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Abstract

On today’s modern battlefield, the ability to adapt is critical. The asymmetric

threats that we now face require that we have the ability to evolve and field new tech-

nology quickly and reliably. The Kalman filter is an important algorithm often used

in target tracking applications to estimate the future behavior of a system based on a

series of past behaviors. There exists an urgent need to provide a flexible Kalman fil-

ter implementation in a portable yet synthesizable design. A one dimensional Kalman

Filter algorithm provided in Matlabr is used as the basis for the Very High Speed

Integrated Circuit Hardware Description Language (VHDL) model. The JAVA pro-

gramming language is used to create the VHDL code that describes the Kalman filter

in hardware which allows for maximum flexibility. The internal parameters of the fil-

ter such as process noise covariance, measurement noise covariance, data width, and

data shape can be adjusted to achieve an optimal design to fit any requirement.

A one-dimensional behavioral model of the Kalman Filter is described, as well

as a one-dimensional and synthesizable register transfer level (RTL) model with op-

timizations for speed, area, and power. These optimizations are achieved by a focus

on parallelization as well as careful Kalman filter sub-module algorithm selection.

Newton-Raphson reciprocal is the chosen algorithm for a fundamental aspect of the

Kalman filter, which allows efficient high-speed computation of reciprocals within the

overall system. The Newton-Raphson method is also expanded for use in calculat-

ing square-roots in an optimized and synthesizable two-dimensional VHDL imple-

mentation of the Kalman filter. The two-dimensional Kalman filter expands on the

one-dimensional implementation allowing for the tracking of targets on a real-world

Cartesian coordinate system.

An additional goal of this research is to perform an investigation and charac-

terization of how to realize optimal real-time target tracking algorithms in hardware,
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such as FPGAs or ASICs, while satisfying real-time throughput and bandwidth re-

quirements.
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Characterization and Implementation of a

Real-World Target Tracking Algorithm

on Field Programmable Gate Arrays

with Kalman Filter Test Case

I. Introduction

1.1 Chapter Overview

In section 1.2 a brief motivation for this thesis is provided. The problem statement

and scope of the research is presented in Sections 1.3 and 1.4 respectively.

1.2 Research Motivation

In todays military, the need to adapt quickly has become paramount. Quick

adaptation means fielding new technologies quickly, efficiently, and reliably. In the

past, designing, testing, and fabricating new integrated circuit technology was a long

and expensive process. The goal of this research is to speed up this process with

respect to target tracking technologies. This thesis characterizes a set of real-time

implementation requirements of a Kalman filter for implementation on an FPGA and

discusses various means to optimize implementations via scalable architectures. It is

through the use of FPGAs that the design process can be minimized both in time as

well as expense. By specifying a system in a Hardware Description Language (HDL)

and using that description to quickly compare alternatives in design, as well as testing

for correctness, tremendous time and expense can be saved over traditional hardware

prototyping. A design process that used to take years can now be reduced to as little

as a few months.
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1.3 Problem Statement

The Kalman filter, an optimal linear estimator, has become widespread in its

applications. One notable use of the filter is in target tracking; where noisy, inaccu-

rate sensor data makes the filter invaluable. As described above, the need to adapt

technology quickly has led the Air Force towards the use of more economical, and

flexible technologies such as the FPGA. This thesis brings these two technologies

together, the Kalman filter, and FPGA by implementation of the Kalman filter in

VHDL for use on FPGAs. The development of a clear set of guidelines allows for

the derivation of a solution given the problem characteristics. In the case of a real-

time target tracking algorithm one might look at parallelizability and pipelinability

as characteristics of the problem. These characteristics then play an important role

in determining a solution. In general the characteristics of real-time target tracking

is that of an intense processing requirement. Whether the tracking is done by radar,

infrared cameras, passive detection, or visible-spectrum cameras the amount of data

coming into the system for processing can be enormous. For this reason it is essential

for the designer of a target tracking system to be able to optimize the design for vari-

ous optimizations. In other words, the designer needs to look at optimization for such

system characteristics as speed, area, and power consumption. Often times secondary

considerations might be reusability of code or design flexibility (i.e. the ability of a

design to adapt and transform to fulfill different requirements).

1.4 Research Scope

The scope of this research is the development and testing of a Kalman filter

in VHDL that satisfies the requirements. These requirements are that the VHDL

model produce outputs that are reasonably close to outputs produced by the Matlabr

Kalman filter model. Also, a JAVA program will be described that allows the VHDL

Kalman filter model to be more flexible in the sense that a user is able to specify

various parameters as well as designate the desired bit-width. Any generalizations in

2



reference to model optimality are only in reference to the optimality of the Kalman

filter algorithm itself.

1.5 Thesis Format

This thesis is presented in five chapters. The motivation for the development

of the VHDL Kalman filter model is presented in Chapter 1, along with the problem

statement and assumptions. Chapter 2 provides a brief history of Kalman filters as

well as a brief discussion of real-time systems. Details of the problem solving approach

and considerations made during the design process are presented in Chapter 3, along

with implementation details and detailed explanations of the various hardware stages

required in the design. Results of the research including testing and design evaluations

are presented in Chapter 4, and conclusions and recommendations for future work

are found in Chapter 5. Additional information including portions of the VHDL and

JAVA code are listed in the appendices in order to facilitate application and future

research.
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II. Real-Time Systems and the Kalman Filter

2.1 Chapter Overview

This chapter discusses real-time systems, and the Kalman filter. Real-time sys-

tems are discussed to demonstrate some of the requirements of implementing a

Kalman filter as a real-time system. The Kalman filter is then discussed in detail in-

cluding a historical perspective, current applications, and the equations that describe

the iterative nature of the filter.

2.2 Real-Time Systems

The Kalman filter is an optimal linear estimator which, optimally estimate the

behavior of a system that relies on noisy inaccurate data. One example of this is

in the use of radar to track aircraft. The data provided by the radar can be noisy

and often full of inaccuracies. It is the job of a linear estimator such as the Kalman

filter to optimally estimate the state of the system. For target tracking purposes, the

estimations provided by the Kalman filter need to complete in real time. In the case

of air traffic control, anything less than real time could prove disastrous.

In order to define what a real time system is, it is important to first understand

what is meant by ’system’. In [18] a system is defined as “a regularly interacting or

interdependent group of items forming a unified whole”. The formation of a unified

whole implies a boundary between the system in question and the environment or

everything else around it [20]. Real-time implies the need to satisfy timing constraints.

Combine the two definitions and a real-time system is a system that has specific input,

output, and timing constraints.

2.2.1 Problem or Implementation Domination. When developing a real-

time system a designer needs to consider whether the system is problem dominated

or implementation dominated. This essentially asks the question, where is the most

difficulty in designing a system coming from? Does technology exist to implement

a system? If so, then the system is problem dominated. If technology doesn’t exist

4



yet or is cost prohibitive then development of a system would be considered imple-

mentation dominated. When a technology is just barely capable of solving a type of

problem “the engineering of solutions in this phase is inevitably implementation dom-

inated” [20]. In the case of the Kalman Filter specified in this thesis, the technology

to build such a system is relatively new and arguably just capable of handling such

a problem; therefore the system is implementation dominated. In other words, the

form of implementation becomes critically important, which is the primary reason for

this research to optimize the speed performance over area.

As mentioned above, one hallmark of realtime systems is the idea of timing

constraints. These timing constraints can also be thought of as deadlines that must

be met or the system fails. It can also be stated as, a design must satisfy certain

timing requirements. When a design does not satisfy timing requirements, it means

that the delay of the critical path is greater than the target clock period [21]. The

critical path delay is the largest delay between flip-flops. It is a combination of

several delays, including: clk-to-out delay, routing delay, setup timing, clock skew,

and so on [21]. To illustrate this, consider the example of an optical target tracking

system that is required to track twenty thousand targets simultaneously. Assuming

that the system takes its inputs from cameras which produce 30 frames per second;

the system must be capable of performing:

30 frames× 20, 000 targets = 600, 000 calculations/second

Anything less than this and the system will fail due to an inability to meet the timing

requirements. If the system is running on an FPGA that runs at a maximum speed

of 40MHz then the maximum time allowed per calculation would be:

40, 000, 000 cycles/second

600, 000 calculations/second
= 66.66̄ cycles/calculation
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Any design that is unable to do at least one calculation every 66.66̄ cycles would not

meet the real-time requirements.

2.3 The Kalman Filter

The Kalman Filter is a means to predict the future behavior of a system based

on past behavior. A system’s past behavior is, in a way, remembered and used

along with measurements to make the predictions of how the system might behave

in the future. According to [13] the reason that tools such as the Kalman Filter are

useful to a designer is because virtually all systems are non-deterministic. In other

words, few if any systems are devoid of randomness or stochastic behavior. Whether

a system inherently contains stochastic processes or the environment that may act

upon a system is itself stochastically governed it inevitably is non-deterministic [13].

According to Maybeck ”When considering system analysis or controller design, the

engineer has at his disposal a wealth of knowledge derived from deterministic system

and control theories.” He goes on to say:

There are three basic reasons why deterministic systems and control the-
ories do not provide a totally sufficient means of performing this analysis
and design. First of all, no mathematical model is perfect...A second
shortcoming of deterministic models is that dynamic systems are driven
not only by our own control inputs, but also by disturbances which we can
neither control nor model deterministically...A final shortcoming is that
sensors do not provide perfect and complete data about a system [13].

It is naive and often inadequate to assume that a designer can have perfect control

of all of a systems parameters as well as the environment acting upon it [13]. This

is why the Kalman filter, an optimal linear estimator, has become so important and

widespread in the technology of today. The Kalman filter takes inaccurate, incom-

plete, and noisy data combined with environmental disturbances beyond a designers

control and over time develops an optimal estimate of desirable quantities.

2.3.1 Historical Perspective. Historically the Kalman filter owes its origins

to a time long preceding that of Rudolf Emil Kalman, the coinventor of the Kalman
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filter. The date was 1 January 1801 when an astronomer by the name of Giuseppe

Piazzi discovered Ceres (a dwarf planet located in the Solar Systems asteroid belt).

He tracked the new planet for several days before illness interrupted his observations.

After reporting his discoveries other astronomers were forced to wait due to solar

glare before attempting themselves to find Ceres [10]. Attempts to locate it were

unsuccessful and it proved too difficult for them to predict its exact position. To

locate Ceres, Carl Friedrich Gauss, a mere 24 years old at the time, developed a

method called least-squares analysis and successfully predicted the position of Ceres

using this method [2]. The method of least-squares analysis is an early example of

an estimator that estimates the state of a dynamic system from incomplete and noisy

measurements just as the Kalman filter does. However, it was R. E. Kalman who

developed and proved the Kalman filter is an optimal system-state estimator that

minimizes the estimated error covariance [21].

2.3.2 Applications of the Kalman Filter. The Kalman filter is an estimation

tool which has been applied over a wide variety of disciplines. Key applications of

the Kalman filter are inertial navigation, sensor calibration, radar tracking, manufac-

turing, economics, signal processing, freeway traffic modeling, and target tracking in

general [6].

2.4 Characterization and Implementation of the Kalman Filter

This section discusses the Kalman filter equations in detail and then relates those

equations to the Matlabr equations used as the basis for the VHDL implementation.

2.4.1 Preliminary Definitions.

1. a priori: knowledge that is independent of experience.

2. a posteriori: knowledge that is dependent on experience.

The Kalman Filter attempts to estimate the state x ∈ Rn of a discrete time

controlled process, where x is the state which is contained in the set of all reals and
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is of dimension n [21]. The dimension could be the x, y on a coordinate plane or the

number of variables involved in describing the state of a target (e.g. position, and

temperature).

2.4.2 Equations and Explanations. The Kalman filter estimates the state of

a discrete-time controlled process governed by the linear stochastic difference equation

2.1 [21].

xk = Axk−1 + Buk−1 + wk−1 (2.1)

In Equation 2.1 the n × n matrix A relates the state x at the previous time step

k−1 to the current state of x. That is to say, because we assume a linear relationship

between xk and xk−1 the relationship can be defined as xk = Axk−1 in the absence of

a driving function Buk and process noise wk [21]. It is important to note that in this

thesis it is assumed that A remains constant even though it is possible that it might

change with each time step [21].

In equation Equation 2.1 the n× l matrix B relates the control input u to the

state x [21]. For the Kalman filter used in this thesis there are no control inputs so

B and uk were ignored.

The process noise wk−1 is any internally occurring noise. That is, no system is

perfect and all systems suffer from internal noise. For example, if a Kalman filter were

to be made to predict the state of an electronic circuit the noise wk might be voltage

fluctuations inside the circuit due to imperfections caused during the manufacturing

process. It is important to remember that for the Kalman filter w is assumed to be

white noise with a normal probability distribution.

p(w) ∼ N(0, Q) (2.2)

If these assumptions are not true for any particular system then the Kalman filter

becomes less than optimal.
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The system measurement equation is

zk = Hxk + vk (2.3)

where

z ∈ Rm (2.4)

The m×n matrix H in measurement equation 2.3 relates the state x to the measure-

ment zk. As with A from equation 2.1 H is assumed to be constant even though in

practice it might change with each time step [21]. Any sensor hooked up to a system

will have inherent noise included in its signals. Random variable vk represents the

measurement noise [21].

p(v) ∼ N(0, R) (2.5)

As with the process noise, the measurement noise is assumed to be white with a

normal probability distribution.

Equations 2.2 and 2.5 have process noise covariance Q and measurement noise

covariance R respectively.

When deriving equations for the Kalman filter the goal is to find an equation

that computes an a posteriori state estimate x̂k as a linear combination of an a priori

estimate x̂−k as shown below in equation 2.6 [21].

x̂k = x̂−k + K(zk −Hx̂−k ) (2.6)

Part of equation 2.6, (zk−Hx̂−k ) is called the measurement innovation, or the residual.

This measures the difference between the actual measurement zk and the predicted

measurement Hx̂−k . Any part of an equation seen with a ”hat”, e.g. x̂, represents an

estimate.

