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Abstract

This project developed fluid circulation models for the two- and three-dimensional
Lagrangian shallow water equations. There were two stages to this development: in the
first, the two-dimensional shallow water equations were transformed from first principles
of oceanography into a serial implementation in MATLAB. In the second part, a serial
implementation of the three-dimensional shallow water equations, developed by Dr. James
Greenberg, was modified to run in parallel on many nodes of a computing cluster.

The serial, one-dimensional model includes one lateral degree of freedom—the x-
direction. The vertical or z-direction is modeled by layers; velocity in this direction was
removed by a series of transformations to the governing equations. Development started
with the conservation of mass and conservation of momentum equations. The traction terms
in these equations were approximated using a method previously established by Mellor and
Blumberg in their work on the Princeton Ocean Model (POM). These equations were scaled
and then transformed to an s-coordinate system, again following the established method
of POM. Once a set of partial differential equations were derived, these equations were
discretized in space and time and solved in MATLAB. The implementation of the model in
MATLAB allows the user a wide range of initial conditions for factors such as the bathymetry,
initial area covered in fluid, magnitude of friction coefficients, and more. For a given set of
initial conditions, the model steps forward in time by user-designated time steps solving
for position, velocity, and depth of the fluid at each step and visually representing this
information with appropriate graphs.

The next stage of the project jumped forward to a serial three-dimensional implemen-
tation of the shallow water equations developed by Dr. Greenberg. This model is similar to
the two-dimensional model but with the added complexity of two lateral degrees of freedom—
both the x- and y-directions—while the vertical component is still treated the same as in
the two-dimensional model. In order to split the two-dimensional domain grid into a set of
smaller domains assigned to the various processors, the special geometry of that grid had
to be taken into account. Once a scheme was in place to divide the grid while maintaining
all of its special properties, the computation on each sub-domain was performed with the
same program that operates on the entire domain. This allowed easy implementation of
a parallel solution: each node ran a modified serial implementation on a subsection of the
larger problem that had been carefully separated from the whole. A process was created to
allow the nodes to communicate data from the edges of their sub-domains as they advanced
forward through time.

There are two deliverable products from this project. First, there is a serial two-
dimensional model of fluid circulation that takes into account many different user-designated
initial conditions and can be useful for determining how well the mathematics of this model
can approximate physical phenomena. Secondly, this project produced a three-dimensional
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parallel model that serves as a proof of concept for future development of more advanced
parallel models.

Key Words: shallow water equations, free boundary, Lagrangian, s-Transformation,
coastal ocean circulation model, MATLAB
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ũ: Residual component of horizontal velocity; depth dependent.

u: Vector of horizontal velocities at all marker points in the fluid domain.

uw: Vector of wind velocities at the surface at all fluid marker points.

M: Mass matrix.

M̄: Viscosity matrix.

Mw, Mfr: Upper and lower surface frictions matrices.



8

1 Introduction

The United States Navy has enjoyed years of dominance in the open ocean. It is
unchallenged as a blue-water power, but is facing increasing operational challenges in the
littoral regions of the world. The majority of the world’s population resides in coastal regions,
which id also the scene of most of the world’s conflict areas. Therefore, it is important for
the Navy to expand its operational capability in shallow water regions such as estuaries and
enclosed bays.

One significant way in which littoral regions differ from the open ocean is in the
motion of the water there. In the open ocean, currents are largely predictable.The different
seasons’ prevailing currents have been charted since the days of the earliest oceanic explorers.
However, currents in coastal regions are heavily affected by the shape of the local terrain—
known as bathymetry—as well as tides. While in the open ocean the sea floor is of little
consequence to all but the deepest-diving submarines, in coastal regions the sea floor affects
ships of all sizes. Tidal influences in littoral regions affect navigation for both surface ships
and submarines, as well as amphibious landings, special warfare, and non-combat operations
such as preparation for storm surges.

To deal with these challenges more appropriately, the Navy would like to be able to
simulate the motion of the sea in shallow water regions. To enable this the Navy needs a
model that can predict the state of the water, or fluid, in the future based on the bathymetry
and conditions in the fluid at the current time. The inputs to such a model would be the
initial conditions of the state variables at the current time. The state variables are the
unknown dependent variables of the problem; quantities such as velocity of fluid particles,
height from the lower to the upper surface of the fluid, or water column, pressure, density,
and more. The independent variables of this problem are location in three dimensional space,
commonly expressed in Cartesian coordinates by the triple 〈x, y, z〉, and time. The output of
this program will be the predicted values of these state variables at some time in the future.

This model is created using standard oceanographic equations as the starting point
and develops these into the governing equations. The system of governing equations has two
sources of non-linearity: the bathymetry and the Eulerian form of the governing equations.
Because the problem is non-linear, a solution must be found through numerical methods.
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2 The Princeton Ocean Model

Computer models already exist that predict future values of state variables from
information available at the current time. One important model is the Princeton Ocean
Model (POM). Much of the Navy’s coastal ocean modeling software is derived from POM.
The Princeton Ocean Model is a pioneering ocean modeling software developed by Alan
Blumberg and George Mellor in 1977. POM is a numerical model that is not grid specific–it
can be applied to any bathymetry. It is written in FORTRAN and has been extended and
modified significantly over the past thirty years. The mathematical foundation of POM
is a turbulence closure model developed by Mellor in 1973 and expanded in collaboration
with Tetsuji Yamada over the next ten years. The Mellor-Yamada model is based on older
turbulence closure hypotheses developed by Rotta [11] and Kolmogorov [5]. The governing
equations of POM evaluate fluid properties, including velocity, temperature, and salinity, in
a three dimensional space corresponding with Cartesian rectangular coordinates [10].

POM is developed from first principles of oceanography: conservation of mass, con-
servation of momentum, heat transport, and salt transport. These equations resemble the
Navier-Stokes equations, except that they are relevant to turbulent rather than laminar flows.
For shallow water estuary problems, all flow is assumed to be turbulent. POM replaces the
Navier-Stokes stresses that are applicable to laminar flows with Reynolds stresses that are
used for turbulent flow.

The model we propose in this project uses a similar mathematical approach to POM’s
leap-frog system for computing mean velocities. Both POM and our model first update the
mean velocity at each point based on data from previous time steps, then update particle
positions using the just calculated values of the mean velocity. After these steps, other
quantities can be computed and then the cycle repeats by updating mean velocity at the
next time step. This approach helps to preserve conserved quantities.

POM was not intended to address shallow water and estuary problems; rather, it was
originally designed to solve for fluid motion on an oceanic scale and was later modified to
deal with shallow water regions. It operates on horizontal scales of between 1 and 100 km,
while the vertical scale is in tens to hundreds of meters. The time scale of POM ranges from
tidal to monthly intervals [8].

2.1 Eulerian and Lagrangian Representations

The Eulerian and Lagrangian approaches are two different representations for fluid
motion. In the Eulerian or field representation, the velocity and acceleration of a particle are
represented in terms of that particle’s position in space. In the Lagrangian representation,
the velocity and acceleration are associated with specific particles. The Lagrangian is called a
particle tracking representation because each individual particle has velocity and acceleration
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functions assigned to it that follow that particle through all positions and times. In the
Eulerian representation, velocity and acceleration are functions of the position in space at
any given time [7].

Both POM and our model develop from the first principles of oceanography repre-
sented by Eulerian field equations because these field equations are simpler to develop than
their Lagrangian counterparts. POM remains a primarily Eulerian model even in implemen-
tation. Since it is based on field equations, it does not do well with certain free boundary
problems because the original model was not designed to track these boundaries. The free
boundary is the physical interface between land and water. For a wet-dry problem, the model
is asked to find the times when a surface is either wetted or dried because of tidal action,
a storm surge, or other physical phenomena. The Eulerian field equations do not explicity
track the motion of particles from a permanently wet area to an area that is sometimes dry.
Instead, POM tries to calculate the velocity of the fluid at fixed grid points regardless of
whether those points are in the wet or dry area. Furthermore, it has no mechanism to mark
a “wet” area that has become “dry” or vice-versa [1].

Since POM has trouble distinguishing between wet and dry areas, and because we are
interested in solving this sort of free-boundary problem, we take a slightly different approach.
We start with the same equations, and develop them in a similar Eulerian method. However,
we create a Lagrangian grid covering the lateral space of the fluid domain that moves with
the flow of the water. The lateral space of the domain are the dimensions other than the
vertical dimension. For example, when implementing a two-dimensional model from the two-
dimensional shallow water equations, the lateral space is along the x-coordinate while the
z-coordinate is the vertical space. With the three-dimensional model, however, the entire
x−y plane is the lateral space. The nodes in our grid are called fluid-markers and they
are not fixed in space, nor are they fixed relative to other nearby fluid-markers. Instead,
each fluid-marker point is associated with a particle and markers move as the velocity of the
corresponding particle is re-calculated at each time step.

