
4 CROSSTALK The Journal of Defense Software Engineering December 2001

Maintaining the viability of embed-
ded information systems is a key

technical and economic problem facing
operators of aging aircraft. Within the
Department of Defense (DoD), many
currently fielded embedded information
systems face readiness challenges imposed
by evolving missions and extended service
life spans. For example, emerging require-
ments for global situational awareness and
rapid strike capabilities necessitate
increased information processing and
information exchange between command
and control (C2) and weapon system plat-
forms. However, the ability to overcome
these challenges is constrained by such
factors as shrinking budgets, limited com-
putational capacity reserves, and the effect
of diminished manufacturing sources
(DMS).

Wholesale redevelopment is often cost
prohibitive, particularly since large por-
tions of embedded applications continue
to fulfill mission requirements. In fact,
most present-day upgrade programs
involve incremental changes to an estab-
lished design baseline, the majority of
which is reused as is. Even when major
functional overhauls are performed,
budget and schedule realities usually dic-
tate a phased approach. These realities
underscore the need for an efficient means
to carry forward, modernize, and exploit
usable functionality within legacy soft-
ware.

Solutions must maximize the recap-
ture of prior design investments, provide
efficient pathways for continued technol-
ogy refresh, and accommodate changing
technologies and economies of scale over
decades-long service life spans. Purposeful
migration toward insertion of commercial
components mandates changes to existing

business practices. The challenge, then, is
to offer developers affordable methods of
leveraging existing embedded information
system applications to provide a founda-
tion on which to base future systems. The
Embedded Information System Reengi-
neering (EISR) solution assumes that the
end user is actively migrating to commer-
cial hardware and operating systems.

The Air Force Research Laboratory
Information Directorate (AFRL/ID) and
Lockheed Martin Aeronautics Company
have matured an integrated set of tech-
nologies that facilitate affordably main-
taining and upgrading legacy systems and
software. The EISR project has developed
an automation-assisted JOVIAL-to-C
reengineering capability that permits
simultaneous modernization of both the
structure and source language of legacy
embedded applications.

The EISR environment has several key
features: support for detailed analysis of
legacy software, visualization of critical
execution sequences and complex data
dependencies, rapid source conversion,
and a high-percentage source construct
conversion rate. Using this capability,
developers can rapidly characterize the
overall legacy software architecture, per-
form incremental or wholesale source lan-
guage conversion, and upgrade selected
components and structures. Engineers
can apply the proven labor-saving visuali-
zation and analysis features provided in
modern commercial Computer Aided
Software Engineering (CASE) tools to
legacy JOVIAL applications. Following
conversion, legacy applications can then
be imported into other mainstream com-
mercial graphical CASE environments
that allow visual reconstruction and auto-
matic source code generation.

To summarize, today’s system develop-
ers face many general and high-level
obstacles impeding evolution and mod-
ernization of these systems:
• Greatly extended platform service life

spans.
• Rapidly changing mission scenarios,

system roles, and threats.
• Increased information-processing require-

ments.
• Desire for cross-platform commonali-

ty of capability and architecture.
• Shrinking budgets.
• DMS affecting both application and

software engineering environment
hardware and software elements.
In addition to these obstacles and

challenges, there are additional detailed
design-level issues that must be dealt with
in order to derive maximum benefit from
large-scale reuse of legacy software.

In this paper, we assume upgrade sce-
narios where developers will migrate from
military specific programming languages
and development environments toward
mainstream commercial replacements.
Successful migration requires dealing with
specific aspects of legacy applications and
their development, which are outlined
below.

Outdated Methods
Legacy systems commonly contain hierar-
chical, functionally decomposed, time-
slice scheduled software architectures tar-
geted to uniprocessor platforms. These
designs are often highly coupled through
global data pools as opposed to modern
data-encapsulated object-oriented analy-
sis/object-oriented design (OOA/OOD)
forms. Such coupling hinders selective
isolation and capture of proven function-
ality.