What makes the Kalman filter optimal is the calculation of the value K. This

value is called Kalman gain or blending factor. This was derived to minimize the

9



Figure 2.1: Discrete Kalman filter cycle. The time update projects the current state
estimate ahead in time. The measurement update adjusts the projected estimate by
an actual measurement at that time [21].

Table 2.1: Discrete Kalman filter time update equations

x−k = Axk−1 + Buk (2.8)

P−
k = APk−1A

T + Q (2.9)

a posteriori error covariance [21]. Detailed explanation or derivation of K is beyond

the scope of this thesis.

Kk = P−
k HT (HP−

k HT + R)−1 (2.7)

Where P−
k is the a priori estimate error covariance and Pk is the a posteriori estimate

error covariance [21].

The Kalman filter consists of two stages of equations. Figure 2.1 shows the

two stages commonly called the time update or predict stage and the measurement

update or correct stage. The time update equations can be seen in Table 2.1 and the

measurement update equations can be seen in Table 2.2 on page 11
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Table 2.2: Discrete Kalman filter measurement update equations

Kk = P−
k HT (HP−

k HT + R)−1 (2.10)

x̂k = x̂−k + K(zk −Hx̂−k ) (2.11)

Pk = (1−KkH)P−
k (2.12)

Figure 2.2: A complete picture of the operation of the discrete Kalman filter [21].
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Listing II.1:

1 for k=2: t_last
2 x(:,k)= phi*x(:,k-1);
3 P(:,:,k)= phi*P(:,:,k-1)*phi ’ + Qd;
4 A(:,k)= H*P(:,:,k)*H’ + R;
5 K=P(:,:,k)*H’*( inv(A(:,k)));
6 residual(:,k)= z(:,k) - H*x(:,k);
7 x(:,k)= x(:,k) + K*residual(:,k);
8 P(:,:,k)= P(:,:,k) - K*H*P(:,:,k);
9 sigma_f(:,k)=sqrt(diag(P(:,:,k)));

10 KK(:,k)=K;
11 end % End time loop

2.4.3 Kalman Filter Matlabr Code. The code seen in Listing II.1 is de-

signed to produce data that can be plotted using Matlabr . The data is stored in

large matrices; this was done solely to allow for the generation of data plots and is

not part of the Kalman filter algorithm. A real-world implementation of a Kalman

filter, such as that described in this thesis, does not have to store information beyond

the previous estimation. The Matlabr variable x(:, k) stores k column vectors for the

Kalman filter equations variable x̂k and x̂−k . That is, the estimate x for both the time

update stage as well as the measurement update stage.

2.4.3.1 Matlabr Code Association with Kalman Filter Equations.

The following section contains a comparison and association of the Matlabr code

and equations for the Kalman filter. Table 2.3 on page 13 shows how the equations

for the Kalman filter are paired up with those from the Matlabr code. Note, as shown

in Listing II.2, the Kalman gain K is calculated in two separate calculations.

Listing II.2:

1 A(:,k)= H*P(:,:,k)*H’ + R;
2 K=P(:,:,k)*H’*( inv(A(:,k)));

This is also true for the system state x̂k calculated during the measurement

update stage(see Listing II.3).
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Listing II.3:

1 residual(:,k)= z(:,k) - H*x(:,k);
2 x(:,k)= x(:,k) + K*residual(:,k);

Table 2.3: Comparison: Matlabr code and Kalman filter equations

x−k = Axk−1 + Buk ⇐⇒ x(:, k) = phi ∗ x(:, k − 1)

P−
k = APk−1A

T + Q ⇐⇒ P (:, :, k) = phi ∗ P (:, :, k − 1) ∗ phi′ + Qd

Kk = P−
k HT (HP−

k HT + R)−1 ⇐⇒ K = P (:, :, k) ∗H ′ ∗ (inv(A(:, k)))

x̂k = x̂−k + K(zk −Hx̂−k ) ⇐⇒ x(:, k) = x(:, k) + K ∗ residual(:, k)

Pk = (1−KkH)P−
k ⇐⇒ P (:, :, k) = P (:, :, k)−K ∗H ∗ P (:, :, k)

13



III. Approach

3.1 Chapter Overview

This chapter contains the problem definition, the goals and hypothesis, and a

discussion on number representation format. It also discusses the design process

used to develop the VHDL Kalman filter implementations including behavioral, and

Register Transfer Level (RTL) models.

3.2 Problem Definition

This thesis characterizes a set of real-time implementation requirements of a

Kalman filter for implementation on an FPGA and discusses various means to opti-

mize the implementation via scalable architectures.

3.2.1 Goals and Hypothesis. The primary goal of this design is to maximize

speed/throughput as much as possible. As a secondary goal, minimization of area

and power, will also be considered.

In general, the requirement for a digital system must be specified and categorized

in order to determine hardware requirements. In other words, system requirements

must be paired up with appropriate hardware capabilities. There are many different

FPGAs with varying capabilities for a designer to consider. Which FPGA is best

suited for a particular design depends on the specific design specifications. System

specifications can include many different requirements. For example, power, speed

and area may need to be balanced in a weighted fashion to achieve the required

results. How to achieve this is the question. Power speed and area are all intertwined,

changing one will inevitably cause changes to another. For example, as area increases,

often times power requirements will also increase as a result of the increased number

of transistors being utilized. If a low power design is required it may be necessary

to make speed concessions that may also result in a design requiring less area. It

is considerations such as these that determine the most appropriate combination of

implementation and hardware to satisfy design requirements.
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The traditional VLSI design process is costly both in time and money. Because

of this it also involves a tremendous amount of risk.

The traditional design process includes:

• Design

• Verification and testing

• Prototyping

Each of these steps may have to be visited several times as the process is iterative

in nature. As the design process moves forward problems can force designers to

backtrack in the design process which will always add to the total cost. Tremendous

man-hours are required along with an enormous associated cost.

This thesis proposes a system that allows a designer to greatly reduce the time

needed for design, verification, and testing; as such, the risk factor is also reduced

tremendously. In terms of the case study, specifications for a design requiring or

benefiting from the use of a Kalman Filter can be entered into the system and an

efficient, and optimized hardware description suitable for implementation on an FPGA

or Application-Specific Integrated Circuit (ASIC) is automatically generated.

3.3 Number Representation Format

With respect to the design of the Kalman filter in VHDL it is necessary to

choose a method of representing both the integer and fractional portion of a number.

Floating point is an option that provides a large dynamic range but with relatively

poor precision. After examination of the Matlabr code it was decided that dynamic

range [14] was not the main issue and that an alternative to floating point could

prove to be easier for implementation purposes as well as provide advantages in speed

of computation. Fixed point was chosen due to the precision it allows for and the

speed benefits it affords. If an application can be done in fixed-point arithmetic, it

will probably run faster than in any other format because fixed point is the natural

language of the processor [14].
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Traditionally the choice would have to be made as to where to place the radix;

how many bits to the right and left of the radix would be required. The approach of

this thesis to design allows a designer to make this kind of decision at the end of the

design process after testing gives further insight into the most appropriate format.

Using Java code, abstraction of the Kalman filter internal parameters is performed,

thus allowing those abstracted parameters to be defined by the designer whenever

most convenient or practical. For initial testing purposes all numbers are represented

by a 32-bit fixed-point binary number, and for secondary testing a 64-bit fixed-point

binary representation is used. The 32-bit fixed-point representation uses 15 bits for

the integer portion, 16 bits for the fractional portion and one bit for the sign. The

15-bit integer can display numbers as large as 32,767 and as small as -32,768. The

fractional 16 bits can display a fraction as small as 1.52587890625× 10−5 or as large

as 9.999847412109375 × 10−1. The 64-bit fixed-point representation uses 31 bits for

the integer portion, 32 bits for the fractional portion and one bit for the sign. The

31-bit integer can display numbers as large as 232 or 2, 147, 483, 647 and as small as

−232 + 231 or −2, 147, 483, 648. The fractional 32 bits can display a fraction as small

as 2.32830643654 × 10−10 or as large as 9.999999997671694 × 10−1. Table 3.3 on

page 16 shows the format used for number representation. In the case of the 32-bit

representation, bits 0 through 15 are used to represent the fractional portion of the

number, bits 16 through 30 represent the integer, and bit 31 is the sign bit.

Table 3.1: Number representation formats
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If additional bits were available for the fraction, the more accurately a decimal

fraction can be represented in binary. Different applications may require different

levels of accuracy. This research provides a means for a designer to implement a

Kalman Filter that has been optimized for speed, power, and area that also maintains

some minimum level of accuracy as specified by the designer.

3.4 Design Optimization

Design optimization can be accomplished in several ways depending on what

type of optimization is required. For the Kalman filter design described in this thesis,

optimization for speed is most critical. Parallelization and pipelining are two methods

used to help create a hardware design that fulfills this requirement. This section

discusses various optimizations and their interrelationship. These optimizations or

means of optimization are discussed in order of priority as they relate to this thesis.

3.4.1 Optimization by Parallelization. Parallelization in hardware is the

simultaneous processing of data. In modern day processors, such as the Pentium line

of processors, all instructions given to the computer are processed in series or one-at-

a-time. This means that even when performing calculations that lend themselves well

to parallelization they cannot take advantage of this. This is one reason why custom

designs such as the one described in this thesis can be much faster, and much more

efficient than a multipurpose microprocessor. The custom design allows the designer

to parallelize or simultaneously process data to the full extent allowed by an FPGA

or ASIC of a given capacity. Figure 3.4.1 on page 18 shows a small portion of the

Kalman filter algorithm flow where MMult is matrix multiplication, x− is the a priori

system state, x+ is the a posteriori system state, P− is the a priori estimate error

covariance, P+ is the a posteriori estimate error covariance, Qd is the process noise

covariance, H relates the state x to the measurement z, and phi relates the state

x at the previous time step k − 1 to the current state of x. Observe how multiple

arithmetic operations can be performed simultaneously or in parallel throughout the
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Figure 3.1: This figure shows a portion of the Kalman filter algorithm in flow chart
form. Parallelization can be observed in each cycle; multiplications are performed
simultaneously. Data dependency can also be observed; Operation 1 must complete
before Operation 2 can begin due to its dependency on x(:, k).

algorithm. It also demonstrates data dependencies; Operation 1 must complete before

Operation 2 can begin due to its dependency on x(:, k) being completed prior.

3.4.2 Optimization by Pipelining. Pipelining is a common method designers

have used to speed up sequential processing. Sequential processing, meaning the need

to run data in order, is unfortunately required by some algorithms. Pipelining is a

method commonly used to improve throughput of a system. Pipelining creates se-

quential processing stages that once completed allow the current data to be forwarded

to the next stage and new data to be brought in for processing. Pipelining, however,

is not always possible at a particular level of circuit abstraction but may be possible

at a lower or higher level. If a particular operation requires a computation such as

a multiply to be performed multiple times then that multiply can be pipelined. It

is important to remember that pipelining improves throughput, not response time.

Throughput is the total amount of work done in a given time and response time or

execution time is the time between the start and completion of a task [9].
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3.4.3 Optimization for Speed. Optimization for speed goes hand-in-hand

with the aforementioned optimization methods. However, depending on the type

of algorithm being implemented, pipelining may or may not improve performance.

If response time is to be optimized then a deep pipeline may actually hinder. For

example, if an algorithm is heavily sequential, that is to say order of computation

cannot be deviated from, pipelining may actually hinder performance. As a general

rule of thumb, faster circuits will require more parallelism, which in turn increases

area. This is the trad-off between speed and area: a faster circuit will require more

parallelism and therefore suffer an increase in area [12]. The symbiotic existence

between speed and parallelism unfortunately does not usually exist between speed

and area.

3.4.4 Optimization of Area. Optimization of area may be accomplished

in several ways. Resource sharing being the method that will be focused on in this

thesis. Resource sharing is the use of a resource by multiple processes. For example,

if two distinct processes both require a multiply of the same dimension then they can,

at different times, use the same multiplier. That is to say that a resource sharing

design may suffer the penalty of diminished throughput unless the operations are

mutually exclusive [12]. Although resource sharing allows for the reuse of hardware

it typically will also require a more complex control system. Resource sharing is only

useful if the increased control complexity results in a smaller area increase than if

the resource were simply cloned; this is usually the case. Some synthesis tools that

support resource sharing can automatically optimize a design by allowing mutually

exclusive operations to share resources. However, there is no guarantee that a tool

will do so, therefore, to guarantee resource sharing it is part of the RTL design for this

thesis; this allows for more flexibility when choosing a synthesis tool. As mentioned

above, as a general rule of thumb, faster circuits require more area.
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Table 3.2: Matrix position designators
i j k l
0 0 0 0
0 1 1 0
0 0 0 1
0 1 1 1
1 0 0 0
1 1 1 0
1 0 0 1
1 1 1 1

3.5 Behavioral Model of the Kalman Filter

One of the first steps towards a synthesizable design is to build a behavioral

model to help determine correct function of the Kalman filter in VHDL. A full RTL

model is difficult and time consuming to design and therefore verification of upper-

level behavior is most quickly and effectively done behaviorally.

3.5.1 Matrix Multiplication. Efficiently multiplying matrices is of paramount

importance for any Kalman Filter implementation. The vast majority of mathemat-

ical operations are performed on matrices. Determination of an efficient method for

multiplying matrices in VHDL for behavioral coding is presented next. The first step

was to build a table that shows the positions of the individual parts of the matrices

that are multiplied.


 A00 A01

A10 A11


×


 B00 B01

B10 B11


 =


 C00 C01

C10 C11


 (3.1)

Table 3.2 is used to help determine how to set up the nested-for-loops such as

those seen in Listing III.1. The position variables i, j, k, and l represent the matrix
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C00 = A00 ×B00 + A01 ×B10 (3.2)

C01 = A00 ×B01 + A01 ×B11 (3.3)

C10 = A10 ×B00 + A11 ×B10 (3.4)

C11 = A10 ×B01 + A11 ×B11 (3.5)

position designators; e.g. A00 ⇔ Aij where i = 0 and j = 0 and B00 ⇔ Bkl where

k = 0 and l = 0.