This method is better able to track the wet-dry boundary. By defining a certain set
of fluid markers as the “edge” of the water, we can track where these particles move and thus
track where the free boundary moves, allowing us to easily distinguish between wet and dry
surfaces. We believe that for certain types of problems, especially those that deal with the
shallow water estuaries in which we are interested, this free boundary tracking is a better
way of accurately modeling coastal ocean circulation.

2.2 σ-Coordinate Transformation

The most important development of the Mellor model is the introduction of the σ-
coordinate system which helps in dealing with significant topographical variability. The σ-
transformation replaces the depth coordinate with σ, a number that ranges between −1 and
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0. Each value of σ has a different z-coordinate at different points 〈x, y〉. This transformation
reduces the vertical component of the domain of the problem to a regular rectangular shape
in σ, and pushes the complexity added by irregular bathymetry into the governing equations.
Since the depth dimension is divided into many “layers,” each corresponding to a numerical
value of σ, it is fundamentally different from the x and y directions [1].

The model we are developing uses a variation on the σ-coordinate transformation
that we refer to as an s-coordinate transformation. Where σ ranges between 0 at the upper
surface of the water and −1 at the lower surface, s varies from 1 at the upper surface to 0
at the bottom surface.

2.3 Numerical Viscosity

While POM has a complicated mechanism that uses the Reynolds Stress terms from
the physical equations to remove high frequency oscillations from the model, we have chosen
a simpler method. We approximate POM’s eddy viscosity (ε) with a numerical viscosity.
Because we make this approximation, we have the freedom to set the value of numerical
viscosity and can therefore choose a value that will help cancel terms in our governing
equations. We use a value of ε that is dependent on both the size of the time step and the
size of the interval between marker points to help our numerical model to converge.

2.4 Asymptotic Solution to the Velocity Residual

POM associates a location in space represented by the point 〈x, y〉 with the averaged
properties of the infinitesimally thin column of fluid above that point. The velocity at all
depths above 〈x, y〉 is averaged into a mean velocity associated with that point. The dif-
ference from the mean at each vertical position in the water column is called the velocity
residual. POM attempts to directly solve the vertical profile equation for this residual. How-
ever, we have made a significant contribution to work in this field by creating an asymptotic
solution for the vertical profile. We show that the solution to the vertical profile can be
split into transient and steady-state components and by obtaining appropriate estimates,
demonstrate that the transient component can be ignored because it rapidly decays to zero.
Therefore, the vertical profile can be quickly approximated with our model.
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3 Physical Equations

The derivation of equations in this and the following sections borrows from many
sources; including [2], [4], [6], [7], [9], [12], and [13].

Both our model and POM start with the basic equations of physical oceanography.
The scale of the shallow water regions for which we design this model is such that the β-plane
approximation can be adopted. Using the β-plane approximation, we model the curvature
of the earth with a linear approximation and a Cartesian coordinate system; this simplifies
the mathematics of our model. The cost of this assumption is that a linear factor must be
added to account for the motion of the spherical earth. This is the Coriolis effect and will
be discussed in greater detail later in this section.

We use both field and particle tracking equations as we develop and evaluate the gov-
erning equations of this model. When a particle is tracked in a Lagrangian representation, its
location in space is described by

〈
X(t̂), Y (t̂), Z(t̂)

〉
while the velocity components associated

with a point in space in the Eulerian representation is
〈
x̂(t̂), ŷ(t̂), ẑ(t̂)

〉
. The velocity of a

particle in either representation is described by the vector V(x̂, ŷ, ẑ, t̂) where

V = iû + jv̂ + kŵ

is such that û, v̂, and ŵ represent the component of the velocity in the x̂, ŷ, and ẑ directions,
respectively. The identities for û, v̂, and ŵ in Lagrangian notation are

d

dt̂
X(t̂) = û(X(t̂), Y (t̂), Z(t̂), t̂),

d

dt̂
Y (t̂) = v̂(X(t̂), Y (t̂), Z(t̂), t̂), (1)

d

dt̂
Z(t̂) = ŵ(X(t̂), Y (t̂), Z(t̂), t̂).

Using these notations, we derive our governing equations. In (Figure 1) we consider
an elemental cube with its faces aligned to the coordinates 〈x̂, ŷ, ẑ〉. If this cube is small
enough that û, v̂, and ŵ can be considered constant on all its faces, then the net volume
flow through the x̂ and x̂ + ∆x̂ faces is

(û + ûx̂∆x̂) ∆ŷ∆ẑ − û∆ŷ∆ẑ = ûx̂∆x̂∆ŷ∆ẑ.

We use a similar derivation for the ŷ and ẑ faces and sum the net volume flow through all
six faces to obtain

(ûx̂ + v̂ŷ + ŵẑ) ∆x̂∆ŷ∆ẑ.

The Boussinesq Approximation states that density differences between fluid elements can be
ignored when approximating a flow, except where the density appears in a term multiplied
by g, the acceleration due to gravity. This approximation applies in the case of the equation
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Figure 1: An elemental cube

above. Since we assume that fluid density is constant, we can assume that the mass inside
the constant volume ∆x̂∆ŷ∆ẑ does not change. Therefore, we see that

ûx̂ + v̂ŷ + ŵẑ = 0 (2)

or in vector notation
∇ ·V = 0.

This is the equation for mass continuity, or conservation of mass, which constitutes one of
the four governing equations of our model.

The other three equations derive from Newton’s Second Law of Motion. These mo-
mentum equations balance forces with accelerations. For the elemental cube in (Figure 2),
the net force in the x-direction caused by pressure from the adjacent fluid is

−p̂x̂∆x̂∆ŷ∆ẑ

while the net force due to viscous or turbulent stresses in that direction is

((σ̂11)x̂ + (σ̂21)ŷ + (σ̂31)ẑ) ∆x̂∆ŷ∆ẑ.

The first subscript on the stress symbol σ̂ signifies the coordinate normal to the face of the
cube on which the stress acts, and the second subscript is the direction of the stress, where
we replace x̂ with 1, ŷ with 2, and ẑ with 3 to avoid confusion with the partial derivative
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Figure 2: An elemental cube showing force in the x-direction

subscripts. These two forces are equated to the product of mass and acceleration according
to Newton’s Second Law. The mass of the elemental cube is

ρ∆x̂∆ŷ∆ẑ

where ρ is the fluid density. Acceleration in the x-direction may be written as the total
derivative of the velocity

Dû

Dt̂
= ûûx̂ + v̂ûŷ + ŵûẑ + ût̂.

However, this value of the acceleration is only useful for a body of water in “absolute”
coordinates. Our fluid exists in a rotating system on the surface of the earth, so a correction
factor must be added to convert to a “relative” coordinate system. This correction factor is
called the Coriolis acceleration and changes the net acceleration to

ûûx̂ + v̂ûŷ + ŵûẑ + ût̂ − fv̂ + fŷŵ

where f is the Coriolis parameter that is equal to two times the angular velocity of the earth
times the sine of the latitude. The second Coriolis term is generally taken to be small for
oceanographic models and we ignore it here. Equating the force terms with the product
of the mass and acceleration terms yields the conservation of momentum equation in the
x-direction, which is

ρ (ûûx̂ + v̂ûŷ + ŵûẑ + ût̂ − fv̂) = −p̂x̂ + (σ̂11)x̂ + (σ̂21)ŷ + (σ̂31)ẑ (3)
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A similar derivation yields the y- and z-momentum conservation laws. These equations have
different terms for the Coriolis acceleration and the z-momentum equation has a term for
the hydrostatic effects of gravity. These equations are

ρ (ûv̂x̂ + v̂v̂ŷ + ŵv̂ẑ + v̂t̂ + fû) = −p̂ŷ + (σ̂12)x̂ + (σ̂22)ŷ + (σ̂32)ẑ (4)

ρ (ûŵx̂ + v̂ŵŷ + ŵŵẑ + ŵt̂ − fŷû) = −ρg − p̂ẑ + (σ̂13)x̂ + (σ̂23)ŷ + (σ̂33)ẑ (5)

where g is the acceleration due to gravity.

3.1 Governing Equations for the Two-Dimensional Model

Equations (2)-(5) are the governing equations of our model. We have omitted all
factors relating to temperature and salinity, two other properties that must be conserved in
addition to mass and momentum. We also take density to be constant. For simplicity, we
take ρ = 1 with no loss in generality; we do this by multiplying through the stresses and
pressure by 1

ρ
.

In addition to the assumptions of the previous section, we will make another simpli-
fying change. We first consider a set of governing equations with reduced complexity. We
choose to ignore the y-direction and focus instead only on movement in two dimensions. Our
goal is to analyze the impact of the horizontal coordinates relative to the depth coordinates.
Assuming that all quantities are independent of the y-coordinate reduces our problem from
a sloshing tank of fluid to a thin fluid sheet trapped between two panes on either side. In
this context, the Coriolis acceleration has no meaning; the Coriolis terms come out of the
governing equations when we remove all terms dependent on the y-coordinate. The four
governing equations are reduced to three: mass continuity, conservation of momentum in
the x̂ direction, and conservation of momentum in the ẑ direction;

ûx̂ + ŵẑ = 0, (6)

ût̂ + ûûx̂ + ŵûẑ + p̂x̂ = (σ̂11)x̂ + (σ̂13)ẑ , (7)

ŵt̂ + ûŵx̂ + ŵŵẑ + p̂ẑ = (σ̂31)x̂ + (σ̂33)ẑ − g, (8)

where g is the acceleration of gravity.