Reengineering: An Affordable Approach
for Embedded Software Upgrade

Kenneth Littlejohn Michael V. DelPrincipe, Jonathan D. Preston, and Dr. Ben A. Calloni
Air Force Research Laboratory Lockheed Martin Aeronautics Company

Software Legacy Systems

Within the Department of Defense, embedded information systems found in aging aircraft are facing readiness, sup-
portability, and upgrade challenges due to diminished manufacturing sources (DMS), which impacts both embed-
ded processing hardware and software development tools. In many cases, however, the embedded software function-
ality within these systems is still highly viable. Under the Embedded Information System Reengineering project, the
Air Force Research Laboratory Information Directorate and Lockheed Martin Aeronautics Company have matured
a legacy software reengineering capability that eliminates software tooling DMS, permitting affordable application
support and upgrade. A successful flight demonstration aboard a U.S. Air Force F-117 stealth fighter aircraft was
recently conducted to verify correct performance of reengineered weapon system software components generated using
high degrees of automation assistance.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2001 2. REPORT TYPE

3. DATES COVERED
 00-00-2001 to 00-00-2001

4. TITLE AND SUBTITLE
Reengineering: An Affordable Approach for Embedded Software
Upgrade

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
AFRL/IFTA,2241 Avionics Circle,Wright Patterson AFB,OH,45433

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
CROSSTALK The Journal of Defense Software Engineering, December 2001

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

December 2001 www.stsc.hill.af.mil 5

Lack of Modern Integrated
Analysis Capability
Legacy development environments often
consist of a patchwork of standalone textu-
al/command line-based tools. Although
there is support for symbol and dependency
tracing, this capability is not comprehensive
or integrated and is generally cumbersome,
involving the use of several separate tools. As
a result, it is difficult to determine the scope
of a design change. This can result in
increased risk and reduced confidence,
thereby eroding the motivation for refresh-
ing the structure of an existing embedded
application.

Platform Coupling
Frequently there is no clear separation of
operating system and pure application func-
tionality. Legacy code often contains inter-
spersed code sequences that perform
input/output (I/O) device control, data for-
matting, and interrupt handling.

Hardware performance (temporal
knowledge) is often encoded into legacy
algorithms in the form of time constants.
This was done to achieve and maintain per-
formance and computational accuracy as the
system matured. Thus changes or updates to
the processing hardware have unintended
detrimental effects on unchanged software.
Successful migration and reuse of applica-
tions containing such characteristics depends
on up-front investigation, identification,
and understanding of low-level platform
coupling to fully understand top-level design
constraints and performance impact aspects.

Structural Degradation
Many currently fielded embedded systems
are extensions of custom designs that have
evolved during an extended upgrade and
maintenance lifetime. Engineering decisions
made in the development of these early sys-
tems were often specific to the task at hand,
resulting in system architectures that were
not designed for direct reuse. As the product
is maintained and upgraded over time, the
original architectural design often degrades
due to multiple sets of small modifications.
Local optimizations are made without
adherence to the overall architectural policies
that drove the initial design.

As a result, many legacy designs are cost-
ly to update because of non-uniformity and
brittleness. The structural degradation com-
bined with hidden platform coupling often
creates a significant perceived risk in reusing
an application, eliminating the considera-
tion of this as an option. The application is
perceived to be spaghetti code that is over-
whelmingly complex and unsuitable for
reuse.

Resource Constraints
The limited memory, I/O, and processing
capacities of legacy militarized electronics
units often drove developers to make design
decisions favoring efficiency over quality of
design. Often mechanisms peculiar to the
inherent programming language were used
to provide more efficient but not necessarily
extensible designs. As a result of design
tradeoffs due to the resource constraints and
the extended maintenance/upgrade cycle,
the applications often evolve characteristics
such as a large number of complex threads of
control that cross processing segment
boundaries and result in complex segment
coupling.

Implicit data dependencies shared across
processing segments result in data-driven
segment coupling and degradation of indi-
vidual segment cohesion. This combination
of tightly coupled segments of code designed
using specific programming language con-
structs can result in a complex system that is
difficult to dissect into reusable and migra-
tional segments. Often such an undertaking
requires extensive manual analysis and
redesign, thereby increasing update costs.