Listing III.1:

1 --*****************************************

2 --* Function to multiply two 2x2 matrices *

3 --*****************************************

4 Function matrix_mult_2x2 (A,B: matrix_2x2)

5 Return matrix_2x2 Is

6 Variable result : matrix_2x2;

7 Variable func_temp1 : Signed (63 Downto 0) :=

8 (OTHERS => ’0’);

9 Begin --Begin function code.

10 For i In 1 to 2 Loop

11 For L In 1 to 2 Loop

12 For j In 1 to 2 Loop

13 func_temp1 := (A(i,j)*B(j,L)) + func_temp1;

14 End Loop;

15 result(i,L) := func_temp1 (47 Downto 16);

16 func_temp1 :=

17 (OTHERS => ’0’);

18 End Loop;

19 End Loop;

20 Return result;

21 End matrix_mult_2x2;

If matrices A and B are traversed left to right from equation 3.2 through

equation 3.5 and the position values recorded such as in Table 3.2 on page 20 this
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Listing III.2:

1 func_temp1 := (A(i,j)*B(j,L)) + func_temp1;

information can be used to determine the for-loops. Table 3.2 shows that for-loop

variables j and k are identical and therefore one of them can be left out leaving three

nested for-loops, one nested inside the other. Determining the order of the for-loop

variables is a simple process. Assuming that column k is chosen to be left out since it

is identical to column j then the for-loop variable i and j are associated with A and

j and L are associated with B. This determines the order of the for-loop variables in

the code segment seen in Listing III.2.

3.5.2 VHDL Types. Numeric std is the type used, as signed numbers are re-

quired. Numeric std is the standard VHDL synthesis package along with numeric bit.

Numeric std is defined as unconstrained arrays of std logic elements:

Listing III.3:

1 Type unsigned is array (natural range <>) of std_logic;

2 Type signed is array (natural range <>) of std_logic;

Using the numeric std type is not always required, as many VHDL compilers/synthe-

sizers can synthesize other types such as std logic. However, use of numeric std helps

to ensure synthesis.

3.5.3 Project Code. This section presents a small fraction of the behavioral

VHDL representation of the Kalman filter.

3.5.3.1 Behavioral Model. The behavioral model uses 32-bit fixed-

point binary numbers. The numbers are broken up into a 16-bit integer portion and

a 16-bit fractional portion. The goal is to achieve results that at least approximate

those found using the Kalman filter Matlabr simulation.
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Table 3.3: Constant/variable approximations
Constant/Variable Matlabr Representation Fixed-Point Representation

dt 0.1000 0.099908447265625
R 10.0000 10.0000

G

(
0.0000
1.0000

) (
0.0000
1.0000

)

B

(
0.0000
1.0000

) (
0.0000
1.0000

)

Bd

(
0.0050
0.1000

) (
0.0049896240234375
0.099908447265625

)

H
(

1.0000 0.0000
) (

1.0000 0.0000
)

F

(
0.0000 1.0000
0.0000 0.0000

) (
0.0000 1.0000
0.0000 0.0000

)

phi

(
1.0000 0.1000
0.0000 1.0000

) (
1.0000 0.099908447265625
0.0000 1.0000

)

Qd

(
0.0333 0.5000
0.5000 10.0000

) (
0.033294677734375 0.5000

0.5000 10.0000

)

x(1)

(
1.0000
1.0000

) (
1.0000
1.0000

)

P(1)

(
0.2500 0.0000
0.0000 0.2500

) (
0.2500 0.0000
0.0000 0.2500

)

Due to the limitations of having a fixed number of bits to represent the fractional

portion of the numbers for the behavioral model, the results are not exact duplicates

of the Matlabr simulation results. However, the results are very close approximations.

There are several constants and variables that must be set before simulation of the

VHDL Kalman Filter. These constants and variable initializations are taken from the

Matlabr Kalman filter code. To see the fixed point representations of these constants

and variable initializations see 3.3.

The behavioral model consists of 11 mathematical functions including various

matrix manipulation algorithms. It also consists of various constants which are pre-

defined in the Matlabr code. Here are three examples of behavioral code used for

matrix manipulation:
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Listing III.4:

1 --************************************

2 --* Function to add two 2x2 matrices *

3 --************************************

4 Function matrix_add_2x2 (A,B: matrix_2x2)

5 Return matrix_2x2 Is

6 Variable result : matrix_2x2;

7 Begin --Begin function code.

8 For i In 1 to 2 Loop

9 For j In 1 to 2 Loop

10 result(i,j) := A(i,j)+B(i,j);

11 End Loop;

12 End Loop;

13 Return result;

14 End matrix_add_2x2;

15

16 --********************************************

17 --* Function to add a scalar to a 2x2 matrix *

18 --********************************************

19 Function matrix_add_int_2x2 (A: matrix_2x2 ;

20 B: Signed (31 Downto 0))

21 Return matrix_2x2 Is

22 Variable result : matrix_2x2;

23 Begin --Begin function code.

24 For i In 1 to 2 Loop

25 For j In 1 to 2 Loop

26 result(i,j) := A(i,j)+B;

27 End Loop;

28 End Loop;

29 Return result;

30 End matrix_add_int_2x2;

31

32 --************************************************

33 --* Function to multiply a 2x2 with a 2x1 matrix *

34 --************************************************
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35 Function matrix_mult_2x2_2x1 (A: matrix_2x2 ;

36 B: matrix_2x1)

37 Return matrix_2x1 Is

38 Variable result : matrix_2x1;

39 Variable func_temp1 : Signed (63 Downto 0) :=

40 (OTHERS => ’0’);

41 Begin --Begin function code.

42 For i In 1 to 2 Loop

43 For j In 1 to 2 Loop

44 func_temp1 := (A(i,j)*B(j))

45 + func_temp1;

46 End Loop;

47 result(i) := func_temp1 (47 Downto 16);

48 func_temp1 :=

49 (OTHERS => ’0’);

50 End Loop;

51 Return result;

52 End matrix_mult_2x2_2x1;

Figure 3.2 on page 26 shows the output for a test ran on the behavioral Kalman

filter with inputs generated by the Matlabr Kalman filter code. All test inputs

into the behavioral VHDL simulation resulted in outputs that closely approximate

outputs generated by the Matlabr Kalman filter code. Table 3.4 on page 26 shows

the Matlabr inputs and outputs along side their respective VHDL model inputs and

outputs. The VHDL model inputs are different due to the translation from decimal to

fixed-point binary. The results from the VHDL model are very close approximations

to those calculated in Matlabr . This small difference can be attributed to the

difference in the number of bits used to represent values inside each model.

3.5.4 The Reciprocal Function. It is necessary to calculate the reciprocal

(1/A) as part the calculation of K which is the Kalman gain or blending factor [21],

see Listing III.5. Note, A is not a fundamental part of the Kalman Filter; it exists

only as a sub-calculation of K.
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Figure 3.2: Behavioral Model Simulation For Kalman Filter

Table 3.4: Test results for behavioral model (outputs are for position)
Matlabr Input Matlabr Output Model Input Model Output

1.9934 1.1248 1.9933929 1.1247863
7.0719 1.5157 7.0718994 1.5156707
4.0100 1.9602 4.0099945 1.9602203
0.8519 2.0217 0.8518981 2.0217437

Listing III.5:

1 K=P(:,:,k)*H’*( inv(A(:,k)));

A problem arises when performing division in binary. Without properly shifting

the decimal place to the left, the answer will not be correct. To achieve the correct

answer the dividend must be left-shifted by the number of bits that one wishes to

have to the right of the radix point. To see this in mathematical terms please refer

to equation 3.6.

x× 232

y × 216
= z × 216 (3.6)

The following example also illustrates this.

1

8
= 0.125 (3.7)

01.000000000000000000000000000000002

0000000000001000.00000000000000002

= 0000000000000000.00100000000000002

(3.8)
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In equation 3.8 the dividend is left-shifted by 32 places and the divisor is left-

shifted by 16 places. This results in an answer with a 16-bit fractional portion.

The location of the radix is actually only virtual. The division is done without the

computer having any sense of where the radix point is actually located.

3.6 Top Level Schematic

The top level schematic of the design can be seen in figure 3.6. This section

breaks down the design process into its constituent pieces and discusses each of those

pieces.

3.6.1 The Kalman Filter Equations. First, a close look at the Matlabr

equations that describe the Kalman filter.

A close examination of the Matlabr equations made it apparent that at least

this particular implementation of the Kalman filter is highly order dependent. That is,

a majority of steps, i.e. lines one through eight in Figure 3.3 on page 29, are dependent

on previous steps. For example, in the following listing lines two and three cannot

start until line one has finished. Although it is true that the majority of the Kalman

Listing III.6:

1 P(:,:,k)= phi*P(:,:,k-1)*phi ’ + Qd;
2 A(:,k)= H*P(:,:,k)*H’ + R;
3 K=P(:,:,k)*H’*( inv(A(:,k)));

filter algorithm requires sequential processing there is room to process portions of the

code out of order. The algorithm is broken up into its constituent operations. These

operations include: addition, subtraction, multiplication, and reciprocal function.

In Figure 3.3 on page 29 each calculation cycle involves at least one constituent

operation. For example, calculation cycle 1, which encompasses calculation numbers

1 and 2, each perform one multiply. Because the two multiplies in calculation cycle

1 are independent, in the sense that the input of one does not depend on the output

of the other, they can be calculated at the same time. Figure Figure 3.3 on page 29
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Listing III.7:

1 x(:,k)= phi*x(:,k-1);
2 P(:,:,k)= phi*P(:,:,k-1)*phi ’ + Qd;
3 A(:,k)= H*P(:,:,k)*H’ + R;
4 K=P(:,:,k)*H’*( inv(A(:,k)));
5 residual(:,k)= z(:,k) - H*x(:,k);
6 x(:,k)= x(:,k) + K*residual(:,k);
7 P(:,:,k)= P(:,:,k) - K*H*P(:,:,k);

shows the order of calculation for all constituent calculations in the Kalman filter

algorithm. This can also be seen in flow-chart form in Figure 3.5 on page 34. It had

to be decided how many calculations to allow in parallel at any one time. The more

parallel calculations that can be done the fewer clock cycles overall that would be

required to complete one iteration of the Kalman filter. Hardware area becomes a

concern as any parallel calculation will require additional area unless the calculations

are of a different nature. That is, i.e. if two identical multiplications are to be done

in parallel then double the hardware is required verses if the multiplications were to

be done sequentially. In contrast, if an addition and multiply are required for any

particular design then there is not an area penalty for allowing the calculations to

occur in parallel except for possibly controller overhead. In general, if two calculations

require different hardware then there are not any penalties for performing them in

parallel except for possible controller overhead.

3.6.1.1 Development of Figure 3.3. Figure 3.3 on page 29 was used to

develop the final RTL model; it stems from an examination of the equations seen in

Listing III.7.
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The following references to equation number(s) (EN) refer to the line numbers in

Listing III.7. Already completed calculations or calculations completed in a previous

step are designated by surrounding them with square brackets [ ].

Equation

phi ∗ x(:, k − 1)

EN 1, consists of one multiply and can therefore be completed in one calculation

cycle. It is designated to be started and completed in calculation cycle 1. The next

equation

phi ∗ P (:, :, k − 1) ∗ phi′ + Qd

EN 2, contains three constituent calculations and therefore requires three calculation

cycles to complete. It was designated to be started in calculation cycle 1. Calculation

cycle 1 is

phi ∗ x(:, k − 1)

phi ∗ P (:, :, k − 1)

Due to data hazards, at most two parallel calculations are performed at any one time.

Because EN 3 and EN 4 require EN 2 to be completed before they can start, cal-

culation cycle 2 continues the calculation of EN 2 as well as beginning the calculations

for EN 5. Calculation cycle 2 is

[phi ∗ P (:, :, k − 1)] ∗ phi′

H ∗ x(:, k)

Calculation cycle 3 finishes calculating both EN 2 as well as EN 5. Calculation

cycle 3 is

P (:, :, k) = [phi ∗ P (:, :, k − 1) ∗ phi′] + Qd

residual(:, k) = z(:, k)− [H ∗ x(:, k)]
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Calculation cycle 4 begins the calculation of EN 3 and therefore EN 4 as well.

This is due to the fact that EN 3 is a sub-calculation of EN 4. Calculation cycle 4 is

P (:, :, k) ∗H ′

H ∗ P (:, :, k)

Calculation cycle 5 consists of only a single calculation; no parallel calculations

could be performed at this stage. Calculation of EN 3 is continued. Calculation cycle

5 is

[H ∗ P (:, :, k)] ∗H ′

Calculation cycle 6 is a special case requiring extra clock cycles to accommodate

the reciprocal calculation. In this calculation cycle, the special case of performing

two constituent calculations in series is addressed. First, the following calculation is

performed

[H ∗ P (:, :, k) ∗H ′] + R

then immediately following the completion of this calculation the reciprocal or inverse

is calculated.

inv([H ∗ P (:, :, k) ∗H ′ + R])

As with calculation cycle 5, calculation cycle 7 consists of only a single calcula-

tion. Calculation of the EN 4 is finished. Calculation cycle 7 is

K = [P (:, :, k) ∗H ′] ∗ [(inv(A(:, k)))]

Calculation cycle 8 begins calculation of EN 6 and EN 7 or the measurement

update stage, see Figure 2.2 on page 11. Calculation cycle 8 is

[K] ∗ [residual(:, k)]
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[K] ∗ [H ∗ P (:, :, k)]

Calculation cycle 9 completes calculation of EN 6 and EN 7 and also completes

one iteration of the Kalman filter algorithm. Calculation cycle 9 is

x(:, k) = [x(:, k)] + [K ∗ residual(:, k)]

P (:, :, k) = [P (:, :, k)]− [K ∗H ∗ P (:, :, k)]

Figure 3.4 on page 30 shows the timing for the start and finish of each cal-

culation. Note that the calculation for A from Listing III.7 is actually just a sub-

calculation of K and therefore does not appear in 3.4. Also, K appears twice in

Listing III.7 because portions of K are calculated simultaneously; this occurs in cal-

culation cycle 4.