We assume the following constitutive relations among stresses and strains

σ̂11 = 2Eûx̂, σ̂33 = 2Eŵẑ, σ̂13 = σ̂31 = E(ûẑ + ŵx̂). (9)

These relationships follow the form of the Navier-Stokes equations. However, the Eddy
Viscosity (E) is substituted for the kinematic viscosity (ν) because kinematic viscosity applies
to laminar flow and is not appropriate for the turbulent flow of coastal ocean circulation.
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Figure 3: The domain of the two-dimensional model

3.2 Boundary Conditions

There are two surfaces which form the boundaries of the fluid in question. The lower
surface is given by ẑ = â(x̂) and the upper surface by ẑ = â(x̂) + ĥ(x̂, t̂) where ĥ(x̂, t̂) is the
height of the water column as seen in (Figure 3). We assume that fluid particles located on
these surfaces at one time remain there for all times. The mathematical expression of this
implication for the bottom surface is

d

dt̂

(
Z(t̂)− â(X(t̂))

)
= 0

using our Lagrangian notation. Noting the definitions in (1), we use the chain rule to
differentiate the previous equation by t and express this boundary condition as

ŵ(x̂, â, t̂)− âx̂û(x̂, â, t̂) = 0. (10)

The complementary equation for the upper surface is

0 =
d

dt̂

(
Z(t̂)−

(
â(X(t̂)) + ĥ(X(t̂), t̂)

))

= ŵ(x̂, â + ĥ, t̂)− âx̂û(x̂, â + ĥ, t̂)− ĥx̂û(x̂, â + ĥ, t̂)− ĥt̂. (11)

An additional boundary condition is that pressure at the free surface is the same when
measured from either side of the boundary. We assume that the pressure of the atmosphere
above the free surface is zero. Thus, the pressure at the free surface is also zero. This is
expressed as

p̂(x̂, â + ĥ, t̂) = 0. (12)
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Boundary conditions that equate the turbulent stresses on the upper and lower sur-
faces to the frictional forces and wind forces on these surfaces are also required. We defer
derivation of these conditions until we transform the physical equations into their non-
dimensional forms because the introduction of scaling factors will greatly simplify that
derivation.

Lastly, we note that initial conditions are required for û, ŵ, and ĥ in order to solve
this system of equations.

Summary of Equations

Mass Continuity ûx̂ + ŵẑ = 0 (6)
x-Momentum ût̂ + ûûx̂ + ŵûẑ + p̂x̂ = (σ̂11)x̂ + (σ̂13)x̂ (7)
z-Momentum ŵt̂ + ûŵx̂ + ŵŵẑ + p̂ẑ = (σ̂13)x̂ + (σ̂33)ẑ − g (8)
Lower Surface Boundary ŵ(â)− âx̂û(â) = 0 (10)

Upper Surface Boundary ŵ(x̂, â + ĥ, t̂)−
(
â + ĥ

)
x̂
û(x̂, â + ĥ, t̂)− ĥt̂ = 0 (11)



18

4 Shallow Water Scaling

We non-dimensionalize the variables in our equation by assigning a scaling factor to
all dependent and independent variables. The independent scaling factors are

x̂ = Lx̄, ẑ = Hz̄, t̂ = L
U
t̄, (13)

while the dependent scaling factors are

ĥ(x̂, t̂) = Hh̄(x̄, t̄), â(x̂) = Hā(x̄),

û(x̂, ẑ, t̂) = Uū(x̄, z̄, t̄), ŵ(x̂, ẑ, t̂) = UH
L

w̄(x̄, z̄, t̄),

p̂(x̂, ẑ, t̂) = gHp̄(x̄, z̄, t̄).

(14)

The scaling factor L is applied to horizontal coordinates while the scaling factor H is applied
to vertical coordinates. U represents a typical horizontal velocity. These two scaling factors
approximate the dimensions of the model’s domain. Since the hydrostatic pressure at a point
depends on the weight of the water column above that point, the pressure is scaled by the
product gH where g is the acceleration due to gravity. From these basic scaling factors we
can see that x̄ and ū are related by the identity ū = x̄t̄.

Following the convention of other works in this area [1], we define three dimensionless
scalars λ, ε, and C2 as follows

λ = H
L
, ε = E

UL
, C2 = gH

U2 . (15)

These scalars are called the aspect ratio (λ), the inverse Reynolds number (ε), and the
inverse Froude number (C2). They appear as coefficients in our dimensionless equations.
In most shallow water situations, the vertical dimension will be much smaller than the
horizontal dimension. In the shallow water estuary problems, water depth is seldom over 50
meters but horizontal distances are hundreds of kilometers. We therefore make the following
assumptions about the relationships among these scaling factors:

0 < λ ¿ 1, ε ¿ 1, C2 À 1. (16)

The relationships between these scaling factors will be important for justifying mathematical
simplifications of our governing equations.

The scalings for the σ terms follow directly from (13) and (14). These scalings are

σ̂11 = 2Eûx̂ = 2
EU

L
ūx̄,

σ̂33 = 2Eŵẑ = 2
EU

L
w̄z̄, (17)
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σ̂13 = σ̂31 = E (ûẑ + ŵx̂) =
EU

L

(
1

λ
ūz̄ + λw̄x̄

)
.

With scaling factors defined for all variables, the equations of motion and boundary condi-
tions can be translated into dimensionless form.

4.1 Dimensionless Mass Continuity Equation

We non-dimensionalize the mass continuity equation (6) using the identities in (14)
to obtain

0 = ûx̂ + ŵẑ

= Uūx̄x̄x̂ +
UH

L
w̄z̄ z̄ẑ

We evaluate x̄x̂ and z̄ẑ using (13) and reduce the above equation to

U

L
ūx̄ +

U

L
w̄z̄ = 0,

or,
ūx̄ + w̄z̄ = 0. (18)

4.2 Dimensionless z-Momentum Equation and the Hydrostatic
Approximation

Using the scaling factors from (13)-(17), the z-momentum equation (8) becomes

U2H

L2
w̄t̄ +

U2H

L2
(ūw̄)x̄ +

U2H

L2

(
w̄2

)
z̄
+ gp̄z̄ =

EU

L2

(
1

λ
ūz̄ + λw̄x̄

)

x̄

+ 2
EU

HL
(w̄z̄)z̄ − g

which can be written as

λ2
[
w̄t̄ + (ūw̄)x̄ +

(
w̄2

)
z̄

]
+ C2 (p̄z̄ + 1) = ε

[(
ūz̄ + λ2w̄x̄

)
x̄

+ 2 (w̄z̄)z̄

]
(19)

Until this point our model has been exact; no terms have been dropped to simplify
the problem. Now with the z-momentum equation (19) and the scalars in (15), we have
the opportunity to do so. In the z-momentum equation all terms are multiplied by one of
the factors λ, ε, or C2. Recalling the relationships between scaling factors from (16)—that
0 < λ ¿ 1, 0 < ε ¿ 1, and C2 À 1—we see that the other terms of the z-momentum
equation are insignificant compared to the term multiplied by C2. Removing these, our
approximation is

C2(p̄z̄ + 1) = 0.

Now we integrate this last identity with respect to the vertical coordinate from an arbitrary
point z̄ to the free surface of the fluid at ā + h̄ to get

∫ ā+h̄

z̄

(p̄z̄ + 1) dη = p̄(x̄, ā + h̄, t̄)− p̄(x̄, z̄, t̄) + (ā + h̄)− z̄ = 0.
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Since the pressure at the free surface is zero, we obtain

p̄ = ā + h̄− z̄. (20)

This last identity is referred to as the hydrostatic approximation.

4.3 Dimensionless x-Momentum Equation

The x-momentum equation non-dimensionalizes similarly. From (7) we have

ût̂ +
(
û2

)
x̂

+ (ŵû)ẑ + p̂x̂ = (σ̂11)x̂ + (σ̂13)x̂

We replace the scaled parameters with the non-dimensional versions to get

U2

L
ūt̄ +

U2

L

(
ū2

)
x̄

+
U2

L
(w̄ū)z̄ +

gH

L
p̄x̄ = 2

(
EU

L2
ūx̄

)

x̄

+

(
EU

HL

(
1

λ
ūz̄ + λw̄x̄

))

z̄

or
ūt̄ +

(
ū2

)
x̄

+ (w̄ū)z̄ + C2p̄x̄ = 2 (εūx̄)x̄ +
( ε

λ2
ūz̄

)
z̄
+ (εw̄x̄)z̄

with C2, ε, and λ as defined in (16).

