is the lowest level
of programming construct that a soft-
ware developer performs. It will vary in
form depending on what is being devel-
oped. It could be setting a property on a
Web form, indicating the data type of a
field on a database table, or writing a line
of procedural code. In each case it is the
most elementary activity that the devel-
oper performs. Intermediate units are the
tangible results of several or many IUs.

Two traditional size measures for esti-
mating are source lines of code and func-
tion points. Both of these can work in
some cases; however, each has limita-
tions. The lines of code that a project
generates are strongly influenced by the
software languages used, individual cod-
ing style, and organizational standards.
They are a measure of output that can be
difficult to estimate.

Function points can be estimated
from requirements and design docu-
ments but require training in the function
point methodology and actual counting
experience that many organizations lack.
Function point counting is also a manual
process that requires an investment of
time and effort to perform. Although
there are software tools that can capture
the results of a function point count,
there are none certified by the
International Function Point Users
Group as being capable of conducting
the count.

An Alternative Sizing Approach
Here is a process for obtaining a size esti-
mate that is conceptually simple, easy to
implement, and encourages developer
buy-in:
• Hold a facilitated session with the

developers. Have them identify all of
the intermediate units that they have
to create. Determine what they physi-
cally have to do to create them. Ask if
there are other things that they have
to create on other projects. The pur-
pose here is to establish a compre-
hensive list of the artifacts the devel-
opers may create. Good interviewing
skills are the key to success here. Ask
follow-up questions and keep asking
if there is anything more. Developers
may take some time to warm to this
approach, but asking people to talk
about themselves and what they do is
a time-tested method of keeping a
conversation going!

• For each item, have them define in
quantifiable terms what makes that
item simple, average, or complex. For
instance, a simple screen might only
have retrieval capability, while an aver-

age screen would also allow data
entry. A complex screen would have
update and delete capabilities, as well.
Record the intermediate units in both
effort-hours and IUs, which may be a
ratio of effort at this stage. It is espe-
cially important to have several devel-
opers involved in this. Individual pro-
ductivity can vary significantly
between individuals, which influences
their perspectives. Also, having the
group of developers determine effort
ranges will help balance overly opti-
mistic and pessimistic estimates and
help create buy-in.

• Construct a sizing worksheet that
captures the results of the session.
Figure 3 is a simple illustration of this
concept.

• For a medium-size project with a
small team, this process will normally
take between four and six hours with
between four and eight developers;
this is where you get buy-in from the
developers. Very large projects may
well require additional time, but the
method remains the same.
Figure 3 is an example of a sizing

spreadsheet. Using the intermediate units
specified by the developers during the
interview for this particular project type,
data has been captured for a hypothetical
project. The intermediate units that the
developers have identified as being in their
environment are in the first column. The
second column contains the developers’
estimate of the average hours required to
create each intermediate unit. The IUs in

Agreed Estimate

Requirements

Software Elements Σ=Size

Productivity
Assumption

First-Cut
Estimate

"What-If "
ModelingDetailed Planning

and Execution

Resources
and Constraints

Figure 2: Alternative Sizing and Estimating Approach

Figure 3: Sizing Spreadsheet Example

Intermediate Units
Effort
Hours IUs Count

Total
IUs

Total
Effort

Forms - Simple 8 70 0 0
Forms - Average 15 170 8 1,360 120
Forms - Complex 30 400 0 0
New Report - Simple 13 140 0 0
New Report - Average 32 300 8 2,400 256
New Report - Complex 42 440 0 0
Changed Report - Simple 10 90 0 0
Changed Report - Average 24 250 4 1,000 96
Changed Report - Complex 31 320 0 0
Table Changes - Simple 5 60 0 0
Table Changes - Average 13 140 10 1,400 130
Table Changes - Complex 20 220 0 0
JCL Changes - Simple 1 12 0 0
JCL Changes - Average 4 50 0 0
JCL Changes - Complex 6 70 0 0
SQL Procedures - Simple 1 14 0 0
SQL Procedures - Average 10 140 0 0
SQL Procedures - Complex 20 225 0 0

6,160 0
Total Effort Hours

602

V

Total Implementation Units

Total Effort Hours

Figure 3: Sizing Spreadsheet Example

the third column are a weighting factor for
each intermediate unit. If empirical data
from other sizing spreadsheets is unavail-
able or if this is the first time this activity
has been conducted, the IUs may simply
be a multiple of effort. Column four con-
tains the number of a particular interme-
diate unit that a project is estimated to
have. The fifth column is the total esti-
mated IUs for the intermediate unit.
Column six is the total estimated effort-
hours to create the intermediate units.

This is only a starting point and the
IUs will be fine-tuned if required later in
the process. If the developers have the
project effort and intermediate units from
a recently completed project, this is an
excellent time to validate the estimated
effort-hours on the worksheet. For
instance in Figure 3, the total effort hours
for the project were 602 to create the list-
ed intermediate units. If the actual project
hours of the project from which this was
modeled were close to this, it lends cre-
dence to the effort estimates provided for
the intermediate units. If not, it may indi-
cate that adjustments need to be made to
the effort estimates for the intermediate
units or that there were intermediate units
that should have been included in the

project, or excluded.

Creating Estimating Templates
While interviewing the developers, it is
important to have them define their proj-
ect types. These may be as simple as
small, medium, and large based on esti-
mated effort hours. They may be plat-
form-based such as Web, client server, or
mainframe projects. They can also be
application-specific or customer-specific.

Have the developers define what
types of intermediate units are typical for
each project type and a range of how
many are normally found. Ask them to
identify the effort range associated with
each project type and identify typical
durations. Tailor the estimating spread-
sheets to each project type so they
include only the intermediate units that
project type is likely to have.

At this point the estimator can use the
estimated size in IUs to create a template
and calculate time, effort, and cost with a
commercial parametric estimating tool.

Tuning the Process
The templates created in Figure 3 are
starting points and will need to be fine-
tuned. They are based on assumptions

about the number of IUs per intermedi-
ate unit. How can this be refined? One
method is to model completed projects
using the sizing information captured on
the templates as inputs to a parametric
estimating tool. In this situation, project
effort and duration are already known
and there is an estimated size in IUs. The
variable to be determined is the produc-
tivity parameter required to re-create an
estimate scenario whose effort and dura-
tion match the completed project. This is
a relatively easy thing to do with a para-
metric estimating tool. Even though
solving a calculation for a missing vari-
able will produce a result, it does not
guarantee that the result is realistic. It is
important to verify that the productivity
parameter is reasonable when compared
to industry data or organizational history.

Figure 4 demonstrates a method of
comparing an estimate scenario to histor-
ical data to see if that scenario is inter-
nally consistent and reasonable. There
are two graphs in Figure 4. Each has a set
of trend lines calculated from a database
of over 6,200 software projects. The
darker line in the middle is the average.
The dotted lines represent plus and
minus one standard deviation, respec-
tively. Note that a logarithmic scale is
used to account for the non-linear rela-
tionship between project size and effort
or duration. The X axis of both charts is
project size in IUs. The Y axis on the top
chart is project effort in manhours.

In this case, the effort-hours for the
project (represented by the square) are
slightly below the average line for similar-
ly sized projects. The Y axis of the lower
chart is project duration in calendar
months. This project falls right on the
average line. For this estimate scenario,
both effort and duration are historically
consistent with similar sized projects.

The productivity parameter used is
also historically consistent1. If the effort
were very high compared to the trend
lines, it could indicate that the IUs were
understated (too much effort for the
amount of output). Extremely low effort
compared to the trend lines would sug-
gest that the IUs were overstated.

Similar comparisons apply for the
bottom graph, too. If after modeling sev-
eral projects, effort, duration, or both are
consistently very high or very low, then it
is a strong indication that the number of
IUs for some of the intermediate units
requires adjustments.

Sizing templates can be further
refined as projects complete. There is
one final word of caution to consider
when modeling projects: The projects

Cost Estimation

18 CROSSTALK The Journal of Defense Software Engineering April 2005

Validate Estimate
Effort versus Effective Implementation Units

1,000 10,000
Effective Implementation Units

100

1,000

10,000

E
ffo

rt
(M

H
R

)
Duration versus Effective Implementation Units

1,000 10,000
Effective Implementation Units

1

10
D

u
ra

tio
n

(M
o

n
th

s)

Figure 4: Comparing an Estimate to Historical Data

A Method for Improving Developers’ Software Size Estimates

April 2005 www.stsc.hill.af.mil 19

should be as normal and representative
of the work usually done as possible. The
intent is to build a model that reflects
how work is usually done. Projects with
cherry-picked teams or ones that suf-
fered from extreme schedule pressure or
rework due to requirements changes are
not good candidates to model. They will
only skew the results.

Benefits
As Frederick Brooks [1] warned us near-
ly 30 years ago, there is no silver bullet.
This approach to sizing may not be the
best fit for every software development
situation. But, it will work in many situa-
tions and has some real benefits:
• It speaks the developer’s language. It

describes the system in the compo-
nents that developers work with:
screens, reports, tables, programs,
and Web pages. This improves com-

munication.
• It involves the developers in the esti-

mating process creating buy-in and
reducing the chance of obtaining
bogus data.

• It is adaptable. It allows new tools and
components to be incorporated easily.

• It is an excellent way to get a handle
on a new technology. It provides the
ability to articulate what and how
developers build a product.

• It is applicable to many different
development paradigms, some of
which have been difficult to estimate
with parametric estimating tools:
o Enterprise Resource Planning

(PeopleSoft and SAP [Systems,
Applications, Products]).

o Rational Unified Process.
o Traditional Development.

• It can (and should) be tuned on actu-
al project data.

If you are running into roadblocks
when estimating the size of your applica-
tion development projects, give this
method a try. You might be pleasantly
surprised by the cooperation that you
receive from the technical staff, and the
increased value that is attached to your
end-product estimates.u

Reference
1. Brooks, Frederick. The Mythical Man-

Month: Essays on Software Engineer-
ing. Addison-Wesley, 1 Jan. 1975.

Note
1. Estimating tools look at productivity

from different perspectives. What is
important is that however productivi-
ty is measured, there needs to be a
method in place to validate it for rea-
sonableness against organizational or
industry data.

About the Authors

Douglas T. Putnam is
the managing partner of
Professional Services at
Quantitative Software
Management, Inc. (QSM).
Putnam has over 24 years

of experience in the software measure-
ment industry. He has written and lec-
tured extensively throughout the world
and has participated in more than 200
estimation and measurement engage-
ments in his career at QSM. QSM is the
supplier of the trademarked SLIM suite:
SLIM-Estimate, SLIM-Master Plan,
SLIM-Control, SLIM-Metrics.

Quantitative Software
Management, Inc.
2000 Corporate Ridge STE 900
McLean,VA 22101
Phone: (703) 790-0055
Fax: (703) 749-3795
E-mail: doug_putnam@qsm.com

Lawrence H. Putnam is
the founder and chief
executive officer of
Quantitative Software
Management, Inc., and a
developer of commercial

software estimating, benchmarking, and
control tools known under the trade-
mark SLIM. He served 26 years on active
duty in the U.S. Army and retired as a
colonel. He has been deeply involved in
the quantitative aspects of software
management for the past 30 years. He is
the co-author of five books on software
estimating, control, and benchmarking.
He is a member of Sigma Xi, the
Association for Computing Machinery,
the Institute of Electrical and Electronic
Engineers (IEEE) and the IEEE
Computer Society. He was presented the
Freiman Award for outstanding work in
parametric modeling by the International
Society of Parametric Analysts. Putnam
has a Bachelor of Science from the
United States Military Academy and a
master’s degree in physics from the
Naval Postgraduate School.