3.6.2 The Controller. The controller is the brains of the entire system. It

coordinates the various other components to register their values during certain clock

cycles. Among other things, the controller’s job is to control the flow of data into

and out of the memory unit. The controller is a one-hot encoded state machine with

nine states, s1 through s9 (0000000012 through 10000000002). State changes occur

based on the value of an internal counter that increments and resets based on the

clock and conditions within the states. Listing III.8 shows a portion of the VHDL

code including state s1.

Listing III.8:

1 Architecture behav Of controller Is --This controller will ...

use one -hot encoding

2

3 Type state_type Is (s1, s2, s3, s4, s5, s6, s7, s8, s9);

4 Attribute enum_encoding: string;

5 Attribute enum_encoding of state_type: type is

6 "000000001 000000010 000000100 000001000 000010000 ...

000100000 001000000 010000000 100000000";
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Figure 3.6: Top Level diagram of the Kalman filter VHDL model.

7

8 Signal CS, NS : state_type;

9 Signal counter_out : signed (4 Downto 0);

10

11 Begin

12

13 --***************** Begin comb_proc Process...

****************************************

14

15 comb_proc: Process (clk , reset)

16

17 Variable counter : signed (4 Downto 0) := "00000";

18

19 Begin

20

21 If (reset = ’1’) Then

22 counter := "00000";

23 mem_control <= "0000";

24 ALU_1 <= "0011";

25 ALU_2 <= "0011";
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26 mux_1 <= ’1’;

27 mux_2 <= ’1’;

28 reciprocal_reset <= ’1’;

29 reciprocal_load <= ’0’;

30 reciprocal_mux_control <= ’0’;

31 CS <= S1;

32 NS <= S1;

33

34 Elsif (clk ’event And clk = ’1’)Then

35 CS <= NS;

36 counter_out <= counter;

37 counter := counter + 1;

38

39 Case CS Is

40 When S1 =>

41

42 mem_control <= "0000";

43 ALU_1 <= "0011";

44 ALU_2 <= "0011";

45 mux_1 <= ’1’;

46 mux_2 <= ’1’;

47 reciprocal_reset <= ’1’;

48 reciprocal_load <= ’0’;

49 reciprocal_mux_control <= ’0’;

50

51 If (counter = "00010") Then

52 output_reg_load <= ’1’;

53

54 Elsif (counter = "00011") Then

55 NS <= S2;

56 output_reg_load <= ’0’;

57

58 Elsif (counter = "00100") Then

59 mem_control <= "1001";

60 ALU_1 <= "0011";
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61 ALU_2 <= "0011";

62 mux_1 <= ’1’;

63 mux_2 <= ’1’;

64 reciprocal_reset <= ’1’;

65 reciprocal_load <= ’0’;

66 reciprocal_mux_control <= ’0’;

67

68 counter := "00000";

69

70 End If;

71

72 When S2 =>...

3.6.3 Memory Unit. The memory unit is a combination RAM and ROM

that allows for both hard-coded constants and writable variables to exist inside a

single unit. The memory uses a four bit address to access data in chunks of four.

That is, each address effectively is associated with four data that are simultaneously

output on four separate buses. Each bus consists of four separate sub-buses that each

make up one of four components of a matrix. The way that this memory associates

an address with the data that is to be output makes it a unique and highly custom

memory. The memory has an asynchronous reset that returns all memory locations

to a default starting value. Every number is stored in the form of a 2 × 2 matrix

inside the memory.

Variables (matrix variables) are stored in six separate locations with each loca-

tion (registers) composed of four numbers. These location names and their associated

stored variables can be seen in Table 3.5 on page 38.

Constants are also stored in the form of a 2 × 2 matrix inside the memory.

These values represent various parameters of the Kalman filter and can be set by the

designer prior to compilation and synthesis. See Listing III.10 for an example of the
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Table 3.5: Memory locations and their associated stored variable.

reg 0 ⇐⇒ x
reg 1 ⇐⇒ P
reg 2 ⇐⇒ residual
reg 3 ⇐⇒ H × P
reg 4 ⇐⇒ K
reg 5 ⇐⇒ K ×H × P

signal assignments for a 32-bit example. See Listing III.9 for the input and output

ports. Also, see Listing III.11 for output assignments.

Listing III.9:

1 Entity mem Is

2 Generic(high_bit : natural := 31);

3 Port(clk , reset : In std_logic;

4 control : In signed (3 Downto 0);

5 in1_00 , in1_01 , in1_10 , in1_11 : In signed (high_bit ...

Downto 0);

6 in2_00 , in2_01 , in2_10 , in2_11 : In signed (high_bit ...

Downto 0);

7 A_00 , A_01 , A_10 , A_11 : Out signed (high_bit Downto 0);

8 B_00 , B_01 , B_10 , B_11 : Out signed (high_bit Downto 0);

9 C_00 , C_01 , C_10 , C_11 : Out signed (high_bit Downto 0);

10 D_00 , D_01 , D_10 , D_11 : Out signed (high_bit Downto 0));

11 End entity mem;

Listing III.10:

1 --K * H * P(:,:,k)

2 Signal reg5_00 : signed(high_bit Downto 0) := "...

00000000000000000000000000000000";

3 Signal reg5_01 : signed(high_bit Downto 0) := "...

00000000000000000000000000000000";

4 Signal reg5_10 : signed(high_bit Downto 0) := "...

00000000000000000000000000000000";

5 Signal reg5_11 : signed(high_bit Downto 0) := "...

00000000000000000000000000000000";...
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Listing III.11:

1 Elsif (clk ’event And clk = ’1’) Then

2 case control is

3

4 when "0000" => --1

5 A_00 <= phi_00;

6 A_01 <= phi_01;

7 A_10 <= phi_10;

8 A_11 <= phi_11;

9

10 B_00 <= reg0_00;

11 B_01 <= reg0_01;

12 B_10 <= reg0_10;

13 B_11 <= reg0_11 ;...

3.6.4 Arithmetic Logic Unit. The Arithmetic Logic Unit (ALU) is the por-

tion of the design that performs the actual calculations. The overall design consists of

two ALUs working in parallel. Each ALU is capable of performing one of three tasks:

matrix addition, matrix subtraction, and matrix multiplication. The matrix addition

and matrix subtraction are performed by adding or subtracting corresponding ele-

ments of the matrices. For two matrices of size m × n their addition or subtraction

produces an m×n matrix result. The matrix multiplication is accomplished as shown

in Figure 3.7 on page 40. Also see Figure 3.8 on page 40 for the matrix multiplication

process.

3.6.5 Newton-Raphson Reciprocal. The behavioral model of the Kalman

filter in VHDL is not required to synthesize; this allows for a simpler implementation.

As mentioned in Section 3.5.4 on page 25 it is only necessary to carefully bit shift

in order to achieve a correct outcome when performing the reciprocal. For synthesis

purposes an RTL description is required to not only allow for optimizations but to also
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Figure 3.7: Graphical representation of matrix multiplication.

[
A00 A01

A10 A11

]
×

[
B00 B01

B10 B11

]
=

[
C00 C01

C10 C11

]

C00 = A00 ×B00 + A01 ×B10

C01 = A00 ×B01 + A01 ×B11

C10 = A10 ×B00 + A11 ×B10

C11 = A10 ×B01 + A11 ×B11

Figure 3.8: 2× 2 matrix multiplication.

implement a synthesizable reciprocation function. The chosen method for reciproca-

tion is called Newton-Raphson Division. The Newton-Raphson division method lends

itself well to the special case of finding the reciprocal. There are several ways to per-

form division in digital designs. The methods can be classified as either a fast division

algorithm or a slow division algorithm. The slow division methods produce one digit

of the quotient per iteration while the fast division methods start with an estimate

and arrive at a quotient through multiple iterations of an algorithm; doubling the

number of correct bits each time through. In order to achieve maximum speed in the

overall design, the slow methods were not considered. The two methods considered

for fast division are the Newton-Raphson method and the Goldschmidt method. Both
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methods are iterative and require initial approximations. The Goldschmidt method

is a variation of Newton-Raphson that lends itself well to pipelining [4]. Because

pipelining of the divider is unnecessary due to data hazards, it was decided to use

the Newton-Raphson method which directly computes the reciprocal. Although the

method can be used to find the quotient, the process first finds the reciprocal of the

divisor and then multiplies the reciprocal by the dividend to produce the quotient.

This method converges to the reciprocal quadratically [11]. For the special case of:

1

H × P (:, :, k)×H ′ + R
(3.9)

the Newton-Raphson method is used to calculate the reciprocal which precludes the

final step of multiplying the reciprocal by the dividend.����� ����	��
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Figure 3.9: Top level schematic of the Newton-Raphson reciprocal VHDL model.

41



3.6.6 Newton-Raphson Division Algorithm. The Newton-Raphson iteration

is used to approximate the root of a non-linear function. For a well behaved function

f(x) let r be a root of f(x) = 0. Now let x0 be an estimate of r where r = x0 +h; h is

the difference between the estimate and truth. Assuming the estimate is sufficiently

accurate, it can be concluded that by linear approximation:

0 = f(r) = f(x0 + h) ≈ f(x0) + h′f(x0) (3.10)

And therefore,

h ≈ − f(x0)

f ′(x0)
(3.11)

It follows that

x0 + h ≈ x0 − f(x0)

f ′(x0)
(3.12)

and therefore

r ≈ x0 − f(x0)

f ′(x0)
(3.13)

r then becomes a new and improved estimate x1. In general this can be stated as:

xi+1 = xi − f(x0)

f ′(x0)
(3.14)

For the case of the reciprocal

f(x) =
1

x
−D (3.15)

f ′(x) = − 1

x2
(3.16)

Substituting equations 3.15 and 3.16 into equation 3.14 yields

xi+1 = xi −
1
xi
−D
1
x2

i

⇓

xi+1 = 2xi − x2
i D (3.17)
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Here is a simple example of this algorithm. For 1
2
, a relatively bad estimate of 0.3 can

be made. This means that D = 2 and xi starts at 0.3.

2(0.3)− (0.3)2(2) = 0.42

2(0.42)− (0.42)2(2) = 0.4872

2(0.4872)− (0.4872)2(2) = 0.49967232

2(0.49967232)− (0.49967232)2(2) = 0.49999978

As can be seen, in only four iterations the Newton-Raphson approximation to

the reciprocal problem of 1
2

rapidly approaches the correct answer. Even with the bad

first estimate the algorithm converges quadratically requiring relatively few iterations.

The maximum relative error for any k-bits-in m-bits-out ROM reciprocal table is the

result of the relative errors obtained between the actual reciprocal 1
x

and the lookup

table value of x for 1 ≤ x < 2. A table precision of α bits, i.e. α entries will always

yield a maximum error of at most 1
2α [1]. As a worst case example, if 16 bits of

accuracy is required in an initial estimate and only one bit is available for lookup

purposes then the worst case error will be 1
21 = 0.5. Using this worst case scenario in

the example above yields an initial estimate of 1.0. Therefore, D = 2 and xi starts at

1.0.

2(1.0)− (1.0)2(2) = 0

2(0)− (0)2(2) = 0

As can be seen, the equations do not converge. At least two bits are required when

calculating the initial estimate in order to get convergence. As another example, if

two bits are available to calculate or lookup the initial estimate then the worst case

error will be 1
22 = 0.25. Once again, using the example from above; D = 2 and xi

starts at 1.

2(0.75)− (0.75)2(2) = 0.375
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2(0.375)− (0.375)2(2) = 0.46875

2(0.46875)− (0.46875)2(2) = 0.498046875

2(0.498046875)− (0.498046875)2(2) = 0.499992370606

2(0.499992370606)− (0.499992370606)2(2) = 0.499999999884

As can be seen, in order to achieve at least the same level of precision as seen in the

first example, one more iteration is required. Note, with the extra iteration, the level

of precision of the last example exceeds that of the first.

3.6.7 Initial Estimate. The number of iterations required to converge to an

acceptable answer using the Newton-Raphson reciprocal algorithm described above

depends on the accuracy of the approximation [5]. Two algorithms were tested for

calculating the initial estimates. The first algorithms tested is Equation 3.18.

D−1
stored =

1

D′ + 2−M−1
+ 2−M−2 (3.18)

Where, D′ = [1.d1d2...dM ] and (M + 1) is the accuracy in bits of the initial approxi-

mation [5]. Despite providing accurate estimates for the Newton-Raphson reciprocal

function the second algorithm tested provided even greater accuracy. The algorithm

chosen for generating estimates for the Newton-Raphson reciprocal can bee seen in

Equation 3.19.

C−1
stored =

1

(2+ C′
2α−1 )+ 1

2α )

2

(3.19)

Where C ′ = [d1d2...dM ]; i.e. D′ is the address into the memory and the first eight bits

after the radix of the normalized number for which the reciprocal is being calculated.

The number of bits contained in C ′ is called α. Eight bits were chosen for C ′ to keep

the size of the ROM as small as possible while maintaining the desired accuracy. The

eight bit address into the ROM corresponds to a ROM with 256 entries.
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3.6.8 Newton-Raphson Hardware Implementation. The top-level view of the

hardware implementation of the Newton-Raphson reciprocal can be seen in Figure 3.9

on page 41. The Newton-Raphson reciprocal only calculates the reciprocal for a single

number and not an entire matrix. As can be seen, it is broken up into three main

stages:

1. Preliminary sign checking and normalization.

2. Approximation lookup in ROM.

3. Iterative calculations.

The following sub-sections contain explanations of the three stages mentioned above.