In the situation where ε is constant, we exploit the identity w̄z̄ = −ūx̄ (18) to reduce
the right hand side of the last equation. Also, we use the hydrostatic approximation (20) to
replace p̄x̄ with āx̄ + h̄x̄ to obtain

ūt̄ +
(
ū2

)
x̄

+ (w̄ū)z̄ + C2
(
āx̄ + h̄x̄

)
= (εūx̄)x̄ +

( ε

λ2
ūz̄

)
z̄

(21)

4.4 Dimensionless Boundary Conditions

The boundary condition at the bottom surface (10) and the free surface (11) transform
to

w̄ (x̄, ā(x̄)) = ūāx̄ (22)

and
w̄

(
x̄, ā(x̄) + h̄(x̄, t̄), t̄

)
= h̄t̄ + ū(ā + h̄)x̄. (23)

4.5 Dimensionless Surface Traction Approximation

The derivation of the surface traction approximations in (A) is taken from [4]. The results
of this derivation are two boundary conditions, (A-8) and (A-9). These can be written as

ε

λ2
ūz̄ − εāx̄ūx̄ =

ε

λ2
Kfr h̄ ū(x̄, ā, t̄) (24)
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for the lower surface z̄ = ā and

ε

λ2
ūz̄ − ε

(
āx̄ + h̄x̄

)
ūx̄ =

ε

λ2
Kw

(
uw − ū(x̄, ā + h̄, t̄)

)
(25)

for the upper surface where z̄ = ā + h̄. Kw is the coefficient of friction between the fluid and
the air at the free surface, Kfr is the coefficient of friction between the fluid and the bottom
surface, and uw(x, t) is the velocity of the wind at the free surface.

Summary of Equations

Mass Continuity ūx̄ + w̄z̄ = 0 (18)
x-Momentum ūt̄ + (ū2)x̄ + (w̄ū)z̄ + C2

(
āx̄ + h̄x̄

)
= (εūx̄)x̄ +

(
ε

λ2 ūz̄

)
z̄

(21)
Upper Surface Boundary w̄ (x̄, ā, t̄) = ūāx̄ (22)
Lower Surface Boundary w̄

(
x̄, ā + h̄, t̄

)
= h̄t̄ + ū(ā + h̄)x̄ (23)

Lower Boundary Traction ε
λ2 ūz̄ − εāx̄ūx̄ = ε

λ2 Kfr h̄ ū(x̄, ā, t̄) (24)
Upper Boundary Traction ε

λ2 ūz̄ − ε
(
āx̄ + h̄x̄

)
ūx̄ = ε

λ2 Kw

(
uw − ū(x̄, ā + h̄, t̄)

)
(25)
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5 s-Coordinate Transformation

We now introduce this fundamental transformation to map our equations of motion
from a variable domain in the vertical direction to a fixed domain in the vertical direction.
This simplifies our bathymetry and moves complexity from the domain to the governing
equations by replacing a formerly irregular domain with a regular shape with constant height
1. We let

x = x̄, t = t̄, s =
z̄ − ā(x̄)

h̄(x̄, t̄)
, a(x) = ā(x̄), h(t, x) = h̄(x̄, t̄). (26)

Then

∂x̄ = ∂x − ax + shx

h
∂s, ∂z̄ =

1

h
∂s, ∂t̄ = ∂t − sht

h
∂s, (27)

and
u(x, s, t) = ū(x̄, z̄, t̄), w(x, s, t) = w̄(x̄, z̄, t̄). (28)

For the free boundary of the fluid domain—the interface between wet and dry areas where
h = 0—division by h produces a singularity. This problem will be addressed in later chapters
as we numerically approximate the governing equations. Note that on the bottom surface
z̄ = ā(x̄) and

s =
ā(x̄)− ā(x̄)

h̄(t̄, x̄)
= 0,

whereas on the free surface z̄ = ā(x̄) + h̄(x̄, t̄) and

s =

(
ā(x̄) + h̄(x̄, t̄)

)− ā(x̄)

h̄(x̄, t̄)
= 1.

We have changed the physical domain from a region defined by ā(x̄) < z̄ < ā(x̄) + h̄(x̄, t̄)
to a vertical domain defined by 0 < s < 1. This simplification comes at the cost of adding
complexity to the governing equations.

Following the precedent of previous works [1], we introduce the function φ, defined
by

φ(x, s, t) = w − (ax + shx)u− sht

or
w = φ + (ax + shx)u + sht. (29)

The function φ has no simple physical interpretation. Instead, it is a mathematical artifact
that exists to simplify the governing equations by removing w. In both the mass continuity
and x-momentum equations, all terms containing w can be replaced with an equivalent term
containing φ. An important property for simplification is that φ satisfies the boundary
conditions

φ(x, 0, t) = φ(x, 1, t) = 0 (30)

which can be seen by putting (22) and (23) into (29).
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5.1 Mass Continuity Equation in s-Coordinates

The mass continuity equation (18) transforms into s-coordinates as follows:

0 = ūx̄ + w̄z̄

= ux −
(

ax + shx

h

)
us +

1

h
ws

If we multiply the last equation through by h we obtain

0 = hux − (ax + shx)us + ws, (31)

Differentiating the function φ defined in (29) with respect to s yields

ws = φs + hxu + (ax + shx)us + ht. (32)

If we replace ws in (31) by (32), we see that the continuity equation reduces to

ht + (hu)x + φs = 0. (33)

This equation is exact.

5.2 x-Momentum Equation in s-Coordinates

When the x-momentum equation (21) is expressed in s-coordinates and multiplied
through by h, the left side of this equation becomes

(hut − shtus) + (huux − (ax + shx)uus + huux − (ax + shx)uus)

+ (wus + wsu) + C2h (ax + hx) = ...

Noting that as and hs are both zero allows us to remove those terms. We now use w and ws

as defined in (29) and (32) to simplify the left hand side to

(hu)t + (hu2)x + (φu)s + C2h (ax + hx) = ...

Applying the definitions in (26)-(28), the right hand side of the x-momentum equation
(21) transforms to

... = (εūx̄)x̄ +
( ε

λ2
ūz̄

)
z̄

... =

(
εux − ε

ax + shx

h
us

)

x

− ax + shx

h

(
εux − ε

ax + shx

h
us

)

s

+

(
ε

λ2

1

h

(
1

h
us

))

s

.

If we multiply this expression through by h and note that we can move h in or out of an s
derivative because h is independent of s, we find that the right hand side reduces to

... =
( ε

λ2h
us

)
s
+ h

(
ε

(
ux − ax + shx

h
us

))

x

− ε (ax + shx)

(
ux − ax + shx

h
us

)

s

.
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Next we transform the right hand side of this equation into conservation form to obtain

... =
( ε

λ2h
ũs

)
s
+

(
hε

(
ux − ax + shx

h
us

))

x

−
(

ε (ax + shx)

(
ux − ax + shx

h
us

))

s

.

The final scaled version of the x-Momentum equation is

(hu)t + (hu2)x + (φu)s + C2h (ax + hx) =
( ε

λ2h
us

)
s
+

(
hε

(
ux − ax + shx

h
us

))

x

−
(

ε (ax + shx)

(
ux − ax + shx

h
us

))

s

. (34)

5.3 Surface Traction Boundary Conditions in s-Coordinates

The equations (24) and (25) transform to

ε

λ2h
us(0)− εax

(
ux(0)− ax

h
us(0)

)
=

ε

λ2
hKfru(0) (35)

and

ε

λ2h
us(1)− ε (ax + hx)

(
ux(1)− ax + hx

h
us(1)

)
=

ε

λ2
Kw (uw − u(1)) . (36)

Summary of Equations

Mass Continuity
ht + (hu)x + φs = 0 (33)

x-Momentum
(hu)t + (hu2)x + (φu)s + C2h (ax + hx) =(

ε
λ2h

us

)
s
+

(
hε

(
ux − ax+shx

h
us

))
x
− (

ε (ax + shx)
(
ux − ax+shx

h
us

))
s

(34)
Lower Boundary Traction

ε
λ2h

us(0)− εax

(
ux(0)− ax

h
us(0)

)
= ε

λ2 hKfru(0) (35)
Upper Boundary Traction

ε
λ2h

us(1)− ε (ax + hx)
(
ux(1)− ax+hx

h
us(1)

)
= ε

λ2 Kw (uw − u(1)) (36)
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6 Separating Mean and Residual Velocities

The variable u(x, s, t) represents the lateral velocity of the fluid in the artifical domain
created by the s-transformation. The x-direction is the only direction of free motion in this
domain, while in the physical domain there is motion in both the x- and z-directions. The
horizontal velocity varies over the water column of the fluid; this is expressed mathematically
through the dependence of u on s. We split u into two components: one that is depth-
dependent, and one that is independent of s. This decomposition is expressed by

u(x, s, t) = ¯̄u(x, t) + ũ(x, s, t) (37)

where

¯̄u(x, t) =

∫ 1

0

u(x, s, t) ds,

ũ(x, s, t) = u(x, s, t)− ¯̄u(x, t).