Quantitative Software
Management, Inc.
2000 Corporate Ridge STE 900
McLean,VA 22101
Phone: (703) 790-0055
Fax: (703) 749-3795
E-mail: larry_putnam_sr@qsm.com

Donald M. Beckett is a
consultant for Quantita-
tive Software Manage-
ment with more than 20
years of software devel-
opment experience, in-

cluding 10 years specifically dedicated to
software metrics and estimating. Beckett
is a Certified Function Point Specialist
with the International Function Point
Users Group and has trained over 300
persons in function point analysis in
Europe, North America, and Latin
America. He was a contributing author
to “IT Measurement: Practical Advice
from the Experts.” Beckett is a graduate
of Tulane University.

Quantitative Software
Management, Inc.
2000 Corporate Ridge STE 900
McLean,VA 22101
Phone: (703) 790-0055
Fax: (703) 749-3795
E-mail: don_beckett@qsm.com

In the late 1970s and the early 1980s assoftware engineering was starting to
take shape, software managers found they
needed a way to estimate the cost of soft-
ware development and to explore options
with respect to software project organiza-
tion, characteristics, and cost/schedule.
Along with a number of commercial and
proprietary cost/schedule estimation
models, one of the answers to this need
was the open-internal Constructive Cost
Model (COCOMO). This and other mod-
els allowed users to reason about the cost
and schedule implications of their devel-
opment decisions, investment decisions,
established project budget and schedules,

client negotiations and requested changes,
cost/schedule/performance/functionality
tradeoffs, risk management decisions, and
process improvement decisions [1].

By the mid-1990s, software engineering
practices had changed sufficiently to moti-
vate a new version called COCOMO II,
plus a number of complementary models
addressing special needs of the software
estimation community. Figure 1 shows the
variety of cost models that have been
developed at the University of Southern
California (USC) Center for Software
Engineering (CSE) to support the planning
and estimating of software-intensive sys-
tems as the technologies and approaches

have evolved since the development of the
original COCOMO in 1981.

Figure 1 also shows the evolution of
the COCOMO suite categorized by soft-
ware models, software extensions, and
independent models. The more mature
models have been calibrated with histori-
cal project data as well as expert data via
Delphi surveys. The newer models have
only been calibrated by expert data.

Table 1 includes the status of the 12
models in the COCOMO suite. All of
these models have been developed using
the following seven-step methodology [2]:
(1) analyze existing literature, (2) perform
behavior analysis, (3) determine form of
model and identify relative significance of
parameters, (4) perform expert-judg-
ment/Delphi assessment, (5) gather proj-
ect data, (6) determine Bayesian A-
Posteriori update, and (7) gather more
data, refine model.

The checkmarks in Table 1 indicate the
completion of that step for each model.
Step 4 of the methodology can often
involve multiple rounds of the Delphi sur-
vey that provide model developers some
insight into the effects of the model
parameters on development effort. The
Delphi surveys attempt to capture what
the experts believe has an influence on
development effort.

Step 5 of the methodology involves
collecting historical project data to vali-
date the cost-estimating relationships in
the model. This process depends on the
support of the CSE affiliates to provide
data that is relevant to the model being
calibrated. The COCOMO model has
more data than the other models com-

COCOMO Suite Methodology and Evolution
Dr. Barry Boehm, Ricardo Valerdi, Jo Ann Lane, and A. Winsor Brown

University of Southern California

Over the years, software managers and software engineers have used various cost models such as the Constructive Cost Model
(COCOMO) to support their software cost and estimation processes. These models have also helped them to reason about the
cost and schedule implications of their development decisions, investment decisions, client negotiations and requested changes,
risk management decisions, and process improvement decisions. Since that time, COCOMO has cultivated a user communi-
ty that has contributed to its development and calibration. COCOMO has also evolved to meet user needs as the scope and
complexity of software system development has grown. This eventually led to the current version of the model: COCOMO
II.2000.3. The growing need for the model to estimate different aspects of software development served as a catalyst for the
creation of derivative models and extensions that could better address commercial off-the-shelf software integration, system
engineering, and system-of-systems architecting and engineering. This article presents an overview of the models in the COCO-
MO suite that includes extensions and independent models, and describes the underlying methodologies and the logic behind
the models and how they can be used together to support larger software system estimation needs. It concludes with a discus-
sion of the latest University of Southern California Center for Software Engineering effort to unify these various models into
a single, comprehensive, user-friendly tool.

20 CROSSTALK The Journal of Defense Software Engineering April 2005Figure 1: Historical Overview of COCOMO Suite of Models

Figure 1: Historical Overview of COCOMO Suite of Models

Software Engineering Technology

April 2005 www.stsc.hill.af.mil 21

bined mostly because it has been around
the longest, and it has been shown to be
robust as well as accurate.

Step 6 involves combining the project
data with the expert judgment captured in
the Delphi survey to produce a calibrated
model. This is done using Bayesian statis-
tical techniques that provide the ability to
balance expert data and historical data [2].

Model priorities, definitions, Delphi,
and calibration data are collaboratively
provided by the practical needs and expe-
riences of USC CSE’s supporting affili-
ates. These have included the major aero-
space, computing, and telecommunica-
tions companies along with many of the
major software and manufacturing com-
panies, non-profits, professional societies,
government organizations, and commer-
cial cost model proprietors. For the list of
CSE affiliates, visit <http://sunset.usc.
edu/cse/pub/affiliate/general.html>.

The first three models (COCOMO II,
COINCOMO, and DBA COCOMO) are
fundamentally the same model but tai-
lored for different development situations.
In addition, commercial versions of
COCOMO such as Costar <www.soft
starsystems.com> and Cost Xpert
<www.costxpert.com> provide further
estimation-related capabilities. COQUAL-
MO is used to estimate the number of
residual defects in a software product and
to provide insights into payoffs for quality
investments. iDAVE estimates and tracks
software dependability return on invest-
ment. COPLIMO supports software
product line cost estimation and return on
investment analysis. COPSEMO provides
a phased distribution of effort to support
incremental rapid application develop-
ment and is typically used with CORAD-
MO. COPROMO predicts the most cost
effective allocation of investment
resources in new technologies intended to
improve productivity. All of the models
described thus far are derivatives of the
COCOMO model because they somehow
depend on the output of COCOMO and
modify it for certain situations.

The final three models are independ-
ent extensions of COCOMO that require
their own inputs and can be used in con-
junction with COCOMO, if desired.
COCOTS estimates the effort associated
with the integration of commercial off-
the shelf (COTS) software products.
COSYSMO estimates the systems engi-
neering effort required over the entire sys-
tem life cycle. COSOSIMO estimates the
lead system integrator (LSI) effort associ-
ated with the definition and integration of
software intensive system-of-systems
(SoS) components.

For more information on the COCO-
MO suite of models, visit: <http://
sunset.usc.edu>.

Underlying Methodologies
and Logic
The key to understanding the model out-
puts and how to use multiple models
together is by comprehending the underly-
ing methodologies and logic. In the devel-
opment of a software-related cost model,
the general COCOMO form is:

PM = A x (ΣΣ Size)ΣΣB x ΠΠ(EM)

where,

PM = person months.
A = calibration factor.
Size = measure(s) of functional size of a

software module that has an additive
effect on software development effort.

B = scale factor(s) that has an exponential
or nonlinear effect on software devel-
opment effort.

EM = effort multipliers that influence
software development effort.

Each factor in the equation can be rep-
resented by a single value or multiple val-
ues, depending on the purpose of the fac-
tor. For example, the size factor can be
used to characterize the functional size of

a software module via either software lines
of code or function points, but not both.
Alternatively, the project characteristics
can be characterized by a set of effort
multipliers, EM, that describe the develop-
ment environment. These could include
software complexity and software reuse.
COCOMO II has one additive, five expo-
nential, and 17 multiplicative factors.
Other models have a different number of
factors that depend on the scope of the
effort being estimated by that model. The
number of factors in each of the models
is shown in Table 2 (see next page).

The general rationale for whether a
factor is additive, exponential, or multi-
plicative comes from the following criteria:
1. A factor that has effect on only one

part of the system – such as software
size – has a local effect on the system.
For example, adding another source
instruction, function point entity,
module, interface, operational sce-
nario, or algorithm to a system has
mostly local additive effects on project
effort.

2. A factor is multiplicative or exponen-
tial if it has a global effect across the
overall system. For example, adding
another level of service requirement,
development site, or incompatible cus-
tomer has mostly global multiplicative
or exponential effects. If the size of

COCOMO Suite Methodology and EvolutionFigure 1: Historical Overview of COCOMO Suite of Models

Model Description Literature Behavior
Significant
Parameters

Delphi Data

COCOMO II
Constructive Cost
Model

COINCOMO
Constructive
Incremental COCOMO

DBA COCOMO
DataBase (Access)
Doing Business As
COCOMO II

 >200

COQUALMO
Constructive Quality
Model

ü ü ü ü 6

iDAVE
Information
Dependability Attribute
Value Estimation

ü ü ü ---

COPLIMO
Constructive Product
Line Investment Model

ü ü ü ---

COPSEMO
Constructive Phased
Schedule and Effort
Model

ü ü ---

CORADMO
Constructive Rapid
Application
Development Model

ü ü ü 16

COPROMO
Constructive
Productivity-
Improvement Model

ü ü ü ü ---

COCOTS
Constructive
Commercial Off-the-
Shelf Cost Model

ü ü ü ü 29

COSYSMO
Constructive Systems
Engineering Cost
Model

ü ü ü ü 14

COSOSIMO
Constructive System-
of-Systems Integration
Cost Model*

ü ü ü ---

Table 1: Status of the Models

ü ü ü ü

Table 1: Status of the Models
* Literature, behavior, and variable analysis limited due to number of available SoS to evaluate.

the product is doubled and the pro-
portional effect of that factor is also
doubled, then it is a multiplicative fac-
tor. If the effect of the factor is more
influential or less influential for larger
projects because of the amount of
rework due to architecture and risk
resolution, team compatibility, or
readiness for SoS integration, then it is
treated as an exponential factor.
These rules have been applied to the

development of the COCOMO model as
well as the associated models that have
been developed at the CSE. The assump-
tions made about the cost estimating rela-
tionships in these models require that they
be not only developed but also validated
by historical projects. A crucial part of
developing these models is finding repre-
sentative data that can be used to calibrate
the size, multiplier, and exponential fac-
tors contained in the models. The COCO-
MO form is a hypothesis that is tested by
the data. For example, COCOTS data
analysis showed that the COCOMO form
applied to COTS integration, but that
other forms were needed for COTS
assessment and tailoring.

Table 2 summarizes the factors for the
various COCOMO-independent models.
The decision to have a different number
of factors is determined by the Delphi
process and confirmed by the data analy-
sis, either of which can add or subtract
factors from a model. However, the same
criteria for factor type are used in all of
the models. The COCOMO II extensions
(shown in Figure 1) are based on the initial
COCOMO II estimates with additional
factors incorporated for the software
characteristic of interest.

Understanding the scope of each
model is also a key element in understand-
ing the output it provides. The models in
the COCOMO suite provide a specialized
set of estimates that address specific
aspects of development effort for soft-
ware-intensive systems. COCOMO users
are now beginning to use multiple models
in parallel to develop cost estimates that
cover a broader scope that exceeds the
boundaries of traditional software devel-
opment. In this case, the models in the
COCOMO suite provide a set of tools

that enable more comprehensive cost esti-
mates. However, there are some limita-
tions that exist when using multiple mod-
els together. These limitations are dis-
cussed in the next section.

Using Current Models
Together
Many benefits exist when using multiple
models in parallel. For one, they provide a
more comprehensive set of estimates that
better reflect the true effort associated
with developing a software system. The
effort that is not accounted for in COCO-
MO may be covered by other models such
as COCOTS, COSYSMO, and COSOSI-
MO. Secondly, they enable the estimator
to characterize the system in terms of
multiple views.

