

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JAN 2008 2. REPORT TYPE

3. DATES COVERED
 00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
CrossTalk: The Journal of Defense Software Engineering. Volume 21,
Number 1, January 2008

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
OO-ALC/MASE,6022 Fir Ave,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 CROSSTALK The Journal of Defense Software Engineering January 2008

4
5

6

11

16

21

23

28

Announcing CrossTalk’s Co-Sponsor Team for 2008
Meet CrossTalk’s 2008 co-sponsors.

The 2008 CrossTalk Editorial Board
Here is a list of CrossTalk’s article reviewers.

The Critical Need for Software Engineering Education
Long describes the need for more dedicated software engineering
educational programs and professional software engineering certification
programs in the United States.
by Dr. Lyle N. Long

Using Inspections to Teach Requirements Validation
This article describes an experiment conducted in a graduate-level
requirements engineering course to provide students a real world experience
in requirements validation.
by Lulu He, Dr. Jeffrey C. Carver, and Dr. Rayford B. Vaughn

Integrating Software Assurance Knowledge Into
Conventional Curricula
This article discusses the results of a comparison of the Common Body
of Knowledge for Secure Software Assurance with traditional computing
disciplines.
by Dr. Nancy R. Mead, Dr. Dan Shoemaker, and Jeffrey A. Ingalsbe

Software Engineering Continuing Education
at a Price You Can Afford
Maj. Bohn gives detailed information about the Air Force Institute of
Technology’s Software Professional Development Program.
by Maj Christopher Bohn, Ph.D.

How to Avoid Software Inspection Failure and Achieve
Ongoing Benefits
This article describes the proven benefits of inspections and signifies that
they are too significant to let them fall by the wayside.
by Roger Stewart and Lew Priven

Computer Science Education: Where Are the Software
Engineers of Tomorrow?
This article briefly examines the set of programming skills that should be
part of every software professional’s repertoire.
by Dr. Robert B.K. Dewar and Dr. Edmond Schonberg

PPoliciesolicies,, NeNewsws,, aandnd UpdatesUpdates

SoftwSoftwaarree EngineerEngineeringing TTechnolechnologogyy

TTrraainingining aandnd EducationEducation

3
10

20
31

D eD e p ap a rr t m e n t st m e n t s

From the Sponsor

Coming Events
Letter to the Editor

SSTC 2008 Ad

BackTalkCover Design by
Kent Bingham

ON THE COVER

Additional art services
provided by Janna Jensen

OpenOpen FFororumum

CrossTalk
CO-SPONSORS:

DOD-CIO

OSD (AT&L)

NAVAIR

76 SMXG

309 SMXG

DHS

STAFF:
MANAGING DIRECTOR

PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

The Honorable John Grimes

Kristen Baldwin

Jeff Schwalb

Kevin Stamey

Norman LeClair

Joe Jarzombek

Brent Baxter

Elizabeth Starrett

Kase Johnstun

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555
crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the Department of
Defense Chief Information Office (DoD-CIO); the
Office of the Secretary of Defense (OSD) Acquisition,
Technology and Logistics (AT&L); U.S. Navy (USN);
U.S. Air Force (USAF); and the U.S. Department of
Homeland Security (DHS). DoD-CIO co-sponsor:
Assistant Secretary of Defense (Networks and
Information Integration). OSD (AT&L) co-sponsor:
Software Engineering and System Assurance. USN co-
sponsor: Naval Air Systems Command. USAF co-
sponsors: Oklahoma City-Air Logistics Center (ALC)
76 Software Maintenance Group (SMXG); and
Ogden-ALC 309 SMXG. DHS co-sponsor: National
Cyber Security Division of the Office of
Infrastructure Protection.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 30.

517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, the co-sponsors, or
the STSC.All product names referenced in this issue
are trademarks of their companies.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-0857 or e-mail <stsc.web
master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

January 2008 www.stsc.hill.af.mil 3

From the Sponsor

One of my favorite resources is Webster’s 1828 Dictionary. Unlike any of our mod-
ern dictionaries, the 1828 version provides a deeper understanding of words. I

thought the 1828 definition of education was quite fitting for this month’s theme.
Webster’s says that education comprehends all that series of instruction and discipline
which is intended to enlighten understanding … and fit them for usefulness in their
future stations.
A primary question this issue attempts to highlight is do our educational institutions in fact

prepare software professionals to be successful in their future stations? In October 2006, a study conduct-
ed by the Center for Strategic and International Studies revealed a significant shortfall in the
number of software professionals that had been formally educated in software project manage-
ment. The study indicated that our industry is lacking in program managers, software architects,
systems engineers, and domain experts. Many industry experts agree that there is an adequate
supply of programmers, but the pool of these critical senior managers and system experts is
very limited.

As Department of Defense (DoD) systems become more and more software intensive, soft-
ware developments get bigger, more complicated, and more dependent on senior software pro-
fessionals to get the project on the right path and keep it there. Since studies seem to indicate
that we are falling behind in our attempt to educate certain pockets of critical expertise and our
software projects are in greater need of these same professionals, our problem is getting worse.
I hope this month’s articles will inspire you to think about how you will address this trend in
your organization.

For a more thorough discussion of this trend from the perspective of aerospace engineer-
ing, I hope you will read The Critical Need for Software Engineering Education by Dr. Lyle N. Long.
You will find more specific software educational issues addressed in the two articles that follow.
In Using Inspections to Teach Requirements Validation by Lulu He, Dr. Jeffrey C. Carver, and Dr.
Rayford B. Vaughn, the authors share an experiment that compares the use of both checklists
and Perspective-Based Reading to aid in a requirements validation exercise. In Integrating Software
Assurance Knowledge Into Conventional Curricula by Dr. Nancy R. Mead, Dr. Dan Shoemaker, and
Jeffrey A. Ingalsbe, the authors compare the contents of the Common Body of Knowledge for
Secure Software Assurance with the Computing Curricula 2005: The Overview Report. Their
intent is to map our security needs with software-related curricula being recommended for our
schools.

One of the options available to assist DoD readers with required software training is the
software curriculums available through the Air Force Institute of Technology (AFIT); you can
read more about AFIT in Software Engineering Continuing Education at a Price You Can Afford by Maj
Christopher Bohn, Ph.D. You will find another thought-provoking article from Roger Stewart
and Lew Priven with their discussion of successfully implementing software inspections in How
to Avoid Software Inspection Failure and Achieve Ongoing Quality, Cost, and Schedule Benefits. We conclude
this month’s issue with an insightful article by Dr. Robert B.K. Dewar and Dr. Edmond
Schonberg entitled Computer Science Education: Where Are the Software Engineers of Tomorrow?

It should be clear throughout the software community that education does not end once a
graduate has a bachelor’s degree. The technology we work with continues to grow at an astound-
ing rate. Even if additional degrees are not sought, all professionals need additional education
to keep current with the needs of the software community. As a co-sponsor for CrossTalk,
I am happy to provide one additional source for this education.

Training and Education

Kevin Stamey
Oklahoma City Air Logistics Center, Co-Sponsor

4 CROSSTALK The Journal of Defense Software Engineering January 2008

Policies, News, and Updates

The Honorable John Grimes, Department of
Defense – Chief Information Officer
The Assistant Secretary of Defense for Net-
works and Information Integration for the
Department of Defense Chief Information
Officer (ASD[NII]/DoD-CIO) is the principal
staff assistant and advisor to the Secretary on net-

works and net-centric policies and concepts, command and con-
trol, communications, non-intelligence space matters, enterprise-
wide integration of DoD information matters, and Information
Technology. Additionally, the DoD-CIO has responsibilities for
integrating information and related activities and services across
the DoD. The mission of the organization is to enable Net-Centric
operations. NII/CIO is leading the Information Age transforma-
tion that will enhance the DoD’s efficiency and effectiveness by
establishing an Information on Demand capability. See
<www.dod.mil/cio-nii> for more information.

Kristen Baldwin, Office of the Secretary of
Defense – Acquisition,Technology and Logistics
The Office of the Secretary of Defense for Ac-
quisition, Technology and Logistics (OSD(AT&L))
Software Engineering and Systems Assurance is
the staff agent responsible for all matters relat-
ing to DoD software engineering, systems assur-

ance, system of sytems (SoS) engineering, and Capability Maturity
Model Integration. Organizational focus areas include policy, guid-
ance, education and training, acquisition program support, software
acquisition management and development techniques, software and
systems engineering integration, SoS enablers and best practices,
engineering for system assurance, and government-industry collab-
oration. See <www.acq.osd.mil/sse/ssa> for more information.

Terry Clark, NAVAIR, Systems Engineering
Department – Director, Software Engineering
The Naval Air Systems Command (NAVAIR) has
three Strategic Priorities through which it pro-
duces results for the Sailor and the Marine. First
are its People that we develop and provide tools,
infrastructure, and processes needed to do their

work effectively. Next, Current Readiness that delivers NAVAL avi-
ation units ready for tasking with the right capability, at the right
time, and the right cost. Finally, Future Capability in the delivery of
new aircraft, weapons, and systems on time and within budget,

that meet Fleet needs, providing a technological edge over adver-
saries. See <www.navair.navy.mil> for more information.

Kevin Stamey, 76 SMXG Director
The 76th Software Maintenance Group at the
Oklahoma City-Air Logistics Center is a leader in
the avionics software industry that understands
total system integration. The center has a proven
record of producing software on time, on bud-
get, and defect-free. Its people provide the exper-

tise, software, weapons, interface, and aircraft systems that are
fully integrated to ensure dependable war-winning capabilities. Its
areas of expertise include navigation, radar, weapons and system
integration, systems engineering, operational flight software, auto-
matic test equipment, and more. For more information, see
<www.bringittotinker.com>.

Norman LeClair, 309 SMXG Acting Director
The 309th Software Maintenance Group at the
Ogden-Air Logistics Center is a recognized
world leader in cradle-to-grave systems support,
encompassing hardware engineering, software
engineering, systems engineering, data manage-
ment, consulting, and much more. The division

is a Software Engineering Institute Software Capability Maturity
Model® (CMM®) Integration Level 5 organization with Team
Software ProcessSM engineers. Their accreditations also include
AS 9100 and ISO 9000. See <www.mas.hill.af.mil> for more
information.

Joe Jarzombek, Department of Homeland
Security – Director of Software Assurance
The DHS National Cyber Security Division serves
as a focal point for software assurance (SwA),
facilitating national public-private efforts to pro-
mulgate best practices and methodologies that
promote integrity, security, and reliability in soft-

ware development and acquisition. Collaborative efforts of the
SwA community have produced several publicly available online
resources. For more information, see the Build Security In Web site
<https://buildsecurityin.us-cert.gov>, which is expanding to
become the SwA Community of Practice portal <www.us-cert.
gov/swa> to provide coverage of topics relevant to the broader
stakeholder community.

Announcing CrossTalk’s Co-Sponsor Team for 2008
Elizabeth Starrett

CrossTalk

For more information about becoming a CCrroossssTTaallkk
co-sponsor, please contact Elizabeth Starrett at (801) 775-
4158 or <beth.starrett@ hill.af.mil>.

® Capability Maturity Model and CMM are registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

SM Team Software Process are service marks of Carnegie Mellon University.

I wish to express my continuing gratitude for the support CrossTalk’s co-sponsors again provide in 2008. I know
our readers and staff appreciate the benefits provided to the software community by the information made available as
a result of their sponsorship. Co-sponsor team members are identified below with a description of their organization.
Please look for their contributions each month in our From the Sponsor column found on page 3. Their organiza-
tions will also be highlighted on the back cover of each issue of CrossTalk.

January 2008 www.stsc.hill.af.mil 5

National Defense University
Electronic Systems Center Engineering Directorate
Software Technology Support Center
Software Technology Support Center
Humans and Technology
Retired (formerly with Microsoft)
The AEgis Technologies Group, Inc.
Software Technology Support Center
Information Technology Standards and Solutions
Software Engineering Institute
Auburn University
Software Technology Support Center
Olin Institute for Strategic Studies, Harvard University
Software Technology Support Center
GAITS, Inc.
Priority Technologies, Inc.
Software Technology Support Center
Raytheon
Software Technology Support Center
U.S. Marine Corps
Northrop Grumman
519th Combat Sustainment Squadron
Software Technology Support Center
PEM Systems
Raytheon Integrated Defense Systems
Science Applications International Corporation
L-3 Communications, Inc.
Army PEO Simulation, Training and Instrumentation
Battle Control System-Fixed Sustainment Office
Arrowpoint Solutions, Inc.
SabiOso
309th Software Maintenance Group
Shim Enterprise, Inc.
Software Technology Support Center
Software Technology Support Center
Software Technology Support Center
309th Software Maintenance Group
Defense Advanced Research Projects Agency
Software Technology Support Center
Lockheed Martin Integrated Systems and Solutions
Charles Stark Draper Laboratory
Mississippi State University
309th Software Maintenance Group
Software Technology Support Center
Software Engineering Institute

The 2008 CrossTalk Editorial Board
Elizabeth Starrett

CrossTalk

CrossTalk proudly presents the 2008 CrossTalk Editorial Board. Each article submitted to CrossTalk is
reviewed by two technical reviewers from the list below in addition to me, CrossTalk’s publisher. The insights from the board
improve the readability and usefulness of the articles that are published in CrossTalk. Most reviewers listed have graciously
offered their own time to support CrossTalk’s technical review process. We give very special thanks to all those participat-
ing in our 2008 CrossTalk Editorial Board.

COL Ken Alford, Ph.D.
Bruce Allgood
Brent Baxter
Jim Belford

Dr. Alistair Cockburn
Richard Conn

Dr. David A. Cook
Les Dupaix

Sally Edwards
Robert W. Ferguson

Dr. John A. “Drew” Hamilton Jr.
Tony Henderson

Lt. Col. Brian Hermann, Ph.D.
Thayne Hill

George Jackelen, PMP
Deb Jacobs

Dr. Randall Jensen
Alan C. Jost
Daniel Keth

Paul Kimmerly
Theron Leishman

Glen L. Luke
Gabriel Mata

Paul McMahon
Dr. Max H. Miller

Mike Olsem
Glenn Palmer

Doug J. Parsons
Tim Perkins

Gary A. Petersen
Vern Phipps

David Putman
Kevin Richins
Thom Rodgers

Larry Smith
Elizabeth Starrett

Tracy Stauder
COL John “Buck” Surdu, Ph.D.

Kasey Thompson
Dr. Will Tracz
Jim Van Buren

Dr. Rayford B. Vaughn Jr.
David R. Webb
Mark Woolsey
David Zubrow

Software is everywhere, from cell
phones to large military systems.

According to the National Academy of
Science [1], “... software is not merely an
essential market commodity but, in fact,
embodies the economy’s production func-
tion itself.” The National Institute of
Standards and Technology (NIST) esti-
mates that software errors cost the U.S.
economy $59.5 billion a year and software
sales accounted for $180 billion [2].
Software engineering education does not
get the attention it deserves, even though
it is crucially important to our economy.
The issues related to software engineering
as a discipline and the debates which have
occurred over the years, are not new and
are described in [3, 4, 5].

The list of software disasters grows
each year. Some of the best-known
include the following: the Ariane 5 rocket
(Flight 501) [6, 7], the Federal Bureau of
Investigation Virtual Case File system [8],
the Federal Aviation Administration
Advanced Automation System [7, 9], the
California Department of Motor Vehicle
system, the American Airlines reservation
system, and many, many more [7, 10]. The
F-22 aircraft also had problems initially
due to its complex software systems.
Software disasters cost the United States
billions of dollars every year, and this may
only get worse since future systems will be
more complex. Boeing spent roughly $800
million on software for the 777, and they
might need to spend five times that on the
787 [11]. Aerospace systems will also
include some levels of autonomy, accom-
panied by an entirely new level of soft-
ware complexity. To help prevent future
disasters, we must have more software
engineers trained in rigorous technical
programs that are on par with other engi-
neering programs. The United States

should not wait until there is a disaster
that causes large numbers of human casu-
alties before it acts. We do not currently
have enough software engineers. We need
to educate many more in the near future,
especially considering the large group of
engineers that will be retiring in the next
10 years [12]. In 2005, the average age of
an aerospace engineer was 54 [13]. In
addition, more than 26 percent of the
aerospace workers will be eligible for
retirement in 2008 [14].

Importance of Software in
Aerospace Systems
The aerospace industry provides roughly
$900 billion in economic activity and
accounts for more than 15 percent of the
gross domestic product and supports
more than 15 million high quality jobs in
the United States [14]. These aerospace
systems rely heavily on software, which
has been called the Achilles Heel of aero-
space systems. There are numerous anec-
dotes and examples that illustrate the
importance of computing and software in
aerospace. For example:
• The Boeing 777 has 1,280 onboard

processors that use more than four
million lines of software; Ada accounts
for 99.5 percent of this [15, 16].

• The F-22 has more than two million
lines of software onboard; between 80
and 85 percent is in Ada [17].

• Some Blackhawk helicopters have
almost 2,000 pounds of wire connect-
ing all the computers and sensors.

• The wiring harness is often more com-
plex and more difficult to design than
the aircraft structure.

• Some aircraft cannot fly without their
onboard computers (e.g., F-16 and F-
117).

• The air traffic control system relies

heavily on computers, software, and
communications.

• Interplanetary robotics and spacecraft
perform amazing feats, often in
extreme environments.

• Autonomous, intelligent, unmanned
vehicles will be even less deterministic
than current systems.

• Computers are also important in the
design and analysis of aerospace sys-
tems. Often this means using high-per-
formance, massively parallel computer
systems.

• Communication systems are critically
important for aircraft and spacecraft;
this now includes computer network-
ing onboard, to the ground, and to
other aerospace vehicles.

• Modern aircraft and spacecraft seldom
work alone – they are usually part of a
system of systems.
One way to measure the need for soft-

ware engineers in the aerospace field is to
research existing job opportunities. An
Oct. 2006 review of the Lockheed-Martin
Corporation Web site showed they had
536 job openings for recent graduates,
including 68 openings (13 percent) in soft-
ware engineering and four in aerospace
engineering. Most of the aerospace engi-
neering job openings were for structural
engineers capable of performing finite
element analyses. It should be noted that
they do hire aerospace engineers in other
areas as well (for example, aerospace con-
trol experts are sometimes listed under
embedded systems). The Boeing employ-
ment Web page gave similar results. They
had 298 job openings related to software.
There were only three jobs that mentioned
aerodynamics (none of which were actually
jobs for aerodynamicists). When searching
the Boeing site for aerospace engineer, it
returned a listing of six open positions in

The Critical Need for Software Engineering Education

Dr. Lyle N. Long
The Pennsylvania State University

Software affects almost every aspect of our daily lives (manufacturing, banking, travel, communications, defense, medicine,
research, government, education, entertainment, law, etc.). It is an essential part of our military systems, and it is used
throughout the civilian sector, including safety-critical and mission-critical systems. In addition, the complexity of many of
these systems has been growing exponentially. Unfortunately, the U.S. higher education system has not kept pace with these
needs. Existing undergraduate and graduate science and engineering programs need to incorporate more material on software
engineering. This is especially true for aerospace engineering, since those systems rely heavily on computation, information, com-
munications, and software. In addition, the United States needs more dedicated software engineering educational programs
and professional software engineering certification programs.