We refer to ¯̄u as the depth-averaged horizontal velocity and ũ is the horizontal velocity
residual. Additionally, ũ satisfies

∫ 1

0

ũ(x, s, t) ds = 0. (38)

6.1 Depth-Averaged Mass Continuity Equation

When we apply the decomposition (37) for u to the mass continuity equation (33),
the result is

ht + (h(¯̄u + ũ))x + φs = 0.

If we integrate this equation over s from 0 to 1 and exploit the boundary conditions in (30)
and the identity (38), we obtain

ht + (h¯̄u)x = 0 (39)

With this transformation, the mathematical artifact φ is removed from the mass continuity
equation. This was the purpose of replacing terms dependent on w̄ with φ. While calculation
of values of w̄ is not important to determining horizontal velocity fields, we can still use
information about φ to determine values for w̄ in post-processing. If we subtract (39) from
(33) we see that

φs = −(hũ)x.

We then use φ(x, 0, t) = 0, one of the boundary conditions of φ in (30), to obtain

φ(x, s, t) = −
(

h

∫ s

0

ũ(x, η, t) dη

)

x

. (40)

Because of (38), the function φ given in (40) satisfies φ(x, 1, t) = 0, the other boundary
condition in (30). We now have an expression that we can evaluate to solve for φ and
by extension w̄. Although results for these values are not calculated in this project, that
calculation would be a useful extension of this work.
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6.2 Depth-Averaged x-Momentum Equation

We apply the decomposition in (37) to the x-momentum equation (34) to obtain

(h(¯̄u +ũ))t +
(
h(¯̄u2 + 2¯̄uũ + ũ2)

)
x

+ (φ(¯̄u + ũ))s + C2h(ax + hx) =
( ε

λ2h
(¯̄u + ũ)s

)
s
+

(
hε

(
(¯̄u + ũ)x −

ax + shx

h
(¯̄u + ũ)s

))

x

−
(

ε (ax + shx) (¯̄u + ũ)x −
ax + shx

h
(¯̄u + ũ)s

)

s

.

Separating terms and noting that ¯̄us = 0 yields

(h¯̄u)t + (hũ)t + (h¯̄u2)x + 2(h¯̄uũ)x + (hũ2)x + φs ¯̄u + (φũ)s + C2h(ax + hx) =
( ε

λ2h
ũs

)
s
+

(
hε

(
(¯̄u + ũ)x −

ax + shx

h
ũs

))

x

−
(

ε (ax + shx)

(
(¯̄u + ũ)x −

ax + shx

h
ũs

))

s

.

We now integrate the last equation with respect to s from 0 to 1. Noting that∫ 1

0
ũ ds = 0,

∫ 1

0
h ds = h,

∫ 1

0
¯̄u ds = ¯̄u, and that φ is zero at both s = 0 and s = 1, we find

that the left-hand side of the integrated expression is

((h¯̄u)t + (h¯̄u2)x +

(∫ 1

0

hũ2 ds

)

x

+ C2h(ax + hx) = ...

Integrating the right hand side we obtain

... =
ε

λ2

[
ũs(1)

h
− ũs(0)

h

]
+ (hε¯̄ux)x −

[∫ 1

0

ε (ax + shx) ũs ds

]

x

−
(

ε (ax + shx)

(
(¯̄u + ũ)x −

ax + shx

h
ũs

))∣∣∣∣
1

0

... =
ε

λ2

[
ũs(1)

h
− ũs(0)

h

]
+ (hε¯̄ux)x −

[
ε (ax + hx) ũ(1)− εaxũ(0)

]

x

− ε

[
(ax + hx)

(
(¯̄u + ũ)x (1)− ax + hx

h
ũs(1)

)
− ax

(
(¯̄u + ũ)x (0)− ax

h
ũs(0)

)]

... =
ε

λ2h
us(1)− ε(ax + hx)

(
ux(1)− ax + hx

h
us(1)

)
− ε

λ2h
us(0) + εax

(
ux(0)− ax

h
us(0)

)

+ (hε¯̄ux)x −
[
ε (ax + hx) ũ(1)− εaxũ(0)

]

x

... =
ε

λ2
Kw(uw − ¯̄u− ũ(1))− ε

λ2
hKfr (¯̄u + ũ(0)) + (hε¯̄ux)x −

[
ε (ax + hx) ũ(1)− εaxũ(0)

]

x

.
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Thus, the depth-averaged x-momentum equation is

(h¯̄u)t + (h¯̄u2)x +

(∫ 1

0

hũ2 ds

)

x

+ C2h(ax + hx) =

ε

λ2
Kw(uw − ¯̄u− ũ(1))− ε

λ2
hKfr (¯̄u + ũ(0)) + (hε¯̄ux)x −

[
ε (ax + hx) ũ(1)− εaxũ(0)

]

x

.

(41)

6.3 Residual x-Momentum Equation

To obtain the equation for ũ, we subtract the depth-averaged x-momentum equation
(41) from (34). The result is

(hũ)t =− 2 (hũ¯̄u)x −
(
hũ2

)
x

+

(∫ 1

0

hũ2 ds

)

x

− φs ¯̄u− (φũ)s − ε

λ2
[Kx

w (uw − ¯̄u− ũ(1))]

ε

λ2
[−hKx

fr (¯̄u + ũ(0))] + [ε (ax + hx) ũ(1)− εaxũ(0)] +
ε

λ2h
(ũs)s + (hεũx)x−

(ε (ax + shx) ũs)x −
(

ε (ax + shx)

(
(¯̄u + ũ)x −

ax + shx

h
ũs

))

s

. (42)

We let
D =

ε

λ2
,

define the function G by

G =− htũ− 2 (hũ¯̄u)x −
[
h

(
ũ2

)− h

∫ 1

0

ũ2(x, η, t) dη

]

x

− φs ¯̄u− (φũ)s

+ [ε (ax + hx) ũ(1)− εaxũ(0)] + (hεũx)x − (ε (ax + shx) ũs)x .

and note that we have selected the terms for G from (42) so that

∫ 1

0

G(x, s, t) ds = 0.

The equation for ũ then becomes

hũt = G +
D

h

[(
1 + λ2 (ax + shx)

2) ũs

]
s
− [ε (ax + shx) (¯̄ux + ũx)]s

−D [Kw (uw − ¯̄u− ũ(1))− hKfr (¯̄u + ũ(0))] . (43)

6.4 Equations for Boundary Conditions

On the lower surface s = 0, (35) becomes

D

h

(
1 + λ2a2

x

)
ũs(0)− (εax (¯̄u + ũ(0))) = DhKx

fr (¯̄u + ũ(0)) (44)
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and on the upper surface at s = 1, (36) becomes

D

h

(
1 + λ2 (ax + hx)

2) ũs(1)− (ε (ax + hx) (¯̄u + ũ(1))) = DKx
w (uw − ¯̄u− ũ(1)) (45)

In the following section, we make the assumption that

D =
ε

λ2
À 1.

6.5 Approximating the x-Velocity Residual

The derivation of the approximate equation for ũ follows the approach of Greenberg
in [3]. The approximate equation is obtained by solving the velocity residual (43) with the
boundary conditions (44) and (45) and exploiting the fact that D is much larger than both
ε and 1 and that Dλ2 is much smaller than D. We retain only terms on the right hand side
of (43), (44), and (45) that are O(D) while ignoring terms that are O(1), O(ε), and O(Dλ2).
Thus, we investigate the following system of equations

hũt =
D

h
ũss −D [Kw (uw − ¯̄u− ũ(1))− hKfr (¯̄u + ũ(0))] , (46)

ũs(0) = h2Kfr (¯̄u + ũ(0)) , (47)

ũs(1) = hKw (uw − ¯̄u− ũ(1)) . (48)

The solution to (46)-(48) may be written as

ũ = Ũ + w

where Ũ is an approximate steady state solution satisfying

Ũss =
(
Kwh(uw − ¯̄u)−Kfrh

2 ¯̄u−KwhŨ(1)−Kfrh
2Ũ(0)

)
, (49)

Ũs(0) = Kfrh
2
(

¯̄u + Ũ(0)
)

, (50)

Ũs(1) = Kwh
(
uw − ¯̄u− Ũ(1)

)
(51)

and w is the transient component which may be written as

w(x, t) =
∞∑
i=1

wke
(−µkt)φk(s)

where φk and µk satisfy the eigenvalue problem

D

h2

((
φk

s

)
s
(s) + Kwhφk(1) + Kfrh

2φk(0)
)

+ µkφ
k(s) = 0, 0 < s < 1

φk
s(0) = Kfrh

2φk(0),

φk
s(1) = −Kwhφk(1).
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These eigen-functions satisfy

∫ 1

0

φk(s) ds = 0, k = 1, 2, 3, ...

∫ 1

0

φk(s)φj(s) ds = 0. k = 1, 2, 3, ...