COTS Exploitation
In contrast to past decades, the defense
industry is no longer the driving force
behind the development and production of
computing electronics and software engi-
neering environments. Although the selec-
tion of purely commercial off-the-shelf
(COTS)-based architectural approaches has
yet to overcome many of the inherent prob-
lems facing airborne embedded systems, the
industry must now rely on the commercial
marketplace for large-scale procurement of
select processing architecture elements.

The incorporation of commercially
available processing elements promises to
provide increased throughput, memory
reserves, and I/O bandwidth. However, this
advance in technology brings with it poten-
tially greater DMS concerns, as commercial
components typically have a two-year refresh
cycle, forcing application developers to plan
for much shorter hardware lifetimes. In
addition, legacy design and development
tools are often not available for commercial
systems, further stressing the development
organization.

Available Knowledge and
Experience Base
The knowledge and experience level of a
development team is critical to the ability to
maintain and upgrade existing embedded
systems. The original design criteria for an
older system may be missing or inadequate-
ly documented. Taking into account that the

current development team may have no con-
tact with the original designers, capturing
the in-depth knowledge encapsulated in the
design becomes critical.

Without this information, developers are
often unable to overcome the impacts of
structural degradation and evaluate the
impact of resource constraints and hard-
ware/software coupling. Migrating entire or
selected portions of legacy applications to
new platforms or architectures may require
so much time to understand the impacts that
this approach becomes no longer cost-effec-
tive.

Despite these problems, the reuse of
legacy software functionality in both fielded
and future systems is programmatically
attractive. Therefore, we must develop a
strategy to overcome the barriers of limited
budget, increased integration and produc-
tion costs, shortened cycle time, COTS
insertion, and DMS. The failure to do so
may adversely affect the DoD’s ability to
provide and sustain quality products within
available funding profiles and scheduled
need dates.

Following is a brief description of the
EISR project, its accomplishments, and
results from the F-117 flight demonstration.

Technical Approach
The EISR program focused on maturation
and integration of two capabilities: structur-
al visualization and construct transforma-
tion. Combined, these capabilities provide
maximum utility for users interested in
wholesale or incremental upgrade. The visu-
alization system provides graphic depictions
of data dependency, control flow, and pro-
gram component interaction.
Transformation capability focuses on com-
plete and accurate construct coverage, with
certain caveats. For example, it was known
in advance that certain JOVIAL constructs
had no equivalents in C, and that 100 per-
cent construct coverage was not achievable.
However, conversion of even 95 percent of
JOVIAL constructs was deemed highly suc-
cessful as this minimizes the amount of man-
ual reengineering work required to obtain an
operational converted application.

The EISR program was aware of several
past reengineering environment develop-
ment efforts that attempted to provide auto-
mated restructuring and design aids. One of
the problems encountered with earlier
efforts was accommodating a variety of tar-
get design styles. Different embedded infor-
mation systems often employ different
architectural styles as maintainability
requirements vary from application to
application. Programming a design envi-
ronment with expert knowledge of each

Reengineering: An Affordable Approach for Embedded Software Upgrade

Software Legacy Systems

6 CROSSTALK The Journal of Defense Software Engineering December 2001

desired target design style is a highly chal-
lenging problem. After careful considera-
tion, it was decided to defer investment in
automated restructuring and design aids as
the combination of visualization and trans-
formation promised the greatest initial
return on investment.

Project Results
The EISR technical product is a desktop
software-reengineering environment. This
system operates on the JOVIAL source files
making up an application, parsing and con-
verting them into language-neutral graph-
based representations of their operation (see
Figure 1). The use of this internal represen-
tation yields several benefits. First, since it is
language-neutral, this form provides com-
mon basic semantics to facilitate integration
of back-end code generators for a variety of
specific target source languages. Second, the
form abstracts away language syntax

specifics and other peculiarities. Procedural
and data elements can then be represented
in a common fundamental graph-based
form that captures inherent interdependen-
cies (see Figure 2).