However, some complications can
arise when any two of these models are
used in parallel since each of the models
was initially developed as an independent
entity. Just as the process model commu-
nity has found that software engineering,
software development, system engineer-
ing, and other activities are integrated,
have dependencies, and cannot be ade-
quately performed and optimized inde-
pendently of each other, the estimation
community has also found that these
activities cannot be estimated independ-
ently for many of the larger software-
intensive systems and SoS. Activities need
to be planned and estimated at a program
or project level.

Feedback from USC CSE affiliates and
other COCOMO model users [3, 4] indi-
cates that users would like a single tool in
which they can do the following:
• Identify system and software compo-

nents comprising the software system
of interest.

• Easily evaluate various development
approaches and alternatives and their
impacts to cost and schedule.

• Understand the overlaps between
models, if any.

Moving Forward – COCOMO
Suite Unification
Efforts have been initiated at the USC CSE
to develop a framework in which the key

cost models can be integrated to provide a
comprehensive software-system develop-
ment effort to users. Once the models that
are most likely to be used together are inte-
grated, efforts will focus on the integration
of other more specialized models. We will
also begin with the models that have a high
degree of maturity.

The purpose of this unification effort
is similar to that of the individual cost
models [2], that is, to help software-inten-
sive system and SoS developers and their
customers reason about the cost and
schedule implications of their develop-
ment decisions, investment decisions, risk
management decisions, and process
improvement decisions.

Key to our approach is distinguishing
between an integrated set of models versus
a truly unified model. When a set of mod-
els is integrated, typically each model
becomes an entity in the integrated set
with inputs into one model creating out-
puts that are then fed into subsequent
models. However, when a unified model is
developed, there is a reengineering of the
set of models to come up with an archi-
tecture where the whole of the unified set
is greater than the sum of the parts.
Developing a unified COCOMO suite
model will support the goals to minimize
or eliminate overlap between the models,
provide a relatively comprehensive cover-
age of the SoS, system engineering, and
software development activities, and
develop a relatively simple interface for
specifying inputs as well as a well-integrat-
ed set of outputs.

Key Unification Issues
In August 2004, the CSE held an internal
workshop to identify key issues for model
unification. The outcome of the work-
shop was the identification of four areas
of focus for unification: (1) selection of
models that must be unified to support
various types of development, (2) identifi-
cation of the overlap between these mod-
els, (3) identification of missing activities
not covered by any of the current models,
and (4) specification of the required
parameters and outputs for the related
models in a user-friendly, consistent, and
usable manner. The following sections
describe some of the more detailed issues
identified as part of the four focus areas.

Model Selection
Many of today’s large software-intensive
systems integrate legacy capabilities,
COTS software products, and new custom
software subsystems. No single COCO-
MO model covers the full life-cycle effort
for the development of these types of sys-

Software Engineering Technology

22 CROSSTALK The Journal of Defense Software Engineering April 2005

Model Name Scope of Estimate
Number of
Additive
Factors

Number of
Exponential
Factors

Number of
Multiplicative
Factors

COCOMO Software development effort and schedule 1 1 15
COCOMO II Software development effort and schedule 1 5 17
COSYSMO Systems engineering effort 4 1 14
COCOTS COTS assessment, tailoring, and

integration effort
3 1 13

COSOSIMO SoS architecture and integration effort 4 6 ---

Table 2: Model Factor Types

Use ... When scope of work to be
performed is ...

COCOMO II Development of software
components (software
development).

COCOTS Assessment, tailoring, and
integration of COTS
products.

COSYSMO Design, specification, and
integration (system
engineering) of system
components to be
separately developed for a
single system.

COSOSIMO Specification, procurement,
and integration of two or
more separately system-
engineered and developed
systems.

COCOMO II
with COCOTS

Development of software
components (software
development), and a
software system, including
assessment, tailoring and
glue-code for integration of
COTS.

COSYSMO and
COCOMO II

System engineering and
software development for a
single system with software-
intensive components.

COSYSMO and
COSOSIMO

System engineering of
individual systems and
integration of the multiple
systems.

COCOMO II,
COSYSMO,
COCOTS, and
COSOSIMO

System engineering,
software development, and
integration of multiple
software-intensive systems
and COTS products.

Table 3: How Current Primary Cost Models Are Typically Used

currently covered.

Table 2: Model Factor Types

COCOMO Suite Methodology and Evolution

April 2005 www.stsc.hill.af.mil 23

tems. The new software development
effort is easily estimated using COCOMO
II. COTS customization effort might be
estimated using another COCOMO suite
model: COCOTS. COSYSMO would typ-
ically be used to estimate the system-level
engineering activities such as feasibility
analysis to support the integration con-
cept, functional analysis of the new
requirements, trade-off studies, prototyp-
ing, performance evaluation, synthesis, and
system verification and validation activi-
ties. And finally, COSOSIMO might be
used to estimate the effort associated with
the integration of the legacy system with
the COTS system and the new custom
software system. CSE corporate affiliates
have identified potential combinations of
cost models that would be of value to
them, including COCOMO/COSYS-
MO/COCOTS and COCOMO/COSYS-
MO/COSOSIMO [4].

Model Overlap
Further analysis is required to determine
the extent of any overlap between the var-
ious COCOMO models. Potential overlap
issues were identified with respect to vari-
ous combinations of the primary cost
models as well as with respect to the gen-
eral integration of software and system
components.
• COCOMO II and COSYSMO

Model Overlap: Currently, COCO-
MO II is designed to estimate the soft-
ware effort associated with the analysis
of software requirements and the
design, implementation, and test of
software. COSYSMO estimates the
system engineering effort associated
with the development of the software
system concept, overall software sys-
tem design, implementation, and test.
Key to understanding the overlap is
deciding which activities are consid-
ered system engineering and which are
considered software engineering/develop-
ment, and how each estimation model
handles these activities.

• COSYSMO and COSOSIMO Mod-
el Overlap: COSOSIMO aims to esti-
mate the effort associated with the
architecture definition of a SoS as well
as the effort associated with the inte-
gration of the highest level SoS com-
ponents. On the other hand, COSYS-
MO estimates are done in the context
of a single system and include the
effort needed to define a single, sys-
tem-level architecture, the design of
the system components, and the inte-
gration of those components.
COSYSMO also includes the effort
required for the system development

to support the integration of the sys-
tem component in the target environ-
ment. Further work is required to
understand the subtleties of these
models and exact extent of any over-
lap between these models.

Missing Activities
Are there any key activities missing when
the key models are viewed together? How
are specialty engineering tasks for secure
or sensitive systems handled? How are
non-software system development tasks
handled? What about logistics planning
for operational support? Can effort from
activities not supported by any current
COCOMO model be easily integrated?

Effort Outputs
What granularity should be provided?
One effort value? An effort value for each
of the key models? By software compo-
nent? By system component? By engineer-
ing category (e.g., software, systems engi-
neering, LSI)? By phase/stage of develop-
ment?

Understanding Unification
Issues
To begin to understand these four unifica-
tion issues better and to start developing a
candidate approach for the unified
COCOMO model, efforts were initiated
to better understand the following:
• Current model boundaries.
• How the current models are typically

used today.
• The activities associated with software

development, system engineering, and
SoS integration work performed by
LSIs.

• What activities are included in each of
the current primary cost models.

Current Model Boundaries and
Usage
To address this first aspect, we developed
a table to indicate when each model (or set
of models) is typically used (Table 3). As
part of this effort, we developed descrip-
tions that tried to capture information
about the current boundaries of each
model and how those boundaries expand
as the current models are used in an inte-
grated manner.

Types of Effort Currently Estimated
The next step was to identify a compre-
hensive set of high level, software-inten-
sive system life-cycle activities, the typical
development organizations responsible
for the performance of these activities,
and the scope of the activity typically per-

formed by each development organiza-
tion. Then each activity covered by each of
the primary cost models was identified.
For example, the system engineering
organization is typically responsible for
the system/subsystem requirements and
design, and the software development
organization participates in a support or
review role. Other activities, such as man-
agement, are often performed at various
levels with each development organization
having primary responsibility at their
respective levels.

The results of this effort are shown in
Table 4 (see next page). The shaded activ-
ities under Software Development are cur-
rently covered in COCOMO II and
COCOTS. The shaded activities under
System Engineering are currently estimat-
ed by COSYSMO. The shaded activities
under LSI are currently estimated by
COSOSIMO. The activities that are not
shaded are currently not covered by any of
the models in the COCOMO suite. And,
since the focus of the COCOMO suite is
on software-intensive systems, none of
the items under the hardware develop-
ment column are currently covered.

Some activities such as management
and support, involve several organizations

Model Name Scope of Estimate
Number of
Additive
Factors

Number of
Exponential
Factors

Number of
Multiplicative
Factors

COCOMO Software development effort and schedule 1 1 15
COCOMO II Software development effort and schedule 1 5 17
COSYSMO Systems engineering effort 4 1 14
COCOTS COTS assessment, tailoring, and

integration effort
3 1 13

COSOSIMO SoS architecture and integration effort 4 6 ---

Table 2: Model Factor Types

Use ... When scope of work to be
performed is ...

COCOMO II Development of software
components (software
development).

COCOTS Assessment, tailoring, and
integration of COTS
products.

COSYSMO Design, specification, and
integration (system
engineering) of system
components to be
separately developed for a
single system.

COSOSIMO Specification, procurement,
and integration of two or
more separately system-
engineered and developed
systems.

COCOMO II
with COCOTS

Development of software
components (software
development), and a
software system, including
assessment, tailoring and
glue-code for integration of
COTS.

COSYSMO and
COCOMO II

System engineering and
software development for a
single system with software-
intensive components.

COSYSMO and
COSOSIMO

System engineering of
individual systems and
integration of the multiple
systems.

COCOMO II,
COSYSMO,
COCOTS, and
COSOSIMO

System engineering,
software development, and
integration of multiple
software-intensive systems
and COTS products.

Table 3: How Current Primary Cost Models Are Typically Used

currently covered.

Table 3: How Current Primary Cost Models
Are Typically Used

at different layers of the system. Extreme
care needs to be taken when developing
models that cover activities that have
shared responsibilities with hardware,
software, and other players.

The identification of such activities is
the first step in identifying possible over-
laps between models. Further difficulties
arise when dealing with different organiza-
tions that use customized work break-
down structures. These, along with the
aforementioned challenges, will continue
to be addressed as the model unification

efforts continue at the CSE.
As seen from the discussions above,

there is still much work to be done in
order to support the unification of the
COCOMO models. These include the fol-
lowing:
1. Develop a more complete description

of activities covered by each model.
These descriptions will allow us to
identify, minimize, or eliminate any
overlap between the models and iden-
tify software system-related activities
not covered by any of the models.

2. Determine more precisely how tradi-
tional phase activities and Model
Based (System) Architecting and
Software Engineering/Rational Uni-
fied Process [1] phases map to cost-
model activities and how these phases
are integrated at the SoS, system, and
software levels. Work in this area has
already begun [5] but some unresolved
issues remain in the context of unified
models.

3. Refine counting rules/definitions for
model inputs and outputs and then
determine how they can be combined
into an efficient, user-friendly unified
model.

4. Determine typical distribution profiles
for effort across all of the activities/
phases in a unified environment.
The initial goal of this effort is to

develop a unified model that includes
COCOMO II, COSYSMO, COCOTS
and COSOSIMO as shown in Figure 2. As
we learn from this process, we will begin
to add other models from the COCOMO
suite.