Training and Education

6 CROSSTALK The Journal of Defense Software Engineering January 2008

The Critical Need for Software Engineering Education

structural engineering. This is probably an
indication that aerospace engineering edu-
cational programs are concentrating too
much on the applied physics of aerospace
engineering and not enough on comput-
ing and software. We need to work with
industry and the government to redefine
aerospace engineering. We need to educate
students capable of designing and build-
ing the new aerospace systems that we will
need in the future – which will be domi-
nated by computing, networking, and
information systems.

Software Engineering Defined
The Institute of Electrical and Electronics
Engineers (IEEE) defines software engi-
neering [3] as “the application of a sys-
tematic, disciplined, quantifiable approach
to the development, operation, and main-
tenance of software.” A good summary of
software engineering can be found in [18].

Software systems are some of the
most complicated things humans have
ever created. To design and build them,
one needs to follow processes and proce-
dures typical of other engineering disci-
plines [6, 19]. First, the requirements need
to be carefully defined. Then the architec-
ture of the software system needs to be
developed. Once the requirements and
architecture are defined, one can begin
code development. The code then needs
verification, validation, and testing. There
are many ways of accomplishing all of
these steps which are related to the type of
life-cycle model used and the type of sys-
tem developed. In addition, one needs to
consider how to estimate costs, how to
manage the people, and how to monitor
the ethical responsibilities of the team.
This is not unlike the steps required to
design and build any complex system (e.g.,
bridges, aircraft, and computer hardware).
The actual code development or program-
ming can be a fairly small portion of the
process [6].

Most engineers and scientists do not
fully appreciate or understand software
engineering. Even high school students
think they can do software after they learn
the basics of Java or C++ syntax. All too
often, software engineering is equated
with programming. This is like equating
civil engineering with pouring concrete.
Many people can pour concrete, but few
are civil engineers and can build large,
technically inspired masterpieces. Like-
wise, many people can program, but few
can develop large software masterpieces.
It is not uncommon to hear people argu-
ing about the merits or drawbacks of the
different computer languages, even
though they are not well versed on the var-

ious languages. Often, they simply like the
language that they grew up with and do
not appreciate or understand the others.
These misconceptions are especially
apparent in discussions regarding Ada
[20], which is still probably the best lan-
guage to use for mission- or safety-critical
systems. In reality, people who develop
code without sound software engineering
approaches are merely hackers. Of course,
programmers are an essential part of soft-
ware engineering, and talented program-
mers are quite rare and extremely valuable.

Software Engineering
Education
Both the U.S. economy and national
defense depend upon software, but many
of these large software systems are being
developed by people who have never been
formally trained in software engineering.
While there are some incredibly talented
self-taught software engineers, we should

not rely on the majority of our software
engineers being self-taught. We would
never build modern aircraft without aero-
space engineers, and we would never build
bridges or buildings without civil engi-
neers. So why are we developing large
software systems without teams of for-
mally trained and professionally certified
software engineers?

Recently, Dr. John Knight, a professor
at the University of Virginia, contrasted
software engineering to other engineering
disciplines [21]. He spoke of how 1,000-
year-old cathedrals were built using the
best civil engineering technology of the
time and how these buildings are still
standing. Civil engineering has evolved
tremendously over the ages, and now we
have enormous skyscrapers and spectacu-

lar bridges. This would not be possible
without a vibrant civil engineering educa-
tional system, research programs, and
mentoring. Similar analogies could be
drawn from other engineering disciplines.
A thousand years from now, people will be
marveling at aerospace engineering mile-
stones such as the Wright Flyer, the SR-71
Blackbird, and the Apollo program. All
were great engineering projects in their
day and are now in museums. Will there be
any software cathedrals to marvel at 1,000
years from now? Or will future genera-
tions view us as hackers?

Traditional Science and Engineering
Educational Programs
Many students who graduate from U.S.
science and engineering programs will
eventually work in software development.
Unfortunately, most of them will get little
or no software education. For example, 24
percent of physics graduates will be work-
ing on software five to eight years after
graduation [22]. Most of them will proba-
bly receive no training in software engi-
neering in college. Other science gradu-
ates, even outside of engineering, may
also eventually work in software develop-
ment. It would be very beneficial for these
students to know more about software
engineering before they graduate. They
need more than a freshman-level course
in programming. This is true of almost all
the traditional science and engineering
degree programs.

It is also not valid to assume that com-
puter science graduates are software engi-
neers, either. It is fairly easy to graduate
from a computer science program with
very little education in software develop-
ment. Knight and Leveson describe the
need for more software education in com-
puter science and computer engineering
programs and advocate for more software
engineering programs [23].

The need for software education is
especially critical in aerospace engineering
programs. Aerospace engineers have
always prided themselves on being the
system integrators, but to do this you
must have some understanding of the
complete aerospace system you are devel-
oping. In modern combat aircraft, the
electronic components account for
roughly 10 percent of the weight and 33
percent of the cost [24]. So if aerospace
engineers are not well versed in comput-
ing, networking, sensors, and software
then they cannot understand the complete
system (unless that system is 60 years old).
Students need to be trained so that they
can develop the next generation of aero-
space systems, not old aircraft and old

January 2008 www.stsc.hill.af.mil 7

“We need to work with
industry and the

government to redefine
aerospace engineering.
We need to educate
students capable of

designing and building
the new aerospace
systems that we will

need in the future ...”

Training and Education

spacecraft. Aerospace systems have
always used the latest technology to
achieve amazing performance. Future
and current systems rely heavily on com-
puters and software and students need to
know that. Aerospace engineers are
needed as system integrators, but this is
only possible if they have some under-
standing of the complete system (includ-
ing computing and software).

Today this goes beyond the onboard
avionics since modern aircraft and
spacecraft are almost always tied to other
systems, but avionics is a huge part of
aerospace systems. Processing power
and computer memory have been
increasing exponentially in military air-
craft since about 1960 [25]. The F-106
had less than 20 kilobytes of memory,
while the Joint Strike Fighter (JSF) could
have more than two gigabytes. Avionics
could account for 40 percent of the cost
of the JSF. The report also states that
software content in these systems has
increased dramatically, and that we need
more software engineers.

Computing and software are integral
parts of aerospace engineering. It is now
one of the key disciplines in aerospace
engineering. Traditionally, aerospace
engineering [26] was built upon four
technology pillars: aerodynamics, struc-
tures, propulsion, and dynamics and
control, as shown in Figure 1. These pil-
lars are reflected in aerospace engineer-
ing curricula. All these disciplines were
important for the Wright brothers and
for every aerospace system since then.
However, modern aerospace engineering
must include five pillars, as shown in
Figure 2. In [27], the authors refer to the
five areas as the following: aerodynam-
ics, materials, avionics, propulsion, and
controls. Current and future aerospace
systems are and will be designed using
computers. They will have onboard
computers and will need to communi-
cate with other vehicles and computers.

Computing (including processing, net-
working, and storing data) and software
are essential elements of aerospace engi-
neering, and they are the fifth pillar. In
addition, this fifth pillar might be the
most important pillar, and it is far less
mature than the other four. Aerospace
engineering educational programs have a
strong emphasis on applied physics (e.g.,
fluid dynamics, structural dynamics,
dynamics, combustion, and propulsion).
Historically, there were good reasons for
this, but we cannot continue to neglect
the research and educational needs in
aerospace computing and software.

While computing and software is
crucial for aerospace systems, existing
aerospace engineering educational pro-
grams usually do not reflect this fact.
Most aerospace engineering programs
require roughly 40 courses over a four-
year period, but students often take only
one course related to software (a fresh-
man-level programming course). Also,
there is usually no requirement to learn
about avionics, embedded systems, net-
working, sensors, or computer hardware.
This trend carries through to aerospace
engineering graduate programs as well,
where the entrance exams and curricula
seldom include computing, software, or
avionics. They are often primarily

applied physics programs.
Pennsylvania State University has

been working to modernize its aerospace
engineering curricula [28]. The universi-
ty now offers senior-level courses in
advanced computer programming
(object-oriented programming, Java,
C++, Ada, etc.) and software engineer-
ing (using [6]), both for aerospace engi-
neers. Penn State also has a new course
on the Global Positioning System. As of
2006, aerospace engineering students
will be required to take either the software
engineering course or an electronic cir-
cuits course. Ideally, they should take
both and also be exposed to systems
engineering, embedded systems, net-
working, information systems, sensors,
and software. These additional topics
could be covered in their technical elec-
tives or in graduate courses. Some of
them could be covered in a minor also.
The university also hopes to establish an
undergraduate minor in information sci-
ences and technology for aerospace
engineering in 2008.

It should also be noted that it is dif-
ficult to teach an engineer all they need
to know in four years. In fact, the U.S.
National Academy of Engineering [29]
recommends that the bachelor of sci-
ence degree be recognized as a pre-engi-
neering degree. Scientists and engineers
need to continue learning throughout
their lifetimes to be effective. In addi-
tion, many aerospace engineering posi-
tions require a master’s degree, which
allows the student to concentrate on a
particular area. An excellent combina-
tion would be for a student to get a
bachelor of science in aerospace engi-
neering and then a master’s degree or
doctorate in software (or systems) engi-
neering. These graduates would be
extremely valuable. Another possibility is
to offer an undergraduate or graduate
minor in software engineering. Penn
State has a popular graduate minor in
computational science, which attracts
students from a wide variety of science
and engineering departments [30]. A
similar program could be created for
software engineering or systems engi-
neering.

Dedicated Software Engineering
Education Degree Programs
As previously stated, existing science
and engineering education programs
need to include more computing and
software in their curricula, but they also
need more dedicated software engineer-
ing programs. These software engineer-
ing programs, however, need to include

8 CROSSTALK The Journal of Defense Software Engineering January 2008

A
E

R
O

D
Y

N
A

M
IC

S

OLD
AEROSPACE ENGINEERINGA

S
T

R
U

C
T

U
R

E
S

ROSPACE EER ACE EROSPPA

P
R

O
P

U
L

S
IO

N

NGINEERINGEN ERINGNGINEE

D
Y

N
A

M
IC

S
A

N
D

C
O

N
T

R
O

L

G

DESIGN

A
E

R
O

D
Y

N
A

M
IC

S

MODERN
AEROSPACE ENGINEERINGAER

S
T

R
U

C
T

U
R

E
S

A
N

D
M

A
T

E
R

IA
L

S

SPA ROAEROS

AN

D

P
R

O
P

U
L

S
IO

N

GINEERINGNGERRIN

D
Y

N
A

M
IC

S
A

N
D

C
O

N
T

R
O

L

GG

DESIGN AND SYSTEMS ENGINEERINGE

C
O

M
P

U
T

E
R

S
A

N
D

S
O

F
T

W
A

R
E

PACE ENGPA GINEEEENGGINNEE ECEAC EN

AN

D

SYSTEYSTEMS ENMS EM

Figure 1: Old Aerospace Engineering

A
E

R
O

D
Y

N
A

M
IC

S

OLD
AEROSPACE ENGINEERINGA

S
T

R
U

C
T

U
R

E
S

ROSPACE EER ACE EROSPPA

P
R

O
P

U
L

S
IO

N

NGINEERINGEN ERINGNGINEE

D
Y

N
A

M
IC

S
A

N
D

C
O

N
T

R
O

L

G

DESIGN

A
E

R
O

D
Y

N
A

M
IC

S

MODERN
AEROSPACE ENGINEERINGAER

S
T

R
U

C
T

U
R

E
S

A
N

D
M

A
T

E
R

IA
L

S

SPA ROAEROS

AN

D

P
R

O
P

U
L

S
IO

N

GINEERINGNGERRIN

D
Y

N
A

M
IC

S
A

N
D

C
O

N
T

R
O

L

GG

DESIGN AND SYSTEMS ENGINEERINGE

C
O

M
P

U
T

E
R

S
A

N
D

S
O

F
T

W
A

R
E

PACE ENGPA GINEEEENGGINNEE ECEAC EN

AN

D

SYSTEYSTEMS ENMS EM

Figure 2: Modern Aerospace Engineering

“While computing and
software is crucial for
aerospace systems,
existing aerospace

engineering educational
programs usually do not

reflect this fact.”

The Critical Need for Software Engineering Education

plenty of science and engineering in
their curricula (e.g., physics, mathemat-
ics, and embedded systems). They
should not have an overemphasis on
management, business, and processes.
The Association for Computing
Machinery (ACM), the IEEE, and the
National Science Foundation have devel-
oped very good undergraduate curricula
in software engineering [3].

Currently in the United States, there
are only 10 accredited software engineer-
ing undergraduate programs [31], while
there are 67 aerospace engineering pro-
grams. The United States needs many
more software engineering programs.
This needs to happen soon, since it takes
years to start new programs and for stu-
dents to graduate. In addition, the
United States has an aging workforce.
Some companies in the aerospace and
defense business could see 40 percent of
their workforce retire in the next five
years [12]. According to the Wall Street
Journal, organizations such as the
National Aeronautics and Space
Administration have more engineers
over 60 than under 30.

In addition to the existing undergrad-
uate software engineering programs,
there are 109 software engineering mas-
ter’s degree programs and 40 software
engineering doctorate programs in the
United States. Few of the undergraduate
or graduate programs, however, are at
major research universities. In addition,
few of them exist at universities includ-
ed in the top 25 schools listed in the U.S.
News and World Report rankings. Most of
these programs are at relatively small
schools, maybe because they are able to
react more quickly to industry and soci-
ety needs.

Unfortunately, change occurs
extremely slowly in academia because
there are few incentives to change.
Government funding could and should
be used to help expedite these changes.
Industry leaders need to get involved
and demand change as well. There needs
to be internships and mentoring avail-
able. There is also a need for continuing
education. At the government labs and
in industry, there is a huge need for soft-
ware engineering training for its existing
workforce.

We also need software engineering
professional certification. The IEEE has
developed an excellent Certified
Software Development Professional
(CSDP) program [32, 33]. This is a great
program, but it is not quite a software
engineering certification program.
Unfortunately, there is no requirement

for a science or engineering background
for the certification, so it is not the same
as other professional engineering certifi-
cation programs. In addition, at the time
this article was written, there were only
575 people in the world who have the
CSDP certification. Beginning in 1999,
Texas began certifying software engi-
neers [34]. In addition, the Open Group
has established an information technolo-
gy architect certification program [35].

Conclusion
Higher education in the United States
needs to be more responsive to the soft-
ware engineering needs of its industry
and government labs. The United States
cannot be complacent with its techno-
logical leads in any field, especially soft-
ware and aerospace, which are two of
the most important industries in its
economy. These two industries annually
provide more than $180 billion and $900
billion, respectively, to the economy.
Technology has been changing at an
exponential rate, and too often curricula
changes extremely slowly. Software engi-
neering needs to be incorporated into
existing science and engineering pro-
grams, especially aerospace engineering
curricula. We also need to create more
dedicated software engineering educa-
tional programs at all levels – short
courses, bachelors, masters, and doctorate
levels. And finally, there also needs to be a
national effort to develop professional
certification of software engineers.u

References
1. Jorgenson, D.W., and C.W. Wessner,

Eds. Measuring and Sustaining the
New Economy, Software, Growth, and
the Future of the U.S. Economy.
Washington, D.C.: National Acade-
mies Press, 2006.

2. NIST <www.nist.gov/public_affairs/
releases/n02-10.htm>.

3. IEEE Computer Society and the
ACM. “Curriculum Guidelines for
Undergraduate Degree Programs in
Software Engineering.” 2004 <http://
sites.computer.org/ccse/SE2004
Volume.pdf>.

4. Vaughn, R. “Software Engineering
Degree Programs.” CrossTalk
Mar. 2000.

5. Computer Science and Telecommu-
nications Board. Expanding Infor-
mation Technology Research to Meet
Society’s Needs. Washington, D.C.:
The National Academies Press, 2000.

6. Sommerville, I. Software Engineering.
Addison-Wesley, 2006.

7. Glass, Robert L. Software Runaways:

Monumental Software Disasters.
Prentice-Hall, 1997.

8. Eggen, D., and G. Witte. “The FBI’s
Upgrade That Wasn’t.” Washington
Post 18 Aug. 2006.

9. U.S. House of Representatives. Proc.
of the Aviation Subcommittee
Meeting. Washington, D.C.: 2001.

10. Leveson, Nancy G. “Role of Software
in Spacecraft Accidents.” Journal of
Spacecraft and Rockets 41.4 (2004).

11. Winter, D.C. Presentation at the
National Workshop on Aviation
Software Systems: Design for
Certifiably Dependable Systems.
Alexandria, VA: Oct. 5-6, 2006.

12. “The Aging Workforce: Turning
Boomers Into Boomerangs.” The
Economist 16 Feb. 2006.

13. Albaugh, J.F. “Embracing Risk: A
Vision for Aerospace in the 21st
Century.” Frank Whittle Lecture, Royal
Aeronautical Society, Jan. 19, 2005.

14. Commission on the Future of the U.S.
Aerospace Industry. “Final Report of
the Commission on the Future of the
U.S. Aerospace Industry.” Washington
D.C.: National Academies Press, 2002.

15. Hafner, K. “Honey, I Programmed the
Blanket.” New York Times 27 May
1999.

16. Pehrson, R.J. “Software Development
for the Boeing 777.” CrossTalk
Jan. 1996.

17. Moody, B.L. “F-22 Software Risk
Reduction.” CrossTalk May, 2000.

18. U.S. Air Force. Software Technology
Support Center (STSC). “A Gentle
Introduction to Software Engineer-
ing.” Hill Air Force Base, UT: STSC,
1999.

19. Glass, R.L. Facts and Fallacies of Soft-
ware Engineering. Addison-Wesley,
2006.

20. Ada Home <www.adahome.com>.
21. Knight, J.C. Presentation at the

National Workshop on Aviation
Software Systems: Design for
Certifiably Dependable Systems.
Alexandria, VA: Oct. 5-6, 2006.

22. American Institute of Physics. The
Statistical Research Center <www.aip.
org/statistics>.

23. Knight, J.C., and N.G. Leveson.
“Software and Higher Education
Inside Risks Column.” Communica-
tions of the ACM 49.1 (2006).

24. Sanders, P. “Improving Software
Engineering Practice.” CrossTalk
Jan. 1999.

25. Aging Avionics in Military Aircraft.
Washington D.C.: National Academies
Press, 1993.

26. Long, L.N. “Computing, Information,

January 2008 www.stsc.hill.af.mil 9

Training and Education

and Communication: The Fifth Pillar
of Aerospace Engineering.” Journal of
Aerospace Computing, Information,
and Communication 1.1 (2004).

27. “The Future of Aerospace.” Wash-
ington, D.C.: National Academies
Press, 1993.

28. Pennsylvania State University Curri-
culum Guide 2006-2007 <www.aero.
psu.edu/undergrads/UG_Curriculum
_Guide_2006-07.pdf>.

29. “Educating the Engineer of 2020:
Adapting Engineering Education to
the New Century.” Washington D.C.:
National Academies Press, 2005.