Figure 2 provides a realistic example of
complex data and component dependencies
found in typical legacy software artifacts.
High legacy software maintenance costs are
due in part to the inability of developers to
rapidly trace the effects of desired software
changes. The EISR graphical analysis suite
remedies this by replacing past manual and
text-based dependency tracing methods
with modern visual tools and search
engines. The developers can thus manipu-
late this graphical representation of the pro-
gram structure directly, and apply filters
and navigational tools to assist in rapid
interpretation and restructuring.

This combination of EISR features gives
developers the ability to visualize and trace
couplings and structural features of the
legacy code. As a result, software engineers
now have a capability for understanding
and visualizing legacy software artifacts that
is on a par with modern graphical CASE
tools. A feature of the EISR tool-set is
extensibility. The environment is designed
around an intermediate representation form
that provides a common framework for
integrating new front end parsers and back
end target source code generators.

Base Experiments Results
A set of base experiments was conducted
under EISR to evaluate the semantic per-
formance and conversion speed of the EISR
tool-set using actual DoD application soft-

ware. The following list summarizes the
base experiment results:
• EISR matured capability results in a

source code conversion rate of 10K
source line of code (SLOC)/minute
(PC/NT based).

• Comparative manual conversion rates
varied from 20 SLOC/hour to 67
SLOC/hour depending upon experi-
ence level of developers and legacy
application complexity.

• An initial experiment involving a 4,000
SLOC application required less than 24
hours of clean-up touch labor.

• Within the EISR tool-set on initially
selected test programs, 100 percent
JOVIAL construct coverage was
achieved. The following caveats applied:
• Constant tables became full-fledged

structure variables in C.
• Highly convoluted variable overlays

were flagged for manual reengineer-
ing since this would be the best
overall solution in light of improve-
ments in computing resource avail-
ability.

• Compiler directives were excluded
from this statistic since they are not
part of the military standard.

• Initial JOVIAL functional structure was
retained in the resulting C code with no
loss of design partitions or structural
understanding.

• Detailed before and after code inspec-
tions validated that the process of state-
ment-to-statement transformation was
lossless.

Extended Experimentation
The results of the EISR project provided
the opportunity for further experimenta-
tion and evaluation using the converted
artifacts from the original experiments.
Engineers were curious to study the ease
with which converted JOVIAL artifacts
could be migrated to modern commercial
object-oriented CASE environments.

In these experiments, a legacy applica-
tion with a functional structure was con-
verted to C using both manual and auto-
mated processes. The resulting code was
imported into an object-oriented, Unified
Modeling Language (UML)-based com-
mercial CASE tool. The code then under-
went a mild restructuring to migrate the
original functionally decomposed design to
a medium-grained object-oriented struc-
ture. The CASE tool was then used to auto-
generate C++ source code from the reengi-
neered representation. The results are sum-
marized below:
• Test Case 1: Transforming Functional

Decomposition to object-oriented

Figure 2: EISR Graphical Analysis View (model illustration only)

Figure 1: Transformation Process

December 2001 www.stsc.hill.af.mil 7

Reengineering: An Affordable Approach for Embedded Software Upgrade

design (OOD). Consisted of manual
JOVIAL-to-C code conversion and
manual transformation from functional
decomposition into C++ OOD.

• Test Case 2: Transforming from
Functional Decomposition to OOD.
Consisted of automated JOVIAL to C
code conversion using the EISR tech-
nology and manual transformation into
C++ OOD.
The result of each test case was a legacy

JOVIAL-based application transformed
into an object-oriented C++ base applica-
tion (defined using UML notation) target-
ed for a PC-based processing platform. In
comparing Test Case 1 and Test Case 2, we
found that the use of the EISR tool-set to
capture and transform the JOVIAL to C
reduced the level of effort for the overall
process (JOVIAL to UML/C++) by approx-
imately 75 percent.

This experimental set was of particular
significance because it examined likely and
desired future migration goals. We believe
that developers will want to move legacy
artifacts into modern graphical CASE envi-
ronments in order to take advantage of
automation-assisted testing features,
improved software understanding, com-
mercial standard notation benefits, and cost
savings due to economies of scale. EISR
technology is thus a key enabler for full
COTS exploitation, as it forms a bridge to
modern commercial practices and tool-sets.