Software Engineering Technology

24 CROSSTALK The Journal of Defense Software Engineering April 2005

Responsibilities

Activity
Software
Development
(COCOMO II and
COCOTS)

Hardware
Development

System
Engineering
(COSYSMO)

LSI
(COSOSIMO)

Management Primary for
Software Level

Primary for
Hardware Level

Primary for
System Level

Primary for SoS
Level

Support Activities (e.g.,
Configuration Management and
Quality Assurance)

Software Level Hardware Level System Level
SoS Component
Level

SoS Definition SoS Component SoS Level
Source Selection and SoS
Component Procurement

Lead

Subsystem Requirements Review Review Elaboration* Lead Inception Lead

System/Subsystem Design Support Support Lead Review

Hardware/Firmware Development Lead

Software Requirements Analysis Elaboration* Lead Inception Lead

Software Product Design Lead Review
Software Implementation/
Programming

Lead Support

Software Test Planning Lead Review/Support
Software Verification and
Validation

Lead
Review/
Support

System Integration/Test Support Support Lead Review

System Acceptance Test Support Support Lead Review

SoS Integration/Test Support Support Review/Support Lead

SoS Acceptance Test Support Support Review/Support Lead
Manuals (User, Operator,
Maintenance)

Software Lead Hardware Lead System Lead SoS Level Lead

Transition (Deploy and Maintain) Support Support System Lead SoS Level Lead

Table 4: Life Cycle Activities

Figure 2: Early Unification Goal

Size Drivers
� SoS
� COTS
� System
� Software

Cost Drivers as
appropriate at
each level
� SoS, System,

COTS, and
Software

� Personnel
� Process

LSI
System
COTS

Integration
Software

COSOSIMO/System

COSOSIMO/Software

COSYSMO

COCOMO II

COCOTS

COSOSIMO/System

COSOSIMO/Software

COSYSMO

COCOMO II

COCOTS

Effort

Table 4: Life Cycle Activities

Responsibilities

Activity
Software
Development
(COCOMO II and
COCOTS)

Hardware
Development

System
Engineering
(COSYSMO)

LSI
(COSOSIMO)

Management Primary for
Software Level

Primary for
Hardware Level

Primary for
System Level

Primary for SoS
Level

Support Activities (e.g.,
Configuration Management and
Quality Assurance)

Software Level Hardware Level System Level
SoS Component
Level

SoS Definition SoS Component SoS Level
Source Selection and SoS
Component Procurement

Lead

Subsystem Requirements Review Review Elaboration* Lead Inception Lead

System/Subsystem Design Support Support Lead Review

Hardware/Firmware Development Lead

Software Requirements Analysis Elaboration* Lead Inception Lead

Software Product Design Lead Review
Software Implementation/
Programming

Lead Support

Software Test Planning Lead Review/Support
Software Verification and
Validation

Lead
Review/
Support

System Integration/Test Support Support Lead Review

System Acceptance Test Support Support Lead Review

SoS Integration/Test Support Support Review/Support Lead

SoS Acceptance Test Support Support Review/Support Lead
Manuals (User, Operator,
Maintenance)

Software Lead Hardware Lead System Lead SoS Level Lead

Transition (Deploy and Maintain) Support Support System Lead SoS Level Lead

Table 4: Life Cycle Activities

Figure 2: Early Unification Goal

Size Drivers
� SoS
� COTS
� System
� Software

Cost Drivers as
appropriate at
each level
� SoS, System,

COTS, and
Software

� Personnel
� Process

LSI
System
COTS

Integration
Software

COSOSIMO/System

COSOSIMO/Software

COSYSMO

COCOMO II

COCOTS

COSOSIMO/System

COSOSIMO/Software

COSYSMO

COCOMO II

COCOTS

Effort

Figure 2: Early Unification Goal

* Model Based (System) Architecting and Software Engineering/Rational Unified Process phase of development.

COCOMO Suite Methodology and Evolution

April 2005 www.stsc.hill.af.mil 25

The current unification effort will help
establish a framework and define the con-
text for the evolution of the unified model
into something that can provide a com-
prehensive estimate for the development
of software systems and software-inten-
sive SoS. We will continue to collaborate
with CSE affiliates with the goal of evolv-
ing the COCOMO suite so that it can help
users make better decisions about the
development of software-intensive sys-
tems.u

References
1. Boehm, B. Software Engineering

Economics. Prentice Hall, 1981.

2. Boehm, B., et al. Software Cost
Estimation with COCOMO II.
Prentice Hall, 2000.

3. Annual Research Review, Corporate
Affiliate Survey. University of
Southern California Center for
Software Engineering, 16 Mar. 2004.

4. University of Southern California
Center for Software Engineering.
“Unification Workshop Minutes.”
19th Forum on COCOMO and
Software Cost Modeling, 26 Oct. 2004.

5. Boehm, B., A.W. Brown, V. Basili, and
R. Turner. “Spiral Acquisition of
Software-Intensive Systems of Sys-
tems.” CrossTalk May 2004: 4-9.

About the Authors

Barry Boehm, Ph.D.,
is the TRW professor
of software engineer-
ing and director of the
Center for Software
Engineering at the

University of Southern California. He
was previously in technical and man-
agement positions at General
Dynamics, Rand Corp., TRW, and the
Defense Advanced Research Projects
Agency, where he managed the acquisi-
tion of more than $1 billion worth of
advanced information technology sys-
tems. Boehm originated the spiral
model, the Constructive Cost Model,
and the stakeholder win-win approach
to software management and require-
ments negotiation.

E-mail: boehm@usc.edu

Ricardo Valerdi is a
member of the
Technical Staff at the
Aerospace Corporation.
Previously, he worked
as a systems engineer at

Motorola and General Instruments. He
is a doctorate candidate at the
University of Southern California
(USC) in the systems architecting pro-
gram and is a research assistant at USC’s
Center for Software Engineering.
Valerdi has a Bachelor of Science in
electrical engineering from the
University of San Diego and a Master
of Science in systems architecting from
USC.

E-mail: rvalerdi@sunset.usc.edu

Jo Ann Lane is current-
ly a doctorate student at
the University of South-
ern California in systems
architecting. Prior to
this, she was a key tech-

nical member of Science Applications
International Corporation’s Software
and Systems Integration Group. She has
over 28 years of experience in the areas
of software project management, soft-
ware process definition and implemen-
tation, and metrics collection and analy-
sis. Lane has a Master of Science degree
in computer science from San Diego
State University.

E-mail: jolane@usc.edu

A. Winsor Brown is a
senior research scientist
and assistant director of
the University of
Southern California
Center for Software

Engineering. As an engineer with
decades of experience in large and small
commercial and government contract-
ing companies, he started his career in
computer hardware design but shifted
to software within months and remains
there today. He has a Bachelor of
Science in engineering science from
Rensselaer Polytechnic Institute and a
Master of Science in electrical engineer-
ing from California Institute of
Technology.

E-mail: awbrown@usc.edu

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:
NOV2003 c DEV. OF REAL-TIME SW
DEC2003 c MANAGEMENTBASICS

JAN2004 c INFO FROMSR. LEADERSHIP

MAR2004 c SWPROCESS IMPROVEMENT

APR2004 c ACQUISITION

MAY2004 c TECH.: PROTECTING AMER.
JUN2004 c ASSESSMENT AND CERT.
JULY2004 c TOP 5 PROJECTS

AUG2004 c SYSTEMS APPROACH

SEPT2004 c SOFTWARE EDGE

OCT2004 c PROJECT MANAGEMENT

NOV2004 c SOFTWARE TOOLBOX

DEC2004 c REUSE

JAN2005 c OPEN SOURCE SW
FEB2005 c RISK MANAGEMENT

MAR2005 c TEAM SOFTWARE PROCESS

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <stsc.customerservice@
hill.af.mil>.

26 CROSSTALK The Journal of Defense Software Engineering April 2005

If you follow the roots of software esti-
mation models, you will find many have

common ancestors. The System Evaluation
and Estimation of Resources - Software
Estimating Model (SEER-SEM) began with
the Jensen model and diverged significantly
in the early 1990s. Barry Boehm’s
Constructive Cost Model work provided for
the redefinition of some of the original
Jensen model parameters into SEER-SEM.
Don Reifer and Dan Galorath’s work on the
NASA Softcost model also found its way
into SEER-SEM in addition to Halstead’s
software science metrics. The Jensen model
itself was first calibrated using some of the
same data as the Putnam model. Earlier
work by Doty Associates introduced the
idea of factoring in development environ-
ment influences via parameters. Work on
this model continues today.

SEER-SEM’s Architecture
SEER-SEM is composed of a group of
models working together to provide esti-
mates of effort, duration, staffing, and
defects. These models can be briefly
described by the questions they answer:
• Sizing. How large is the software proj-

ect being estimated?
• Technology. How productive are the

developers?
• Effort and Schedule Calculation.

What amount of effort and time are
required to complete the project?

• Constrained Effort/Schedule Cal-
culation. How does the expected proj-
ect outcome change when schedule and
staffing constraints are applied?

• Activity and Labor Allocation. How
should activities and labor be allocated
into the estimate?

• Cost Calculation. Given expected
effort, duration, and the labor alloca-
tion, how much will the project cost?

• Defect Calculation. Given product
type, project duration, and other infor-
mation, what is the expected, objective
quality of the delivered software?

• Maintenance Effort Calculation.
How much effort will be required to
adequately maintain and upgrade a
fielded software system?

Software Sizing
Software size is a key input to any estimat-
ing model, SEER-SEM being no exception.
Supported sizing metrics include source
lines of code (SLOC), function-based siz-
ing (FBS) and a range of other measures.
They are translated for internal use into
effective size (Se). Se is a form of common
currency within the model and enables new,
reused, and even commercial off-the-shelf
code to be mixed for an integrated analysis
of the software development process. The
generic calculation for Se is:

Se = NewSize + ExistingSize x (0.4 x
Redesign + 0.25 x Reimpl + 0.35 x Retest)

As indicated, Se increases in direct pro-
portion to the amount of new software
being developed. Se increases by a lesser
amount as preexisting code is reused in a
project. The extent of this increase is gov-
erned by the amount of rework (redesign,
re-implementation, and retest) required to
reuse the code.

Function-Based Sizing
While SLOC is an accepted way of meas-
uring the absolute size of code from the
developer’s perspective, metrics such as
function points capture software size func-
tionally from the user’s perspective. The
function-based sizing (FBS) metric extends
function points so that hidden parts of
software such as complex algorithms can
be sized more readily. FBS is translated
directly into unadjusted function points
(UFP).

In SEER-SEM, all size metrics are
translated to Se, including those entered
using FBS. This is not a simple conversion,
i.e., not a language-driven adjustment as is
done with the much-derided backfiring
method. Rather, the model incorporates
factors, including phase at estimate, operat-
ing environment, application type, and
application complexity. All these considera-
tions significantly affect the mapping
between functional size and Se. After FBS
is translated into function points, it is then
converted into Se as:

Se = Lx x (AdjFactor x UFP)(Entropy/1.2)

where,

Lx is a language-dependent expansion fac-
tor.
AdjFactor is the outcome of calculations
involving other factors mentioned above.
Entropy ranges from 1.04 to 1.2 depending
on the type of software being developed.

Effort and Duration
Calculations
A project’s effort and duration are interre-
lated, as is reflected in their calculation
within the model. Effort drives duration,
notwithstanding productivity-related feed-
back between duration constraints and
effort. The basic effort equation is:

K = D0.4(Se/Cte)1.2

where,

Se is effective size – introduced earlier.
Cte is effective technology – a composite
metric that captures factors relating to the
efficiency or productivity with which
development can be carried out. An
extensive set of people, process, and
product parameters feed into the effective
technology rating. A higher rating means
that development will be more productive.
D is staffing complexity – a rating of the
project’s inherent difficulty in terms of the
rate at which staff are added to a project.