30. <www.csci.psu.edu/minor.html>.
31. ABET <www.abet.org/>.
32. IEEE Computer Society. IEEE

Computer Society Certified Software
Development Professional Program
Web Center <www.computer.org/
portal/pages/ieeecs/education/
certification/>.

33. IEEE Computer Society. Guide to the
Software Engineering Body of
Knowledge. IEEE Computer Society,
2004.

34. Voas, J. “The Software Quality
Certification Triangle.” CrossTalk
Nov., 1998.

35. The Open Group. “IT Architect
Certification Program” <www.open
group.org/itac>.

10 CROSSTALK The Journal of Defense Software Engineering January 2008

About the Author

Lyle N. Long, D.Sc., is
a distinguished professor
of aerospace engineer-
ing, bioengineering, and
mathematics at the Penn-
sylvania State University.

He is also director of the graduate minor
in computational science. Long has a
doctorate of science from George
Washington University, a master’s degree
from Stanford University, and a bache-
lor’s degree in mechanical engineering
from the University of Minnesota. He is
an IEEE Computer Society Certified
Software Development Professional.
Long received the 1993 IEEE Computer
Society Gordon Bell Prize. He is a Fellow
of the American Institute of Aeronautics
and Astronautics, is a senior member of
the IEEE, and has written more than 130
technical papers. In 2007-2008, he was a
Moore Distinguished Scholar at the
California Institute of Technology.

Pennsylvania State University
233 Hammond BLDG
University Park, PA 16802
Phone: (814) 865-1172
Fax: (814) 865-7092
E-mail: lnl@psu.edu

COMING EVENTS

February 4-8
28th Annual Texas Computer Education
Association’s Convention and Exposition

Austin, TX
www.tcea2008.org

February 13-15
2008 Conference for Industry and

Education Collaboration
New Orleans, LA

www.asee.org/conferences/ciec/
2008/index.cfm

February 18-22
2008 Working IEEE/IFIP Conference on

Software Architecture
Vancouver, BC, Canada

www.wicsa.net

February 25-28
24th Annual National Test and

Evaluation Conference
Palm Springs, CA

www.ndia.org/Template.cfm?
Section=8910&Template=/Content
Management/ContentDisplay.cfm

&ContentID=18912

February 27-28
AFCEA 2008 Homeland

Security Conference
Washington, D.C.

www.afcea.org/events/homeland/
landing.asp

April 29-May 2

2008 Systems and Software
Technology Conference

Las Vegas, NV
www.sstc-online.org

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
nicole.kentta@hill.af.mil.

Dear CrossTalk Editor,
Once again, the cover for CrossTalk
is a knockout! Congratulations to the staff
and to the editor for a great edition. I
was wondering when systems engineer-
ing would be a transitional topic about
systems engineering and software inclu-
sion.

When I stepped down from the prin-
cipal investigator position on the B-1B
program, I went into software because
of the lack of understanding I found
between systems engineering and soft-
ware. Due to my relationship with the
company’s system engineering manager
and the software manager – and the help
of CrossTalk articles that I sent
them – they finally decided to have meet-
ings in their manager’s office and talked
together! What a milestone that was! I
still send CrossTalk articles to these
guys, which they are grateful for because
it helps keep them current on industry

thinking.
This edition should be given to every

systems engineer manager and staff, as
well as software managers. Let’s get the
communication going among our con-
tractors!

I could not have been more pleased
with Dr. John W. Fischer’s introduction
in the Sponsor’s Note to this month’s
issue of CrossTalk. His remarks are
dead-on regarding the issues and evolution
of system engineering with software.
Gee, can you imagine what the founda-
tion for requirements would start to look
like?

Thanks for another great issue!

– Melonee Moses
Software/Logistics Management Specialist

DCMA Boeing
Long Beach, CA

<melonee.moses@dcma.mil>

LETTER TO THE EDITOR

It can be argued that requirements engi-
neering (RE) is one of the most impor-

tant stages in a traditional software devel-
opment life cycle because it helps to cor-
rectly determine the desired purpose of a
system. The goal of an RE process is to
identify and document stakeholders and
their needs in a form amenable to analy-
sis, communication, and implementation
[1]. Correct, complete, and unambiguous
requirements not only ensure that devel-
opers build the right system, but also
reduce the effort and cost that would
otherwise be needed to fix requirements
problems later. Because of the impor-
tance in obtaining correct requirements,
RE courses are fundamental elements of
any software engineering curriculum. An
RE course should teach students tech-
niques for accurately eliciting, analyzing,
and validating requirements. By acquiring
these skills, future software engineers are
better equipped to produce quality
requirements, eliminate faults, and reduce
development time. Educating students in
RE, however, is not an easy task because
it is a human-centered process that re-
quires skills from a variety of disciplines
(e.g., computer science, system engineer-
ing, cognitive psychology, anthropology,
and sociology) [1]. Moreover, RE educa-
tors must bridge the gap between acade-
mia and industry by exposing students to
the real world as much as possible. One
important real-world aspect of RE that
has remained largely unstudied in the
software engineering education commu-
nity is requirements validation.

This article describes an exercise to
aid in the teaching of requirements vali-
dation in a graduate-level RE course,
along with an evaluation of its usefulness.
In the exercise, the students validated a
real software requirements specification
document provided by an industrial part-
ner using a meeting-based N-fold inspec-
tion method (described later) [2].

Background
Previous research has identified challenges
faced during RE education. Because one
goal of software engineering education is
to help students develop the knowledge
and skills necessary to be successful in
industry, a challenge for RE educators is
that the inherent complexity of industrial
RE (i.e. the broad scope, multiple con-
cerns, and deficient specifications) is diffi-
cult to replicate in a classroom environ-
ment [3, 4]. To be successful, a require-
ments engineer must possess both the
technical skills needed to interact with the
system and the social skills needed to
interact with its human stakeholders [1].
These soft skills (e.g., communication and
teamwork) are also difficult to teach in the
classroom [5].

Most published work on RE education
has focused on a small set of RE topics:
elicitation, analysis, and the overall process.
Validation is a complex task that is often
not adequately covered in a traditional uni-
versity education [6]. A requirements docu-
ment can have many different types of defi-
ciencies that may have disastrous effects on
subsequent development stages and yield
undesirable consequences [4, 7]. The
requirements validation process checks for
different types of problems (e.g., omis-
sions, inconsistencies, and ambiguities) to
help ensure that proper quality standards
are fulfilled. Due to time limits and other
considerations, validation is usually con-
ducted informally either on an ad-hoc basis
or simply as a peer review [8]. As a result,
little has been reported concerning the edu-
cational challenges of validation topics like
inspections. These challenges highlight the
importance of improving education and
critical, technical, and social skills that a
requirements engineer must possess.
However, the topics covered in many soft-
ware engineering courses do not meet these
needs, posing a major challenge for devel-
oping RE skills [6, 9]. Furthermore, experi-

ence reports about RE education is rare in
software engineering and RE literature. To
address the lack of focus on requirements
validation, we developed a requirements
validation exercise which we found to be
successful and instructive. This exercise is a
follow-on experiment from that reported at
the Fourteenth Annual Systems and
Software Technology Conference held in
Salt Lake City in April 2002 titled “Third
Party Walkthrough Inspections: A Joint
Navy/University Empirical Software
Engineering Project.” The most recent
results of the experiment were also pre-
sented by invitation at the Canadian Air
Force Software Engineering Symposium
held at the Royal Military College of
Canada in Kingston, Ontario, May 2007
[10, 11].

Description of the
Requirements Validation
Exercise
The exercise was conducted during a grad-
uate-level RE course at Mississippi State
University. The class included graduate stu-
dents that were currently working for the
Department of Defense (DoD), had previ-
ous government software development
experience, and many that had no practical
experience. The main goal of this course
was to provide students with a comprehen-
sive overview of requirements elicitation,
analysis, specification validation, and man-
agement. These activities were introduced
in the context of systems engineering and
various software development life-cycle
models. For each activity, the students were
exposed to specific methods, tools, and
notations. The semi-weekly, 75-minute
class sessions contained a mixture of lec-
ture material, class discussions centered on
outside readings, and student presentations.
Near the end of the semester, the students
participated in a two-week requirements
validation exercise – the primary subject of

Using Inspections to Teach Requirements Validation

Requirements validation is often not adequately covered by a traditional software engineering curriculum in universities. This
article describes an experiment conducted in a graduate-level requirements engineering course to provide students a real world
experience in requirements validation. The experiment made use of the N-fold inspection method, in which multiple teams of
students inspect the same requirements document then meet together to discuss their findings. This procedure allows the stu-
dents to not only practice their reviewing skills, but also to strengthen their communication and collaboration skills. At the
conclusion of the exercise, the students were given the opportunity to provide qualitative and quantitative feedback. The results
of this study suggest that the techniques employed by this class and the resulting defect detection could be useful in general dur-
ing the requirements validation process.

Lulu He, Dr. Jeffrey C. Carver, and Dr. Rayford B. Vaughn
Mississippi State University

January 2008 www.stsc.hill.af.mil 11

Training and Education

this article. While the exercise reported
here is based on a small number of stu-
dents, we believe the results achieved sug-
gest that such techniques could be consid-
ered in larger requirements validation exer-
cises. The authors are amenable to cooper-
ating with others to expand this research
through additional empirical investigation
– particularly in DoD software engineering
endeavors.

Overview and Goals of the
Requirements Validation Exercise
The overall goal of the exercise was to pro-
vide students with hands-on practice in
requirements validation. The specific goals
of the requirements validation exercise
were the following:
1. To help students understand the course

materials better by experiencing the for-
mat and presentation of a real require-
ments document, experiencing the
impact of domain-specific language in
understanding and reviewing a require-
ments document, and exposing the stu-
dents to flaws commonly found in a
requirements document.

2. To help students obtain an appreciation
for the complexity and necessity of RE,
especially requirements validation.

3. To give students hands-on experience
validating a requirements document
with specific inspection techniques.

4. To provide an opportunity for students
to practice soft skills such as communi-
cation and teamwork.
Two important goals of the course

were addressed through this exercise. First,
give the students an idea of the size, com-
plexity, language, and flaws that can occur
in software artifacts, they validated a real
requirements document, which was actual-
ly used by a contractor to develop and
implement a system. The requirements
document described an upgrade to a case-
tracking system for the U.S. National Labor
Relations Board. The 43-page document
was written in natural language (English)
and contained the standard content that
would be expected in a government
requirements document.

Second, to expose students to a real-
world requirements validation method, the
N-fold inspection method was used. In this
method, the same artifact is inspected by
multiple teams in parallel with the goal of
improving the overall review effectiveness
[12]. From an educational point of view,
the N-fold inspection method provides
students with an opportunity to discuss the
defects found with other students, thereby
understanding how others had viewed the
artifact. Furthermore, N-fold inspection

meetings expose students to the impor-
tance of communication and teamwork –
important soft skills.

Requirements Validation Techniques
Studies have shown that inspections are an
effective requirements validation tech-
nique because they greatly improve system
quality by detecting many defects early in
the software life cycle [13]. Within the N-
fold method, individual reviewers can use
different approaches to review the docu-
ment. Our students used either a checklist
approach or the Perspective-Based
Reading (PBR) approach (each described
in more detail).

In practice, most industrial inspections
use an ad-hoc or checklist-based approach
for defect detection [14]. A checklist pro-
vides the inspector with concrete guidance
that is not provided by an ad-hoc
approach. A checklist is a list of items that
focus an inspector’s attention on specific
topics, such as common defects or organi-
zational rules, while reviewing a software

document [15]. For this requirements vali-
dation exercise, an informal checklist was
developed that focused on important qual-
ity concepts relevant to a requirements
document. Checklist examples are readily
available on the Web, for example, <soft-
ware.gsfc.nasa.gov/AssetsApproved/PA2.
2.1.5.doc>, <www.processimpact.com/
process_assets/requirements_review_
checklist.doc>, or <www.swqual.com/
training/Require.pdf>. For the class exer-
cise, we used a checklist based on the
Volere Requirements Specification Tem-
plate which can be found at <www.
systemsguild.com/GuildSite/Robs/Tem
plate.html>.

PBR is a systematic inspection tech-
nique that supports defect detection in
software requirements through a role-
playing exercise [13]. In PBR, each
reviewer verifies the correctness of the
requirements from the perspective of a
specific stakeholder. The most common

perspectives are the user, the designer,
and the tester. PBR techniques provide
reviewers with a set of steps to follow to
build a high-level system abstraction and
questions to help identify problems. For
example, a reviewer assuming the user
perspective may create use cases, while a
reviewer assuming the tester perspective
would create test plans. Studies have
shown that PBR is a more effective, sys-
tematic, focused, goal-oriented, customiz-
able, and transferable process than a stan-
dard checklist or ad-hoc approach [16]. By
reviewing the requirements document
from the perspective of different stake-
holders (i.e., playing the role of that stake-
holder), the reviewers are expected not
only to detect more defects, but also to
better comprehend the complexity of RE.

Details of the Requirements
Validation Exercise and Summary of
Research Results
Students enrolled in the course were
divided into four, three-person teams with
the expertise level balanced across teams.
The members of two teams used a check-
list to inspect the requirements document,
while members of the other two teams
used the PBR technique. For the PBR
teams, each student was instructed to use
one of the three perspectives (user,
designer, or tester) to guide their inspec-
tion. These two inspection techniques
were chosen because research suggested
that while PBR is often a more effective
technique, checklists are more widely used
in government and industry [14]. A sec-
ond motivator was that no previous work
had compared the effectiveness of a
checklist-based approach to the effective-
ness PBR in the context of the N-fold
inspection method. More importantly,
instead of using a generic checklist, the
checklist in this study was specifically
developed for the type of requirements
document to be inspected (e.g., from a
government organization).

Before the exercise began, the stu-
dents received one class meeting (75 min-
utes) of training in their assigned tech-
nique (checklist or PBR). The training for
the checklist teams was done through a
discussion with the course professor
about attributes of requirements quality.
During this discussion, the checklist stu-
dents – heavily guided by the professor –
developed a checklist to guide their
inspection. The training for PBR was
done by an expert in PBR and included a
discussion of the theory behind the tech-
niques and a case study that illustrated an
example of its use. After the training, the

12 CROSSTALK The Journal of Defense Software Engineering January 2008

“Studies have shown
that inspections are an
effective requirements

validation technique ... by
detecting many defects

early in the
software life cycle.”

Using Inspections to Teach Requirements Validation

PBR reviewers were given the detailed pro-
tocol for their assigned perspective. Then
each student performed an individual
inspection of the requirements document
using their assigned technique. During this
inspection, each student individually
reviewed the document and recorded as
many defects as he or she could find. The
students were given two days to perform
this task outside of class. Once all three
members of a team completed the individ-
ual inspection step, they met together in
the 1st Team Meeting. During this meet-
ing, the students discussed the defects they
found and agreed on a final team defect
list. After all four teams had conducted the
1st Team Meeting, the two checklist teams
(six students) met together and the two
PBR teams (six students) met together for
the 2nd Team Meeting. In these six-person
meetings, the reviewers examined the two
defect lists produced during the 1st Team
Meeting and agreed on a final list of
defects.

The data analysis indicated that PBR
was more effective, both for individual
inspectors and for the teams. Conversely,
the data suggested that the checklist teams
had more effective team meetings during
the N-fold inspection process than the
PBR teams. Here, the effectiveness of
team meetings is defined by two mea-
sures: meeting gains, i.e. the number of
defects identified during the meeting dis-
cussions that no individual inspector had
found prior to the meeting, and meeting
losses, i.e. defects found by an individual
inspector that the inspection team deter-
mines are false positives and, hence, not
recorded on the final team defect list. In
the case of the PBR teams, the team
meeting served little purpose because
there were few meeting gains or meeting
losses. The end result would have been
similar had the individual list simply been
combined without spending time in a for-
mal team meeting. Conversely, for the
checklist teams, the meeting served a vital
role in the process. During the team meet-
ings, not only were there meeting gains,
but also a large percentage of false posi-
tives were identified and removed as
meeting losses. Identification of false
positives saves time during the rework
phase. One likely cause of this result is
the different perspectives from which the
PBR reviewers approached the Software
Requirements Specification (SRS). Each
PBR reviewer focused on their own per-
spective and was less concerned with the
perspectives of others. For the checklist
team, the reviewers inspected the SRS
using the same checklist and there was
more interaction among team members

during the meetings. The most important,
and novel, conclusion drawn from these
results is that the effectiveness and neces-
sity of a team meeting depends greatly on
the technique used during the individual
preparation phase of the inspection.
Additional data on this experiment can be
obtained by contacting the second or
third author of this article.

Evaluation of the Educational Value
of the Exercise
To evaluate the effectiveness of this exer-
cise relative to the four educational goals
listed earlier, quantitative and qualitative
data was collected using a post-study sur-
vey. Goals 1-3 were specifically evaluated
by the survey questions in Table 1 (see
page 14). Goal 4 was addressed by using
team meetings, but it was not specifically
evaluated on the post-study questionnaire.
The survey focused on the students’ opin-
ions of the exercise and gave them an
opportunity to provide feedback on how
to improve the exercise. The first two
questions were answered using a predeter-
mined scale (explained with each ques-
tion). The other questions were answered
using free text.

Results
This section discusses the results from the
post-exercise questionnaire along with a
brief explanation. The questionnaire col-
lected both qualitative and quantitative
data from the students.

Quantitative Data
Q1. Was the exercise a positive or nega-
tive experience?
The students answered this question on a
scale of 1 (negative) to 5 (positive). Figure
1 shows that 91 percent of the students
found the exercise to be a positive experi-

ence with no students having a negative
experience. In Figure 1, the ratings given
by students using PBR and checklist are
shown in different shades to evaluate any
impact the technique had. While the opin-
ion of the PBR reviewers is slightly more
positive, there is little difference due to the
technique used. Therefore, regardless of
which technique was used, the students
found the N-fold inspection exercise to be
a positive experience.

Q2. Did the exercise help you better
understand the course materials?
The students responded to this question
on a scale of 1 (not at all) to 5 (very
much). Figure 2 shows that all of the stu-
dents found the exercise was very helpful or
a lot helpful.

Qualitative Data
The qualitative feedback, in which the stu-
dents were able to express their own opin-
ions, provides additional insight into the
usefulness and effectiveness of the exer-
cise. In this analysis, specific answers given
for each question are listed along with the
number of students who gave that answer,
shown in parentheses where 3 checklist/2
PBR means that three students who used
the checklist and two students who used
PBR gave the answer. In some cases, the
response was given by only PBR students
or only checklist students, e.g., 3 PBR in
bullet three of Q3. This does not imply
that the answer is not applicable to the
other technique – it only means that no
students using the other technique provid-
ed an answer. In some cases, students pro-
vided more than one answer to each ques-
tion, so the total number of responses
may be greater than 12. Q3 and Q4 from
the post-study survey were geared towards
addressing Educational Goals 2 and 3. Q5

January 2008 www.stsc.hill.af.mil 13

Negative Less
Negative

Neutral PositiveLess
Positive

6

4

2

0

C
o

u
n

t

Q1. Was the exercise a positive
or negative experience?

Inspection Technique

 Checklist

 PBR

Figure 1: Positive or Negative Experience
Results

Figure 3 Exercise design
Table 1. Survey Questions

Q1. Was the exercise a positive or negative experience?