Flight Demonstrations in
Summer 2001
A first ever flight demonstration of reengi-
neered avionics application code took place
on July 12, 2001 over Edwards AFB aboard
a USAF F-117 Nighthawk stealth fighter.
This significant flight demonstration suc-
cessfully verified correct performance of
reengineered components generated by
using high degrees of automation assis-
tance. In this demonstration, a small com-
ponent of the aircraft navigation applica-
tion was converted from JOVIAL to C++
using the EISR suite and installed in a
Power PC-based mission computer proto-
type.

This application component ran accu-
rately and continuously through a 1.5-hour
flight, providing critical data processing in
support of the aircraft system navigation
solution. This functionality is part of the F-
117 precision navigation suite that the pilot
relies on extensively throughout the entire
mission. Subsequent tests involving deliv-
ery of practice and precision munitions
were accomplished during the latter part of
July 2001.

This demonstration provided a key con-

fidence point, proving operational viability
of reengineered application code. This work
illustrated an affordable upgrade strategy
for the F-117 mission computer using
reengineering and computer emulation
technology developed at AFRL/IF. EISR
thus allows the DoD to affordably recap-
ture previous investments in proven legacy
software artifacts and create a migration
pathway for exploitation of COTS
economies of scale.

EISR Significance
• EISR technology is estimated to signif-

icantly reduce design time-span. The
technology is mature. Resulting appli-
cations have been operationally proven
in several flight demonstrations per-
forming realistic missions.

• EISR capability is currently available off
the shelf.

• The completeness and robustness of the
EISR tool-set resulted in a low risk of
losing design content (key algorithms,
behavior) during the reengineering
process.

• EISR technology reduced the effort
associated with the coding phase by an
order of magnitude when compared to
manual transformation. This, in turn,
resulted in a 20 percent cost reduction
when considering the overall software
development process (i.e., design, code,
test, etc.).

• EISR technology has enabled a para-
digm shift and new programmatic
process for legacy information system
upgrade (see Figure 3).

• Robust, automation-assisted reengi-
neering capabilities enable affordable
structural refresh.

• EISR technologies provide a low-risk

bridge for migration to modern com-
mercial CASE tools – which in turn
enables even greater cost savings poten-
tials.

Summary
The EISR program has been successful in
putting legacy DoD application software
on a convergent path with mainstream soft-
ware engineering tools and practices. The
resulting EISR tool-set has been proven to
reliably and wholly capture and transform
legacy application content. Legacy software
transformation is performed quickly and
affordably, drastically improving design
cycle times when compared to manual
methods. In addition, the resulting artifact
forms allow application of a variety of
COTS tool-sets for continued development
and maintenance. The following list sum-
marizes EISR benefits:
• Modern CASE visualization and analy-

sis capability for legacy designs.
• Minimal introduction of human errors

during the process of manual transfor-
mation.

• Order of magnitude improvement in
SLOC conversion per labor hour
expended rate.

• Bridge to mainstream commercial
products and practices.

• Maintainability and supportability
improvements.

• Affordability increases by leveraging
economies of scale.

• Higher availability of skilled develop-
ers.
The EISR technology has successfully

completed engineering proof-of-concept
evaluations. AFRL/IFTA, on behalf of the
Computer Resources Support Improvement
Program Office (CRSIP), has acquired

Figure 3: Bridging the Gap

Elimination of Barriers:
-Diminished Manufacturing Resources
-Experience Base
-Affordability
-Schedule/Time Span

ownership of the EISR technology, includ-
ing the source code. In October 2001, the
EISR technology was transitioned to the
CRSIP Program Office that will provide
long-term support and maintenance and
will facilitate distribution of the technolo-
gy. Source code for the EISR tool-set is cur-

rently owned by the Air Force. The CRSIP
Program Office is located at Ogden Air
Logistics Center, Hill Air Force Base, UT.
Parties interested in licensing use of the
tool can contact Gerald L. White at (801)
775-6713, or via e-mail at <gerald.white
@hill.af.mil>.u