The general form of this equation
should not be a surprise. In numerous
empirical studies, the effort-size relation-
ship has been seen to assume the general
form y = a x sizeb with a as the linear mul-
tiplier on size, and the exponent ranging
between 0.9 and 1.2 depending on avail-
able data. Most experts feel that b>1 is a
reasonable assumption, translated as effort
increases at a proportionally faster rate than size.
While SEER-SEM’s value of 1.2 is at the
high end of this range, the formula above
is only part of the estimating process.

Once effort is obtained, duration is
solved using the following equation:

Inside SEER-SEM
Lee Fischman, Karen McRitchie, and Daniel D. Galorath

Galorath, Inc.

The System Evaluation and Estimation of Resources - Software Estimating Model (SEER-SEM) is a commercially avail-
able software project estimation model used within defense, government, and commercial enterprises. Introduced over a decade ago
and now in its seventh release, it offers a case study in the history and future of such models. SEER-SEM and its brethren
are built upon a mix of mathematics and statistics; this article provides insight into its inner workings and basis of estimation.

Inside SEER-SEM

April 2005 www.stsc.hill.af.mil 27

td = D-0.2(Se/Cte)0.4

The duration equation is derived from
key formulaic relationships (not detailed
here). Its 0.4 exponent indicates that as a
project’s size increases, duration also
increases, though less than proportionally.
This size-duration relationship is also used
in component-level scheduling algorithms
with task overlaps computed to fall within
total estimated project duration.

Time/Schedule Tradeoffs
In software projects, a limited exchange
can be made between required effort and
schedule. In fact, SEER-SEM optimizes
according to minimum time or optimal
effort scenarios. The first implies that a
software project will staff aggressively to
finish in the minimum amount of time,
while the alternative permits schedule slip-
page for the sake of effort savings. The
trade between minimum time and optimal
effort is shown in Figure 1.

Staffing Constraints
Oftentimes specific staffing levels need to
be factored into an estimate. Other factors
aside, lower staffing leads to higher pro-
ductivity per programmer while increased
staffing reduces productivity. The dynam-
ic relation between staffing and productiv-
ity can be described by an optimal staffing
curve as shown in Figure 2.

The curve depicts optimal staffing
over time for an idealized project. Its
shape varies depending on project size
and complexity. Areas around the curve
illustrate the impact on individual produc-
tivity when staffing at any time varies from
optimal. When staffing is too high, there is
a productivity penalty as increased coordi-
nation is required while more staff must
spend time getting up to speed. When
staffing is too low, productivity increases
due to tighter coordination among fewer
staff and from team members who on
average are more expert. Adding more
staff may increase a team’s ability to get
work done but every additional person
added is slightly less effective than the last.

Detailed Allocations of Effort and
Duration
Project planners often need to know how
a project’s overall estimated effort and
duration are allocated into specific activi-
ties and labor categories. While allocations
are partially determined by patterns seen
in past projects, they will vary for each
project according to its unique characteris-
tics. For example, there may be more or
less requirements activity, testing, etc.

Table 1 (see next page) provides a typical
allocation, by percentage, of project effort
into a matrix of labor types and activities.

Calibrating SEER-SEM
Key components of the SEER-SEM
model have been described, but we have
not discussed how it adapts to accurately
estimate particular development scenarios,
and how the model is kept current as soft-
ware development technologies and meth-
odologies evolve. The answer is simple:
masses of ongoing research and analysis.

The modeling team regularly combs
through raw data and industry studies to
determine the latest trends and their
impact on project productivity. As part of
this effort, Galorath maintains a software
project repository of approximately 6,000
projects (and growing). About 3,500 proj-
ects containing effort and duration out-
comes are stored in a unified repository
that can be readily accessed for studies.
These are from both defense and com-

mercial sources representing many devel-
opment organizations, permitting calibra-
tion of the model to a wide array of
potential projects. Additional project out-
comes, in the hundreds, are also available
to the company, which has also collected
sizing and other information on thou-
sands of additional projects.

Analysis involves running project data
through SEER-SEM using a special cali-
bration mode. The model is essentially run
backwards to find calibration factors.
These factors are evaluated across differ-
ent data attributes (e.g. platform, applica-
tion, etc.) to detect trends. A variety of
methods are used to mitigate outlier data
points and control for variation. The vari-
ance in the data set is also used to estab-
lish default parameter ranges; nearly all
settings accommodate risk. Model settings
are updated as new trends are established.

Galorath’s work also is leveraged with
findings from outside studies. For exam-
ple, when examining relative language pro-

Figure 1: Effort Schedule Tradeoff

Figure 2: Optimal Staffing Over the Project Life Cycle

Software Engineering Technology

28 CROSSTALK The Journal of Defense Software Engineering April 2005

ductivity, the company first uses its repos-
itory to empirically determine the impact
of using different languages. However,
because not all languages are well covered,
it turns to outside sources that provide lan-
guage descriptions, evolution trees, multi-
dimensional comparisons, etc. Putting all
this information together permits the
company to make informed judgments
about even rarely occurring languages.

Cost estimation models must be able
to estimate a wide array of projects. This
is accomplished with a significant number
of modeling instruments, most of which
can be independently set by the user:
• Sizing Measures. Software’s effective

size varies according to many factors,
and these factors change over time. As
new languages are added to the devel-
oper’s toolbox and old ones evolve,
language mappings get updated. Sizing
proxies also permit entirely new met-
rics to be added.

• Knowledge Bases. New platforms
(or operating environments) and appli-
cations are regularly being identified
and added to SEER-SEM by way of
its knowledge bases. Knowledge bases
actually represent collections of
parameter settings. Parameters in turn
cover many different facets of the
development process and of a soft-

ware product’s potential characteris-
tics; new platforms and applications
usually can be defined with a collection
of parameter settings.

• Allocations. According to project
type, the balance shifts between types
of activities and labor. Within SEER-
SEM, detailed activity milestone and
labor allocation tables are used to
establish baseline allocations, which
are then further adjusted depending on
project-specific settings related to
requirements, testing, and so forth.

• Internal Calibrations. Several inter-
nal instruments, both linear and non-
linear, permit high-level, systematic
adjustments to estimates.

Beyond the Model
While this article has dealt exclusively with
the core SEER-SEM model, other aspects
of the tool are critically important to its
practical application. Among its key
design philosophies is the use of qualita-
tive rating scales, user-selectable knowl-
edge bases for basic calibration, and a
work breakdown structure that differenti-
ates between the system, program, and
component levels. The SEER-SEM model
will itself soon be complemented with a
data mining system that produces entirely
dynamic, data-driven estimates.u

Table 1: Allocation of Activities and Labor for a Sample Project in SEER-SEM

About the Authors

Lee Fischman is
Special Projects dir-
ector at Galorath Incor-
porated, where he
develops new concepts,
produces new software

applications, and conducts research
projects. His research interests include
software metrics theory and novel
applications of estimating algorithms.
He received a Bachelor of Arts in eco-
nomics from the University of Chicago
and a Master of Arts in economics
from University of California Los
Angeles.

Galorath Incorporated
100 N Sepulveda BLVD
STE 1801
El Segundo, CA 90245
Phone: (310) 414-3222
E-mail: info@galorath.com

Karen McRitchie is
vice president of De-
velopment at Galorath
Incorporated, and is
responsible for design,
development and vali-

dation of current and new System
Evaluation and Estimation of Re-
sources tools. For her longstanding
contribution to commercial cost pre-
diction tools, the International Society
of Parametric Analysts honored her
with its 2002 Parametrician of the Year
award. McRitchie has a Bachelor of
Arts in mathematics and system sci-
ence from the University of California
Los Angeles, and completed Master of
Art degree work at California State
University, Northridge.

Galorath Incorporated
100 N Sepulveda BLVD
STE 1801
El Segundo, CA 90245
Phone: (310) 414-3222
E-mail: info@galorath.com

Daniel D. Galorath
founded and is president
of Galorath Incorpo-
rated. He has solved a
variety of management,
costing, systems, and

software problems, performing all as-
pects of software development and
management. His company has devel-
oped tools, methods, and training for
software cost, schedule, risk analysis, and
management decision support, including
the industry standard System Eval-
uation and Estimation of Resources-
Software Estimating Model. Galorath
has a Bachelor of Arts and a Master of
Business Administration from California
State University, Dominguez Hills.

Galorath Incorporated
100 N Sepulveda BLVD
STE 1801
El Segundo, CA 90245
Phone: (310) 414-3222
E-mail: info@galorath.com

April 2005 www.stsc.hill.af.mil 29

The Information Systems Develop-
ment Center within Sandia National

Laboratories began a journey with soft-
ware process improvement using the
Capability Maturity Model® for Software
as its improvement yardstick in 1999. The
Personal Software ProcessSM (PSPSM) and
Team Software ProcessSM were adopted
soon thereafter to improve the personal
and team practices of the software engi-
neers in the organization.

The rigorous and consistent collection
of measurement data prescribed as part
of the PSP (and in the examined classes)
provides a fertile environment for under-
standing how software size is estimated
versus its actual size upon completion.
More interesting though is the study of
the size of the software products devel-
oped by numerous classes and class atten-
dees for class projects using homogenous
and heterogeneous software languages.
Both casual heuristic analysis and statisti-
cal analysis of these sets of data raise seri-
ous suspicions regarding the reliability of
using lines of code (LOC) as a software
sizing measure.

Software Size Has No
Monopoly on Ambiguity
Parents deal with ambiguity when they ask
their teenagers when they will be home,
only to hear “pretty soon.” Spouses expe-
rience ambiguity when asking, “How long
until dinner?” only to hear, “In a minute.”
Most consumers at one time or another
have purchased jumbo shrimp. Science
describes distant galactic formations as
small supernovas. Meteorologists con-
tribute their share to ambiguity by using
phrases like partly cloudy, partly sunny, and
apparent synonyms like mostly sunny and
mostly cloudy, respectively.

The least satisfying of these descrip-
tions parallel software customers who are
told that their proposed software will be 5
million LOC. Anyone who has ever sus-
pected that the figure 5 million is neither
reliable nor accurate will more fully
understand some of that discomfort
upon completing this article. Anyone who

has provided similar numbers for project
sizes in the past may be reluctant to ever
do so again.

This article is not the first to raise
questions surrounding the use of LOC.
The Definition Checklist for Source
Statements Counts identifies 66 variations
in counting LOC to document, and as
many as eight more that are language-spe-
cific [1]. Capers Jones offers this insight
on LOC:

This term is highly ambiguous and
is used for many different count-

ing conventions. The most com-
mon variance concerns whether
physical lines of logical statements
comprise the basic elements of the
metrics. Note that for some mod-
ern programming languages that
use button controls, neither physi-
cal lines nor logical statements are
relevant. [2]

Why Substantial Data on
LOC Studies Is Lacking
For data to be exchanged across organiza-
tions for benchmarking and eventual
insights and learning, a standard defini-
tion of a line of code would need to be
accepted and applied to participating
groups. For an organization to apply data
from its own projects for process insight
and estimation, many factors need to be
identified to minimize the sources of vari-
ation that could easily render any glean-
ings virtually useless. A preferred practice
without a context is often a worst practice
in another case. Some of the limitations
of purported studies related to LOC suf-
fer from one or more of the following
challenges.
• Too few controlled studies. Many

studies of LOC are merely reflections
of the type of software, language, and
environment in which it was devel-
oped. But requirements rigor, design
constraints, and customer turnover
often contribute as sources of undoc-
umented variation in the development
of software size and duration.