Q2. Did the exercise help you better understand the course materials?

Q3. Did you see any benefits from the exercise? If so what were they?

Q4. Did you learn anything by performing the exercise? If so, what?

Q5. Did you see any drawbacks to the exercise? If so what were they?

Q6. How could the exercise been improved?

Not At
All

A
Little

Okay Very
Much

A
Lot

6

5

4

5

2

1

0

C
o

u
n

t

Q2. Did the exercise help you better understand
the course materials?

Inspection Technique

 Checklist

 PBR

Figure 2: Understanding the Course Materials
Results

Training and Education

14 CROSSTALK The Journal of Defense Software Engineering January 2008

and Q6 provide feedback on how to
improve the exercise.

Q3. Did you see any benefits from the
exercise? If so what were they?
All 12 students indicated that they found
some benefit from participation in this
exercise:
1. It provided hands-on/practical experi-

ence (3 checklist/2 PBR).
2. It helped them better understand a real

requirements document (3 checklist /3
PBR).

3. It helped them better understand
defect detection in a requirements
document (3 PBR).

Because the students obtained hands-on
experience and indicated that they under-
stood a real requirements document, this
exercise helped address Educational Goals
2 and 3.

Q4. Did you learn anything by performing
the exercise? If so, what?
From this exercise, the students learned
the following:
1. The usefulness of inspections (2

checklist/1 PBR).
2. The difficulties involved in creating

and using a real requirements docu-
ment (3 checklist/1 PBR).

3. The benefits of using a method to
focus a requirements inspection on
certain aspects of the requirements
document (2 checklist/5 PBR).

Similar to Q3, these responses indicate
that the students learned the benefits of
inspections, and the difficulties in creating
real requirements documents, helping
address Educational Goals 2 and 3.

Q5. Did you see any drawbacks to the
exercise? If so what were they?
Only five (4 checklist/1 PBR) of the 12
students reported any drawbacks of the
exercise:
1. Not enough training (3 checklist/1 PBR).
2. Not enough time (2 checklist).
On a positive note, these drawbacks all
relate to the logistics of the exercise and
not to its intrinsic value. None of these
drawbacks are concerned with the inspec-

tion procedure that was used during the
exercise.

Q6. How could the exercise have been
improved?
1. Expand the exercise (1 checklist/1

PBR).
2. Provide more domain knowledge (2

checklist).
3. Allow more time for various activities

(2 checklist/2 PBR).
4. Provide more training (1 checklist/4

PBR).
These suggestions generally relate to the
drawbacks cited in Q5. It was interesting
that two students asked for a more exten-
sive exercise that allowed them to obtain
more practice and experience using the
inspection techniques. This request sug-
gests that the students believed that even
more benefit would be obtained by
expanding the scope of the exercise.

Summary and Conclusion
This article describes the use of a require-
ments validation exercise in a graduate-
level RE course. In the exercise, the stu-
dents validated a software requirements
document using a meeting-based N-fold
inspection. The students provided their
opinions and feedback about the useful-
ness of the exercise in a post-exercise sur-
vey. These results showed that the exercise
achieved its goals.

Overall, students were highly satisfied
with the exercise content and found it to
be helpful. The exercise helped students
understand what a software requirements
document looks like and gain insight into
the difficulty and complexity involved in
its correct development. They not only
realized the importance of requirements
validation but also gained hands-on expe-
rience using inspection techniques. The
exercise provided the students with essen-
tial knowledge about requirements quality,
enabling them to better understand other
course material such as the following: elic-
itation, analysis, and specification.
Moreover, though not empirically evaluat-
ed, the team meetings in this exercise gave
the students an opportunity to practice

their communication and teamwork skills,
which are essential for their future careers.

Based on the feedback provided by the
students, the following modifications are
being considered for future similar class
exercises:
1. Provide more training on the inspec-

tion techniques by using case studies.
2. Give specific instructions on the struc-

ture and organization of the team
meeting.

3. Extend the length of the exercise to
allow additional time for training and
the individual inspection.

4. To make the exercise more realistic,
stakeholders of the software require-
ments document will be invited to
class, and help students to obtain more
domain knowledge.

5. When the N-fold inspection is fin-
ished, the defect lists will be given to
the owner of the requirements docu-
ment to understand the disposition of
those defects.
This study was performed in a gradu-

ate-level university course; therefore, the
next step is to perform additional valida-
tion in an industrial setting. Furthermore,
the positive experience with the N-fold
inspection process during RE suggests
that it may have applicability in other phas-
es of the software life cycle. In the future,
we will seek out opportunities to replicate
these experiences in other aspects of the
software engineering curriculum.u

References
1. Nuseibeh, B., and S. Easterbrook.

“Requirements Engineering: A Road
Map.” Proc. of International Confer-
ence on Software Engineering,
Limerick, Ireland, June 2000: Associa-
tion of Computing Machinery (ACM)
Press, 2000: 37-46.

2. He, L., and J.C. Carver. “PBR Vs.
Checklist: A Replication in the N-Fold
Inspection Context.” Proc. of 5th
ACM/Institute of Electrical and
Electronics Engineers (IEEE) Inter-
national Symposium on Empirical
Software Engineering (ISESE 2006),
Rio de Janeiro, Brazil, Sept. 21-22,
2006.

3. Armarego, J., and S. Clarke. “Preparing
Students for the Future: Learning
Creative Software Development –
Setting the Stage.” Proc. of the Annual
International Higher Education
Research and Development Society of
Austral Asia Conference Christchurch,
New Zealand. July 6-9, 2003.

4. Van Lamsweerde, A. “Requirements
Engineering in the Year 00: A
Research Perspective.” Proc. of 22nd

Figure 3 Exercise design
Table 1. Survey Questions

Q1. Was the exercise a positive or negative experience?

Q2. Did the exercise help you better understand the course materials?

Q3. Did you see any benefits from the exercise? If so what were they?

Q4. Did you learn anything by performing the exercise? If so, what?

Q5. Did you see any drawbacks to the exercise? If so what were they?

Q6. How could the exercise been improved?

Not At
All

A
Little

Okay Very
Much

A
Lot

6

5

4

5

2

1

0

C
o

u
n

t

Q2. Did the exercise help you better understand
the course materials?

Inspection Technique

 Checklist

 PBR

Table 1: Survey Questions

Using Inspections to Teach Requirements Validation

January 2008 www.stsc.hill.af.mil 15

International Conference on Software
Engineering. Limerick, Ireland, 2000:
IEEE Computer Society Press, 2000.

5. Conn, R. “Developing Software Engi-
neers at the C-130j Software Factory.”
IEEE Software 19.5 (2002): 25-29.

6. Bubenko, J.A. “Challenges in Require-
ments Engineering.” Proc. of 2nd
IEEE International Symposium on
Require-ments Engineering, Los
Alamitos, CA: IEEE Computer
Society, 1995: 160-162.

7. Meyer, B. On Formalism in Specifi-
cations. IEEE Software 2.1 (1985): 6-26.

8. Rosca, D. “An Active/Collaborative
Approach in Teaching Requirements
Engineering.” Proc. of 30th Annual
Frontiers in Education Conference.
Kansas City, MO., Oct., 2000: 9-12.

9. Lethbridge, T.C. “What Knowledge Is

Important to a Software Profession-
al?” Computer 33.5 (2000): 44-50.

10. Vaughn, R.B., and J. Lever. “Third
Party Walkthrough Inspections: A
Joint Navy/University Empirical
Software Engineering Project.” Proc.
of Fourteenth Annual Systems and
Software Technology Conference, Salt
Lake City, UT, Apr. 29-May 2, 2002.

11. Vaughn, R.B., and J.C. Carver.
“Experiences in N-Fold Structured
Walkthroughs of Requirements Docu-
ments.” Proc. of Canadian Air Force
Software Engineering Symposium,.
Royal Military College of Canada,
Kingston, Ontario. 24-25 May, 2007.

12. Martin, J., and W. Tsai. “N-Fold
Inspection: A Requirements Analysis
Technique.” Communications of the
ACM 33.2 (1990): 223-232.

13. Basili, V.R., et al. “The Empirical
Investigation of Perspective-Based
Reading.” Empirical Software Engi-
neering: An International Journal 1.2
(1996): 133-164.

14. Laitenberger, O., K.E. Emam, and
T.G. Harbich. “An Internally Repli-
cated Quasi-Experimental Compari-
son of Checklist and Perspective-
Based Reading of Code Documents.”
IEEE Transactions on Software
Engineering 27.5 (2001): 387-421.

15. Fagan, M. “Design and Code
Inspections to Reduce Errors in
Program Development.” IBM System
Journal 15.3 (1976): 182-211.

16. Shull, F., I. Rus, and V.R. Basili. “How
Perspective-Based Reading Can
Improve Requirements Inspection.”
IEEE Software 33.7 (2000):73-79.

About the Authors

Jeffrey Carver, Ph.D., is
an Assistant Professor in
the Computer Science
and Engineering Depart-
ment at Mississippi State
University. He received

his doctorate degree from the University
of Maryland in 2003. His research inter-
ests include software process improve-
ment, software quality, software inspec-
tions, and software engineering for sci-
entific and engineering computing. He
has more than 30 refereed publications
in these areas. His research has been
funded by the U.S. Army Corps of
Engineers, the U.S. Air Force, and the
National Science Foundation.

Computer Science
and Engineering
PO Box 9637
Mississippi State University
Mississippi State, MS 39762
Phone: (662) 325-0004
Fax: (662) 325-8997
E-mail: carver@cse.msstate.edu

Lulu He is a doctorate.
student in the Computer
Science and Engineering
Department at Mississ-
ippi State University. She
received her bachelor’s

and master’s degrees in computer sci-
ence from Wuhan University, China in
2001 and 2004, respectively. She also
received a master’s degree in computer
science from Mississippi State University
in August, 2007. Her research interests
include Software Quality, Software
Inspections, Software Architecture, and
Software Engineering for Scientific and
Engineering Computing.

Computer Science
and Engineering
PO Box 9637
Mississippi State University
Mississippi State, MS 39762
Phone: (662) 325-8798
E-mail: lh221@msstate.edu

Rayford B. Vaughn,
Ph.D., received his doc-
torate from Kansas State
University in 1988. He is
a William L. Giles Dis-
tinguished Professor and

the Billie J. Ball Professor of Computer
Science and Engineering at Mississippi
State University and teaches and con-
ducts research in the areas of Software
Engineering and Information Security.
Prior to joining the university, he com-
pleted a 26-year career in the U.S. Army
retiring as a Colonel and three years as a
Vice President of Defense Information
Systems Agency Integration Services,
and EDS Government Systems. Vaughn
has more than 100 publications to his
credit and is an active contributor to
software engineering and information
security conferences and journals. In
2004, he was named a Mississippi State
University Eminent Scholar. Vaughn is
the current Director of the Mississippi
State University Center for Critical
Infrastructure Protection and the Center
for Computer Security Research.

Computer Science
and Engineering
PO Box 9637
Mississippi State University
Mississippi State, MS 39762
Phone: (662) 325-7450
Fax: (662) 325-8997
E-mail: vaughn@cse.msstate.edu

Defects are not an option in today’s
world. Much of our national well-

being depends on software. So the one
thing that America’s citizens should be able
to expect is that that software will be free
of bugs. Sadly, that is not the case. Instead,
commonly used software engineering practices per-
mit dangerous defects that let attackers compromise
millions of computers every year . That happens
because commercial software engineering lacks the
rigorous controls needed to (ensure defect free) prod-
ucts at acceptable cost [1].

Most defects arise from program or
design flaws, and they do not have to be
actively exploited to be considered a threat
[2, 3]. In fiscal terms, the exploitation of
such defects costs the American economy
an average of $60 billion dollars a year [4].
Worse, it is estimated that in the future, the
nation may face even more challenging problems as
adversaries – both foreign and domestic – become
increasingly sophisticated in their ability to insert
malicious code into critical software systems [3].

Given that situation, the most impor-
tant concern of all might be that the
exploitation of a software flaw in a basic
infrastructure component such as power or
communication could lead to a significant
national disaster [5]. The Critical Infra-
structure Taskforce sums up the likelihood
of just such an event in the following:

The nation’s economy is increasing-
ly dependent on cyberspace. This
has introduced unknown interde-
pendencies and single points of
failure. A digital disaster strikes
some enterprise every day, [and]
infrastructure disruptions have cas-
cading impacts, multiplying their
cyber and physical effects. [5]

Predictions such as this are what moti-
vated the National Strategy to Secure
Cyberspace, which mandates the Depart-
ment of Homeland Security (DHS) to do
the following:

... promulgate best practices and
methodologies that promote

integrity, security, and reliability in
software code development, in-
cluding processes and procedures
that diminish the possibilities of
erroneous code, malicious code, or
trap doors that could be intro-
duced during development. [5]

Given the scope of that directive, one
obvious solution is to ensure that secure
software practices are embedded in work-
force education, training, and develop-
ment programs nationwide. The problem
is that there is currently no authoritative
point of reference to define what should
be taught [3]. For that reason, in 2005
DHS created a working group to define a
CBK for Secure Software Assurance
<https://buildsecurityin.us-cert.gov/
daisy/bsi/resources/dhs/95.html>. The
goal of the CBK is to itemize all of the
activities that might be involved in pro-
ducing secure code. DHS does not intend
the CBK to be used as a general standard,
directive, or policy [3]. Instead, its sole pur-
pose is to catalog secure practices that
might be appropriate to currently existing
academic disciplines. Thus, the CBK is an
inventory of potential knowledge areas with-
in each contributing discipline.

The CBK assumes the following:

... software assurance is not a sepa-
rate profession. What is not clear,
however, is the precise relationship
between the elements of the CBK
and the curricula of each potential-
ly relevant field. [6]

So, the challenge is to correctly inte-
grate secure software assurance practices
into each contributing discipline [3, 6].

Several disciplines could conceivably
benefit from CBK, such as software engineer-
ing, systems engineering, information systems secu-
rity engineering, safety, security, testing, informa-
tion assurance, and project management [3].
Consequently, in order to ensure that the
right content is taught in each, it is neces-
sary to understand the proper relationship

between the CBK and the curricula of
each relevant discipline [6].

Finding Where the CBK Fits
Into Current Curricula
The overall goal of the CBK is to ensure ade-
quate coverage of requisite knowledge areas in each
contributing discipline [3]. Accordingly, the
working group sought to understand the
exact relationship of CBK elements to
each traditional curriculum. Once that rela-
tionship was better understood, it was felt
that it should be possible to recommend
the right way to incorporate CBK content
into each of the established disciplines.

That comparison was materially aided
by the fact that the sponsoring societies of
the three most influential academic studies
had just finished their own survey of cur-
ricular models for computing curricula.
This was reported in “Computing
Curricula 2005: The Overview Report”
commonly called CC2005 [7]. CC2005
merges the recommendations for the con-
tent and focus of computer engineering, com-
puter science, information systems, information
technology, and software engineering curricula
into a single authoritative summary, which
is fully endorsed by the Association for
Computing Machinery (ACM), the
Institute of Electrical and Electronics
Engineers (IEEE) Computer Society, and
the Association for Information Systems.

CC2005 specifies 40 topic areas. These
40 topics represent the entire range of
subject matter for all five major comput-
ing disciplines. The report specifically
states the following:

Each one of the five discipline-
specific curricula represents the
best judgment of the relevant pro-
fessional, scientific, and education-
al associations and serves as a defi-
nition of what these degree pro-
grams should be and do. [7]

In addition to the 40 topic areas, which
in effect capture all of the knowledge
requirements for computing curricula

Integrating Software Assurance Knowledge Into
Conventional Curricula

One of our challenges is deciding how best to address software assurance in university curricula. One approach is to incorpo-
rate software assurance knowledge areas into conventional computing curricula. In this article, we discuss the results of a com-
parison of the Common Body of Knowledge (CBK) for Secure Software Assurance with traditional computing disciplines.
The comparison indicates that software engineering is probably the best fit for such knowledge areas, although there is overlap
with other computing curricula as well.

Jeffrey A. Ingalsbe
Ford Motor Co.

Dr. Nancy R. Mead
Software Engineering Institute

Dr. Dan Shoemaker
University of Detroit Mercy

16 CROSSTALK The Journal of Defense Software Engineering January 2008

January 2008 www.stsc.hill.af.mil 17

along with a ranking of their relative
emphasis in each specific discipline,
CC2005 also summarizes the expectations for
the student after graduation [7]. This summary
identifies 60 competencies that should be
expected for each graduate. By referencing
those identified competency outcomes, it
is relatively easy to see the relationship
between CBK knowledge elements and
the CC2005 curricular requirements. It is
also easier to see the places where there is
a misalignment between the CBK and
each discipline’s curricular goals.

The CBK was mapped to the CC2005
recommendations for only three of the
five disciplines. The two disciplines at
opposite ends of the CC2005 continuum,
computer engineering and information technology,
were omitted because the former overlaps
too much with electrical engineering and
the latter overlaps too much with business.

Because these three curricula (comput-
er science, information systems, and soft-
ware engineering) have differing focuses,
the content of CC2005 was examined one
discipline at a time. First, a topic-by-topic
analysis of depth of coverage was done.
Depth of coverage was defined as the
quantity of material in the CBK that provides
specific advice about how to execute a given activ-
ity in CC2005 in a more secure fashion.

To obtain a metric, the assessment of
quantity of material was based on a count of
the textual references in the CBK that
could be associated with each of the 40
topics. The assumption was that the more
references to the topic in the CBK the
greater the importance of integrating
secure software assurance content into the
teaching of that topic (see Table 1 for
degree to which CC2005 Knowledge
Areas are reflected in the CBK).

What Does This Mean?
The following eight CC2005 topic areas
had a significant degree of coverage in the
CBK (greater than 100 references): 1)
requirements, 2) architecture, 3) design, 4)
verification and validation (V&V), 5) evo-
lution (e.g., maintenance), 6) processes, 7)
quality, and 8) information systems project
management. The following three CC2005
topic areas had moderate coverage in the
CBK (less than 100 but more than 10): 1)
legal/professional/ethics/society, 2) risk
management, and 3) theory of program-
ming languages.

This mapping shows that the main
focus of the CBK is on generic software
work rather than on the specific curricular
aspects that characterize the study itself,
such as algorithms (for computer science),
or information systems management (for
information systems). That indicates that

CBK content would be best integrated
into the places where the practical ele-
ments of the life cycle are introduced,
such as a software design project course.

Fit Between the CBK and
Desired Outcomes for the
Profession
There were six priorities in CC2005. These
range from highest possible expectations
through highest expectations to moderate expec-
tations, low expectations, little expectations, and
no expectations. One of the more interesting
aspects of CC2005 is the 60 expected com-
petencies. Because there is a difference in
focus for each discipline, there is a differ-
ence in what should be expected for each
of them. For instance, there is a different
set of presumed competencies for a com-
puter scientist than for a software engineer.

The 60 expected competencies were
taken directly from the 40 learning topics.
Each competency was examined to deter-
mine which of the 40 topics could be
assigned to it. For instance, if the compe-
tency was to design a user-friendly interface,
there are 255 references in the CBK to
design, and five references in the CBK to
human/computer interfaces. So the number of
CBK references for this outcome was
assigned as 260 (Tables 2-4, pages 18-19).