3.6.8.1 Preliminary Sign Checking and Normalization. The first step,

at the input point, is to check to see if the number x for which you want to know

the reciprocal 1
x

is positive or negative. If the number is negative then a flag is set to

later indicate that the number is negative. If the number was negative then it is made

positive by taking the two’s complement. Finally the number must be normalized to

produce a number x where 1 ≤ x < 2 which is required for approximation lookup in

the lookup table. Normalization is done by shifting the number either left or right.

For example, the 8-bit number 0100.10002 is normalized by right shifting by two bits

thus producing 0001.00102. A direction bit for de-normalizing is set as well as the

shift quantity value. The direction bit indicates the direction of the original shift and

the shift quantity designates how many bits to shift.

3.6.8.2 Getting the Estimate: Lookup-Table. The normalized value is

then passed on to the ROM as well as the Multiplier. The ROM uses the first eight

bits from the right side of the radix of the normalized value as an address into the

ROM. The approximation to the reciprocal is passed through a multiplexor and into

a register. It is at this point that the iterative portion of the algorithm begins.
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3.6.8.3 Iterative Portion. The iterative portion performs:

xi+1 = 2xi − x2
i D

Where D is the denominator and xi is the current estimate for the reciprocal. Three

iterations of the above equation are performed producing the reciprocal in its nor-

malized form. At this point it is necessary to de-normalize the number by shifting

the appropriate direction by the appropriate number of bits. If the sign bit, set in

the preliminary sign checking and normalization portion, indicates the number was

negative a two’s complement conversion is performed and the final output is ready.

3.7 Two Dimensional Implementation

The Kalman filter design discussed previously is a one-dimensional Kalman

filter. That is, linear position is input into the filter and an estimate of the linear

position and linear velocity is output. The number representing the velocity has a

magnitude represented by the absolute value of the number and a direction indicated

by the sign of the number.

For target tracking purposes, a one dimensional Kalman filter would be of lim-

ited utility. However, combining two filters together and appropriately combining

the velocities produces an efficient real-world position and velocity estimator of much

greater utility.

3.7.1 Combination of Two Linear Filters. A two-dimensional Kalman filter

is created by combining two one-dimensional filters together. Each filter takes as

input either the x coordinate or the y coordinate from a cartesian plane. Each of the

Kalman filters output a separate position and velocity. The position value represents

where along the associated axis the target is located. The velocities must be combined

using Equation 3.20.

velocity =
√

v2
x + v2

y (3.20)
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Equation 3.20 shows that the combined velocities of the one-dimensional Kalman

filters is equal to the square-root of the sum of the squares; Pythagorean’s theorem.

3.7.1.1 Hardware Implementation. Implementing equation 3.20 re-

quires three main steps:

1. Squaring of the one-dimensional velocities.

2. Addition of the squares.

3. Taking the square root.

In VHDL, multiplication is considered a basic operator and is part of the VHDL

synthesis package numeric std. Addition, likewise, is also include in numeric std.

Neither of these operators require special programming in order to be synthesizable.

However, the square-root operator is not part of the numeric std synthesis package

and therefor presents a designer with the difficult task of implementation.

Figure 3.10: Number of iterations versus starting approximation.
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Considering the requirement of this thesis to produce fast, small circuits, a

square-root method using the Newton-Raphson method similar to that used to find

the reciprocal is implemented. The iterative equation for finding the reciprocal of the

square-root is [8]:

xi+1 =
xi(3−Dx2

i )

2
(3.21)

Where D is the number for which it is desired to find the square root; i.e. 1/
√

D.

As mentioned above, Equation 3.21, finds the reciprocal of the square-root. In order

to find the square-root from its reciprocal it is required to multiply by D.

1√
D

D =
√

D

As with finding the reciprocal, the initial estimate will, in part, determine the

number of iterations of equation 3.21 that must be performed to achieve a desired

accuracy. Figure 3.10 on page 47 shows approximately how many iterations of Equa-

tion 3.21 are required to achieve 53 bits of accuracy [16]. In the case of the two

dimensional Kalman filter, excess clock cycles that arise from calculation of the linear

filters allows for five iterations with clock cycles to spare.

Normalization of the square-root operand is required in order to both initially

populate lookup tables as well as for accessing estimates from those tables. Two types

of normalization are required. If α = log2A and A is the value of the highest order

bit then the first type of normalization is for even numbered α and the second type

is for odd numbered α. For example, the binary number 1010.11002 has a highest

ordered bit that has a value of 23 = 8; because α is equal to an odd number, (3),

to normalize the binary number it must be right-shifted α + 1 times to produce a

number of the form 0.1xxxxxxx2. Binary numbers greater than or equal to one and

with an even numbered α must be right-shifted α times to produce a number of

the form 1.xxxxxxxx2. Binary numbers greater than or equal to one and with an
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odd numbered α must be right-shifted α + 1 times to produce a number of the form

0.1xxxxxxx2. Binary numbers less than or equal to one and with an even numbered

α must be left-shifted α times to produce a number of the form 1.xxxxxxxx2. Binary

numbers less than or equal to one and with an odd numbered α must be left-shifted

α− 1 times to produce a number of the form 0.1xxxxxxx2.

Equation 3.22 shows the method for calculating an estimate for a normalized

number with an even shift value where D′
e = [1.d1d2...d8], i.e. the first eight bits of

the fraction portion of the normalized number.

1√
2(1+D′e

28
)+ 1

28

2

(3.22)

Equation 3.23 shows the method for calculating an estimate for a normalized

number with an odd shift value where D′
o = [0.1d1d2...d8], i.e. the first eight bits after

the first 1 of the fraction portion of the normalized number.

1√
2(0.5+D′o

29
)+ 1

29

2

(3.23)

Listing III.12:

1 Case address Is

2

3 When "00000000" => --0.9990248656871403

4 estimate_intermediate := "1111111111000000";

5

6 When "00000001" => --0.9970831245596092

7 estimate_intermediate := "1111111101000000";

8

9 When "00000010" => --0.9951526617137967

10 estimate_intermediate := "1111111011000010";
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11

12 When "00000011" => --0.9932333683907213

13 estimate_intermediate := "1111111001000100";

Listing III.12 shows four approximation entries for the even α ROM. The ap-

proximations are calculated using Equation 3.22 on page 49.

Listing III.13:

1 Case address Is

2

3 When "00000000" => --1.4128345142027134

4 estimate_intermediate := "0110100110101111";

5

6 When "00000001" => --1.4100884775655416

7 estimate_intermediate := "0110100011111011";

8

9 When "00000010" => --1.407358390827336

10 estimate_intermediate := "0110100001001000";

11

12 When "00000011" => --1.4046441001796708

13 estimate_intermediate := "0110011110010110";

Listing III.12 shows four approximation entries for the odd α ROM. The ap-

proximations were calculated using Equation 3.23 on page 49.

After normalization, and estimate lookup, the iterative portion of the process

begins. Five iterations of Equation 3.21 on page 48 are performed followed by mul-

tiplication of the reciprocal square-root by the square-root operand. It is this step

where the actual square-root is calculated. The final step is that of denormalization,

where the answer is shifted in the opposite direction as in normalization. The number

of shifts for denormalization is one-half the number of shifts required for normaliza-

tion. It is now that the combined two-dimensional velocity has been fully calculated

and is output.
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Figure 3.11: Top level schematic of the two-dimensional implementation or combi-
nation of linear Kalman filters.

3.8 Design Flexibility

It is desired to make the design flexible. Flexibility allows a designer that

wants to utilize the VHDL Kalman filter to designate the value and bit width of

the Kalman filter parameters. A Kalman filter has various parameters that affect its

overall behavior. For example, process noise covariance Q and measurement noise

covariance R can be tuned according a system model ,producing the desired behavior

of the filter. In order to give a designer this kind of control and flexibility while still

producing synthesizable code an alternate programming language to VHDL is needed.

JAVA was chosen for its ability to execute on most multipurpose computer systems.

It is assumed that the reader has at least a basic understanding of programming

and JAVA. The JAVA code consists of four packages:

1. Decimal to binary converter: DecimalToBinary.java

2. Code generator: CodeObject.java

3. Kalman filter parameter initializers: Initializers.java

4. A main function: Kf main.java

3.8.1 Decimal to Binary Converter. The decimal to binary converter al-

lows for the automatic conversion of decimal numbers. Three user defined integers,
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Figure 3.12: Top level schematic of the primary module for the two-dimensional
implementation or combination of linear Kalman filters.

data size, fracton size, and rom estimate size determine the width of the num-

ber in binary and the size of the fraction portion of the number. These three integers

are passed to the method when an object of type DecimalToBinary is created. The

returned value is a string of ones and zeros that is the binary representation of the dec-

imal number . The converter uses various JAVA methods to generate a binary two’s

complement numbers the width of data size or the width of rom estimate size.

The integer rom estimate size is used to indicate the size of the data inside

the ROM lookup table that is used in the Newton-Raphson reciprocal calculation. It

will typically be significantly smaller than data size as it is only an estimate. The

smaller size of the estimates also minimizes the size of the ROM. For the two designs

tested in this thesis, ROM estimates of size 8 bits and 16 bits are used for the 32-bit

and 64-bit versions respectively.

3.8.2 Code Generator. The code generator generates all of the Kalman filter

VHDL code. Inside the main function, Kf main.jave, an object of type CodeOb-

ject is created and four integers are passed into it: rom estimate size, data size,
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Listing III.14:

1 double dt = 0.1;
2 double R = 10.0;
3 double Q = 100.0;
4 double [] G = {0.0, 1.0};
5 double [] B = {0.0 ,1.0};
6 double [] Bd = {0.005 , 0.1};
7 double [] H = {1.0, 0.0};
8 double [] H_prime = {1.0, 0.0};
9 double [] F = {0.0, 1.0, 0.0, 0.0};

10 double [] phi = {1.0, 0.1, 0.0, 1.0};
11 double [] phi_prime = {1.0, 0.0, 0.1, 1.0};
12 double [] Qd = {0.0333 , 0.5, 0.5, 10.0};
13 double [] Gd = {1.0, 0.0, 0.0, 1.0};
14 double [] x = {1.0, 1.0};
15 double [] P = {0.25 , 0.0, 0.0, 0.25};

fraction size, and array size. The new object of type CodeObject can then be

used to call the method inside CodeObject.java that creates the VHDL modules.

Table 3.6 on page 53 shows the methods within CodeObject:

Table 3.6: These CodeObject methods each generate a corresponding VHDL file.

kf top(); kf top tb(); add sub behavioral();
sub behavioral(); ALU(); controller();
KF RTL top(); KF RTL top tb(); mem();
mux 4 to 2(); mux 2 to 1(); mult behavioral();
mux(); reciprocal top(); reciprocal stage1();
reciprocal stage3(); reciprocal stage6(); register ALU();
NR LT ROM();

The user adjustable Kalman filter parameters are initialized inside CodeOb-

ject.java. See Listing III.14 for a list of these parameters. Many of these parameters

are matrices and are created as type array in JAVA. The integer array size is passed

into a method called Array size initializer where it is used to designate the size of

the arrays.
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3.8.3 Initializers. This file creates the objects seen in Listing III.14. As

mentioned above, the user settable integer constant that determines the size of the

arrays is called array size. This constant can be set by the user inside main.

3.8.4 Main. The method main is where the integer constants: rom estimate size,

data size, fracton size, and array size are set. Also, it is inside main where an

object(s) of type CodeObject is created. That CodeObject is then used to call

the various methods inside CodeObject.java which then writes the VHDL Kalman

filter to file.
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IV. Testing and Evaluation

This chapter discusses the testing approach, test application, and test results.

4.1 Testing Approach

Testing of the Kalman filter VHDL model was performed to verify function of

the model in comparison with output data produced by the Matlabr version of the

filter. Identical inputs were run through both versions of the filter and the outputs

compared. Input vector z(:, k) consists of 500 pseudo-random noise-corrupted mea-

surements. The input values as generated in Matlab have a standard deviation of

323.9967 indicating a wide range of values. The values range from a maximum of

452.907548 to a minimum of −856.481355. Two versions of the VHDL Kalman filter

were tested: a 32-bit version and a 64-bit version.

4.1.1 The Test Bench. The 32-bit and 64-bit test benches were created

using JAVA to populate each of them with their fixed point radix binary numbers.

The test bench consists of 500 inputs z that are cycled through the VHDL Kalman

filter to produce 500 position data and 500 velocity data. A simulation was run in

Mentor Graphics ModelSimr SE Plus 6.3c revision 2007.09 for both the 32-bit and

64-bit versions of the VHDL Kalman filter with their respective test benches. A list

of the output was created from the wave diagram and exported to a file. The binary

outputs were then converted to integers using a JAVA binary-to-decimal converter

written specifically for this thesis. The JAVA binary-to-decimal converter produced

a text file containing the integer version of the ModelSimr output that was then

imported into a spreadsheet for analysis.

4.1.2 Analysis. Analysis consisted of a look at possible error sources, fol-

lowed by calculation of the standard deviation for the difference and a percentage-

difference between the output produced by Matlabr and the ModelSimr simulation

output for the VHDL Kalman filter.
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4.1.2.1 Error Analysis. Errors can arise from various sources. One

way that error can be introduced is in normalization of numbers. The reciprocal

square-root function required normalization of the input in order to use the even and

odd ROM lookup tables. The worst case scenario is that a 32-bit binary number with

a 16-bit fraction of the form

0111111111111111.11111111111111112

is normalized by right shifting by 14 bits. The normalized number would look like:

0000000000000001.11111111111111112

which means the right 14 bits of the fraction are lost.

214

216
= +0.25 (4.1)

Equation 4.1 shows the maximum error that might occur due to normalization. To

avoid this error, padding of the numbers prior to normalization would preserve the

accuracy. The required bit-padding would be the size of the fraction portion minus

two divided by two. If the number of bits to be padded is b+ and the number of bits

in the fraction is x then:

b+ =
x− 2

2

The divide by two is due to the fact that when performing a reciprocal square-root,

denormalization requires a shift that is half the value of the normalization shift and

in the opposite direction.