• Too few controlled studies with
multiple instantiations of the same
set of specifications. Few organiza-
tions can afford to sponsor the repeat-
ed development of software code by
different software engineers for the

The Statistically Unreliable Nature
of Lines of Code

Joe Schofield
Sandia National Laboratories

For the past three decades, the ill-defined line of code has been used to describe the size of a software project and often used
as a basis for estimating schedule and resource needs. Concurrently, software projects are noted for cost and schedule over-
runs, and often, for poor quality. This article suggests that the venerable line of code measure is a major factor in poorly
scoped and managed projects because it is itself a vague, ambiguous, and unsuitable parameter for sizing software projects.
A series of Personal Software ProcessSM courses is the source of the data in this article. Because the requirements, instruc-
tor, and the lines-of-code counting-specification for these programs were the same, the 60 sets of nine programs offers an
extraordinary opportunity for comparing significant variation in software sizes for identical requirements. Given the varia-
tion, often greater than an order of magnitude for identical requirements, the use of lines of code as a reliable indicator of
software size is challenged.

Open Forum

“This article suggests
that using LOC as a
measure for actual

product delivery has such
wide variation as to
render the counts

practically useless in the
best case, harmful and
misleading in the worst

of cases.”

30 CROSSTALK The Journal of Defense Software Engineering April 2005

purpose of measuring variations in
the size of the software.

• Too few controlled studies with
multiple instantiations for different
languages. Few organizations can
afford to sponsor the repeated devel-
opment of software code using differ-
ent languages for the purpose of
measuring variations in the size of the
software.

• Inconsistent measurement ap-
proaches. Few organizations can
afford to sponsor the repeated devel-
opment of software code and then ana-
lyze the source of variation attributed
to how the software was measured.

Addressing the Preceding
Challenges
A PSP course provides an environment
that addresses the challenges related to
collecting software size measures in the
preceding section. Thus, the software
measures in the following six tables are
extracted from a series of PSP classes
taught by the same Software Engineering
Institute-certified PSP course instructor.
Each class required the attendee to write
nine software programs in a language of
their choosing – typically the language

with which the attendee was most profi-
cient. Each program had associated
requirements and acceptance criteria eval-
uated by the same instructor.

The data from the PSP course was
collected in a controlled environment
facilitating the close examination of 60
sets of nine software programs (60 stu-
dents wrote nine programs each). The
LOC for each program were counted
using the same counting techniques, a
point that is proven with the data from
the courses (discussed on page 31 and
Table 6 on page 32). One of the pro-
grams was itself a line-counting program,
thus its specification and review reduces
one significant source of variation in the
counts – the counting method. Reduced
variation in counting technique increases
the reliability in the numbers used. In
those PSP classes in which different lan-
guages were used, also present were dif-
ferent levels of education; all participants
had at least a bachelor’s degree, and about
one-half of the attendees had an
advanced degree.

Examining the Data
Tables 1-3 cluster the LOC counts for
PSP classes by programming language.

Using the same format, each table
includes columns for the course number
and attendee identifier, and the number of
LOC for each of the nine programs. The
bottom rows include analytic data deriv-
ing the minimum and maximum line
counts for that set of programs using the
same language, the percent of variation
between the minimum and maximum val-
ues, and the mean and standard deviation
of the LOC counts.

The shaded Percent Variation (the shad-
ed row in Table 1) for the first shaded cell
should be read as a variance of 264 per-
cent between the largest and the smallest
programs in this data grouping. Recall
that all of the values in each of the P1-P9
columns of this table are derived from
software programs written from the same
requirement set, validated by the same
instructor, using the same language, and
counted the same way. Note that a vari-
ance of 264 percent is probably not
acceptable in purchasing a home (the
same home, built to the same specifica-
tion, inspected by the same inspector, and
measured identically), a car, or most con-
sumer or industrial products or services.

A second set of data in Table 2
demonstrates increasing concern. The
data collected from this data set came
from one class where all the attendees
used the same language, but a different
language than in Table 1. Note that the
smallest percent variation with these pro-
grams is almost 400 percent and the
largest is more than 2,200 percent.
Imagine, for example, the variation on the
amount of gasoline received at the local
filling station varied between four and 22
times, or the accuracy on the fuel gauge in
an aircraft varied this much, or the num-
ber of donuts in a dozen, or the amount
of beef in your favorite hamburger.

A more troublesome question is,
“Which value does the project leader use
to make an estimate of the size and, even-
tually, the cost and resources associated
with software?” Are the traditional rea-
sons offered for runaway software proj-
ects likely to be as causal as the variations
in the size of the code that is developed?
Is requirements creep, requirements
churn, or team turnover likely to cause a
variation of 2,200 percent on a project? Is
almost everything we believe about esti-
mating and managing software projects
incorrect? How might the true unpre-
dictable size of software using LOC
change what we believe about productivi-
ty, defects, or reuse?

Lastly, Table 3 contains the values of
the third programming language used in
the PSP courses. The range of variance is

Open Forum

Course /
Attendee P1 P2 P3 P4 P5 P6 P7 P8 P9

2 / 5 193 137 48 102 107 207 118 67 134

1 / 2 77 163 168 123 134 164 238 178 135

3 / 1 73 37 36 95 101 138 51 66 181

3 / 2 74 97 143 153 279 146 176 80 305

3 / 4 114 71 108 80 219 189 142 95 163
Min. Value 73 37 36 80 101 138 51 66 134
Max. Value 193 163 168 153 279 207 238 178 305

264 441 467 191 276 150 467 270 228
Mean 106 101 101 111 168 169 145 97 184
Std. Dev.

51 50 58 28 78 29 69 47 71

Table 1: Lines of Code Counts for PSP Classes by Programming Language No. 1

Attendee
(same

course)
P1 P2 P3 P4 P5 P6 P7 P8 P9

1 221 128 103 227 186 306 155 61 283

2 35 143 114 13 110 63 113 84 85

3 113 106 36 34 53 51 54 61 125

4 90 38 51 61 134 99 43 58 126

5 117 311 271 289 142 122 190 383 219

6 131 179 56 150 202 185 155 118 144

7 184 30 15 30 61 116 69 43 147

8 73 96 102 197 64 158 85 87 126

9 64 63 36 169 56 23 99 73 83

10 101 116 108 49 66 103 71 51 73
Min. Value 35 30 15 13 53 23 43 43 73
Max. Value 221 311 271 289 202 306 190 383 283

631 1037 1807 2223 381 1330 442 891 388

65

Table 2: Lines of Code Counts for PSP Classes by Programming Language No. 2

Percent Variation

Percent
Variation
Mean
Std. Dev.

121 89 122 107 123 103 102 141113
56 81 73 97 56 81 49 101

Table 1: Lines of Code Counts for PSP Classes by Programming Language No. 1

Course /
Attendee P1 P2 P3 P4 P5 P6 P7 P8 P9

2 / 5 193 137 48 102 107 207 118 67 134

1 / 2 77 163 168 123 134 164 238 178 135

3 / 1 73 37 36 95 101 138 51 66 181

3 / 2 74 97 143 153 279 146 176 80 305

3 / 4 114 71 108 80 219 189 142 95 163
Min. Value 73 37 36 80 101 138 51 66 134
Max. Value 193 163 168 153 279 207 238 178 305

264 441 467 191 276 150 467 270 228
Mean 106 101 101 111 168 169 145 97 184
Std. Dev.

51 50 58 28 78 29 69 47 71

Table 1: Lines of Code Counts for PSP Classes by Programming Language No. 1

Attendee
(same

course)
P1 P2 P3 P4 P5 P6 P7 P8 P9

1 221 128 103 227 186 306 155 61 283

2 35 143 114 13 110 63 113 84 85

3 113 106 36 34 53 51 54 61 125

4 90 38 51 61 134 99 43 58 126

5 117 311 271 289 142 122 190 383 219

6 131 179 56 150 202 185 155 118 144

7 184 30 15 30 61 116 69 43 147

8 73 96 102 197 64 158 85 87 126

9 64 63 36 169 56 23 99 73 83

10 101 116 108 49 66 103 71 51 73
Min. Value 35 30 15 13 53 23 43 43 73
Max. Value 221 311 271 289 202 306 190 383 283

631 1037 1807 2223 381 1330 442 891 388

65

Table 2: Lines of Code Counts for PSP Classes by Programming Language No. 2

Percent Variation

Percent
Variation
Mean
Std. Dev.

121 89 122 107 123 103 102 141113
56 81 73 97 56 81 49 101

Table 2: Lines of Code Counts for PSP Classes by Programming Language No. 2

April 2005 www.stsc.hill.af.mil 31

The Statistically Unreliable Nature of Lines of Code

between 252 percent and almost 1,800
percent. The comments that introduce
Table 1 (under the subhead Examining the
Data) and the questions that are triggered
by analyzing Table 2 apply here as well.

Caution: Quick Fixes Create
Other Unanticipated Effects
Attempts to quick fix (or pursue the low
hanging fruit) of the measured variation by
eliminating the weakest link on the proj-
ect – the software engineer who writes the
most unneeded code – is unlikely to pro-
duce the desired results. While such an
approach may seem fruitful based on an
initial review of the tables above, consid-
er the following data in Table 4 taken
from a class where all attendees used the
same language.

In the following example, attendee
No. 3 had four of the largest of nine pos-
sible programs. (These larger-sized pro-
grams are shown in italic, bold typeface.)
But attendee No. 3 also had the shortest
program, Program 7. (Shortest programs
are shaded in cells that have attendee
identifiers.) Four other attendees (Nos. 1,
2, 6, and 8) also had the largest program
to their credit, while six others (Nos. 1, 2,
5, 6, 7, and 8) had the shortest program.

Please note that overall, attendee Nos.
1, 2, 3, 6, and 8 had both at least one
largest and at least one smallest program.
The weakest link depends on more than
merely who writes the largest program.
The weakest link also depends on the pro-
gram that is selected.

Another erroneous argument could be
made for the removal (removal may be a
little harsh, maybe retrain, reassign, or pro-
mote) of attendee No. 3 based on the
largest number of most lengthy pro-
grams. However, the total number of
LOC written for the nine programs was
higher for attendee Nos. 1, 2, and 4 than
for attendee No. 3. The answer to the
question of the weakest link becomes less
obvious as different quantitative perspec-
tives are considered.

Further examination of the programs
from five classes all written with the same
language reveals a significant overlap
among software engineers that write both
shorter and longer programs (see Table
5). The potential for different software
engineers to write programs on both
ends of the length spectrum suggests
that sometimes the apparently more effi-
cient programmer turns out to be the
least efficient, and sometimes the appar-
ently least efficient programmer turns out
to be the most (judging efficiency by
length since each program met the same

stated requirements).
Variation then should be attributed to

context, which includes both the problem
space and the engineer’s ability to recog-
nize and utilize strengths and features of
the software environment to narrow the
solution space.

Another source of variance usually
attributed to the differences in size of
LOC is the process for counting the
LOC. In one study shared by Capers
Jones, one-third of the participants
counted comment lines as a LOC, one-
third did not count comment lines, and

one-third could not determine if com-
ment lines were included or excluded. As
mentioned previously, the attendees of
these PSP classes wrote a program that
counted LOC. To determine the effects
of how each programmer counted their
own source sizes, willing attendees shared
their line-counting software and their pro-
grams so that they could be counted by
each others’ software.