If we normalize φk(s) to satisfy ∫ 1

0

(
φk

)2
(s) ds = 1

we find that

0 < µk =
D

h2

∫ 1

0

(
φk

s

)2
(s) ds +

D

h2

(
Kwh

(
φk(1)

)2
+ Kfrh

2
(
φk(0)

)2
)

.

Since the only solution to

(φs)s +
(
Kwhφ(1) + Kfrh

2φ(0)
)

= 0,

φs(0) = Kfrh
2φ(0),

φs(1) = −Kwhφ(1)

is φ(s) ≡ 0, we are guaranteed that µ = 0 is not an eigen-value. Our assumption that
D = ε/λ2 À 1 guarantees that solutions to the transient problem decay rapidly for any
initial condition. This allows us to use the steady state solution Ũ as an approximation
for ũ. Therefore, terms in the depth-averaged x-momentum equation that contain ũ can be
replaced with Ũ .

The solution to the steady-state component of the residual (49)-(51) may be written
as

Ũ = Ũ(0)+Kfr

(
¯̄u + Ũ(0)

)
s+

(
Kwh (uw − ¯̄u)−Kfrh

2 ¯̄u−KwhŨ(1)−Kfrh
2Ũ(0)

) s2

2
(52)

where

Ũ(0) = −−Kwh(uw − ¯̄u)

6B − (1 + Kwh/4) Kfrh
2 ¯̄u

6B , (53)

Ũ(1) =
(1/3 + Kfrh

2/12) Kwh (uw − ¯̄u)

B +
Kfrh

2 ¯̄u

6B , (54)

and

B = 1 +
(Kwh + Kfrh

2)

3
+

KwKfrh
3

12
> 0. (55)
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6.6 Summary of Depth-Averaged Equations

There are two depth-averaged equations of motion in our problem, summarized in
the box below. Recall that Ũ is the steady state approximation to ũ which we will use in
subsequent computations. Ũ does not depend on x or t directly, instead it depends on ¯̄u,
uw, and h, and those values depend on x and t. In the next section we solve the two partial
differential equations of motion using numerical methods.

Mass Continuity ht + (h¯̄u)x = 0 (39)

x-Momentum

(h¯̄u)t + (h¯̄u2)x +
(∫ 1

0
hŨ2 ds

)
x

+ C2h(ax + hx) =

ε
λ2 Kw(uw − ¯̄u− Ũ(1))− ε

λ2 hKfr

(
¯̄u + Ũ(0)

)
+ (hε¯̄ux)x

−
[
ε (ax + hx) Ũ(1)− εaxŨ(0)

]

x

(41)

Steady State Approximation of Velocity Residual

Ũ =

Ũ(0) + Kfr

(
¯̄u + Ũ(0)

)
s +

(
Kwh (uw − ¯̄u)−Kfrh

2 ¯̄u−KwhŨ(1)−Kfrh
2Ũ(0)

)
s2

2
(52)

Ũ(0) = −−Kwh(uw−¯̄u)
6B − (1+Kwh/4)Kfrh

2 ¯̄u
6B (53)

Ũ(1) =
(1/3+Kfrh

2/12)Kwh(uw−¯̄u)

B + Kfrh
2 ¯̄u

6B (54)

B = 1 +
(Kwh+Kfrh

2)
3

+ KwKfrh
3

12
(55)
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7 Finite-Dimensional Approximating Equations

Until now, we have developed a continuum description of the fluid flow where all
fields, particularly ¯̄u and h, are defined at all points x and at all times t where the water
column h(x, t) is positive. This continuum problem is infinite dimensional—for example, a
Fourier series representation of the solution will, in general, need infinitely many Fourier
coefficients. Because the system formed by (39), (41), and (52)-(55) is non-linear, obtaining
an exact solution is impossible. Therefore, this section presents a method for obtaining an
approximate solution based on a finite-dimensional approximation of the infinite-dimensional
problem.

We use a Lagrangian approach to create this approximate solution. With this method
we define a series of “fluid-marker points” that we track for all time. In the context of this
model, the term fluid-marker point does not refer to any specific particle at any place in the
fluid. Instead it refers to the projection of a column of fluid onto the model’s “grid”. The
grid is a structure for describing the lateral space of the fluid domain. In the two-dimensional
model, the lateral space of the domain has one degree of freedom and the fluid-marker points
are projections of a vertical column of water onto this line of lateral space.

We assume the wetted fluid region of the continuum problem has a lower bound of a
and an upper bound of b at t = 0 so that h(x, 0) satisfies the following constraints

h(x, 0) =





0, x < a,

ho(x) > 0, a < x < b,

0, b < x.

We create a grid that divides the region between a and b into N + 1 points. If this grid is
uniformly spaced then the ith point is denoted by

xo
i = a +

i− 1

N
(b− a), 1 ≤ i ≤ N + 1.

Not all grids will be uniformly spaced; depending on the initial conditions, we may find
it preferable to distribute grid points by other means. However, no matter the method of
dividing the lateral space, there will always be N + 1 grid points that are identified as fluid-
marker points. The endpoints of this grid match the edges of the continuum problem where
xo

1 = a and xo
N+1 = b. The difference between two grid points at t = 0 is

xo
i+1 − xo

i =
b− a

N
, 1 ≤ i ≤ N.

Given the sequence of grid points {xo
i}N+1

i=1 and the function for the initial water column
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h(x, 0), we define the sequence {M o
i }N+1

i=1 by

M o
i =





0, i = 1,

∫ xo
i

xo
1

ho(x) dx, 2 ≤ i ≤ N + 1.

The numbers M o
i represent the amount of fluid in the interval [x0

1, x
0
i ] at time t = 0 which

we refer to as “fluid elements”. We compute the amount of fluid in each interval [x0
i , x

0
i+1)

by
mo

i = M o
i+1 −M o

i , 1 ≤ i ≤ N

and the average height of the water in the same interval by

ho
i =

mo
i

xo
i+1 − xo

i

=
N

b− a
mo

i . (56)

Now that the height of the water column in each interval is approximated by the average
water column, we no longer have any singularities in our governing equations along the free
boundary where h = 0.

Given any domain of fluid described by a continuum mechanics model at a time t = 0,
we have a finite-dimensional or discrete approximation of that domain. Our discretization
will be a set of ordinary differential equations that tracks through time the position of the
grid points {xo

i}N+1
i=1 , the velocities of these fluid-marker points, and the average height of the

water column between successive marker points. We adopt the following notation to denote
these three values:

(1) xi(t) is the position at time t of the marker point that was located at xo
i at t = 0

for 1 ≤ i ≤ N + 1.

(2) ¯̄ui(t) is the velocity of the marker point xi(t) at time t for 1 ≤ i ≤ N + 1 and
represents the value of ¯̄u(xi(t), t).

(3) hi(t) is the average height of the water column in the interval [xi(t), xi+1(t)) for
1 ≤ i ≤ N .

Note that x and ¯̄u satisfy

dxi

dt
= ¯̄ui(t), 1 ≤ i ≤ N,

and
xi(0) = x0

i , 1 ≤ i ≤ N.
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7.1 Ordinary Differential Equation Approximation

Our strategy is to replace the partial differential equations in (39) and (41) by an
approximating system of 2N + 2 ordinary differential equations. At each of the points xi,
from i = 1 to i = N + 1, we create a pair of ordinary differential equations of the form

dxi

dt
= ¯̄ui,

and
1

8

[
mo

i−1

d¯̄ui−1

dt
+ 3

(
mo

i−1 + mo
i

) d¯̄ui

dt
+ mo

i

d¯̄ui+1

dt

]
= F (xi, ¯̄ui),

where mi is a constant mass coefficient and F (xi, ¯̄ui) represents forcing terms. This creates
N + 1 pairs of ordinary differential equations, each corresponding to the different index
values of i. All 2N + 2 equations are expressed more succinctly in vector form. We define
two vectors

x = {xj}N+1
j=1 , (57)

and
u = {¯̄uj}N+1

j=1 (58)

and rewrite our approximating ordinary differential equations as

dx

dt
= u, (59)

M̂
du

dt
= F(x,u), (60)

where M̂ is a tri-diagonal matrix and F is a vector of forcing terms. We calculate M̂ and F
in the following sections.

7.2 Discretizing the Depth-Averaged Mass Continuity Equation

We integrate the continuum form of the averaged mass continuity equation (39) over
the interval [xi, xi+1]. Assuming that all instances of hi are evaluated at t, the result is

0 =

∫ xi+1(t)

xi(t)

ht dx +

∫ xi+1(t)

xi(t)

(h¯̄u)x dx

=
d

dt

∫ xi+1(t)

xi(t)

h dx− (xi+1)t hi(xi+1) + (xi)t hi(xi) + ¯̄u(xi+1, t)hi(xi+1)− ¯̄u(xi, t)hi(xi).