For computer science there is a weak match
between the CBK and the highest possible com-
petency expectations in that only one of the
eight outcomes (12.5 percent) had any
degree of coverage. There is a slightly bet-
ter match for the high expectations catego-

ry, three of 10 (30 percent). However, there
is an excellent match with moderate expec-
tations, nine of 12 (75 percent).

For information systems there is a reason-
able match between the CBK and the high-
est possible competency expectations in that nine
of the 22 competencies (40.9 percent)
specified for that discipline are covered.
There is no match for the high expecta-
tions category. However, there is a good
match with moderate expectations, five of
nine (55.5 percent).

For software engineering there is a strong
match between the CBK and the highest pos-
sible set of competency expectations in that four
of the seven outcomes (57.1 percent) are
covered. There is reasonable match for the
high expectations category in that three of
12 competencies are covered (25 percent).
There is also a good match with moderate
expectations in that five of nine areas are
covered (55.5 percent).

Integrating the CBK into the
World of Practical Education
One of the main inferences that can be
drawn from this comparison is that the cur-
rent CBK is less focused on theory than it
is on application of the knowledge in prac-
tice. In essence, the results demonstrate
that the CBK is built around and encapsu-
lates knowledge about practical processes
that are universally applicable to securing
software rather than on discipline-specific
concepts, theories, or activities.

This is best illustrated by the matches
themselves. Outcomes such as solve programming

Integrating Software Assurance Knowledge Into Conventional Curricula
Table 1: Degree to Which CC 2005 Knowledge Areas Are Reflected in the CBK

Knowledge Areas All Disciplines Cites Knowledge Areas All
Disciplines

Cites

Integrative Programming
(integrated)

9 Analysis of Requirements 1

Algorithms 1 Technical Requirements
Analysis

274

Complexity 6 Engineering Economics for
Software

1

Architecture 150 Software Modeling and
Analysis

2

Operating Systems Principles and
Design

5 Software Design 255

Operating Systems Configuration
and Use

5 Software V&V 401

Platform Technologies 3 Software Evolution
(Maintenance)

438

Theory of Programming Languages 10 Software Process 296

Human-Computer Interaction (HCI) 5 Software Quality 163

Graphics and Visualization 1

Information Management (DB)
Practice

1 Non-Computing Topics Cites

Legal/Professional/Ethics/Society 93 Risk Management 86

Information Systems Development 7 Project Management 156

Table 2: Match Between CBK and CC2005 Expected Competencies for Each Discipline; Degree of Disciplinary

Expectations Addressed by the CBK

Table 1: Degree to Which CC 2005 Knowledge Areas Are Reflected in the CBK

Training and Education

problems, do large scale programming, and design
and develop new software and/or IS are high pri-
orities in all of the disciplines. At the same time,
each of these also has a significant degree
of coverage in the CBK.

High-priority items in each of these dis-
ciplines that were not good matches with

the CBK tended to be such competencies
as prove theoretical results (computer science),
develop proof-of-concept programs (computer sci-
ence), select database products (information
systems), use spreadsheet features well (informa-
tion systems), do small scale programming (soft-
ware engineering), and produce graphics or

game software (software engineering).
Others, such as create a software user inter-

face, were a mixed bag, with a good match
to design but a poor match to HCI.

So, while these competencies might be
individually important to their specific disci-
plines, they are not essential elements of

18 CROSSTALK The Journal of Defense Software Engineering January 2008

Computer Science

Highest Possible Expectation (5) Depth of Coverage

Solve programming problems (algorithms) Analysis (274), Design (255) strong

High Expectation (4) Depth of Coverage

Do large-scale programming (programming) Analysis (274), Design (255), Architecture (150) strong

Develop new software systems (programming) Analysis (274), Design (255), Architecture (150) strong

Create a software user interface (HCI) HCI (5) weak

Moderate Expectation (3) Depth of Coverage

Create safety-critical systems (programming) Analysis (274), Design (255), Architecture (150) strong

Process (296), V&V (401), PM (156)

Design information systems (IS) Analysis (274), Design (255), Architecture (150) strong

Implement information systems (IS) Process (296), V&V (401), PM (156) strong

Maintain and modify information systems (IS) Evolution (438) strong

Install/upgrade computers (planning) Process (296), V&V (401), PM (156) strong

Install/upgrade computer software (planning) Process (296), V&V (401), PM (156) strong

Design network configuration (networks) Analysis (274), Design (255), Architecture (150) strong

Manage computer networks (networks) Evolution (438) strong

Implement mobile computing system (networks) Analysis (274), Design (255), Architecture (150) strong

Information Systems/Information Technology

Highest Possible Expectation (5) Depth of Coverage

Create a software user interface (IS) HCI (5) weak

Define information system requirements (IS) IS Dev. (7), Bus. Req. (1), Analysis (274) strong

Design information systems (IS) Design (255), Modeling (5), Architecture (150) strong

Maintain and modify information systems (IS) Evolution (438) strong

Model and design a database (DB) DB (1), Design (255) strong

Manage databases (DB) Evolution (438) strong

Develop corporate information plan (planning) Process (296) strong

Develop computer resource plan (planning) PM (156) strong

Schedule/budget resource upgrades (planning) PM (156) strong

Develop business solutions (integration) Bus. Req (1), Modeling (5), Design (255) strong

High Expectation (4) Depth of Coverage

None n/a

Moderate Expectation (3) Depth of Coverage

Develop new software systems (programming) Analysis (274), Design (255), Architecture (150) strong

Install/upgrade computer software (planning) PM (155) strong

Manage computer networks (networks) Evolution (238) strong

Manage communication resources (networks) PM (155), Economics (1) strong

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

Table 2: Match Between CBK and CC2005 Expected Competencies for Computer Science

Computer Science

Highest Possible Expectation (5) Depth of Coverage

Solve programming problems (algorithms) Analysis (274), Design (255) strong

High Expectation (4) Depth of Coverage

Do large-scale programming (programming) Analysis (274), Design (255), Architecture (150) strong

Develop new software systems (programming) Analysis (274), Design (255), Architecture (150) strong

Create a software user interface (HCI) HCI (5) weak

Moderate Expectation (3) Depth of Coverage

Create safety-critical systems (programming) Analysis (274), Design (255), Architecture (150) strong

Process (296), V&V (401), PM (156)

Design information systems (IS) Analysis (274), Design (255), Architecture (150) strong

Implement information systems (IS) Process (296), V&V (401), PM (156) strong

Maintain and modify information systems (IS) Evolution (438) strong

Install/upgrade computers (planning) Process (296), V&V (401), PM (156) strong

Install/upgrade computer software (planning) Process (296), V&V (401), PM (156) strong

Design network configuration (networks) Analysis (274), Design (255), Architecture (150) strong

Manage computer networks (networks) Evolution (438) strong

Implement mobile computing system (networks) Analysis (274), Design (255), Architecture (150) strong

Information Systems/Information Technology

Highest Possible Expectation (5) Depth of Coverage

Create a software user interface (IS) HCI (5) weak

Define information system requirements (IS) IS Dev. (7), Bus. Req. (1), Analysis (274) strong

Design information systems (IS) Design (255), Modeling (5), Architecture (150) strong

Maintain and modify information systems (IS) Evolution (438) strong

Model and design a database (DB) DB (1), Design (255) strong

Manage databases (DB) Evolution (438) strong

Develop corporate information plan (planning) Process (296) strong

Develop computer resource plan (planning) PM (156) strong

Schedule/budget resource upgrades (planning) PM (156) strong

Develop business solutions (integration) Bus. Req (1), Modeling (5), Design (255) strong

High Expectation (4) Depth of Coverage

None n/a

Moderate Expectation (3) Depth of Coverage

Develop new software systems (programming) Analysis (274), Design (255), Architecture (150) strong

Install/upgrade computer software (planning) PM (155) strong

Manage computer networks (networks) Evolution (238) strong

Manage communication resources (networks) PM (155), Economics (1) strong

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

Table 3: Match Between CBK and CC2005 Expected Competencies for Information Systems

Integrating Software Assurance Knowledge Into Conventional Curricula

January 2008 www.stsc.hill.af.mil 19

secure software assurance as defined by the
CBK. In view of that finding, it would
appear to be easier to introduce CBK con-
tent into curricula that is focused on teach-
ing pragmatic software processes and meth-
ods. And given its historic involvement with
those areas, the discipline of software engi-
neering might be the place to start.

Therefore, one additional suggestion
might be that a similar study should be done
based strictly on Software Engineering
2004, “Curricular Guidelines for Under-
graduate Programs in Software Engineer-
ing,” particularly Table 1: Software Engi-
neering Education Knowledge Elements
[8]. That itemizes a set of knowledge areas and
knowledge units that are similar in focus and
purpose to the 40 knowledge areas con-
tained in CC2005. Thus, it should be possi-
ble to better understand the actual relation-
ship between standard software engineering
curricular content and the contents of the
CBK through that comparison.

There is another distinct observation
arising out of this study. Although the mod-
erate expectations category does not reflect
priority areas, it is overwhelmingly the best
aligned category for each discipline. What
that might indicate is that, although secure
software assurance is a legitimate area of
study for all of these fields, it is not the
highest priority in any of them. In terms of
disciplinary implementations, the practi-
tioner orientation and the fact that security

content is not the point of these fields indi-
cates that courses that cover practical life-
cycle functions might be the place to intro-
duce secure software assurance content
within any given discipline.

As a final note, the measurement
process used in this study (e.g., a raw count)
is inherently less accurate than expert con-
textual analysis of the meaning of each
knowledge element. Therefore, a more rig-
orous comparison should be undertaken to
better characterize the functional relation-
ship between the items in the CBK and the
various curricular standards. This would be
particularly justified for the study of soft-
ware engineering curricular content men-
tioned above. Once a means of compari-
son that everybody can agree on is used, it
should be relatively simple to work out the
nuts-and-bolts of specific implementations
within each individual program.u

References
1. President’s Information Technology

Advisory Committee. Cybersecurity: A
Crisis of Prioritization. Arlington:
Executive Office of the President,
National Coordination Office for
Information Technology Research and
Development, 2005.

2. Jones, Capers. Software Quality in
2005: A Survey of the State of the Art.
Marlborough: Software Productivity
Research, 2005.

3. Redwine, Samuel T., Ed. Software
Assurance: A Guide to the Common
Body of Knowledge to Produce,
Acquire and Sustain Secure Software,
Version 1.1. Washington: U.S. DHS,
2006.

4. Newman, Michael. Software Errors
Cost U.S. Economy $59.5 Billion
Annually. Gaithersburg: National
Institute of Standards and Technology
(NIST), 2002.

5. Clark, Richard A., and Howard A.
Schmidt. A National Strategy to Se-
cure Cyberspace. Washington: The
President’s Critical Infrastructure Pro-
tection Board, 2002 <www.us-cert.
gov/reading_room/cyberspace_strat
egy.pdf.>.

6. Shoemaker, D., A. Drommi, J. Ingals-
be, and N.R. Mead. “A Comparison of
the Software Assurance Common
Body of Knowledge to Common
Curricular Standards.” Dublin: 20th
Conference on Software Engineering
Education and Training, 2007.

7. Joint Taskforce for Computing
Curricula. Computing Curricula 2005:
The Overview Report. ACM/AIS/
IEEE, 2005.

8. Joint Taskforce for Computing
Curricula. Software Engineering 2004,
Curricular Guidelines for Undergrad-
uate Programs in Software Engineer-
ing. ACM/IEEE, 2004.

Software Engineering

Highest Possible Expectation (5) Depth of Coverage

Do large-scale programming (programming) Analysis (274), Design (255), Architecture 150) strong

Develop new software systems (programming) Analysis (274), Design (255), Architecture (150) strong

Create safety-critical systems (programming) Analysis (274), Design (255), Architecture (150) strong

Process (296), V&V (401), PM (156) strong

Manage safety-critical projects (programming) V&V (401), PM (156), Evolution (438) strong

High Expectation (4) Depth of Coverage

Develop new software systems (programming) Analysis (274), Design (255), Architecture (150) strong

Create a software user interface (HCI) HCI (5) weak

Define information system requirements (IS) IS Development (7), Bus. Req. (1), Analysis (274) strong

Moderate Expectation (3) Depth of Coverage

Design a human-friendly device (HCI) HCI (5), Design (255) strong

Design information systems (IS) Design (255), Modeling (5), Architecture (150) strong

Maintain and modify information systems (IS) Evolution (438) strong

Install/upgrade computers (planning) Process (296), V&V (401), PM (156) strong

Install/upgrade computer software (planning) Process (296), V&V (401), PM (156) strong

Manage computer networks (networks) Evolution (438) strong

Implement mobile computing system (networks) Analysis (274), Design (255), Architecture (150) strong

Conclusion

Conclusion

Conclusion

Table 4: Match Between CBK and CC2005 Expected Competencies for Software Engineering

Training and Education

20 CROSSTALK The Journal of Defense Software Engineering January 2008

About the Authors

Dan Shoemaker, Ph.D.,
is the director of the
Centre for Assurance
Studies. He has been pro-
fessor and chair of com-
puter and information

systems at the University of Detroit
Mercy for 24 years, and co-authored the
textbook, “Information Assurance for
the Enterprise.” His research interests
are in the areas of secure software assur-
ance, information assurance and enter-
prise security architectures, and informa-
tion technology governance and control.
Shoemaker has both a bachelor’s and a
doctorate degree from the University of
Michigan, and master’s degrees from
Eastern Michigan University.

Computer and Information
Systems – College of Business
Administration
University of Detroit Mercy
Detroit, MI 48221
Phone: (313) 993-1202
E-mail: shoemadp@udmercy.edu

Nancy R. Mead, Ph.D.,
is a senior member of
the technical staff in the
Networked Systems Sur-
vivability Program at the
SEI. She is also a faculty

member at Carnegie Mellon University.
Mead’s research interests are in the areas
of information security, software
requirements engineering, and software
architectures. She is a Fellow of the
IEEE and the IEEE Computer Society
and is also a member of the Association
for Computing Machinery. Mead
received her doctorate in mathematics
from the Polytechnic Institute of New
York, and received bachelor’s and mas-
ter’s degrees in mathematics from New
York University.

SEI
4500 5th AVE
Pittsburgh, PA 15213
E-mail: nrm@sei.cmu.edu

Jeffrey A. Ingalsbe is a
senior security and con-
trols engineer with Ford
Motor Company where
he is involved in infor-
mation security solutions

for the enterprise, threat modeling
efforts, and strategic security research.
He has a bachelor’s degree in electrical
engineering and a master of science
degree in computer information systems
from Michigan Technological University
and the University of Detroit Mercy,
respectively. He is currently working on a
doctorate in software engineering at
Oakland University. Ingalsbe serves as
an expert industry panelist on two
national working groups within the
DHS’s Cybersecurity Division.

17475 Federal DR
STE 800-D04
Allen Park, MI 48101
Phone: (313) 390-9278
E-mail: jingalsb@ford.com

January 2008 www.stsc.hill.af.mil 21

Software is everywhere. It is in our kitchen
appliances; it is in our cars. It allows us to

communicate worldwide, and it helps us
manage our personnel systems. It is in our
weapons systems. Famously, 80 percent of
the F-22’s functionality is performed in soft-
ware; some have said that taking a picture of
an F-22 is the only thing you can do with it
that does not require software [1]. Software
is so integral to the F-35 that Lockheed
Martin spearheaded the effort to create a
safety-critical C++ standard [2]. There is no
project in today’s military that is not affect-
ed by software. Software, like any other
technology, has its limitations; as dependent
as we have become on software, those limi-
tations become our limitations. Many won-
der how we can add armor to our programs’
Achilles heels.

Perhaps you were motivated by
Secretary Wynne’s emphasis on making edu-
cation a priority in your career [3, 4].
Perhaps you read the National Defense
Industrial Association’s report on the top
defense software engineering issues and are
wondering how you can overcome these
issues in your program [5]. Perhaps you are
simply looking for some job-relevant educa-
tion to satisfy the Acquisition Professional
Development Program continuing educa-
tion requirements without taxing your unit’s
travel budget. We are here to help you. We
can bring education to your office or home,
and we will not charge you or your organi-
zation a dime.

The AFIT’s SPDP is a distance learning,
professional continuing education program
designed to benefit the Department of
Defense (DoD) organizations and individu-
als with varying levels of experience and
responsibility. SPDP is well into its second
decade, but it has been anything but stag-
nant; we have constantly been adapting to
meet the needs of the defense software
engineering community. You may have read
about SPDP when it transitioned from a
resident program to satellite-delivered dis-
tance learning program [6, 7]. You may have
read about SPDP when it transitioned from
satellite delivery to Internet streaming and

from quarter-long courses to month-long
courses [8]. Since then, we have been work-
ing to improve the education we provide to
our students [9, 10].

A typical SPDP course is four weeks
long; the lectures are available through
Internet streaming or they can be down-
loaded to view offline. This format has per-
mitted our students to complete courses in a
high-paced environment; we have even had
students take SPDP courses while deployed

to Southwest Asia and while at sea. SPDP
courses differ from asynchronous Web-
based training in many ways. The most sig-
nificant is that they are instructor-led cours-
es – real, human instructors who provide
the lectures (see Figure 1, page 22), comple-
mented with reading assignments from a
textbook. We also make use of online dis-
cussion boards and sometimes teleconfer-
ences to provide continuous instructor-stu-
dent and student-student interaction.
Finally, our students are evaluated with
homework assignments and exams.

Available Courses
We currently offer 12 SPDP courses. We
have two courses focused on project man-
agement:
• CSE 479, Software Project Initiating and

Planning.
• CSE 480, Software Project Monitoring

and Control.
The software engineering life cycle is cov-

ered in six courses. CSE 481, Introduction
to Software Engineering, provides an
overview, and each major activity of the
software life cycle is covered in greater detail
in its own course:
• CSE 482, Software Requirements.
• CSE 483, Software Design.
• CSE 484, Software Implementation.
• CSE 485, Software Systems Mainte-

nance.
• CSE 486, Verification, Validation and

Testing.
Our next three courses address object-ori-
ented development:
• CSE 487, Fundamentals of Object-

Oriented Systems.
• CSE 488, Modeling Object-Oriented

Systems using UML.
• CSE 489, Advanced Analysis and

Design of Object-Oriented Systems.
Our final course, CSE 496, Software
Engineering Practicum, is a three-week resi-
dent course held at our campus near Wright-
Patterson AFB, Ohio.

With the exception of CSE 489 and
CSE 496, none of these courses have pre-
requisites. You can choose to take them all
or only the ones you are interested in and
you can take them in any order. We have
committed to offering each of these cours-
es at least once per year, though when
demand and faculty resources are in accord,
we will provide more frequent offerings.

As stated earlier, a typical SPDP course
is four weeks long. Each week, the instruc-
tor will provide two lectures and perhaps
will hold an optional teleconference. There
will be reading assignments and homework
assignments. There may be a mid-term
exam, and the class will conclude with a final
exam.