Each of the line counts in Table 6 (see
next page) was calculated from the LOC
counting program written by four atten-
dees. The values correspond as follows:

Course /
Attendee P1 P2 P3 P4 P5 P6 P7 P8 P9

1 / 1 89 34 67 40 102 235 23 38 168

1 / 3 82 23 33 48 61 34 33 27 52

1 / 4 177 119 67 85 136 276 165 112 233

1 / 5 76 48 305 244 61 121 66 77 127

1 / 7 46 33 17 37 60 95 129 46 186

3 / 5 22 40 100 58 68 131 58 58 102

3 / 6 46 20 30 42 73 82 51 72 82

2 / 7 95 155 147 94 54 191 174 102 218

Min. Value 22 20 17 37 54 34 23 27 52
Max. Value 177 155 305 244 136 276 174 112 233
Percent
Variation 805 775 1794 659 252 812 757 415 448

Mean 79 59 96 81 77 146 87 67 146
Std. Dev. 47 50 95 69 28 82 60 30 66

Table 1: Lines of Code Counts for PSP Classes by Programming Language No. 3

Attendee P1 P2 P3 P4 P5 P6 P7 P8 P9
1 33 40 30 108 65 176 79 107 284
2 51 52 24 72 109 166 87 145 270
3 76 56 30 115 175 158 27 104 128
4 60 52 31 108 94 155 72 94 235
5 22 51 25 50 75 105 47 21 102
6 65 27 80 45 95 141 91 60 209
7 22 51 25 50 75 105 47 21 102
8 65 27 80 45 95 141 91 60 209

Min. Value 22 27 24 45 65 105 27 21 102
Max. Value 76 56 80 115 175 176 91 145 284
Percent
Variation 345 207 333 256 269 168 337 690 278

Mean 49 45 41 74 98 143 68 77 192
Std. Dev. 21 12 24 31 34 26 24 44 73

Table 2: Example of Attendees With Largest and Smallest Programs

Class
Number of
attendees

Number of
attendees
with the
smallest

and largest
program

1
2
3
4

10
8
13

5 10
8

3
5
7
5
5

6
4
6
6
4

0
2
2
5
1

Number of
attendees with

smallest program

Number of
attendees with

largest program

Table 3: Lines of Code Counts for PSP Classes by Programming Language No. 3Course /
Attendee P1 P2 P3 P4 P5 P6 P7 P8 P9

1 / 1 89 34 67 40 102 235 23 38 168

1 / 3 82 23 33 48 61 34 33 27 52

1 / 4 177 119 67 85 136 276 165 112 233

1 / 5 76 48 305 244 61 121 66 77 127

1 / 7 46 33 17 37 60 95 129 46 186

3 / 5 22 40 100 58 68 131 58 58 102

3 / 6 46 20 30 42 73 82 51 72 82

2 / 7 95 155 147 94 54 191 174 102 218

Min. Value 22 20 17 37 54 34 23 27 52
Max. Value 177 155 305 244 136 276 174 112 233
Percent
Variation 805 775 1794 659 252 812 757 415 448

Mean 79 59 96 81 77 146 87 67 146
Std. Dev. 47 50 95 69 28 82 60 30 66

Table 1: Lines of Code Counts for PSP Classes by Programming Language No. 3

Attendee P1 P2 P3 P4 P5 P6 P7 P8 P9
1 33 40 30 108 65 176 79 107 284
2 51 52 24 72 109 166 87 145 270
3 76 56 30 115 175 158 27 104 128
4 60 52 31 108 94 155 72 94 235
5 22 51 25 50 75 105 47 21 102
6 65 27 80 45 95 141 91 60 209
7 22 51 25 50 75 105 47 21 102
8 65 27 80 45 95 141 91 60 209

Min. Value 22 27 24 45 65 105 27 21 102
Max. Value 76 56 80 115 175 176 91 145 284
Percent
Variation 345 207 333 256 269 168 337 690 278

Mean 49 45 41 74 98 143 68 77 192
Std. Dev. 21 12 24 31 34 26 24 44 73

Table 2: Example of Attendees With Largest and Smallest Programs

Class
Number of
attendees

Number of
attendees
with the
smallest

and largest
program

1
2
3
4

10
8

13

5 10
8

3
5
7
5
5

6
4
6
6
4

0
2
2
5
1

Number of
attendees with

smallest program

Number of
attendees with

largest program

Table 4: Example of Attendees With Largest and Smallest Programs

Course /
Attendee P1 P2 P3 P4 P5 P6 P7 P8 P9

1 / 1 89 34 67 40 102 235 23 38 168

1 / 3 82 23 33 48 61 34 33 27 52

1 / 4 177 119 67 85 136 276 165 112 233

1 / 5 76 48 305 244 61 121 66 77 127

1 / 7 46 33 17 37 60 95 129 46 186

3 / 5 22 40 100 58 68 131 58 58 102

3 / 6 46 20 30 42 73 82 51 72 82

2 / 7 95 155 147 94 54 191 174 102 218

Min. Value 22 20 17 37 54 34 23 27 52
Max. Value 177 155 305 244 136 276 174 112 233
Percent
Variation 805 775 1794 659 252 812 757 415 448

Mean 79 59 96 81 77 146 87 67 146
Std. Dev. 47 50 95 69 28 82 60 30 66

Table 1: Lines of Code Counts for PSP Classes by Programming Language No. 3

Attendee P1 P2 P3 P4 P5 P6 P7 P8 P9
1 33 40 30 108 65 176 79 107 284
2 51 52 24 72 109 166 87 145 270
3 76 56 30 115 175 158 27 104 128
4 60 52 31 108 94 155 72 94 235
5 22 51 25 50 75 105 47 21 102
6 65 27 80 45 95 141 91 60 209
7 22 51 25 50 75 105 47 21 102
8 65 27 80 45 95 141 91 60 209

Min. Value 22 27 24 45 65 105 27 21 102
Max. Value 76 56 80 115 175 176 91 145 284
Percent
Variation 345 207 333 256 269 168 337 690 278

Mean 49 45 41 74 98 143 68 77 192
Std. Dev. 21 12 24 31 34 26 24 44 73

Table 2: Example of Attendees With Largest and Smallest Programs

Class
Number of
attendees

Number of
attendees
with the
smallest

and largest
program

1
2
3
4

10
8
13

5 10
8

3
5
7
5
5

6
4
6
6
4

0
2
2
5
1

Number of
attendees with

smallest program

Number of
attendees with

largest program

Table 5: Example of Attendees with Most Lengthy and Shortest Programs

Open Forum

32 CROSSTALK The Journal of Defense Software Engineering April 2005

Attendee No. 1 submitted the values for
counting method No. 1, attendee No. 2
submitted the values for counting method
No. 2, attendee No. 4 submitted the val-
ues for counting method No. 3, and
attendee No. 5 submitted the values for
counting method No. 4.

For the numbers used in Tables 1-5,
please note that in every case, each
attendee’s submitted LOC values were
consistent with the counts provided by
others who counted their codes (the shad-
ed rows). While attendee No. 2’s software
seems to overstate the value of attendee
No. 5’s sizes, these values were not sub-
mitted or included in the numbers used in
Tables 1-5. Only the shaded rows below
are used in Tables 1-5; that is, only counts
submitted by their author are used in the
first five tables.

The numbers in Table 6 demonstrate
that variation in counting approaches is not a
source of the data variation in this study
because other attendees also counted the
subject programs to be of very similar
size. Nor did attendees inflate or deflate
their own line-count totals, as evidenced
by the counts.

Statistical Significance
The apparent differences in the data pro-
voke questions around the statistical rele-
vance of the data. A staff statistician was
asked to independently review the data for
statistical significance. After conducting a
Box-Cox transformation on the data, and
performing an analysis of variance, there
was a 95 percent probability that the true
number of line counts for an individual
program from the given population was
between 23 and 240 lines. And finally, as is
often the case with count data and Poisson
distributions, examined variability in-

creased along with size of program.
What is the relevance of the statistical

significance? Clearly a 95 percent proba-
bility of values that have a range of
greater than 10 confirms earlier suspi-
cions that estimating the number of LOC
for a given problem is itself highly prob-
lematic. While the data in Tables 1-5 evi-
dence this likelihood, the statistical analy-
sis confirms it. A reasonable person, for
example, would not procure a computer

with such a potential order-of-magnitude
variance in performance, cost, or delivery.
But unpredictability and variation is the
tolerated norm in constructing software.

This norm is evidenced by project
performance and by somewhat misdirect-
ed attempts at lessons learned and root-
cause analyses to identify performance

improvements for the future, all dealing
with what is likely the wrong problem!
The problem itself is often further
masked in undocumented overtime and
costs, scope containment or reduction,
and attempted refinements in estimation
variables.

Rebuttals Refuted
The data in this article was presented in
similar form at conferences and profes-
sional meetings. Not too surprisingly,
some attendees are quick to defend the
widely used LOC for estimating and siz-
ing. Some attendees have doubts that the
data applies to their own organization.
Despite the rebuttals, each opinion seems
to be characterized by one common
attribute: no supporting data. The follow-
ing are some of the most frequently
expressed thoughts.

The PSP class is not a good forum
for conducting research.
Response: Rarely does an environment
exist that controls the requirements and
the validation of requirements through
the same control gate (instructor). Rarely are
organizations afforded the opportunity to
write the same software 60 times. Rarely
are the same programs written in the
same language by different authors for
comparison. Rarely are the same pro-
grams written in different languages for
comparison. Rarely are software pro-
grams counted using the same counting
requirements. And rarely are software
programs counted (and cross-counted) by
software. Because this analysis was con-
ceived and conducted after the classes
were conducted, the participants and
instructor were unaware that analysis was
forthcoming; they themselves were
unable to introduce bias into the analysis.
Finding a better environment for con-
ducting LOC sizing is difficult to imagine.

Statistically, the differences between
estimates and actual performance
average out over time (aka bigger
software programs will average out
over time).
Response: Apply this principle in other
life examples: The buyer of a car with 10
to 15 times the number of typical defects
is hardly consoled by the fact that the next
buyer may get a vehicle with 10 to 15
times fewer defects than normal. New
homeowners will not be comforted that
their 2,000-square-foot home was deliv-
ered at 100 square feet merely because the
purchaser that preceded them received a
25,000-square-foot home; after all, it is
merely the luck of the draw. Statistically

Counting
Method Attendee P1 P2 P3 P4 P5 P6 P7 P8 P9
1 1 91 123 45 121 101 403 553 211 516
1 2 74 97 218 194 279 406 311 181 368
1 4 108 95 205 162 300 484 499 143 706
1 5 193 137 182 229 127 353 353 112 510
2 1 93 133 51 123 107 441 580 213 580
2 2 74 97 218 194 279 406 310 181 368
2 4 110 98 218 317 219 513 523 148 706
2 5 256 172 229 310 170 675 445 122 649
3 1 91 123 45 119 108 380 516 202 479
3 2 74 96 217 194 279 406 310 181 368
3 4 114 78 187 149 303 440 462 130 619
3 5 193 137 181 219 127 517 353 112 510
4 1 91 124 45 120 108 399 548 210 511
4 2 75 98 221 197 282 408 312 182 375
4 4 109 92 202 160 295 476 492 141 672
4 5 193 137 182 209 127 517 353 112 510

Table 2: Example From Attendees Line-of-Code Counting Program

Table 6: Example From Attendees LOC Counting Program

“Because this analysis
was conceived and
conducted after the

classes were conducted,
the participants and

instructor were unaware
that analysis was
forthcoming; they

themselves were unable
to introduce bias

into the analysis.”

The Statistically Unreliable Nature of Lines of Code

April 2005 www.stsc.hill.af.mil 33

the buyers got what they ordered.
A related lesson taught in the PSP

course is that granular estimates are more
accurate than those developed at a higher
level because the error range is significantly
smaller. For instance, to estimate the time
required to build an application applying
the error range for the parts (modules,
programs, etc.) will provide a more accu-
rate estimate (under similar conditions of
knowledge and practice) than an estimate
of the application as a whole. This princi-
ple, for example, holds true for estimating
the size or cost of the rooms of a house,
which is a smaller error range than for
estimating the house as a whole unit; or
for reading the chapters of a book versus
reading the book as a whole.