For the reciprocal function used in the Kalman filter, both normalization and

denormalization bit shifts are in the same direction and of the same magnitude. This

means that no error will occur due to the normalization process. For example, if

the binary number 0111111111111111.11111111111111112 is normalized it takes on
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the form 0000000000000001.11111111111111112. In this example, 14 bits were shifted

and lost. However, because denormalization for the reciprocal function requires a

shift in the same direction and of the same magnitude as normalization, any bit-

padding that would have preserved the bits is lost when converting the number back

to its original format of 32 bits. To further demonstrate this, consider the following

example.

1

0111111111111111.11111111111111112

= 0.00000000000000102

Now the reciprocal for the normalized number is found. Normalization required a

right shift by 14 bits.

1

0000000000000001.11111111111111112

= 0.10000000000000002

Denormalizing the answer from the above equation produces the number:

0.00000000000000102

which is exactly identical to the answer for the non-normalized reciprocal. There is

no loss of data.

4.1.2.2 Difference Comparison. For the difference comparison the

difference was taken between the output produced by Matlabr and the ModelSimr

simulation output for the VHDL Kalman filter for all 1000 outputs(500 position out-

puts, and 500 velocity outputs). These differences for position are plotted for both

the 32-bit and 64-bit test cases and can be seen in Figure 1(a) on page 58 and Fig-

ure 1(b) on page 58 respectively. The standard deviation was then calculated for the

difference. See Figure 4.3 on page 61 for the standard deviation.
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4.1.2.3 Percentage Difference Comparison. The percentage difference

was calculated by taking one minus the difference of the output produced by Matlabr

and the ModelSimr simulation output for the VHDL Kalman filter for all 1000 out-

puts(500 position outputs, and 500 velocity outputs). The standard deviation was

then calculated for the percentage difference. See Figure 4.3 on page 61 for the stan-

dard deviation.

4.1.2.4 Difference Comparison Standard Deviation. The standard

deviations that was calculated for the 32-bit and 64-bit test cases can be seen in

Figure 4.3 on page 61. The extremely small deviation from the mean indicates that

the VHDL Kalman filter output is a very good approximation to the Matlabr im-

plementation of the Kalman filter. As expected the standard deviation for the 64-bit

implementation is smaller than that for the 32-bit implementation. Figure 4.2 on

page 59 shows the difference comparison for both tests. As can be seen, the 64-bit

implementation varied less overall with the Matlabr Kalman filter implementation

output.

The large spikes seen in the first iterations of Figure 1(a) and Figure 1(b) on

page 58 are due to the Kalman filter being in a transient state. This transient state

is caused by the initial default estimates of the filter not being accurate estimates

of the state of the system. These initial estimates are not intended or expected to

be accurate, rather, the filter must iterate multiple times to reach a steady state.

Simulations were performed in Matlabr in which a single position measurement was

set as the filter input and held for 100 iterations. The filter achieved steady-state

on the 55th iteration when the velocity went to zero and the position, as output by

the filter, became equal to the input position. The number of iterations required

to achieve steady-state is dependent on the filter parameters and therefore can be

changed to fit design requirements.

Simulations were run for the two-dimensional implementation that resulted in

a standard deviation of 0.021272. As expected, this was greater than the standard
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Difference

Position 500 Samples (16 bit ROM) Velocity 500 Samples (16 bit ROM)

32bits 0.000269 0.003725

64bits 0.000190 0.002407

Percentage Difference

Position 500 Samples (16 bit ROM) Velocity 500 Samples (16 bit ROM)

32bits 0.006000% 0.127800%

64bits 0.006100% 0.338500%

Figure 4.3: Standard deviation for the difference and percentage-difference of the
VHDL Kalman filter output (with a 64-bit and 32-bit fixed point representation) and
the Matlabr Kalman filter output.

deviation for the one-dimensional implementation due to error as discussed in sub-

section 4.1.2.1. Figure 4.4 on page 62 shows the simulation results as a difference

between the two-dimensional VHDL Kalman filter and the two-dimensional Matlabr

Kalman filter as calculated using Microsoft Excel. The large spikes were expected

due to the normalization error. Note that the spikes do not exceed the maximum

calculated error of 0.25.
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4.1.3 Speed and Area Analysis. Synthesis testing to determine maximum

frequency at which the design will run was performed on a Xilinx Virtex-4 model

4vsx35ff668 speed grade -10. The same synthesis test determines resource usage

on the FPGA. The synthesis was performed using Mentor Graphics’ Precision RTL

Synthesis 2006a.101. Tests were run for both 32-bit as well as 64-bit versions of the

VHDL Kalman filter. Table 4.3 on page 65 shows the results for maximum frequency

determination. As can be seen, an initial frequency was chosen for the 32-bit test of

100MHz. This test resulted in negative slack, indicating that the design would not

run at 100MHz. A frequency recommended by the synthesis tool of 40MHz was then

run, resulting in a relatively small positive slack indicating that the design will run

at 40MHz. Slack values specify amounts of extra propagation delay available on the

critical path. A small positive slack indicates that the design will just barely function

at the specified frequency. As with the 32-bit tests, the 64-bit VHDL Kalman filter

was first tested at 100MHz. This test resulted in negative slack, indicating that the

design will not run at that frequency. The recommended frequency for the second

test was 51MHz which resulted in a relatively small positive slack.

The results for area can be seen in Figure 4.1. The 32-bit implementation fit on

the Virtex-4 utilizing 13.82% of the Configurable Logic Block (CLB) slices, however,

the 64-bit implementation required 142.78% of the CLB slices.

Table 4.1: Synthesis test of the one-dimensional Kalman filter using Precision RTL
Synthesis with the Virtex-4 4vsx35ff668 at speed grade -10.

Test CLB Slices IOs DSP48s

32-bit test 100MHz 13.82% 22.32% 37.50%
32-bit test 40MHz 13.82% 22.32% 37.50%
64-bit test 100MHz 142.78% 43.75% 93.75%
64-bit test 51MHz 142.78% 43.75% 93.75%

Further testing was done for the 64-bit model due to the area requirements.

Because the Virtex-4 is too small to accommodate the 64-bit model, the Xilinx Virtex-

5 model 5vsx95tff1136 speed grade -3 was chosen instead. Table 4.4 on page 65 shows
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the frequency results for the two tests performed and Table 4.2 on page 64 shows the

results for resource usage.

Table 4.2: Synthesis test of the one-dimensional Kalman filter using Precision RTL
Synthesis with the Virtex-5 5vsx95tff1136 at speed grade -3.

Test CLB Slices IOs DSP48s

64-bit test 100MHz 16.51% 30.63% 30.94%
64-bit test 50MHz 16.51% 30.63% 30.94%

In reference to Table 4.3 on page 65, for the case of the 32-bit representation,

40MHz equates to a clock period of 0.000000025 seconds or 25 ns. This means that

at 49 clock-cycles per iteration of the one-dimensional VHDL Kalman filter, a total

of 1, 225 ns per iteration are required. Also, at 40MHz, 49 clock-cycles per iteration

equates to 816, 326 iterations with each iteration corresponding to a potential target

being tracked. If data is fed into the one-dimensional VHDL Kalman filter at a rate

of 30 times per second for each target, position and velocity estimations for a total of

approximately 27, 210 targets can be performed.
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V. Conclusions and Future Work

This chapter contains conclusions, and future work.

5.1 Conclusions

As warfare evolves so to must the technology we use to fight wars. This thesis

has provided a tool as well as a model for tool development that will allow electronics

designers to more quickly and easily implement designs utilizing a Kalman filter. This

helps to enable rapid fielding of force multiplying technology to the warfighter. It was

demonstrated that a near-optimal VHDL Kalman filter model can be programmed

onto an inexpensive FPGA for potential implementation into target tracking systems.

Algorithms provided in Matlabr were implemented using modern FPGA synthesis

tools to characterize, experiment, and generate flexible VHDL codes. Fundamental

modular VHDL building blocks were formulated that can be used to optimize the

target tracking algorithms while considering speed, power, and area for the targeted

applications. The code flexibility means that parameters are adjustable allowing for

experimentation of various combinations as to optimize or tune the algorithm for

different applications.

5.2 Future Work

Future work for expansion of this thesis may include:

• Investigate the implementation of various multipliers for use in the VHDL

Kalman filter.

• Error reduction through bit-padding in the Newton-Raphson square-root func-

tion.

• Data storage and swapping for multiple-target tracking.

Currently the VHDL Kalman filter implementation relies on the default process for

multiplication as defined by the VHDL compiler. An investigation into various RTL
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multiplication implementations should be done and a comparison made with the de-

fault implementations of the available VHDL compilers.

Currently there exists a maximum error of 0.25 that can occur due to the bit-

shifting required for the normalization and denormalization process. It is proposed

that future work be done to include bit-padding in order to preserve accuracy during

this process.

The current implementation does not address the storage and swapping of data

into and out of the VHDL Kalman filter. I propose an onboard memory with approx-

imately 120,000 (6 x 20,000 targets), 32 or 64 (480,000 or 960,000 bytes) bit positions

used to store x(:,k) and P(:,:,k). The address to access a targets information comes

from outside the system in the form of a target number. The target acquisition pro-

gram feeds both the target number(address) as well as the input z(:,k). It may also be

necessary for the target locating program to send a reset signal along with a particular

address that will reset the memory for the case where a target number is reassigned to

another target or becomes inactive. In the case of a reassignment or a target number

becoming inactive the x and P values must be reset. When the target number changes

it is used as the address to access the last x and P value for that target. Those x

and P values are loaded into the secondary memory or if the secondary memory is

reduced to holding only constants then the x and P values can be used directly and

the x(:,k+) and P(:,:,k+) will be saved into the primary memory. This scheme or a

similar scheme would allow a single linear Kalman filter to track

67



Appendix A. Matlab Code

This appendix contains the Matlabr code written by Dr. Juan Vasquez.

Listing A.1: This is the main file that implements the Kalman Filter by calling
both equiv discrete.m as well as KF.m .
(appendix2/main.m)

1 % Main Routine - this is my code for generating truth
2 clear
3 clc
4 randn(’seed’ ,0);
5 cleanup =1;
6 gentruth =1; % 1= generate truth data , 0=do not
7 nruns =1; % # of monte carlo runs
8 run =1; % single run to plot
9 t_final =50; % Final time

10 dt=.1; % Sampling interval
11 t=0:dt:t_final; % time vector
12 t_last=length(t);
13
14 % Model parameters
15 % Truth model - constant components
16 R_t = 10; % Measurement noise covariance
17 Q_t = 100; % Dynamics noise strength
18 G_t = [0; 1]; % Noise injection model
19 H_t = [1 0];% Measurement model
20 B_t = [0;1];
21 F_t = [0 1; 0 0];
22 [phi_t , Bd_t ,Qd_t]= equiv_discrete(F_t ,B_t ,G_t ,Q_t ,dt);
23 Gd_t=eye (2);
24
25 % True Initial conditions
26 % State =[x v]=[ position velocity]
27 x_t(:,1)=[1 1];
28 z(1,1)=x_t(1,1);
29
30 % Filter Model parameters
31 R = 10; % Measurement noise covariance
32 Q = 100; % Dynamics noise strength
33 G = [0; 1]; % Noise injection model
34 H = [1 0]; % Measurement model
35 B = [0;1];
36 F = [0 1; 0 0];
37 [phi , Bd ,Qd]= equiv_discrete(F,B,G,Q,dt);
38 Gd=eye (2);
39
40 % Noise injection matrices for truth model simulation
41 dynNoise_t = sqrt(Qd_t) ’;
42 measNoise_t = sqrt(R_t)’;
43
44 % Begin Monte Carlo runs
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45 if gentruth ==1
46 for i=1: nruns
47 % Generate truth data
48 for k=2: t_last
49 % Generate noise -corrupted states
50 noise=dynNoise_t*randn (2,1);
51 x_t(:,k)= phi_t*x_t(:,k-1) + noise ;
52 % Generate noise -corrupted measurement
53 z(:,k) = H_t*x_t(:,k) + measNoise_t*randn;
54 end
55
56 % Save truth data
57 eval([’save run’ num2str(i) ’ x_t z t_final dt’])
58 end
59 end
60
61 for i=1: nruns
62 clear x
63 % Filter Initial conditions
64 % State =[x v]=[ position velocity]
65 x(:,1)=[1 1];
66 P=.25* eye (2);
67 KF % Kalman Filter subroutine
68 end
69
70 for i=1: nruns
71 % Generate error statistics
72 eval([’load run’ num2str(i) ’f’ ])
73 eval([’load run’ num2str(i) ])
74 for j=1:2 % 2 states
75 e(j,:,i)= x_t(j,:) - x(j,:);
76 end
77 res(:,:,i)=residual;
78 end
79
80 % Ensemble stats
81 Me=mean(e,3); % mean error over number of runs (dimension 3)
82 sigma_e=std(e,0,3); % standard dev of error over number of runs (...

dimension 3)
83 % Since the noise stats are stationary , all of the gains and ...

filter
84 % computed covariance values are the same for each run , so just ...

use the
85 % last run data that was just loaded above
86
87 % Temporal stats of ensemble data
88 Me_time=mean(Me ,2)
89 sigma_e_time=mean(sigma_e ,2);
90
91 figure (1)
92 for j=1:2
93 subplot (2,1,j),plot(t,Me(j,:),’r’ ,...
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94 t,Me(j,:)+ 3* sigma_e(j,:),’b’ ,...
95 t,Me(j,:)- 3* sigma_e(j,:),’b’ ,...
96 t,3* sigma_f(j,:),’m:’ ,...
97 t,-3* sigma_f(j,:),’m:’)
98 end
99 figure (1),subplot (211)