The atypical courses are CSE 489 and
CSE 496, as these are project-based courses.
CSE 489 is still a four-week, instructor-led
course, but there is only one lecture per
week and one mandatory teleconference in
which the students present project progress.
Enrollment in CSE 489 requires completion
of CSE 487 and CSE 488. CSE 496 is a
three-week resident course in which stu-

Software Engineering Continuing Education
at a Price You Can Afford

Software is so critical to today’s military programs that failure of the software generally results in failure of the program.
Hoping for success is the surest way to avoid it. Avoiding software failure is not accidental; it requires careful application of
sound software engineering. Whether you are an engineer, a program manager, a contracting officer, or anyone else involved in
the development, acquisition, or sustainment of a software-intensive system, the Air Force Institute of Technology’s (AFIT)
Software Professional Development Program (SPDP) can bring you the education you need to achieve software success1.

Maj Christopher Bohn, Ph.D.
Air Force Institute of Technology

“Software, like any other
technology, has its

limitations; as dependent
as we have become on

software, those
limitations become our

limitations.”

22 CROSSTALK The Journal of Defense Software Engineering January 2008

dents form a development team and have
the opportunity to apply what they have
learned; before enrolling in CSE 496, a stu-
dent must have completed at least seven
other SPDP courses.

Certifications
AFIT offers four certifications to help you
mark your progress through SPDP and to
help you demonstrate that you have taken a
breadth of courses. The Software Engi-
neering Management Certificate is awarded
in recognition of successful completion of
topics related to software project manage-
ment and the individual components of the
software life-cycle model; it will be awarded
for the completion of CSE 479, CSE 480,
and CSE 481. The Software Lifecycle
Development Certificate is awarded in
recognition of a more in-depth study of
each of the phases of the software life cycle;
it will be awarded after the successful com-
pletion of CSE 482, CSE 483, CSE 484, and
CSE 485. The Advanced Software
Development Certificate is awarded after
the successful completion of CSE 486, CSE
487, and CSE 488, in recognition of these
analysis, modeling, and testing topics.
Finally, the Technical Software Develop-
ment Certificate is awarded after the suc-
cessful completion of CSE 489 and CSE
496, in recognition of completing the pro-
ject-centered courses in the program.

Besides the AFIT certifications, SPDP
can help you toward another credential.
AFIT’s School of Systems and Logistics is
one of seven registered educational
providers worldwide for the Institute of
Electrical and Electronics Engineers
(IEEE) Computer Society’s Certified
Software Development Professional
(CSDP) program [11]. The CSDP certifica-
tion is the only software development certi-
fication that has all of the components of a
professional certification: an exam demon-

strating mastery of the Software
Engineering Body of Knowledge (SWE-
BOK), an experience base, and continuing
education. While taking the SPDP courses is
neither sufficient nor necessary to earn the
CSDP, completing the curriculum will fully
immerse you in the SWEBOK, preparing
you for the CSDP exam.

Eligibility
SPDP classes are funded through AFIT for
all DoD employees (active duty and reserve
component service members and govern-
ment civilians). Contractors and employees
of other US. Government Agencies may also
enroll in SPDP courses on a space-available
basis. There is no tuition charged for SPDP
courses, and AFIT provides textbooks free
to DoD employees. Contractors and non-
DoD government employees are responsible
for procuring their own textbooks prior to
the beginning of a course offering.

Nobody wants to be another statistic for
the next study of defense software crises.
You can mitigate this risk by arming yourself
with software engineering knowledge and
skills. Fortunately, with the SPDP, you will
not need to dig into your tight travel funds
and you will not need to figure out how to
pay for expensive continuing education
courses. Our faculty is here to help. The
feedback we have received from our stu-
dents and their supervisors is that they usu-
ally see improvement during their current
projects.

If you are interested in taking SPDP
courses, or at least curious, please visit the
SPDP Web site at <www.afit.edu/ls/
spdp/>, e-mail the faculty at <spdp@afit.
edu>, or contact Candace Barker at (937)
255-7777 ext. 3319, or DSN 785-7777 ext.
3319.u

Note
1. The views expressed in this article are

those of the author and do not reflect
the official policy or position of the Air
Force, DoD, or the U.S. Government.

References
1. Ferguson, Jack. “Crouching Dragon,

Hidden Software: Software in DoD
Weapon Systems.” IEEE Software
July/Aug. (2001): 105-107.

2. Carroll, Kevin. “Deploying C++ for
Use in International Safety-Critical
Applications.” Proc. from Systems and
Software Technology Conference,
2007.

3. Wynne, Michael W. “Letter to Airmen:
Education and the Airman.” 13 Apr.
2006. <www.af.mil/library/view
points/secaf.asp?id=229>.

4. “Airman’s Roll Call: Education
Benefits Essential to Professional,
Personal Development.” 8 Aug. 2007
<www.af.mil/shared/media/docu
ment/AFD-070807-058.pdf>.

5. National Defense Industrial Associa-
tion. “Top Software Engineering
Issues within Department of Defense
and Defense Industry.” 2006. <www.
ndia.org/Content/ContentGroups/
Divisions1/Systems_Engineering/
PDFs18/NDIA_Top_SW_Issues_
2006_Report_v5a_final.pdf>.

6. “The Air Force Software Professional
Development Program.” Cross-
Talk Dec. 1994.

7. “Distance Learning in the Air Force
Professional Development Program:
An Update.” CrossTalk Feb. 1995.

8. Hermann, Brian. “The AFIT Offers
Software Continuing Education at
Your Location at No Cost.”
CrossTalk Dec. 2002.

9. Reisner, John. “Bridging the Gap:
Peer-to-Peer Learning in a Distance
Environment.” Proc. Interservice/
Industry Training, Simulation and
Education Conference, 2004.

10. Bohn, Christopher A. “Watch Mr.
Software.” Proc. International
Conference on Frontiers in Education:
Computer Science and Computer
Engineering.

11. IEEE Computer Society <www.
computer.org/certification/>.

Figure 1: The author teaches CSE 489 while
attending the 2006 Systems and Software
Technology Conference.

About the Author

Maj Christopher Bohn,
Ph.D., is a Software En-
gineering Course Direc-
tor at AFIT’s School of
Systems and Logistics,
where he teaches a series

of distance-learning short courses. Over
the past 14 years, he has served in vari-
ous Air Force operational and research
assignments. He is an IEEE-certified
software development professional.
Bohn has a bachelor’s degree in electrical
engineering from Purdue University, a
master’s degree in computer engineering
from AFIT, and a doctorate from The
Ohio State University.

AFIT/LS Research Park Campus
3100 Research BLVD
Kettering, OH 45420-4022
Phone: (937) 255-7777 ext. 3415
Fax: (937) 656-4654
E-mail: christopher.bohn@afit.edu

Training and Education

January 2008 www.stsc.hill.af.mil 23

For the purpose of this article, an inspec-
tion is defined as a preemptive peer

review of work products – by trained indi-
viduals using a well defined process – to
detect and eliminate defects as early as
possible in the Software Development
Life Cycle (SDLC) or closest to the points
of defect injection.

Background
According to a National Institute of
Standards and Technology (NIST) study,
the problem of continued delivery of bug-ridden
software is costing the U.S. economy an esti-
mated $59.5 billion each year. The study
also found the following:

…although all errors cannot be
removed, more than a third of
these costs, or an estimated $22.2
billion, could be eliminated by an
improved testing infrastructure
[reviews, inspections, etc.] that
enables earlier and more effective
identification and removal of soft-
ware defects. These are the savings
associated with finding an
increased percentage [but not 100
percent] of errors closer to the
development stages in which they
were introduced. Currently, over
half of all errors are not found
until ‘downstream’ in the develop-
ment process (testing) or during
post-sales software use. [1]

Figure 1 shows a typical relationship
between the costs of repairing a defect in
a given phase of the development cycle
versus which phase the defect was intro-
duced. This relationship gives rise to the
development costs described in the NIST
report.

The following testimonials answer the
question: What is the evidence that inspections
address the cost and quality issues described earli-
er but are not widely used correctly to maximize
defect detection and removal?

• The data in support of the quality,

cost, and schedule impact of
inspections is overwhelming. They
are an indispensable part of engi-
neering high-quality software. [3]

• Inspections are surely a key topic,
and with the right instrumentation
and training they are one of the
most powerful techniques for
defect detection. They are both
effective and efficient, especially
for up-front activities. In addition
to large-scale applications, we are
applying them to smaller applica-
tions and incremental development
(Chris Ebert). [3]

• Inspection repeatedly has been
demonstrated to yield up to a 10-
to-1 return on investment. . . .
depressingly few practitioners
know about the 30-year-old tech-
nique of software inspection. Even
fewer routinely perform effective
inspections or other types of peer
reviews. [4]

• Formal inspections can raise the
[defect] removal efficiency to over
95 percent. But part of the prob-
lem here is that not a lot of com-
panies know how to use these
things. [5]

• The software community has used
inspections for almost 28 years.
During this timeframe, inspections
have consistently added value for
many software organizations. Yet
for others, inspections never suc-
ceeded as well as expected, primar-
ily because these organizations did
not learn how to make inspections
both effective and low cost. [6]

• I continue to be amazed at the num-
ber of software development orga-
nizations that do not use this pow-
erful method [inspections] to
improve quality and productivity. [7]

It is clear from these testimonials that
inspections are the most effective way to
improve the quality, schedule, and cost of
developing software, but after all the years
after their introduction, why are they not
an integral part of all software develop-
ment life cycles?

The authors of this article, Roger
Stewart and Lew Priven each spent more
than 20 years developing projects that
used inspections and, for the past eight
years, each has trained a wide variety of
companies in the use of Fagan inspec-
tions. They consistently observed that
soon after inspection training completes,
malicious compliance sets in by critical inspec-
tion execution deviations being intro-
duced and/or ineffective shortcuts being
employed. This results in inspection bene-
fits being compromised, leads to limited
use or discontinuation, and allows too
many defects to escape to later, more cost-
ly phases of test and customer use.

Back to Basics
In order to deal with the problem of
inspections not being widely used (or not
used correctly for the maximum benefit),
we need to go back and look at the origi-
nal approach. Inspections were an out-
growth of the quality message from gurus
W. Edwards Demming and J.M. Juran to
design in quality at the beginning of the
development process, instead of testing in

How to Avoid Software Inspection Failure
and Achieve Ongoing Benefits

Roger Stewart and Lew Priven
Stewart-Priven Group

The objectives of this article are to examine why software inspections are not used more widely, identify the issues contribut-
ing to their lack of use, identify why inspection benefits deteriorate for many companies, and recommend what can be done to
address and solve these issues. The proven benefits of inspections are too significant to let them fall by the wayside!

Software Engineering Technology

37

7
3

130

26

13
3

1

50

10
5

1
10 2

15
1

1

0

50

100

150

200

250

350

400

Phase Defect Introduced

P
h as

e
R

ep
ai

re
d

Relative
Cost to
Repair

400

350

400

300

250

200

150

100

50

0

368

130

50

64
37

7 3
10

5
1

26
13

3
1

1
15

10
2 1

Require
ments

Customer

Design

Te
st

Integratio
n

Integration
Test

Code
Design

Requirements

Relative
Cost to
Repair

350

Code

Phase
Repaired

“1” Identifies
Phase Defect

Introduced

Relative Cost of Software Fault Propogation

Figure 1: Cost of Fixing a Defect [2]

24 CROSSTALK The Journal of Defense Software Engineering January 2008

Software Engineering Technology

pseudo-quality at the end of the produc-
tion line.

What naturally followed was the idea
of applying sampling quality control tech-
niques to the software development life
cycle as if it were a production line.
Specifically, this involves sampling the
product periodically (detect defects), mak-
ing adjustments as defects are found (fix
defects and improve the development
process), and predicting the shipped prod-
uct quality based on the results of the sam-
pling.

Application of the sampling quality con-
trol techniques to the software development
cycle led to the development of the software
inspection process. The most widely known
and practiced inspection process was intro-
duced to the IBM software community in
1972 by a team led by Michael Fagan and
managed by Lew Priven (co-author of this
article) [6].

In the case of software, the develop-
ment life cycle is the production line, and
inspections are the sampling and prediction
technique. Inspections are the vehicle to
sample the product in the earlier phases of
the development life cycle to detect and fix
defects closest to the point of injection, and

the data collected from inspections can be
used as the basis for predicting the quality of
the delivered product.

How Have Inspections Evolved?
In 1972, Priven published an IBM Technical
Report which described a software develop-
ment management system including points of
management control using process monitors
that evolved into inspections [8]. The man-
agement system was based on a well-defined
development process – which satisfied the
need for a production line as described ear-
lier. With the production line in place, Priven
hired Michael Fagan, a quality engineer with
a hardware and manufacturing background,
to work with the development team to find
a way to improve the quality of delivered
software [6-10]. The IBM (Fagan)
Inspection Process then evolved as a critical
component of the end-to-end software
development life cycle. Over the years, the
integration of inspections into the software
development life cycle has been lost as the
inspection process came to be viewed as a standalone
quality process with inspection execution becoming
the prime focus. However, the supporting
infrastructure of a software development
life cycle is still critical to successfully imple-

menting inspections.

Why Is the Supporting
Development Infrastructure
Important?
The supporting infrastructure of a well-
defined development process is important
because it requires management at all lev-
els – and during all development phases –
to actively support the inspection process.
A life-cycle view is needed because the
cost and schedule impact are primarily
borne by the requirements, design, and
implementation components of the orga-
nization. However, while these compo-
nents also realize some of the reduced
cost, higher quality, and improved sched-
ule benefits, the majority of these benefits
are primarily realized in testing and main-
tenance.

Theory Is Good, but Why Are
Inspections Not Embraced?
In addition to being viewed as a stand-
alone process, which lacks a life-cycle view
of investment and associated savings,
inspections have also been characterized
by a number of myths. These myths dis-
courage implementation. While there is a
kernel of truth in each myth, each can be
turned into a positive. Some examples fol-
low:
• Inspections are time consuming.

Yes, they add up-front development
time to requirements, design and code.
However, rather than being viewed as
a problem, this additional up-front
time for inspections should be viewed
as an investment in obtaining the over-
all quality, cost, and schedule benefits
over the project’s life cycle.

• Inspections are bureaucratic and
one size fits all. System engineers and
software engineers, with support from
management, need to have the flexibil-
ity to adjust their inspection process to
the needs of the product under devel-
opment. For example, the difference
between inspecting software to control
a jet fighter (where a defect could be a
matter of life and death) and software
that displays a Web form (where the
impact of a defect may be an inconve-
nience). The former may require a
broader comprehensive set of inspec-
tions while the latter could employ
other visual analysis techniques to sup-
plement a base set of inspections.

• All work products must be inspect-
ed. There is a lack of guidance on
when, where, and how to start an
inspection process. An approach to
prioritizing what work products to

0

50

100

150

200

250

300

350

400

Graph from December 2005 'CrossTalk', page 16 sidebar titled "Economics of Fault Finding"

Requirements
Design

Code
Unit Test

System Test
Customer

Design Code Unit Test System
Test

Defects inserted (‘1’ on the graph) and not discovered and fixed at their point of insertion are much costlier to fix later
in the Software Development Life Cycle. For example, in the graph:

Defects inserted during Requirement specification could be five times more costly to fix during Design, or 10 times more
costly to fix during Coding. Defects inserted during Design could be 26 times most costly to fix during System Test.

R elative
Cost to
R epair

0

50

100

150

200

250

300

350

400

Graph from December 2005 'CrossTalk', page 16 sidebar titled "Economics of Fault Finding"

Requirements
Design

Code
Unit Test

System Test
Customer

Design Code Unit Test System
Test

Defects inserted (‘1’ on the graph) and not discovered and fixed at their point of insertion are much costlier to fix later
in the Software Development Life Cycle. For example, in the graph:

Defects inserted during Requirement specification could be times more costly to fix during Design, or 10 times more
costly to fix during Coding. Defects inserted during Design could be 26 times most costly to fix during System Test.

ALL
Reqts

Quality-Cr it ical Areas;
(examples)

• Securit y
• Error handling
• Algor ithms
• Interfaces (ex: user)

and Com plex Areas

Defect -Prone Areas

Defect Fixes

Remaining Areas,
if econom ic payoff

Requirement
Phase

ALL
Design

S
el

ec
tio

n
C

rit
er

ia

Maintenance
Design
Phase

Code / Implementation
Phase

Testing
Phases

Feature Enhancements

ALL
Reqts

Quality-Cr it ical Areas;
(examples)

• Securit y
• Error handling
• Algor ithms
• Interfaces (ex: user)

and Com plex Areas

Defect -Prone Areas

Defect Fixes

Remaining Areas,
if econom ic payoff

Requirement
Phase

ALL
Design

S
el

ec
tio

n
C

rit
er

ia

Development Maintenance
Design
Phase

Code / Implementation
Phase

Testing
Phases

Customer
Use

Feature Enhancements

Relative
Cost to
Repair

“1” Identifies Phase Defect Introduced

RequirementsRequirements

Relative Cost of Software Fault Propagation

Phase
Repaired

Figure 2: Prioritizing What to Inspect

1. Review &
Assessment of
Development
Infrastructure 2. Tuning

Recommendation;
& any Prerequisite
Infrastructure
Implementation 3. Inspection

Methodology:

Tools 4. Performance,
Consulting
and Coaching

Assessment Methodology

Development Infrastructure

Tools
Implementation

1. Review and
Assessment of
Development
Infrastructure 2. Tuning

Recommendation;
and any Prerequisite
Infrastructure
Implementation 3. Inspection

Methodology:

Tools and Training 4. Performance,
Consulting
and Coaching

Assessment Methodology

Development Infrastructure

Tools and Training
Implementation

Figure 3: Assessment Methodology

Table 1: Risks Associated With Inspection Pitfalls

Lack of supportive
SDLC infrastructure

Poor management understanding
of the Inspection Process, its
benefits, and their responsibilities

No computerized
management-planning tools

Inadequate monitoring of
inspection execution and
tracking of results

Slow inspection implementation
by project teams

10

1

2

3

4

5

6

7

8

9

No inspection facilitator/
project champion

Too little schedule time
for inspections

No computerized inspector tools

No post-class
practitioner refresher

No inspection process capture

• Immature practices for planning, data
 collection, reporting, monitoring, and tracking
• Leads to Pitfalls #3, 4, 6, 10

• Assessment methodology
 ° Step 1: Assess client SDLC
 ° Step 2: Recommend any changes

• Leads to Pitfalls #4, 6, 8, 9
 ° Inadequate inspection: schedules, tools
 facilitation, implementation

• Upper management overview
• Management performance class
• Student feedback from inspection class

• Inadequate schedule time (Pitfall #4)
• No savings appreciation, leads to no
 inspections or too few inspections

• Planning counter tool
• Savings/cost-estimator tool

• Defects escape to more costly phases to fix
• Inspections not correctly executed
• Leads to malicious compliance

• Inspection planning counter tool
• Management performance class
• Criteria for prioritizing what to inspect

• Inconsistency, compromising shortcuts
• Defects, escape to more costly phases to fix

• Preparation tool
• Inspection meeting tool
• Data analysis tool, team analysis tool

• Inspection process execution deteriorates
• Defects escape to more costly phases to fix
• Employees lose interest when savings
 summaries are not periodically shared

• ROI calculators for text and code
• Data analysis tool, team analysis tool
• Aggregate results calculator tool

• Process misunderstood, compromising
 shortcuts introduced, defects escape

• Seminar for previous students
• Inspection role-reference card
• Inspection product checklist kit

• Inspection process issues not addressed,
 coordinated, or resolution disseminated
• Inconsistent or incorrect inspection execution
• Little useful feedback to management

• Upper management overview
• Management performance class

• Ineffective start or no-start occurs
• Inspection training forgotten; incorrect
 execution

• Inspector training accommodating
 multiple classes, of 2 days or less,
 per week

• Process misunderstood, inconsistent
 execution, defects escape
• No repository for project lessons learned

• Course material tailoring
• Inspection process capture tool

Pitfall SolutionsPitfall RisksNo. Pitfall

Figure 3: Assessment Methodology

January 2008 www.stsc.hill.af.mil 25

inspect needs to be intelligently
applied.
While these are myths that we typical-

ly hear about inspections, upon further
examination they are symptoms of a
much larger underlying set of issues. The
remainder of the article will focus on deal-
ing with those issues which we will later
refer to as inspection pitfalls.