Since (xi(t))t is equal to ¯̄u(xi(t), t) the above expression reduces to

d

dt

∫ xi+1(t)

xi(t)

h dx = 0. (61)
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The integral of the water column over an interval between fluid markers is the amount of
fluid in that interval, or, since we assume that density is a constant ρ = 1, the mass of that
interval . From (61) we see that this mass does not change over time so we generalize that
mo

i = mi. We see that

∫ xi+1(t)

xi(t)

h(x, t) dx =

∫ xo
i+1

xo
i

h(x, 0) dx =

∫ xo
i+1

xo
i

ho(x) dx = mo
i

and (56) implies that
mi = (xi+1(t)− xi(t)) hi(t). (62)

This is the discrete approximation to the depth-averaged continuity equation.

7.3 Discretizing the Depth-Averaged x-Momentum Equation

We have established a grid scheme that discretizes the fluid domain. Now we derive
a set of evolution equations for the sequence of velocities {¯̄ui(t)}N+1

i=1 which are consistent
with the depth-averaged x-momentum equation. To obtain these equations we extend the
discrete velocities {¯̄ui(t)}N+1

i=1 and average water columns {hi}N
i=1 to fields defined on the

interval (−∞,∞). For ¯̄ui, we do this by piecewise linear extension:

¯̄u(x, t) =





¯̄ui(t), x ≤ x1(t),

¯̄ui(t) +
(

¯̄ui+1(t)−¯̄ui(t)
xi+1(t)−xi(t)

)
(x− xi(t)) , xi(t) ≤ x ≤ xi+1(t) and 1 ≤ i ≤ N,

¯̄uN+1(t), xN+1(t) ≤ x.

(63)

For the average water columns, we do this by a piecewise constant function

h(x, t) =





0, x < x1(t),
hi(t), xi(t) < x < xi+1(t) and 1 ≤ i ≤ N,
0, xN+1(t) < x.

(64)

where hi(t) =
mo

i

xi+1(t)−xi(t)
.

To obtain the evolution equations from the discrete velocities {¯̄ui(t)}N+1
i=1 , we integrate

the depth-averaged x-momentum equation around each point xi. We choose to integrate from
the midpoints between adjacent fluid markers. We let

xi−1/2 = xi+xi−1

2
and xi+1/2 = xi+1+xi

2
,

be the lower and upper bounds of this region of integration and a corresponding notation
for ¯̄u is

¯̄ui+1/2 = ¯̄u|xi+1/2
,

¯̄ui−1/2 = ¯̄u|xi−1/2
.
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The depth-averaged x-momentum equation (41) can be reorganized as

momentum︷ ︸︸ ︷
(h¯̄u)t + (h¯̄u2)x =

pressure︷ ︸︸ ︷
−

(∫ 1

0

hŨ2 ds

)

x

− C2

2
(h2)x−

potential︷ ︸︸ ︷
C2hax

+
ε

λ2
Kw(¯̄uw − ¯̄u− Ũ(1))− ε

λ2
hKfr

(
¯̄u + Ũ(0)

)

︸ ︷︷ ︸
wind and friction

+ (hε¯̄ux)x︸ ︷︷ ︸
viscosity

−
[
ε (ax + hx) Ũ(1)− εaxŨ(0)

]

x︸ ︷︷ ︸
remainder

.

For simplicity, we choose to ignore the remainder term because the remainder term is much
smaller than the other terms in the depth-averaged x-momentum equation. We integrate
around each point xi to obtain

momentum︷ ︸︸ ︷∫ xi+1/2

xi−1/2

(
(h¯̄u)t + (h¯̄u2)x

)
dx =

potential︷ ︸︸ ︷
−C2

∫ xi+1/2

xi−1/2

hax dx−

pressure︷ ︸︸ ︷∫ xi+1/2

xi−1/2

[
C2

(
h2

2

)
+ h

∫ 1

0

Ũ2 ds

]

x

dx

+

∫ xi+1/2

xi−1/2

(εh¯̄ux)x dx

︸ ︷︷ ︸
viscosity

+

∫ xi+1/2

xi−1/2

ε

λ2

[
Kw(uw − ¯̄u− Ũ(1))− hKfr(¯̄u + Ũ(0))

]
dx

︸ ︷︷ ︸
wind and friction

(65)

7.3.1 Momentum Terms

The momentum terms from the integrated averaged x-momentum equation (65) can
be written as

d

dt

∫ xi+1/2

xi−1/2

(h¯̄u) dx− hi ¯̄ui+1/2

(
xi+1/2

)
t
+ hi−1 ¯̄ui−1/2

(
xi−1/2

)
t
+ hi

(
¯̄ui+1/2

)2 − hi−1

(
¯̄ui−1/2

)2
.

Recalling that dx
dt

= ¯̄u, this last expression reduces to

d

dt

∫ xi+1/2

xi−1/2

(h¯̄u) dx. (66)

Using (62)-(64) we see that

∫ xi+1/2

xi−1/2

(h¯̄u) dx = hi

∫ xi+1/2

xi

¯̄u dx + hi−1

∫ xi

xi−1/2

¯̄u dx

= hi

[(
¯̄ui+1+¯̄ui

2
+ ¯̄ui

2

)
xi+1 − xi

2

]
+ hi−1

[(
¯̄ui +

¯̄ui+¯̄ui−1

2

2

)
xi − xi−1

2

]

=
1

8

[
¯̄ui−1mi−1 + 3¯̄ui (mi−1 + mi) + ¯̄ui+1mi

]
.
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Therefore, (66) can be rewritten in vector form as

M

(
du

dt

)
(67)

where M is a tri-diagonal mass matrix with elements defined by

M1,1 =
3

8
m1,

MN+1,N+1 =
3

8
mN ,

Mj,j =
3

8
(mj−1 + mj), 2 ≤ j ≤ N,

Mj,j−1 =
1

8
mj−1, 2 ≤ j ≤ N + 1,

Mj,j+1 =
1

8
mj, 1 ≤ j ≤ N.

7.3.2 Potential and Pressure Terms

The potential term from the integrated, depth-averaged x-momentum equation (65)
can be written as

C2hi−1

(
a(xi)− a(xi−1/2)

)
+ C2hi

(
a(xi+1/2)− a(xi)

)
. (68)

The pressure terms are

C2

2
h2

i −
C2

2
h2

i−1 + hi

∫ 1

0

Ũ(xi+1/2)
2 ds− hi−1

∫ 1

0

Ũ(xi−1/2)
2 ds. (69)

These terms can be evaluated in the forms above. We represent their vector forms by Fpres

and Fpot.

7.3.3 Viscosity Term

In evaluating the viscosity term, we assume that ε is piecewise constant in the intervals
between fluid markers, so that

ε(x, t) ≡ εi, xi < x < xi+1 and 1 ≤ i ≤ N.

Using this ε, we write the integrated viscosity term as

εihi

¯̄ui+1 − ¯̄ui

xi+1 − xi

− εi−1hi−1

¯̄ui − ¯̄ui−1

xi − xi−1

There are many possible choices for εi. One choice is

εi =
µ

8dt

(
b− a

N

)2

. (70)
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This value for ε has the advantage of being constant in both space and time. Note that dt
is the size of the time step that we will be taking in our numerical computations. Another
choice is

εi = µ
(xi+1 − xi)

2

8dt
. (71)

The viscous forces may be written in vector form as

M̄u (72)

where u is defined in (58) and M̄ is a tri-diagonal matrix defined by

M̄1,1 = −ε1h1

∆x1

,

M̄N+1,N+1 = −εNhN

∆xN

,

M̄j,j = −
(

εj−1hj−1

∆xj−1

+
εjhj

∆xj

)
, 2 ≤ j ≤ N, (73)

M̄j,j−1 =
εj−1hj−1

∆xj−1

, 2 ≤ j ≤ N + 1,

M̄j,j+1 =
εjhj

∆xj

, 1 ≤ j ≤ N.

We are using the notation
∆xi = (xi+1 − xi) .

7.3.4 Friction and Wind Terms

The wind term from the integrated averaged x-momentum equation (65) is

∫ xi+1/2

xi−1/2

ε

λ2

[
Kw

(
uw − ¯̄u− Ũ(1)

) ]
dx

and the friction term is
∫ xi+1/2

xi−1/2

ε

λ2

[
−hKfr

(
¯̄u + Ũ(0)

) ]
dx.