8 CROSSTALK The Journal of Defense Software Engineering December 2001

Software Legacy Systems

About the Authors
Kenneth Littlejohn is a
project engineer in the
Embedded Informa-
tion Systems Engineer-
ing Branch, Informa-
tion Directorate, Air

Force Research Laboratory. He has more
than 19 years research experience related
to affordable design, development, and
support of real-time embedded software
for Air Force weapon systems. Littlejohn
currently serves as the project engineer
for the Embedded Information System
Reengineering project. He earned a
bachelor’s degree in electrical engineer-
ing in 1987, and a master’s degree in
computer science in 1994, both from the
University of Dayton.

AFRL/IFTA
2241 Avionics Circle
WPAFB, OH 45433-7334
Phone: (937) 255-6548 ext. 3587
Fax: (937) 656-4277
E-mail: kenneth.littlejohn@wpafb.af.mil

Michael V. DelPrincipe
has more than 15 years
experience in the
design, development,
and test of embedded
real-time avionics fire

control, weapons management, and dis-
play software applications for airborne
weapon systems. He is currently
responsible for the technical and pro-
grammatic management of multiple Air
Force Research Laboratory-sponsored
research projects related to legacy
embedded information system modern-
ization. DelPrincipe earned a bachelor’s
of science degree in computer science
with honors from the State University of
New York, Brockport campus.

Lockheed Martin Aeronautics Company
P.O. Box 746
Fort Worth, TX 76101 MZ 6295
Phone: (817) 777-3667
Fax: (817) 777-3121
E-mail: michael.v.delprincipe@lmco.com

Jonathan D. Preston is
a technology program
manager within the
Advanced Development
Programs branch of
Lockheed Martin

Aeronautics Company. Throughout his
career, he has managed several govern-
ment-funded technology programs that
have transferred technologies to major
weapon system programs. Preston
earned a bachelor’s degree in electrical
engineering from the Pennsylvania State
University and an master’s degree in
computer science engineering from the
University of Texas at Arlington.

Lockheed Martin Aeronautics Company
P.O. Box 746
Fort Worth, TX 76101 MZ 2411
Phone: (817) 763-2740
Fax: (817) 763-2967
E-mail: jonathan.d.preston@lmco.com

Ben A. Calloni, Ph.D.,
is a research program
manager for multiple
software research and
development efforts at
Lockheed Martin Aero-

nautics Company, Fort Worth, Texas.
He is leading the investigation into
commercial off-the-shelf solutions for
legacy avionics software. Dr. Calloni
earned a bachelor’s of science degree in
industrial engineering from Purdue
University, and master’s and doctorate
degrees in computer science from Texas
Tech University. He is a licensed pro-
fessional software engineer in Texas.

Lockheed Martin Aeronautics Company
P.O. Box 746
Fort Worth, TX 76101 MZ 2859
Phone: (817) 777-4345
Fax: (817) 763-2967
E-mail: ben.a.calloni@lmco.com

COMING EVENTS

January 27-31, 2002
2002 Western MultiConference

San Antonio, TX
www.scs.org

February 4-6, 2002
International Conference on COTS-
Based Software Systems (ICCBSS)

Orlando, FL
www.iccbss.org

February 11-15, 2002
Application of Software Measurement

(ASM 2002)

Anaheim, CA
www.sqe.com/asm

February 25-27, 2002
15th Conference on Software Engineering

Education and Training (CSEE & T)
Covington, KY

www.site.uottawa.ca/cseet2002

April 28–May 2, 2002
Software Technology Conference 2002

“Forging the Future of Defense
Through Technology”

Salt Lake City, UT
www.stc-online.org

May 13-17, 2002
Software Testing Analysis and Review

(STAREAST 2002)

Orlando, FL
www.sqe.com/stareast

June 4-7, 2002
8th IEEE International Symposium
Software Metrics (Metrics 2002)

Ottawa, Ontario, Canada
www.software-metrics.org