A Realistic Approach
Although complete inspection coverage
may be ideal, a realistic approach to inspec-
tions is to formulate a set of selection criteria
(see Figure 2). These criteria guide the iden-
tification of those areas of the product
most critical to success or where problems
are most likely to occur. At the least these
areas should be inspected. This addresses
the common complaint that there is not
enough time to integrate inspections into
tight schedules yet allows for using inspec-
tions for finding defects where they are
most likely to cause problems.

Figure 2 addresses this no-time issue by
showing the prioritization of what to inspect
related to the development cycle phases of
the project. There should be a strong focus
on requirements and design, which are the

most costly to fix when discovered later in
the development cycle (see Figure 1). The
focus on requirements and design is partic-
ularly important because our experience has
shown that the largest numbers of defects
are injected during these two phases of
development. One example from a TRW
study shows about 52 percent of defects are

injected in requirements and 28 percent are
injected in design [11].

The most successful implementations
of inspections have been in organizations
that have multi-level active management
support of inspections and a well-defined
development life cycle with pre-existing
emphasis on planning, monitoring, and

1. Review &
Assessment of
Development
Infrastructure 2. Tuning

Recommendation;
& any Prerequisite
Infrastructure
Implementation 3. Inspection

Methodology:

Tools 4. Performance,
Consulting
and Coaching

Assessment Methodology

Development Infrastructure

Tools
Implementation

1. Review and
Assessment of
Development
Infrastructure 2. Tuning

Recommendation;
and any Prerequisite
Infrastructure
Implementation 3. Inspection

Methodology:

Tools and Training 4. Performance,
Consulting
and Coaching

Assessment Methodology

Development Infrastructure

Tools and Training
Implementation

Figure 3: Assessment Methodology

Table 1: Risks Associated With Inspection Pitfalls

Lack of supportive
SDLC infrastructure

Poor management understanding
of the Inspection Process, its
benefits, and their responsibilities

No computerized
management-planning tools

Inadequate monitoring of
inspection execution and
tracking of results

Slow inspection implementation
by project teams

10

1

2

3

4

5

6

7

8

9

No inspection facilitator/
project champion

Too little schedule time
for inspections

No computerized inspector tools

No post-class
practitioner refresher

No inspection process capture

• Immature practices for planning, data
 collection, reporting, monitoring, and tracking
• Leads to Pitfalls #3, 4, 6, 10

• Assessment methodology
 ° Step 1: Assess client SDLC
 ° Step 2: Recommend any changes

• Leads to Pitfalls #4, 6, 8, 9
 ° Inadequate inspection: schedules, tools
 facilitation, implementation

• Upper management overview
• Management performance class
• Student feedback from inspection class

• Inadequate schedule time (Pitfall #4)
• No savings appreciation, leads to no
 inspections or too few inspections

• Planning counter tool
• Savings/cost-estimator tool

• Defects escape to more costly phases to fix
• Inspections not correctly executed
• Leads to malicious compliance

• Inspection planning counter tool
• Management performance class
• Criteria for prioritizing what to inspect

• Inconsistency, compromising shortcuts
• Defects, escape to more costly phases to fix

• Preparation tool
• Inspection meeting tool
• Data analysis tool, team analysis tool

• Inspection process execution deteriorates
• Defects escape to more costly phases to fix
• Employees lose interest when savings
 summaries are not periodically shared

• ROI calculators for text and code
• Data analysis tool, team analysis tool
• Aggregate results calculator tool

• Process misunderstood, compromising
 shortcuts introduced, defects escape

• Seminar for previous students
• Inspection role-reference card
• Inspection product checklist kit

• Inspection process issues not addressed,
 coordinated, or resolution disseminated
• Inconsistent or incorrect inspection execution
• Little useful feedback to management

• Upper management overview
• Management performance class

• Ineffective start or no-start occurs
• Inspection training forgotten; incorrect
 execution

• Inspector training accommodating
 multiple classes, of 2 days or less,
 per week

• Process misunderstood, inconsistent
 execution, defects escape
• No repository for project lessons learned

• Course material tailoring
• Inspection process capture tool

Pitfall SolutionsPitfall RisksNo. Pitfall

Table 1: Risks Associated With Inspection Pitfalls

How to Avoid Software Inspection Failure and Achieve Ongoing Benefits

Table 2 shows how an Inspection Methodology can solve and prevent the 10 inspection pitfalls.

No. Pitfall Pitfall Solutions

1 Lack of supportive SDLC infrastructure • Assessment methodology
– step 1 assess client SDLC.
– step 2 recommends any changes.

2 Poor management understanding of the inspection
process, its benefits, and their responsibilities

• Upper management overview.
• Management performance class.
• Student feedback from inspection class.

3 No computerized management planning tools • Planning-counter tool.
• Savings/cost estimator tool.

4 Too little schedule time for inspections • Inspection planning-counter tool.
• Management performance class.
• Criteria for prioritizing what to inspect.

5 No computerized inspector tools • Preparation tool.
• Inspection meeting tool.
• Data analysis tool, team analysis tool.

6 Inadequate monitoring of inspection execution and
tracking of results

• ROI calculators for text and code.
• Data Analysis tool, team analysis tool.
• Aggregate results calculator tool.

7 No post-class practitioner refresher • Seminar for previous students.
• Inspection role reference card.
• Inspection product checklist kit.

8 No inspection facilitator / project champion • Upper management overview.
• Management performance class.

9 Slow inspection implementation by project teams • Inspector training accommodating multiple. classes, of two days or
less, per week.

10 No inspection process capture • Course material tailoring.
• Inspection process capture tool

Table 2 – How an Inspection Methodology Can Solve and Prevent the Pitfalls

Figure 4 – Computerized Inspection Tool Overview

The Road Map to Success

Product/Project
Inspection
Planning Tools

Inspection Execution
Analysis and Reporting
Tools

Inspection Monitoring
and Tracking Tools

Figure 4: Computerized Inspection Tool Overview

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering January 2008

measurements use.

Development Infrastructure
to Support Inspections
There is a lot of guidance on the structure
of inspections such as the Institute for
Electronics and Electrical Engineers
(IEEE) Standard 1028-1997 [12] and how
to conduct an inspection, but little guid-
ance on the following:
1. How to select what to inspect (see

Figure 2).
2. How to develop an appropriate soft-

ware development life-cycle infrastruc-
ture that provides the necessary frame-
work for successful implementation of
inspections.

3. How to determine what computerized
tools are needed to ensure proper
inspection execution and management
visibility into results, project savings,
and return on investment (ROI). For
example, because of the lack of
inspection tools, data collection –
which is too often left to the discretion
of the inspection teams – is often not
performed or is performed inconsis-
tently. Therefore, data needed to eval-
uate inspection effectiveness is not
easily available to management.
These three items will be discussed

further in the next section.
Successful inspection implementation

requires a software development life-cycle
infrastructure that demands planning, data
collection, reporting, monitoring, and
tracking. Introducing inspections into a

project culture that does not believe in and
have a development infrastructure that
actively supports these activities is fraught
with risk.

Developing an appropriate infrastruc-
ture begins with selecting a framework
upon which to build your development
life cycle. A widely accepted framework is
the Capability Maturity Model® (CMM®),
and its successor CMM-Integration
(CMMI®). However, as Watts Humphrey
points out in [13], “Although the CMM
[and CMMI] provides a powerful
improvement framework, its focus is nec-
essarily on what organizations should do –
not how they should do it.”

There are four key steps to filling out
the development framework:
1. Select a development model (e.g., iter-

ative, incremental, waterfall, spiral,
agile).

2. Clearly define the development life
cycle by identifying and recording for
each process within the life cycle, its
required inputs, the input’s entrance
criteria, the what and how of the
process, the expected outputs, and the
output’s exit criteria.

3. Get process agreement by all compo-
nents of the development organization
(e.g., requirements generators, design-
ers, coding/implementers, testers, etc.).

4. Determine which project tools will be
used for planning, data collection,
reporting, monitoring, and tracking
(tool examples are critical path, earned
value, etc.).
When these steps are completed, the

introduction of inspections has the neces-

sary framework (i.e., development infra-
structure) for ongoing success and for
inspections to be accepted as a very inte-
gral part of the end-to-end development
life-cycle.

How an Inspection Methodology
Can Reinvigorate Inspections
Inspections will only be successful long
term if they are integral to a well-defined
development process that has active man-
agement support in each phase of devel-
opment. The methodology shown in
Figure 3 (see page 25) starts with an
assessment to ensure an adequate devel-
opment life-cycle infrastructure is in place
prior to inspection training. Steps 1 and 2
in Figure 3 are the assessment steps.

Once the development infrastructure
is in place, what else needs to be done?
Based on our experience in training more
than 5,000 inspectors in companies at
more than 50 locations, evaluating the data
collected and observing the ongoing
implementation or lack thereof, we have
identified 10 inspection pitfalls, each of
which inhibits inspection implementation.
These inspection pitfalls must be resolved
to achieve lasting benefits from inspec-
tions.

The 10 inspection pitfalls and associat-
ed risks are shown in Table 1 (see page
25). Note: The lack of a well-defined
SDLC infrastructure, discussed earlier, is
the first pitfall.

Table 1 identifies how each inspection
pitfall leads to findable defects not being
discovered with inspections, resulting in
the following:
A. Development cost savings are not fully

realized.
B. Quality improvements are not fully

achieved.
C. Maintenance and support savings are

not realized.
D. Inspections could become a total cost,

not a savings.
We distinguish between the develop-

ment life-cycle infrastructure – within
which inspections fit (previous section),
and the inspection infrastructure – which
enables proper inspection execution for
achieving the maximum benefit. An
enabling inspection infrastructure must
address all 10 pitfalls and would consist of
the following:
1. Computerized management tools for

use in planning inspections and pre-
dicting the overall project costs and
savings from applying inspections (see
Figure 4 on page 25 for an inspection
tool overview example).

2. Computerized tools to aid inspectors
® CMMI is registered in the U.S. Patent and Trademark

Office by Carnegie Mellon University.

All Inspection Pitfalls Must Be Solved

4
Time for
Inspections
in Schedule

I

t
s

I

6. Execution
Monitoring

& Tracking Tools

S
uc

ce
ss

fu
li

ns
pe

ct
io

n
im

pl
em

en
ta

tio
n

Inspection Methodology
Includes Practitioner Training

AND
Pitfall Prevention

Man t
Und g

All Inspection Pitfalls Must SolvedAll Inspection Pitfalls Must Solved

S
uc

ce
ss

fu
lI

I

Inspection Methodology
Includes Practitioner Training

AND
Pitfall Prevention

Man t
Und g

Road Map to Successful Inspection Implementation

6. Execution
Monitoring and
Tracking Tools

4. Time for
Inspections
In Schedule

7. Training
Refresher

8. Inspection
Champion

9. Rapid Project
Training

10. Inspection
Process

Capture Tool

5. Inspector
Tools

3. Management
Planning Tools

2. Management
Understanding

1. SDLC
Infrastructure

Figure 5: Inspection Infrastructure

How to Avoid Software Inspection Failure and Achieve Ongoing Benefits

January 2008 www.stsc.hill.af.mil 27

in correctly and consistently perform-
ing inspections, gathering inspection
related data, and performing analysis
to identify how future inspections can
be improved.

3. Monitoring and analysis computerized
tools for management’s post-inspec-
tion evaluation of individual inspec-
tions.

4. Computerized management tools for
analyzing inspection ROI and an
aggregate calculator for assessing and
tracking the resulting project savings
from multiple inspections.

5. An inspection process that provides
flexibility for prioritizing what to
inspect as shown in Figure 2.

6. Ability to have customized training
material which incorporates your ter-
minology and is based on your needs.

7. Rapid training (two days or less) of
project personnel in a comprehensive
training course with significant focus
on requirements and design.

8. An overview briefing for upper man-
agement along with a more rigorous
management performance course so
upper managers and project leaders
can fully understand the inspection
process, its benefits, and their respon-
sibilities

9. Follow-up practitioner refreshers to
deal with any implementation prob-
lems – focused on making inspection
implementation successful both initial-
ly and long-term.

10. An inspection process capture tool to
enable inspections to quickly become
an integral part of a company’s SDLC
infrastructure.
Table 1 shows how an Inspection

Methodology can solve and prevent the 10
inspection pitfalls.

The Road Map to Success
The pitfall solution road map in Figure 5
shows the solution relationships that pro-
vide for successful software inspection
implementation that will endure over the
long term. The pitfall solutions provide
the inspection infrastructure that, together
with a comprehensive inspector training
program, forms an inspection methodolo-
gy for achieving a lasting and successful
inspection program.

Summary
Our experience has shown us that inspec-
tions can live up to their potential and be
embraced by the development community
if the following happens:
• Inspections are integral to a well-

defined software development life-
cycle infrastructure supported by man-

agement in each phase of develop-
ment.

• Inspections are flexible in determining
what to inspect.

• Computerized tools are available to
assist management in planning inspec-
tions and estimating project savings
before commitment.

• Computerized tools are available to
guide the inspection teams.

• Management tools are available for
monitoring inspection process confor-
mance (not an individual’s perfor-
mance) and tracking resulting inspec-
tion benefits.

• Project personnel are provided with
the proper training and follow-up sup-
port.u

References
1. NIST. “The Economic Impacts of

Inadequate Infrastructure for Software
Testing.” NIST Planning Report 02-3.
May 2002.

2. Bennett, Ted L., and Paul W.
Wennberg. “Eliminating Embedded
Software Defects Prior to Integration
Test.” CrossTalk Dec. 2005.

3. McConnell, Steve. “Best Influences on
Software Engineering Over Past 50
Years.” IEEE Software Jan./Feb. 2000.

4. Wiegers, Karl. “The More Things
Change.” Better Software Oct. 2006.

5. Jones, Capers. “Interview.” Computer
Aid Inc. July 2005.

6. Radice, Ron. High Quality Low Cost
Software Inspections. Andover, MA:
Paradoxicon Publishing, 2002.

7. Weller, Ed. “Calculating the Eco-
nomics of Inspections.” StickyMinds
Jan. 2002.

8. Priven, L.D. “Managing the Program-
ming Development Cycle.” IBM
Technical Report 21.463 Mar.1972.

9. Fagan, Michael E. “Design and Code
Inspections and Process Control in the
Development of Programs.” IBM
Technical Report 21.572. Dec. 1974.

10. Priven, L. and F. Tsui. “Implementa-
tion of Quality Control in Software
Development.” AFIPS Conference
Proceedings, 1976 National Computer
Conference 45 (1976):443-449.

11. McGraw, Gary. Making Essential
Software Work. Cigital, Inc. Mar. 2003
<http://citigal.com/whitepapers>.

12. Software Engineering Standards
Committee of the IEEE Computer
Society. “IEEE Standard for Software
Reviews, Section 6. Inspections.”
IEEE Std. 1028-1997, 1997.

13. Humphrey, Watts. “Three Dimensions
of Process Maturity.” CrossTalk
Feb. 1998.

About the Authors

Lew Priven is co-
founder of the Stewart-
Priven Group. He is an
experienced executive
with systems and soft-
ware management and

technical background. Priven was vice-
president of engineering and application
development at General Electric
Information Services and vice president
of application development for IBM’s
Application Systems Division. He has a
bachelor’s degree in electrical engineer-
ing from Tufts University and a master’s
degree in management from Rensselaer
Polytechnic Institute.

The Stewart-Priven Group
7962 Old Georgetown RD
STE B
Bethesda MD 20814
Phone: (865) 458-6685
Fax: (865) 458-9139
E-mail: spgroup@charter.net

Roger Stewart is co-
founder of the Stewart-
Priven Group. Previous-
ly, he spent 30 years with
IBM’s Federal Systems
Division managing and

developing systems for air traffic con-
trol, satellite command and control, on-
board space shuttle, LAMPS helicopter
and in commercial banking, telecommu-
nication and networking systems.
Stewart has a bachelor’s degree in math-
ematics from Cortland University.

The Stewart-Priven Group
7962 Old Georgetown RD
STE B
Bethesda, MD 20814
Phone: (865) 458-6685
Fax: (865) 458-9139
E-mail: spgroup@charter.net

It is all about programming! Over the last
few years we have noticed worrisome

trends in CS education. The following rep-
resents a summary of those trends:

1. Mathematics requirements in CS pro-
grams are shrinking.

2. The development of programming
skills in several languages is giving way
to cookbook approaches using large
libraries and special-purpose packages.

3. The resulting set of skills is insufficient
for today’s software industry (in partic-
ular for safety and security purposes)
and, unfortunately, matches well what
the outsourcing industry can offer. We
are training easily replaceable profes-
sionals.

These trends are visible in the latest
curriculum recommendations from the
Association for Computing Machinery
(ACM). Curriculum 2005 does not mention
mathematical prerequisites at all, and it
mentions only one course in the theory of
programming languages [1].

We have seen these developments from
both sides: As faculty members at New
York University for decades, we have
regretted the introduction of Java as a first
language of instruction for most computer
science majors. We have seen how this
choice has weakened the formation of our
students, as reflected in their performance
in systems and architecture courses. As
founders of a company that specializes in
Ada programming tools for mission-critical
systems, we find it harder to recruit quali-
fied applicants who have the right founda-
tional skills. We want to advocate a more
rigorous formation, in which formal meth-
ods are introduced early on, and program-
ming languages play a central role in CS
education.

Formal Methods and Software
Construction
Formal techniques for proving the correct-
ness of programs were an extremely active
subject of research 20 years ago. However,

the methods (and the hardware) of the
time prevented these techniques from
becoming widespread, and as a result they
are more or less ignored by most CS pro-
grams. This is unfortunate because the
techniques have evolved to the point that
they can be used in large-scale systems and
can contribute substantially to the reliabili-
ty of these systems. A case in point is the
use of SPARK in the re-engineering of the
ground-based air traffic control system in
the United Kingdom (see a description of
iFACTS – Interim Future Area Control
Tools Support, at <www.nats.co.uk/arti-
cle/90>). SPARK is a subset of Ada aug-
mented with assertions that allow the
designer to prove important properties of
a program: termination, absence of run-
time exceptions, finite memory usage, etc.
[2]. It is obvious that this kind of design
and analysis methodology (dubbed
Correctness by Construction) will add sub-
stantially to the reliability of a system
whose design has involved SPARK from
the beginning. However, PRAXIS, the
company that developed SPARK and
which is designing iFACTS, finds it hard to
recruit people with the required mathemat-
ical competence (and this is present even in
the United Kingdom, where formal meth-
ods are more widely taught and used than
in the United States).