100 title(’State Estimates and Covariances [x v ]’)
101
102 % Load a specific single run data file and plot
103 eval([’load run’ num2str(run) ’f’ ])
104 eval([’load run’ num2str(run) ])
105
106 figure (2) % last run data only
107 subplot (211),plot(t,x(1,:),’r’);hold on;
108 plot(t,x_t(1,:));hold off;
109 title(’Position ’)
110 subplot (212),plot(t,x(2,:),’r’);hold on;
111 plot(t,x_t(2,:));hold off;
112 title(’Velocity ’)
113
114 % Residual data
115 Mr=mean(res ,3); % mean residual
116 sigma_r=std(res ,0,3); % std of residual
117 sigma_r_f (1,:)=sqrt(A(1,:)); % filter computed std of residual
118 figure (3)
119 plot(t,Mr(1,:),’r’ ,...
120 t,-3* sigma_r (1,:),’b’ ,...
121 t,3* sigma_r (1,:),’b’ ,...
122 t,-3*sigma_r_f ,’m’ ,...
123 t,3* sigma_r_f ,’m’),title(’Residual ’)
124
125 % AANES Calculations
126 for i = 1:nruns
127 for j = 1: t_last
128 ness(j,i) = (e(:,j,i) ’*inv(P(:,:,j))*e(:,j,i))/2;
129 end
130 end
131 aness = sum(ness ,2)/nruns;
132 figure (4)
133 plot(aness),title(’ANESS ’);
134
135 % File Clean -Up
136 if cleanup ==1
137 for i=1: nruns
138 eval([’delete run’ num2str(i) ’f.mat’ ])
139 eval([’delete run’ num2str(i) ’.mat’])
140 end
141 end

Listing A.2: This the Kalman Filter algorithm.(appendix2/KF.m)

1
2 % Load truth data and other parameters
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3 eval([’load run’ num2str(i) ])
4
5 for k=2: t_last
6 x(:,k)= phi*x(:,k-1);
7 P(:,:,k)= phi*P(:,:,k-1)*phi ’ + Qd;
8 A(:,k)= H*P(:,:,k)*H’ + R;
9 K=P(:,:,k)*H’*( inv(A(:,k)));

10 residual(:,k)= z(:,k) - H*x(:,k);
11 x(:,k)= x(:,k) + K*residual(:,k);
12 P(:,:,k)= P(:,:,k) - K*H*P(:,:,k);
13 sigma_f(:,k)=sqrt(diag(P(:,:,k)));
14 KK(:,k)=K;
15 end % End time loop
16
17 % Save results
18 eval([’save run’ num2str(i) ’f x P sigma_f A residual ’])
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Appendix B. Behavioral Kalman Filter in VHDL

This appendix contains the VHDL code that describes the Kalman Filter behav-

iorally.

Listing B.1:

1 ------------------------------------------------------------------

2 --Entity : kf_top

3 --

4 --Description : This is a behavioral description of the Kalman

5 --Filter as described by Dr. Juan Vasquez in Matlab.

6 --

7 --Inputs :

8 --NAME TYPE DESC

9 --z_position Signed input

10 --reset Std_logic reset

11 --

12 --Outputs :

13 --NAME TYPE DESC

14 --position Signed position value

15 --velocity Signed velocity value

16 ------------------------------------------------------------------

17

18 Library IEEE;

19 Use IEEE.std_logic_1164.All;

20 Use IEEE.numeric_std.All;

21

22 Package matrix_types Is

23 Type matrix_2x2 Is Array (1 to 2, 1 to 2) Of

24 Signed (31 Downto 0);--row x column

25

26 Type matrix_2x1 Is Array (1 to 2) Of

27 Signed (31 Downto 0);--row x column

28

29 Type matrix_1x2 Is Array (1 to 2) Of

30 Signed (31 Downto 0);--row x column
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31

32 End Package matrix_types;

33

34 Library IEEE;

35

36 Use IEEE.std_logic_1164.All;

37 Use IEEE.numeric_std.All;

38 Use work.matrix_types.All;

39 Use std.textio.All;

40

41 Entity kf_top Is

42 Port(z_position : In Signed (31 Downto 0);

43 reset : In Std_logic;

44 position , velocity : Out Signed (31 Downto 0));

45 End kf_top;

46

47 Architecture kf_behav Of kf_top Is

48

49 --*****************************************

50 --* Function to multiply two 2x2 matrices *

51 --*****************************************

52 Function matrix_mult_2x2 (A,B: matrix_2x2)

53 Return matrix_2x2 Is

54 Variable result : matrix_2x2;

55 Variable func_temp1 : Signed (63 Downto 0) :=

56 (OTHERS => ’0’);

57 Begin --Begin function code.

58 For i In 1 to 2 Loop

59 For L In 1 to 2 Loop

60 For j In 1 to 2 Loop

61 func_temp1 := (A(i,j)*B(j,L)) + ...

func_temp1;

62 End Loop;

63 result(i,L) := func_temp1 (47 Downto 16);

64 func_temp1 :=
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65 (OTHERS => ’0’);

66 End Loop;

67 End Loop;

68 Return result;

69 End matrix_mult_2x2;

70

71 --************************************

72 --* Function to add two 2x2 matrices *

73 --************************************

74 Function matrix_add_2x2 (A,B: matrix_2x2)

75 Return matrix_2x2 Is

76 Variable result : matrix_2x2;

77 Begin --Begin function code.

78 For i In 1 to 2 Loop

79 For j In 1 to 2 Loop

80 result(i,j) := A(i,j)+B(i,j);

81 End Loop;

82 End Loop;

83 Return result;

84 End matrix_add_2x2;

85

86 --********************************************

87 --* Function to add a scalar to a 2x2 matrix *

88 --********************************************

89 Function matrix_add_int_2x2 (A: matrix_2x2 ;B: Signed (31 Downto ...

0))

90 Return matrix_2x2 Is

91 Variable result : matrix_2x2;

92 Begin --Begin function code.

93 For i In 1 to 2 Loop

94 For j In 1 to 2 Loop

95 result(i,j) := A(i,j)+B;

96 End Loop;

97 End Loop;

98 Return result;
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99 End matrix_add_int_2x2;

100

101 --************************************************

102 --* Function to multiply a 2x2 with a 2x1 matrix *

103 --************************************************

104 Function matrix_mult_2x2_2x1 (A: matrix_2x2 ;B: matrix_2x1)

105 Return matrix_2x1 Is

106 Variable result : matrix_2x1;

107 Variable func_temp1 : Signed (63 Downto 0) :=

108 (OTHERS => ’0’);

109 Begin --Begin function code.

110 For i In 1 to 2 Loop

111 For j In 1 to 2 Loop

112 func_temp1 := (A(i,j)*B(j)) + func_temp1;

113 End Loop;

114 result(i) := func_temp1 (47 Downto 16);

115 func_temp1 :=

116 (OTHERS => ’0’);

117 End Loop;

118 Return result;

119 End matrix_mult_2x2_2x1;

120

121 --*************************************************

122 --* Function to multiply a 1x2 with a 2x2 matrix *

123 --*************************************************

124 Function matrix_mult_1x2_2x2 (A: matrix_1x2 ;B: matrix_2x2)

125 Return matrix_1x2 Is

126 Variable result : matrix_1x2 ;

127 Variable func_temp1 : Signed (63 Downto 0) :=

128 (OTHERS => ’0’);

129 Begin --Begin function code.

130 For L In 1 to 2 Loop

131 For j In 1 to 2 Loop

132 func_temp1 := (A(j)*B(j,L)) + func_temp1;

133 End Loop;
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134 result(L) := func_temp1 (47 Downto 16);

135 func_temp1 :=

136 (OTHERS => ’0’);

137 End Loop;

138 Return result;

139 End matrix_mult_1x2_2x2;

140

141 --*************************************************

142 --* Function to multiply a 1x2 with a 2x1 matrix *

143 --*************************************************

144 Function matrix_mult_1x2_2x1 (A: matrix_1x2 ;B: matrix_2x1)

145 Return Signed Is

146 Variable result : Signed (63 Downto 0) :=

147 (OTHERS => ’0’);

148 Begin --Begin function code.

149 For j In 1 to 2 Loop

150 result := (A(j)*B(j)) + result;

151 End Loop;

152 Return result (47 Downto 16);

153 End matrix_mult_1x2_2x1;

154

155 --************************************************

156 --* Function to multiply a 2x1 and a 1x2 matrix *

157 --************************************************

158 Function matrix_mult_2x1_1x2 (A: matrix_2x1 ;B: matrix_1x2 )

159 Return matrix_2x2 Is

160 Variable result : matrix_2x2;

161 Variable func_temp1 : Signed (63 Downto 0);

162 Begin --Begin function code.

163 For i In 1 to 2 Loop

164 For L In 1 to 2 Loop

165 func_temp1 := (A(i)*B(L));

166 result(i,L) := func_temp1 (47 Downto 16);

167 End Loop;

168 End Loop;
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169 Return result;

170 End matrix_mult_2x1_1x2 ;

171

172 --**************************************************

173 --* Function to multiply a 2x1 matrix and a scalar *

174 --**************************************************

175 Function matrix_mult_2x1_int (A: matrix_2x1 ;B: Signed (31 Downto ...

0))

176 Return matrix_2x1 Is

177 Variable result : matrix_2x1;

178 Variable func_temp1 : Signed (63 Downto 0);

179 Begin --Begin function code.

180 For i In 1 to 2 Loop

181 func_temp1 := A(i)*B;

182 result(i) := func_temp1 (47 Downto 16);

183 End Loop;

184 Return result;

185 End matrix_mult_2x1_int;

186

187 --*****************************************

188 --* Function to add a 2x1 to a 2x1 matrix *

189 --*****************************************

190 Function matrix_add_2x1_2x1 (A: matrix_2x1 ;B: matrix_2x1)

191 Return matrix_2x1 Is

192 Variable result : matrix_2x1;

193 Begin --Begin function code.

194 For i In 1 to 2 Loop

195 result(i) := A(i)+B(i);

196 End Loop;

197 Return result;

198 End matrix_add_2x1_2x1;

199

200 --*****************************************

201 --* Function to subtract two 2x2 matrices *

202 --*****************************************
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203 Function matrix_subtract_2x2 (A,B: matrix_2x2)

204 Return matrix_2x2 Is

205 Variable result : matrix_2x2;

206 Begin --Begin function code.

207 For i In 1 to 2 Loop

208 For j In 1 to 2 Loop

209 result(i,j) := A(i,j)-B(i,j);

210 End Loop;

211 End Loop;

212 Return result;

213 End matrix_subtract_2x2;

214

215 --**********************************************************

216 --* Function to return the diagonal (diag) of a 2x2 matrix *

217 --**********************************************************

218 Function diag_2x2 (A: matrix_2x2)

219 Return matrix_2x1 Is

220 Variable result : matrix_2x1;

221 Begin --Begin function code.

222 For i In 1 to 2 Loop

223 result(i) := A(i,i);

224 End Loop;

225 Return result;

226 End diag_2x2;

227

228 --***********************

229 --* Begin main process. *

230 --***********************

231 Begin

232 Process (z_position , reset) Is

233

234 Constant dt : Signed (31 Downto 0) :=

235 "00000000000000000001100110011001";

236

237 --R is the measurement noise covariance.

78



238 Constant R : Signed (31 Downto 0) :=

239 "00000000000010100000000000000000";

240

241 --Q is "dynamic noise strength" (process noise ...

covariance).

242 Constant Q : Signed (31 Downto 0) :=

243 "00000000011001000000000000000000";

244

245 --G is the noise injection model.

246 --This was intended to be 2 rows , 1 column but is ...

represented as

247 --1 row , 2 columns.

248 Constant G : matrix_2x1 :=

249 ("00000000000000000000000000000000",

250 "00000000000000010000000000000000");

251

252 --This was intended to be 2 rows , 1 column but is ...

represented as

253 --1 row , 2 columns.

254 Constant B : matrix_2x1 :=

255 ("00000000000000000000000000000000",

256 "00000000000000010000000000000000");

257

258 --This was intended to be 2 rows , 1 column but is ...

represented as

259 --1 row , 2 columns.

260 Constant Bd : matrix_2x1 :=

261 ("00000000000000000000000101000111",

262 "00000000000000000001100110011001");

263

264 Constant H : matrix_1x2 :=

265 ("00000000000000010000000000000000",

266 "00000000000000000000000000000000");

267

268 Constant H_prime : matrix_2x1 :=
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269 ("00000000000000010000000000000000",

270 "00000000000000000000000000000000");

271

272 Constant F : matrix_2x2 :=

273 (("00000000000000000000000000000000",

274 "00000000000000010000000000000000"),

275 ("00000000000000000000000000000000",

276 "00000000000000000000000000000000"));

277

278 Constant phi : matrix_2x2 :=

279 (("00000000000000010000000000000000",

280 "00000000000000000001100110011001"),

281 ("00000000000000000000000000000000",

282 "00000000000000010000000000000000"));

283

284 Constant phi_prime : matrix_2x2 :=

285 (("00000000000000010000000000000000",

286 "00000000000000000000000000000000"),

287 ("00000000000000000001100110011001",

288 "00000000000000010000000000000000"));

289

290 Constant Qd : matrix_2x2 :=

291 (("00000000000000000000100010000110",

292 "00000000000000001000000000000000"),

293 ("00000000000000001000000000000000",

294 "00000000000010100000000000000000"));

295

296 Constant Gd : matrix_2x2 :=

297 (("00000000000000010000000000000000",

298 "00000000000000000000000000000000"),

299 ("00000000000000000000000000000000",

300 "00000000000000010000000000000000"));

301

302 --***************************

303 --* Definition of Variables *
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304 --***************************

305

306 Variable x : matrix_2x1 :=

307 ("00000000000000010000000000000000",

308 "00000000000000010000000000000000");

309

310 Variable P : matrix_2x2 :=

311 (("00000000000000000100000000000000",

312 "00000000000000000000000000000000"),

313 ("00000000000000000000000000000000",

314 "00000000000000000100000000000000"));

315

316 Variable A : Signed (31 Downto 0);

317 Variable residual : Signed (31 Downto 0);

318 Variable K : matrix_2x1;

319 Variable K_temp : Signed (33 Downto 0);

320

321 Begin

322

323 If reset = ’1’ Then

324 x :=

325 ("00000000000000010000000000000000",

326 "00000000000000010000000000000000");

327

328 P :=

329 (("00000000000000000100000000000000",

330 "00000000000000000000000000000000"),

331 ("00000000000000000000000000000000",

332 "00000000000000000100000000000000"));

333 End If;

334

335 x := matrix_mult_2x2_2x1(phi ,x);

336 P := matrix_add_2x2 (( matrix_mult_2x2(...

matrix_mult_2x2(phi ,P),phi_prime)),Qd);
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337 A := matrix_mult_1x2_2x1(matrix_mult_1x2_2x2(H,P),...