Further, variations in granular esti-
mates tend to offset each other, resulting
in an estimate that is closer to actual per-
formance when summed than merely an
overall estimate of the time needed to
complete the effort. However, a differ-
ence exists between the smoothing of
variation in estimates for a more accurate
estimate and the belief that variations in
performance (actual) will nullify each
other over time. Please note that this
lines-of-code analysis was based on actual
size variations for the same product; com-
parisons to estimates were not the subject
of this study.

What estimating problem? I’m fine.
Response: This reaction is classic denial
when one or more of the following symp-
toms also exists: project teams that use
heroics to complete and deliver a project
on time, project teams that use unrecorded
overtime to maintain schedule, project
teams that use unrecorded resources to
complete tasks, projects that are usually
late, project teams (not customers) that
attempt to renegotiate scope when other
project management constraints remain
constant, and project deliverables that have
unpredictable defects rates compared to
projects that predict and manage defects.
Admittedly, poor estimating is not the sole
source of project delays; team turnover,
poor risk management, and true scope
changes are additional sources.

The programs’ sizes from the course
are obviously too small to represent
the real world.
Response: Before the introduction of
modular programming decades ago, this
argument might have had more validity.
However, the trend toward modulariza-
tion, objects, reuse, and architecture-
based components challenges the notion
that the programs from the PSP course

are not in some way representative of
much of the software developed today.
Certainly the number of LOC that can be
peer reviewed in a reasonable two-hour
session exceed those represented by many
of the programs in the numbers in this
study (200 LOC per hour and assuming a
two-hour peer review [3]).

Here is what I think …
Response: The information in this analy-
sis is often received with shock, some-
times relief, and sometimes anger. Many
who will read this article are likely to say,
“Well here’s what I think,” followed by a
statement that reflects the world accord-
ing to the lenses through which they
choose to see reality. In this discussion,
more than 60 sets of data were reviewed
and more than 500 LOC counts. An ap-
propriate response to doubters is, “Show
me your data.” The availability of similar
data (same requirements, same environ-
ment, similar knowledge-base of partici-
pants, no inflation/deflation bias intro-
duced because attendees did not know the
study would be conducted, same counting
techniques, same instructor/exit criteria,
and multiple instantiations of the same
requirements set) is quite limited.

Do Not Miss the Point
The PSP course provides a rich observa-
tory for gathering data about software
productivity. The course itself teaches the
student needed principles for estimating,
reviewing, defect removal and analysis,
scripting, and process improvement.
While the PSP course is the source of the
data used in this study, this data does not
suggest that PSP is the source of the vari-
ation in that data; if anything, the prac-
tices from the PSP narrow the variations
in lines-of-code counts.

This article suggests that using LOC as a
measure for actual product delivery has such wide
variation as to render the counts practically use-
less in the best case, harmful and misleading in
the worst of cases.

To record lines-of-code data for estima-
tion and calibration of productivity meas-
ures seems troubling based on the data.

Conclusion
The purpose of this article is clear:
Statistically significant variation in LOC
counts render those counts undesirable
for estimating and planning, and decep-
tive as an accurate portrayer of product
size. To those left pondering, “What is a
better approach for measuring software
size?” despite criticisms, function point
analysis, endorsed by International
Organization for Standardization/

International Electrotechnical Commis-
sion 20926:2003, is used by thousands of
companies worldwide to measure soft-
ware size. However, function point analy-
sis has its critics as well.

Further understanding of software
size for repeatable and quantifiable sizing
to improve estimation and project pre-
dictability is still needed. The improved
collection and use of software size meas-
ures will enhance the credibility of soft-
ware engineers who are plagued with vari-
ation in project cost and schedule.u

Acknowledgement
I gratefully acknowledge the statistical
analysis conducted by Laura Halbleib, a
technical staff statistician at Sandia
National Laboratories, Albuquerque,
N.M. Halbleib’s contribution validated the
intuitive inferences of the analysis by
applying rigorous statistical methods. Her
insights and knowledge increased the reli-
ability and usefulness of this material.

References
1. Boehm, B. Software Cost Estimation

with COCOMO II. Prentice Hall
PTR, 2000: 77-81.

2. Jones, C. Software Quality. Inter-
national Thomson Computer Press,
1997: 333.

3. Humphrey, W. Introduction to the
Team Software Process. Addison-
Wesley. Dec. 1999.

About the Author

Joe Schofield is a techni-
cal staff member at
Sandia National Labora-
tories. He chairs the
organization’s Software
Engineering Process

Group, is the Software Quality
Assurance Group leader, and is account-
able for introducing Personal Software
ProcessSM and Team Software ProcessSM

at Sandia. He has dozens of publications
and conference presentations. Schofield
is active in the local Software Process
Improvement Network and has taught
graduate-level software engineering
classes since 1990.

Sandia National Laboratories
MS 0661
Albuquerque, NM 87185
Phone (505) 844-7977
Fax: (505) 844 2018
E-mail: jrschof@sandia.gov

34 CROSSTALK The Journal of Defense Software Engineering April 2005

Departments

BACKTALK

April 2005 www.stsc.hill.af.mil 35

It’s a weird profession we have chosen fora living, right? I mean, after all, we work in
a profession that considers a millisecond a
very long time, and we consider a 128MB
USB thumb drive (which, after all, holds
almost 100 1.44MB floppies) totally obso-
lete ($9.95 on sale at a local computer store
over Christmas). Ours is a profession where
new computer languages come and go year-
ly, yet COBOL, one of the most commonly
used programming languages in the world,
still remains a language standardized in 1960
but with its roots embedded in the early
1950s (making it older than me!).

I have been teaching computer science
for more than 30 years (first as a teaching
assistant in 1974 at the University of Central
Florida), starting back when there was bare-
ly a discipline known as software engineer-
ing1. While some things in the field of soft-
ware engineering come and go, some truths
need to be relearned by each generation.
1. No programming language ever devel-

oped will make it the least bit difficult to
write a horrible program2!

2. You really can’t complete a project until
you know the requirements.

3. The first set of requirements is almost
never the right requirements.

4. Neither are the second, third, or proba-
bly the fourth.

5. The final set of requirements isn’t.
6. No matter how good a coder you are,

you need a design.
7. Code that is so simple it can’t go wrong

– will.
8. There is always one error that error-

checking routines will miss.
9. No matter what the problem is, it’s usu-

ally management.
10. No matter how simple it is – you have to

test it.
11. Everybody else writes code that needs

testing. They say the same about you.
12. Almost any shortcuts you take to speed

up the project make it take longer.
13. It’s always going to take longer (and cost

more) than you plan, even when you
take, “It’s always going to take longer
(and cost more) than you plan” into
account.
No getting around it – what we do for a

living is hard. No. 13 is particularly difficult.

How long does it take? How much will it
cost? Even the most experienced developers
are often so far off with their initial esti-
mates.

Back in college, you never really knew
how long a particular programming assign-
ment was going to take. Some that appeared
really easy turned out to be really hard
(debugging pointers almost always involved
more work than you thought). And, some
jobs that appeared to be really hard turned
out to take almost no time at all (the quick
sort took what, about 10 lines of code?)

The roots of cost (and time) estimation
go back a long way. I am reasonably sure
that Hannibal, as he was planning to cross
the Alps in 219 B.C. during the Second
Punic War, was somehow thinking of the
incremental cost of each additional ele-
phant. It is interesting to note that the cross-
ing of the Alps with elephants, the event
that Hannibal is so famous for, was not real-
ly a success. He started out with 34 ele-
phants, but lost many of the elephants on
the crossing, and all but one were dead by
the end of the Battle of Trebbia3.

It is also interesting to note that
Hannibal, while winning important battles,
was beset by political jealousies at home, and
this eventually proved his undoing. Because
he was unable to get the necessary equip-
ment and personnel, he was not able to take
advantage of opportunities and his victories
turned into a failure4. I could easily draw
parallels between Hannibal and many other
modern-day software project managers
(especially the political jealousies), except for
the fact that at around age 70, Hannibal
committed suicide rather than face humilia-
tion at the hands of his enemies (we offer
early retirement as an option).

Hannibal is famous for the elephant cross-
ing, yet the elephants proved to be of limit-
ed usefulness during the actual war. What
caused Hannibal’s eventual downfall was
more simplistic – siege equipment (hard-
ware) and people – are basic factors in cost
estimation. Would you rather be famous, or
succeed? If you want to be famous, see if
you can convince 34 elephants to help you
code your project in Visual C++. If you
would rather succeed, why not have an accu-
rate estimate of costs?

For one final comment on cost estima-
tion, I would like to add that it is obviously
a long-standing tradition to mock those
whose projects fail due to a lack of cost esti-
mation. In fact, such mockery of those
committing cost-estimation failures is reli-
ably documented:

For which of you, desiring to build a
tower, does not first sit down and
count the cost, whether he has
enough to complete it? Otherwise,
when he has laid a foundation, and is
not able to finish, all who see it begin
to mock him, saying, “This man
began to build, and was not able to
finish5.”

When your management suggests that
cost estimation has been ordained from on
high, you thought they just meant the
Pentagon, right?

Hope to see you at SSTC 2005. It’s well
worth the cost!

— David A. Cook, Ph.D.
Senior Research Scientist

The AEgis Technologies Group, Inc.
dcook@aegistg.com

How Much for the Elephants?

1. For you purists, the NATO Science Committee sponsored two conferences on software
engineering in 1968 and 1969, which many feel gave the field its initial boost. Many also
believe these conferences marked the official start of the profession. The term software engi-
neering has been used since the late 1950s. See <http://en.wikipedia.org/wiki/
History_of_software_engineering>.

2. I make no claim as to the originality of these truths. No. 1, for example, comes from “There
does not now, nor will there ever, exist a programming language in which it is the least bit

hard to write bad programs,” a quote by Lawrence Flon in “On Research in Structured
Programming,” SIGPLAN Notices 10:10 (Oct. 1975). This truism is proved again and
again as newer and newer languages are developed.

3. See <www.barca.fsnet.co.uk/elephants.htm>.
4. See <www.carpenoctem.tv/military/hannibal.html>.
5. The Bible. Luke 14:28. Revised Standard Version.

Can You BackTalk?

Here is your chance to make your
point, even if it is a bit tongue-in-
cheek, without your boss censoring
your writing. In addition to accepting
articles that relate to software engineer-
ing for publication in CrossTalk, we
also accept articles for the BackTalk
column. BackTalk articles should
provide a concise, clever, humorous,
and insightful perspective on the soft-
ware engineering profession or indus-
try or a portion of it. Your BackTalk
article should be entertaining and
clever or original in concept, design, or
delivery. The length should not exceed
750 words.

For a complete author’s packet
detailing how to submit your
BackTalk article, visit our Web site at
<www.stsc.hill.af.mil>.

CrossTalk / MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Co-Sponsored by
U.S. Air Force

Air Logistics Centers
MAS Software Divisions

Software Engineering Division
Ogden Air Logistics Center

	Front Cover
	Table of Contents
	Cost Estimation
	Estimating and Managing Project Scope for New Development

	Software Cost Estimating Methods for Large Projects©

	Creating Requirements-Based Estimates Before
Requirements Are Complete
	A Method for Improving Developers’
Software Size Estimates

	Software Engineering Technology
	COCOMO Suite Methodology and Evolution
	Inside SEER-SEM

	Open Forum
	The Statistically Unreliable Nature
of Lines of Code

	Coming Events

	Web Sites

	CrossTalk 101

	SSTC 2005 Conference

	BackTalk

	Back Cover