Another formal approach to which CS
students need exposure is model checking
and linear temporal logic for the design of
concurrent systems. For a modern discus-
sion of the topic, which is central to mis-
sion-critical software, see [3].

Another area of computer science
which we find neglected is the study of
floating-point computations. At New York
University, a course in numerical methods
and floating-point computing used to be
required, but this requirement was dropped
many years ago, and now very few students
take this course. The topic is vital to all sci-
entific and engineering software and is
semantically delicate. One would imagine
that it would be a required part of all cours-
es in scientific computing, but these often

take MatLab to be the universal program-
ming tool and ignore the topic altogether.

The Pitfalls of Java as a First
Programming Language
Because of its popularity in the context of
Web applications and the ease with which
beginners can produce graphical programs,
Java has become the most widely used lan-
guage in introductory programming cours-
es. We consider this to be a misguided
attempt to make programming more fun,
perhaps in reaction to the drop in CS
enrollments that followed the dot-com
bust. What we observed at New York
University is that the Java programming
courses did not prepare our students for
the first course in systems, much less for
more advanced ones. Students found it
hard to write programs that did not have a
graphic interface, had no feeling for the
relationship between the source program
and what the hardware would actually do,
and (most damaging) did not understand
the semantics of pointers at all, which
made the use of C in systems program-
ming very challenging.

Let us propose the following principle:
The irresistible beauty of programming
consists in the reduction of complex for-
mal processes to a very small set of primi-
tive operations. Java, instead of exposing
this beauty, encourages the programmer to
approach problem-solving like a plumber
in a hardware store: by rummaging through
a multitude of drawers (i.e. packages) we
will end up finding some gadget (i.e. class)
that does roughly what we want. How it
does it is not interesting! The result is a stu-
dent who knows how to put a simple pro-
gram together, but does not know how to
program. A further pitfall of the early use
of Java libraries and frameworks is that it is
impossible for the student to develop a
sense of the run-time cost of what is writ-
ten because it is extremely hard to know
what any method call will eventually exe-
cute. A lucid analysis of the problem is pre-
sented in [4].

We are seeing some backlash to this

Computer Science Education:
Where Are the Software Engineers of Tomorrow?

By Dr. Robert B.K. Dewar and Dr. Edmond Schonberg
AdaCore Inc.

It is our view that Computer Science (CS) education is neglecting basic skills, in particular in the areas of programming and
formal methods. We consider that the general adoption of Java as a first programming language is in part responsible for this
decline. We examine briefly the set of programming skills that should be part of every software professional’s repertoire.

Open Forum

28 CROSSTALK The Journal of Defense Software Engineering January 2008

approach. For example, Bjarne Stroustrup
reports from Texas A & M University that
the industry is showing increasing unhappi-
ness with the results of this approach.
Specifically, he notes the following:

I have had a lot of complaints about
that [the use of Java as a first pro-
gramming language] from industry,
specifically from AT&T, IBM, Intel,
Bloomberg, NI, Microsoft, Lock-
heed-Martin, and more. [5]

He noted in a private discussion on this
topic, reporting the following:

It [Texas A&M] did [teach Java as
the first language]. Then I started
teaching C++ to the electrical engi-
neers and when the EE students
started to out-program the CS stu-
dents, the CS department switched
to C++. [5]

It will be interesting to see how many
departments follow this trend. At
AdaCore, we are certainly aware of many
universities that have adopted Ada as a first
language because of similar concerns.

A Real Programmer Can
Write in Any Language (C,
Java, Lisp,Ada)
Software professionals of a certain age will
remember the slogan of old-timers from
two generations ago when structured pro-
gramming became the rage: Real program-
mers can write Fortran in any language.
The slogan is a reminder of how thinking
habits of programmers are influenced by
the first language they learn and how hard
it is to shake these habits if you do all your
programming in a single language.
Conversely, we want to say that a compe-
tent programmer is comfortable with a
number of different languages and that the
programmer must be able to use the men-
tal tools favored by one of them, even
when programming in another. For exam-
ple, the user of an imperative language
such as Ada or C++ must be able to write
in a functional style, acquired through prac-
tice with Lisp and ML1, when manipulating
recursive structures. This is one indication
of the importance of learning in-depth a
number of different programming lan-
guages. What follows summarizes what we
think are the critical contributions that
well-established languages make to the
mental tool-set of real programmers. For
example, a real programmer should be able
to program inheritance and dynamic dis-
patching in C, information hiding in Lisp,

tree manipulation libraries in Ada, and
garbage collection in anything but Java.
The study of a wide variety of languages is,
thus, indispensable to the well-rounded
programmer.

Why C Matters
C is the low-level language that everyone
must know. It can be seen as a portable
assembly language, and as such it exposes
the underlying machine and forces the stu-
dent to understand clearly the relationship
between software and hardware. Perfor-
mance analysis is more straightforward,
because the cost of every software state-
ment is clear. Finally, compilers (GCC for
example) make it easy to examine the gen-
erated assembly code, which is an excellent
tool for understanding machine language
and architecture.

Why C++ Matters
C++ brings to C the fundamental concepts
of modern software engineering: encapsu-
lation with classes and namespaces, infor-
mation hiding through protected and pri-
vate data and operations, programming by
extension through virtual methods and
derived classes, etc. C++ also pushes stor-
age management as far as it can go without
full-blown garbage collection, with con-
structors and destructors.

Why Lisp Matters
Every programmer must be comfortable
with functional programming and with the
important notion of referential transparency.
Even though most programmers find imper-
ative programming more intuitive, they must
recognize that in many contexts that a func-
tional, stateless style is clear, natural, easy to
understand, and efficient to boot.

An additional benefit of the practice of
Lisp is that the program is written in what
amounts to abstract syntax, namely the
internal representation that most compilers
use between parsing and code generation.
Knowing Lisp is thus an excellent prepara-
tion for any software work that involves
language processing.

Finally, Lisp (at least in its lean Scheme
incarnation) is amenable to a very compact
self-definition. Seeing a complete Lisp
interpreter written in Lisp is an intellectual
revelation that all computer scientists
should experience.

Why Java Matters
Despite our comments on Java as a first or
only language, we think that Java has an
important role to play in CS instruction.
We will mention only two aspects of the
language that must be part of the real pro-
grammer’s skill set:

1. An understanding of concurrent pro-
gramming (for which threads provide a
basic low-level model).

2. Reflection, namely the understanding
that a program can be instrumented to
examine its own state and to determine
its own behavior in a dynamically
changing environment.

Why Ada Matters
Ada is the language of software engineer-
ing par excellence. Even when it is not the
language of instruction in programming
courses, it is the language chosen to teach
courses in software engineering. This is
because the notions of strong typing,
encapsulation, information hiding, concur-
rency, generic programming, inheritance,
and so on, are embodied in specific fea-
tures of the language. From our experience
and that of our customers, we can say that
a real programmer writes Ada in any lan-
guage. For example, an Ada programmer
accustomed to Ada’s package model, which
strongly separates specification from
implementation, will tend to write C in a
style where well-commented header files
act in somewhat the same way as package
specs in Ada. The programmer will include
bounds checking and consistency checks
when passing mutable structures between
subprograms to mimic the strong-typing
checks that Ada mandates [6]. She will
organize concurrent programs into tasks
and protected objects, with well-defined
synchronization and communication
mechanisms.

The concurrency features of Ada are
particularly important in our age of multi-
core architectures. We find it surprising that
these architectures should be presented as a
novel challenge to software design when
Ada had well-designed mechanisms for writ-
ing safe, concurrent software 30 years ago.

Programming Languages Are
Not the Whole Story
A well-rounded CS curriculum will include
an advanced course in programming lan-
guages that covers a wide variety of lan-
guages, chosen to broaden the understand-
ing of the programming process, rather
than to build a résumé in perceived hot lan-
guages. We are somewhat dismayed to see
the popularity of scripting languages in
introductory programming courses. Such
languages (Javascript, PHP, Atlas) are
indeed popular tools of today for Web
applications. Such languages have all the
pedagogical defaults that we ascribe to Java
and provide no opportunity to learn algo-
rithms and performance analysis. Their
absence of strong typing leads to a trial-

Computer Science Education: Where Are the Software Engineers of Tomorrow?

January 2008 www.stsc.hill.af.mil 29

and-error programming style and prevents
students from acquiring the discipline of
separating design of interfaces from speci-
fications.

However, teaching the right languages
alone is not enough. Students need to be
exposed to the tools to construct large-
scale reliable programs, as we discussed at
the start of this article. Topics of relevance
are studying formal specification methods
and formal proof methodologies, as well as
gaining an understanding of how high-reli-
ability code is certified in the real world.
When you step into a plane, you are putting
your life in the hands of software which
had better be totally reliable. As a comput-
er scientist, you should have some knowl-
edge of how this level of reliability is
achieved. In this day and age, the fear of
terrorist cyber attacks have given a new
urgency to the building of software that is
not only bug free, but is also immune from
malicious attack. Such high-security soft-
ware relies even more extensively on for-
mal methodologies, and our students need
to be prepared for this new world.u

References
1. Joint Taskforce for Computing

Curricula. “Computing Curricula 2005:
The Overview Report.” ACM/AIS/
IEEE, 2005 <www.acm.org/education

/cur r i c_vo l s/CC2005-March06
Final.pdf>.

2. Barnes, John. High Integrity Ada: The
Spark Approach. Addison-Wesley,
2003.

3. Ben-Ari, M. Principles of Concurrent
and Distributed Programming. 2nd ed.
Addison-Wesley, 2006.

4. Mitchell, Nick, Gary Sevitsky, and
Harini Srinivasan. “The Diary of a
Datum: An Approach to Analyzing
Runtime Complexity in Framework-
Based Applications.” Workshop on
Library-Centric Software Design,
Object-Oriented Programming, Sys-
tems, Languages, and Applications, San
Diego, CA, 2005.

5. Stroustrup, Bjarne. Private communica-
tion. Aug. 2007.

6. Holzmann Gerard J. “The Power of
Ten – Rules for Developing Safety
Critical Code.” IEEE Computer June
2006: 93-95.

Note
1. Several programming language and sys-

tem names have evolved from
acronyms whose formal spellings are
no longer considered applicable to the
current names for which they are read-
ily known. ML, Lisp, GCC, PHP, and
SPARK fall under this category.

Open Forum

30 CROSSTALK The Journal of Defense Software Engineering January 2008

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

OCT2006 c STARWARS TO STAR TREK

NOV2006 c MANAGEMENTBASICS

DEC2006 c REQUIREMENTS ENG.

JAN2007 c PUBLISHER’S CHOICE

FEB2007 c CMMI

MAR2007 c SOFTWARE SECURITY

APR2007 c AGILE DEVELOPMENT

MAY2007 c SOFTWARE ACQUISITION

JUNE2007 c COTS INTEGRATION

JULY2007 c NET-CENTRICITY

AUG2007 c STORIES OF CHANGE

SEPT2007 c SERVICE-ORIENTED ARCH.

OCT2007 c SYSTEMS ENGINEERING

NOV2007 c WORKING AS A TEAM

DEC2007 c SOFTWARE SUSTAINMENT

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

About the Authors

Edmond Schonberg,
Ph.D., is vice-president
of AdaCore and a pro-
fessor emeritus of com-
puter science at New
York University. He has

been involved in the implementation of
Ada since 1981. With Robert Dewar and
other collaborators, he created the first
validated implementation of Ada83, the
first prototype compiler for Ada9X, and
the first full implementation of
Ada2005. Schonberg has a doctorate in
physics from the University of Chicago.

AdaCore
104 Fifth AVE
15th FL
New York, NY 10011
E-mail: schonberg@adacore.com

Robert B.K. Dewar,
Ph.D., is president of
AdaCore and a professor
emeritus of computer
science at New York
University. He has been

involved in the design and implementa-
tion of Ada since 1980 as a distinguished
reviewer, a member of the Ada Rappor-
teur group, and the chief architect of
Gnu Ada Translator. He was a member
of the Algol68 committee and is the
designer and implementor of Spitbol.
Dewar lectures widely on programming
languages, software methodologies, safe-
ty and security, and on intellectual prop-
erty rights. He has a doctorate in chem-
istry from the University of Chicago.

AdaCore
104 Fifth AVE
15th FL
New York, NY 10011
Phone: (212) 620-7300 ext. 100
Fax: (212) 807-0162
E-mail: dewar@adacore.com

BACKTALK

January 2008 www.stsc.hill.af.mil 31

I’ve been doing some networking lately. Not the kind of net-
working that gets one a new job, but computer networking.

Since job hunting networking is now done on a computer, some
folks may not see the difference, so just take my word for it, net-
working isn’t necessarily networking. I’ve been doing the type of
networking that allows computers to talk to each other. This is
what some people would call network administration or network
engineering.

There are many different types of people in the networking
field, with various backgrounds. Some of them don’t have techni-
cal backgrounds, and technical fields have their own language, or
vocabulary.

While working on an infrared project some years ago, I dis-
covered that there existed three different definitions for infrared.
One definition exists for engineers, which was defined in the
Institute for Electronics and Electrical Engineers (IEEE) stan-
dard, one for physics, and one for astronomers. The different def-
initions evolved separately from a historical perspective, and that is
understandable. Astronomers have been around long before engi-
neers.

Now, in the networking literature, I find a particular word, the
byte, that seems to be taking on different meanings. As an engi-
neer, I learned that a byte is eight bits. Always. A nibble is four bits.
A word is the size of the processor data line, or the number of
data bits that the processor takes in on a clock cycle. Sometimes
this is the size of the internal data bus, but not always. When I talk
about a byte, I mean eight bits. When some one else talks about a
byte, I think they mean eight bits. As the March Hare told Alice
while she was visiting Wonderland, “Then you should say what you
mean [1].” We have to use words with denotations that are shared.

In several books that I have been reading on computer net-
working, the authors don’t seem to know that a byte is eight bits –
always. Let’s review some computer science. A nibble is four bits,
a byte is eight bits, and a computer word varies, depending on the
computer architecture. Some early computers were six bit
machines, but most of us are familiar with the eight bit, 16 bit, 32
bit, and now 64 bit machines. I think that some of these network-
ing authors are confusing bytes with computer words. Could that
be because of different backgrounds making up the network engi-
neering field? Maybe we will have different definitions of a byte,
one from the engineering field, one from the computer scientists,
and one from certified network engineers. Is it too late to stop this
madness?

One book gives the correct definition for byte on page 83,
then, on page 87, defines a byte as seven or eight bits, depending
on whether parity is used [2]. This book, which is very good, has
a glossary where a byte is correctly defined as eight bits. Perhaps,
on page 87, the author is confusing using bytes with using the
American Standard Code for Information Interchange (ASCII)
character set. The ASCII is a seven-bit code, or eight, if parity is
used. A byte is always eight bits.

So, what does dictionary.com say? To my horror, some of the
definitions given online differ. But my Webster’s has it right [3]. It
defines a byte as “a group of eight binary digits processed as a unit
by a computer and used especially to represent an alphanumeric
character.” And Webster’s definition for word, under 2c, has “a
number of bytes processed as a unit and conveying a quantum of
information in communication and computer work.” Webster’s
does not have a technical definition of a nibble.

Again, to my horror, I found that the IEEE Standard Glossary

of Software Engineering Terminology did not commit a byte to
always be eight bits. The definition given for byte and the one
given for word, was very similar, and a definition for nibble was
not given at all [4].

I think that because a byte is often used to represent an
alphanumeric character, and the ASCII code is 7 or 8 bits, depend-
ing on whether parity is used, some confusion is creeping in here.
ASCII is being replaced by Unicode, which can use as many as
four bytes (or 32 bits). See <http://www.unicode.org>. Now, if
four bytes are 32 bits, how large is a byte?

Some of these networking book authors don’t think that a byte
is always eight bits, and they want to use the word octet to convey
an eight bit quantity [5]. I was just wondering if the definition of
byte was being changed because of differing backgrounds of peo-
ple in the information technology workplace. Before reading these
books, it never occurred to me that anyone thought that a byte was
anything other than eight bits.

In Salinger’s book, “The Catcher in the Rye,” Holden Caulfield
tells his little sister Phoebe what he would like to do with his life
[6]. He tells of picturing these children playing in a big field of rye
next to a cliff. He wants to stand on the edge of the cliff and catch
any kids who fall over. In my version of this fantasy, I see infor-
mation technology professionals wandering about in a big field of
rye wondering if a byte had six, seven, or eight bits in it. I would
be there to assure them that every byte has eight bits and only eight
bits. It’s the size of a computer word that varies.

— Dennis Ludwig
dennis.ludwig@wpafb.af.mil

References
1. Carroll, Lewis. Alice in Wonderland. Grosset and Dunlap

Publishers, 1980.
2. Lammle, Todd. CCNA: Cisco Certified Network Associate.

Wiley Publishing, Inc., 2005.
3. Merriam-Wester’s Collegiate Dictionary, 10th ed. (2001).
4. IEEE. IEEE Std. 610.12-1990. IEEE Standard Glossary of

Software Engineering Terminology.
5. Comer, Douglas E. Internetworking with TCP/IP: Principles,

Protocols, and Architecture. Pearson Prentice Hall, 2006.
6. Salinger, J.D. The Catcher in the Rye. Little, Brown, and

Company, 2001.

Bite My Bytes

Can You BackTalk?

Here is your chance to make your point, even if it is a bit
tongue-in-cheek, without your boss censoring your writing. In
addition to accepting articles that relate to software engineer-
ing for publication in CrossTalk, we also accept articles for
the BackTalk column. BackTalk articles should provide a
concise, clever, humorous, and insightful perspective on the
software engineering profession or industry or a portion of it.
Your BackTalk article should be entertaining and clever or
original in concept, design, or delivery. The length should not
exceed 750 words.

For a complete author’s packet detailing how to submit
your BackTalk article, visit our Web site at
<www.stsc.hill.af.mil>.

CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

CrossTalk is
co-sponsored by the

following organizations:

	Front Cover
	Table of Contents
	From the Sponsor
	Policies, News, and Updates
	Announcing CrossTalk’s Co-Sponsor Team for 2008
	The 2008 CrossTalk Editorial Board

	Training and Education
	The Critical Need for Software Engineering Education
	Using Inspections to Teach Requirements Validation
	Integrating Software Assurance Knowledge Into
Conventional Curricula
	Software Engineering Continuing Education
at a Price You Can Afford

	Software Engineering Technology
	How to Avoid Software Inspection Failure
and Achieve Ongoing Benefits

	Open Forum
	Computer Science Education:
Where Are the Software Engineers of Tomorrow?

	Coming Events

	Letter to the Editor
	SSTC 2008

	BackTalk

	Back Cover