H_prime)+R;

338 K_temp := "0100000000000000000000000000000000"/A;

339 K := matrix_mult_2x1_int(matrix_mult_2x2_2x1(P,...

H_prime),

340 K_temp (31 Downto 0));

341 residual := to_01(z_position) - ...

matrix_mult_1x2_2x1(H,x);

342 x := matrix_add_2x1_2x1(x,matrix_mult_2x1_int(K,...

residual));

343 P := matrix_subtract_2x2(P,matrix_mult_2x2(...

matrix_mult_2x1_1x2(K,H),P));

344

345 position <= x(1);

346 velocity <= x(2);

347

348 End Process;

349 End kf_behav;
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Appendix C. VHDL, RTL Kalman Filter Implementation Entities

This appendix contains the VHDL, RTL Kalman filter implementation entities.

Listing C.1:

1 Entity add_behavioral Is

2 generic (high_bit : natural := 31); --This is the highest

3 --order bit

4 Port (reset : In std_logic;

5 in_a : In signed(high_bit Downto 0);

6 in_b : In signed(high_bit Downto 0);

7 output : Out signed(high_bit Downto 0);

8 c_out : Out std_logic);

9 End add_behavioral;

Listing C.2:

1 Entity add_sub_behavioral Is

2 generic (high_bit : natural := 31); --This is the highest

3 --order bit

4 Port (add_sub : In std_logic;

5 --0 add in_A to in_B

6 --1 subtract in_B from in_A

7 reset : In std_logic;

8 in_a : In signed(high_bit Downto 0);

9 in_b : In signed(high_bit Downto 0);

10 output : Out signed(high_bit Downto 0);

11 c_out : Out std_logic);

12 End add_sub_behavioral;

Listing C.3:

1 Entity ALU_2x2 Is

2 Generic(high_bit : natural := 31; fraction_size : natural

3 := 16);

4 Port(A_00 , A_01 , A_10 , A_11 : In signed(high_bit Downto 0);

5 B_00 , B_01 , B_10 , B_11 : In signed(high_bit Downto 0);

6 reset : In std_logic;
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7 add_sub : In std_logic;

8 reg_load : In std_logic;

9 mux_control : In std_logic;

10 clk : In std_logic;

11 C_00 , C_01 , C_10 , C_11 : Out signed(high_bit Downto 0);

12 overflow : Out std_logic);

13 End ALU_2x2;

Listing C.4:

1 Entity controller Is

2 Port(clk , reset : In std_logic;

3 mem_control , ALU_1 , ALU_2 : out signed (3 Downto 0);

4 mux_1 , mux_2 , output_reg_load , reciprocal_reset ,

5 reciprocal_load , reciprocal_mux_control : out std_logic)...

;

6 End controller

Listing C.5:

1 Entity controller_2D Is

2 Port(clk , reset_external : In std_logic;

3 reset , load_main , load_sp_normhold , mux_control ,

4 load_sp_1 , load_sp_reg5 : out std_logic);

5 End controller_2D;

Listing C.6:

1 Entity denormalization Is

2 Generic(high_bit : natural := 31; fraction_size : natural

3 := 16);

4 Port (data_in : In signed(high_bit Downto 0);

5 sign_flag : In std_logic;

6 shift_value : In integer;

7 shift_direction : In std_logic;--’0’ for right and

8 --’1’ for left

9 clk : In std_logic;
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10 data_out : Out signed(high_bit Downto 0));

11 End denormalization;

Listing C.7:

1 Entity KF_RTL_top Is

2 Generic(high_bit : natural := 31; fraction_size : natural := ...

16);

3 Port(clk , reset : In std_logic;

4 input : In signed(high_bit Downto 0);--Otherwise known as z

5 x_out1 , x_out2 : Out signed(high_bit Downto 0);

6 overflow1 : Out std_logic;

7 overflow2 : Out std_logic;

8 overflow_reciprocal : Out std_logic);

9 End KF_RTL_top;

Listing C.8:

1 Entity mem Is

2 Generic(high_bit : natural := 31);

3 Port(clk , reset : In std_logic;

4 control : In signed (3 Downto 0);

5 in1_00 , in1_01 , in1_10 , in1_11 : In signed (high_bit ...

Downto 0);

6 in2_00 , in2_01 , in2_10 , in2_11 : In signed (high_bit ...

Downto 0);

7 A_00 , A_01 , A_10 , A_11 : Out signed (high_bit Downto 0);

8 B_00 , B_01 , B_10 , B_11 : Out signed (high_bit Downto 0);

9 C_00 , C_01 , C_10 , C_11 : Out signed (high_bit Downto 0);

10 D_00 , D_01 , D_10 , D_11 : Out signed (high_bit Downto 0));

11 End entity mem;

Listing C.9:

1 Entity mult_behavioral Is

2 Generic (high_bit : natural := 31;

3 fraction_size : natural := 16); --This is the
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4 --highest order bit

5 Port (in_a : In signed(high_bit Downto 0);

6 in_b : In signed(high_bit Downto 0);

7 clear_async : In std_logic;

8 product : Out signed(high_bit Downto 0);

9 c_out : Out std_logic);

10 End mult_behavioral;

Listing C.10:

1 Entity mux Is

2 Generic(high_bit : natural := 31);

3 Port(control : In std_logic;

4 A : In signed(high_bit Downto 0);

5 B : In signed(high_bit Downto 0);

6 C : Out signed(high_bit Downto 0));

7 End entity mux;

Listing C.11:

1 Entity mux_2_to_1 Is

2 Generic(high_bit : natural := 31);

3 Port(control : In std_logic;

4 A_00 , A_01 , A_10 , A_11 : In signed(high_bit Downto 0);

5 B_00 , B_01 , B_10 , B_11 : In signed(high_bit Downto 0);

6 C_00 , C_01 , C_10 , C_11 : Out signed(high_bit Downto 0));

7 End entity mux_2_to_1;

Listing C.12:

1 Entity mux_4_to_2 Is

2 Generic(high_bit : natural := 31);

3 Port(control : In std_logic;

4 A0_00 , A0_01 , A0_10 , A0_11 : In signed(high_bit Downto 0)...

;

5 A1_00 , A1_01 , A1_10 , A1_11 : In signed(high_bit Downto 0)...

;

86



6 B0_00 , B0_01 , B0_10 , B0_11 : In signed(high_bit Downto 0)...

;

7 B1_00 , B1_01 , B1_10 , B1_11 : In signed(high_bit Downto 0)...

;

8 C0_00 , C0_01 , C0_10 , C0_11 : Out signed(high_bit Downto ...

0);

9 C1_00 , C1_01 , C1_10 , C1_11 : Out signed(high_bit Downto ...

0));

10 End entity mux_4_to_2;

Listing C.13:

1 Entity normalization_sqrt Is

2 Generic(high_bit : natural := 31; fraction_size : natural

3 := 16);

4 Port (data_in : In signed(high_bit Downto 0);

5 data_out : Out signed(high_bit Downto 0);

6 sign_flag : Out std_logic;

7 shift_value : Out integer;

8 shift_direction : Out std_logic;--’0’ for right and

9 --’1’ for left

10 even0_odd1 : Out std_logic);

11 End normalization_sqrt;

Listing C.14:

1 Entity NR_LT_ROM Is

2 Generic (high_bit : natural := 31;

3 fraction_size : natural := 16);

4 Port(address : In Signed (7 Downto 0);

5 estimate : Out Signed(high_bit Downto 0));

6 End NR_LT_ROM;

Listing C.15:

1 Entity reciprocal_stage1 Is

2 Generic(high_bit : natural := 31; fraction_size : natural
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3 := 16);

4 Port (data_in : In signed(high_bit Downto 0);

5 data_out : Out signed(high_bit Downto 0);

6 sign_flag : Out std_logic;

7 shift_value : Out natural;

8 shift_direction : Out std_logic);--’0’ for right and

9 --’1’ for left

10 End reciprocal_stage1;

Listing C.16:

1 Entity reciprocal_stage3 Is

2 Generic(high_bit : natural := 31; fraction_size : natural

3 := 16);

4 Port (data_in : In signed(high_bit Downto 0);

5 mult2_out : Out signed(high_bit Downto 0);

6 square_out : Out signed(high_bit Downto 0));

7 End reciprocal_stage3;

Listing C.17:

1 Entity reciprocal_stage6 Is

2 Generic(high_bit : natural := 31; fraction_size : natural

3 := 16);

4 Port (data_in : In signed(high_bit Downto 0);

5 sign_flag : In std_logic;

6 shift_value : In natural;

7 shift_direction : In std_logic;--’0’ for right and

8 --’1’ for left

9 clk : In std_logic;

10 data_out : Out signed(high_bit Downto 0));

11 End reciprocal_stage6;

Listing C.18:

1 Entity reciprocal_top Is

2 Generic(high_bit : natural := 31; fraction_size : natural := ...

16);
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3 Port(clk , reset , load , mux_control : In std_logic;

4 data_in : In signed(high_bit Downto 0);

5 data_out : Out signed(high_bit Downto 0);

6 overflow : Out std_logic);

7 End reciprocal_top;

Listing C.19:

1 Entity reg_alu Is

2 Generic(high_bit : natural := 31);

3 Port(clk : In std_logic;

4 load : In std_logic;

5 d : In signed(high_bit Downto 0);

6 q : Out signed(high_bit Downto 0));

7 End entity reg_alu;

Listing C.20:

1 Entity RS_by_one Is

2 Generic(high_bit : natural := 31; fraction_size : natural

3 := 16);

4 Port (data_in : In signed(high_bit Downto 0);

5 data_out : Out signed(high_bit Downto 0));

6 End RS_by_one;

Listing C.21:

1 Entity sqrt_ROM Is

2 Generic (high_bit : natural := 31;

3 fraction_size : natural := 16);

4 Port(address : In Signed (7 Downto 0);

5 estimate : Out Signed(high_bit Downto 0));

6 End sqrt_ROM;

Listing C.22:

1 Entity sqrt_ROM_even Is

2 Generic (high_bit : natural := 31;
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3 fraction_size : natural := 16);

4 Port(address : In Signed (7 Downto 0);

5 estimate : Out Signed(high_bit Downto 0));

6 End sqrt_ROM_even;

Listing C.23:

1 Entity sqrt_ROM_odd Is

2 Generic (high_bit : natural := 31;

3 fraction_size : natural := 16);

4 Port(address : In Signed (7 Downto 0);

5 estimate : Out Signed(high_bit Downto 0));

6 End sqrt_ROM_odd;

Listing C.24:

1 Entity squared_behavioral Is

2 Generic (high_bit : natural := 31;

3 fraction_size : natural := 16); --This is the

4 --highest order bit

5 Port (in_a : In signed(high_bit Downto 0);

6 clear_async : In std_logic;

7 product : Out signed(high_bit Downto 0);

8 c_out : Out std_logic);

9 End squared_behavioral;

Listing C.25:

1 Entity sub_behavioral Is

2 generic (high_bit : natural := 31); --This is the highest

3 --order bit

4 Port (reset : In std_logic;

5 in_a : In signed(high_bit Downto 0);

6 in_b : In signed(high_bit Downto 0);

7 output : Out signed(high_bit Downto 0);

8 c_out : Out std_logic);

9 End sub_behavioral;
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Listing C.26:

1 Entity sub_const_behavioral Is

2 generic(high_bit : natural := 31;

3 fraction_size : natural := 16);

4 Port(reset : In std_logic;

5 in_a : In signed(high_bit Downto 0);

6 output : Out signed(high_bit Downto 0);

7 c_out : Out std_logic);

8 End sub_const_behavioral;

Listing C.27:

1 Entity TwoD_connect_top Is

2 Generic(high_bit : natural := 31; fraction_size : natural := ...

16);

3 Port(clk , reset , reset_TwoD_top_controller : In std_logic;

4 input_z1 : In signed(high_bit Downto 0);--Input from the x-...

coordinate

5 --Kalman filter.

6 input_z2 : In signed(high_bit Downto 0);--Input from the y-...

coordinate

7 --Kalman filter.

8 output : Out signed(high_bit Downto 0);

9 overflow : Out std_logic;

10 output_position1 : Out signed(high_bit Downto 0);

11 output_position2 : Out signed(high_bit Downto 0));

12 End TwoD_connect_top;

Listing C.28:

1 Entity TwoD_top Is

2 Generic(high_bit : natural := 31; fraction_size : natural := ...

16);

3 Port(clk , reset_external : In std_logic;

4 input_x : In signed(high_bit Downto 0);--Input from the x-...

coordinate

5 --Kalman filter.
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6 input_y : In signed(high_bit Downto 0);--Input from the y-...

coordinate

7 --Kalman filter.

8 output : Out signed(high_bit Downto 0);

9 overflow_2D : Out std_logic);

10 End TwoD_top;

Listing C.29:

1 Entity TwoD_top_controller Is

2 Port(clk , reset : In std_logic;

3 reset_external : out std_logic);

4 End TwoD_top_controller;
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Appendix D. Design Schematics

This appendix contains schematics for some of the VHDL Kalman filter modules.
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