Using the definitions of Ũ(0) and Ũ(1) from (53)-(55), we expand these two terms to

∫ xi+1/2

xi−1/2

ε

λ2

[
Kw (uw − ¯̄u)− 4 + KfrK

2
wh2

12B h (uw − ¯̄u)− KfrKwh

6B h¯̄u

]
dx

and ∫ xi+1/2

xi−1/2

ε

λ2

[
−Kfrh¯̄u +

KwKfrh

6B h (uw − ¯̄u) +
(1 + Kwh/4) K2

frh
2

6B h¯̄u

]
dx.
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Using (62), we evaluate these expressions to obtain the combined wind and friction term

(uw − ¯̄u)i−1

[
Kwεi−1

8λ2

(
1− 4 + (Kwhi−1 + 2) Kfrhi−1

12B hi−1

)
∆xi−1

]

+ (uw − ¯̄u)i

3Kw

8λ2

[
εi−1

(
1− 4 + (Kwhi−1 + 2) Kfrhi−1

12B hi−1

)
∆xi−1

+ εi

(
1− 4 + (Kwhi + 2) Kfrhi

12B hi

)
∆xi

]

+ (uw − ¯̄u)i+1

[
Kwεi

8λ2

(
1− 4 + (Kwhi + 2) Kfrhi

12B hi

)
∆xi

]

+ ¯̄ui−1

[
Kfrεi−1

8λ2

(
(1 + Kwhi−1/4) Kfrhi−1 −Kw

6B hi−1 − 1

)
mi−1

]

+ ¯̄ui
3Kfr

8λ2

[
εi−1

(
(1 + Kwhi−1/4) Kfrhi−1 −Kw

6B hi−1 − 1

)
mi−1

+εi

(
(1 + Kwhi/4) Kfrhi −Kw

6B hi − 1

)
mi

]

+ ¯̄ui+1

[
Kfrεi

8λ2

(
(1 + Kwhi/4) Kfrhi −Kw

6B hi − 1

)
mi

]
.

To express this expression in vector form, we define two matrices Mf and Mw. The matrices
are

(Mw)1,1 =
Kwε1

8λ2

(
1− 4 + (Kwh1 + 2) Kfrh1

12B h1

)
∆x1,

(Mw)N+1,N+1 =
KwεN

8λ2

(
1− 4 + (KwhN + 2) KfrhN

12B hN

)
∆xN ,

(Mw)j,j =
3Kw

8λ2

[
εi−1

(
1− 4 + (Kwhi−1 + 2) Kfrhi−1

12B hi−1

)
∆xi−1

+εi

(
1− 4 + (Kwhi + 2) Kfrhi

12B hi

)
∆xi

]
, 2 ≤ j ≤ N,

(Mw)j,j−1 =
Kwεi−1

8λ2

(
1− 4 + (Kwhi−1 + 2) Kfrhi−1

12B hi−1

)
∆xi−1, 2 ≤ j ≤ N + 1,

(Mw)j,j+1 =
Kwεi

8λ2

(
1− 4 + (Kwhi + 2) Kfrhi

12B hi

)
∆xi, 1 ≤ j ≤ N,
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and

(Mfr)1,1 =
Kfrε1

8λ2

(
(1 + Kwh1/4) Kfrh1 −Kw

6B h1 − 1

)
m1,

(Mfr)N+1,N+1 =
KfrεN

8λ2

(
(1 + KwhN/4) KfrhN −Kw

6B hN − 1

)
mN ,

(Mfr)j,j =
3Kfr

8λ2

[
εi−1

(
(1 + Kwhi−1/4) Kfrhi−1 −Kw

6B hi−1 − 1

)
mi−1

+εi

(
(1 + Kwhi/4) Kfrhi −Kw

6B hi − 1

)
mi

]
, 2 ≤ j ≤ N,

(Mfr)j,j−1 =
Kfrεi−1

8λ2

(
(1 + Kwhi−1/4) Kfrhi−1 −Kw

6B hi−1 − 1

)
mi−1, 2 ≤ j ≤ N + 1,

(Mfr)j,j+1 =
Kfrεi

8λ2

(
(1 + Kwhi/4) Kfrhi −Kw

6B hi − 1

)
mi, 1 ≤ j ≤ N.

We also define a vector
uw = {(uw)j}N+1

j=1 .

With these definitions, the friction and wind terms may be written in vector form as

Mw (uw − u)−Mfru. (74)

7.3.5 Summary of All Terms of Depth-Averaged x-Momentum Equation

When the terms of (65) have been translated into vector form, the equation becomes

momentum︷ ︸︸ ︷
M

(
du

dt

)
= −

pressure︷︸︸︷
Fpres −

potential︷︸︸︷
Fpot +

viscosity︷︸︸︷
M̄u +

wind and friction︷ ︸︸ ︷
Mw (uw − u)−Mfru . (75)

This is the equation in the form of (60) that forms the second part of our ordinary differential
equation approximation, the first part of which is

dx

dt
= u.

We solve this system of ordinary differential equations through operator splitting. Each time
we step forward through time by one time step, we evaluate our system in two distinct parts.
For the first part we hold x constant and update u; in the second part we hold u constant and
update x. We use a time grid where the constant interval dt is the length of time between
tn and tn+1 for any n. Another way of stating this is that tn = n dt for n = 0, 1, ... etc.
We use a superscript notation to signify the time step at which a value is being calculated,
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thus un+1 refers to the depth-averaged velocity one time step after un. The two steps can
be described by

Step 1

tn ≤ t ≤ tn+1

dx
dt

= 0

Mdu
dt

= F(x,u)

Step 2

tn ≤ t ≤ tn+1

dx
dt

= u

Mdu
dt

= 0

(76)

Note that we do not consider uw a variable upon which (75) depends; it is given or externally
supplied data like the mass, viscosity, and friction matrices.



41

8 Implementation of the Two-Dimensional Model

At the end of the previous section, we found a solution for the velocity fields of the
two-dimensional model. This solution involves a “leap-frog” updating process and uses a
Lagrangian method to track particles from time zero through all future time steps. Within
each time step, we solve first for the depth averaged mean velocity, ¯̄u, of the fluid at each
particle location using data from the previous time step. Next we use the mean velocity to
update the location of each particle, x. Finally, with a new array of particle locations and
a constant array of masses, we can calculate the water column, h, in each interval between
particles.

There are many options for implementing the solution of the final differential equation
in MATLAB. Two of the easiest solutions are the explicit and implicit Euler methods. In
explicit methods, such as the forward Euler method, the value of the variable of interest—in
this case the depth averaged velocity, ¯̄u—at the next time step is defined in terms of known
values from the current time step. Implicit methods, such as the backwards Euler method,
defines the variable at the next time step in terms of unknown values from the next time step.
The variable of interest must then be solved for; this solution takes time but the advantage
is that implicit solutions are usually more stable allowing the model to use larger time steps.
The two-dimensional model has been implemented using both approaches.

The final differential equation (75) represents a series of n equations, one for each
tracked particle. In the context of implementing this model, the advantage of the explicit
Euler method is that with certain viscosity values each equation can be independent. That
means that there is no need for linear algebra when solving; instead MATLAB will just
solve a series of n independent equations. The implicit Euler method does require linear
algebra because all the differential equations in the series are dependent on each other; but
the advantage of this method is its increased stability. The implicit method produces stable
solutions for almost all initial conditions when the ratio dt

dx
is 0.1 while the explicit method

can fail if the spacing between the particle locations, dx, becomes too small. Testing of the
two methods against each other have shown that the explicit and implicit methods provide
near identical results when both are stable and initial conditions are the same. However,
when the residual velocities and wind and surface friction forces are added, the domain of
inputs on which the explicit solution is stable becomes much smaller unless the ratio dt

dx
is

reduced, so the implicit method is preferred.

Whether the explicit or implicit method is used, MATLAB implementation of this
leapfrog process takes as input the state of a region of water at any time and produces
as output the state of that water at a future time. Here state is defined primarily by the
three variables of interest to this program: depth averaged mean velocity at each particle,
¯̄u, location of each particle, x, and water column of each fluid element, h. In order to
perform this calculation, the program needs these three pieces of information at time zero.
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In addition, the program needs a variety of other initial data, including a function defining
bathymetry, a function defining wind, constants for wind friction and bottom friction, initial
velocity of the fluid, and more.

The program provides two graphical outputs for visualizing results of the model. A
plot of height over bathymetry versus x gives the user a view of what the two dimensional
model might look like in a real physical setting–or at least as real as one can get with two
dimensions. The other graph plots the center of mass versus the average momentum of the
mass of water. This graphic is useful as a diagnostic. For cases where the bathymetry is a
parabola and there is no friction, this graph will trace a circle as the mass of fluid settles
into a stable path of oscillation.

The purpose of creating the two-dimensional model is to investigate the mathemat-
ics and physics of the shallow water equations before moving on to modeling the three-
dimensional shallow water equations. Furthermore, because of the simplicity of the two-
dimensional shallow water equations, this first model incorporates more features than will
be implemented in the three-dimensional model within the scope of this project. Factors
such as the residual velocities at each depth layer, wind friction, and variable viscosities have
not been included in the three-dimensional model.

8.1 Operation of the Two-Dimensional Model

The two-dimensional model is implemented as a MATLAB function that can be run
from the MATLAB base workspace without any input arguments. The initial conditions are
specified through the use of another function call that is designed to be user-modifiable. The
actual calculations are carried out within a loop in the main function of the model.

The most important single line of this function is derived directly from (75), which
is the first step of the two-step operator splitting method established in (76). This first-step
differential equation (75) is

M

(
du

dt

)
= −Fpres − Fpot + M̄u + Mw (uw − u)−Mfr (u) .

Since the two-dimensional model solves this equation using an implicit scheme, the derivative
of u is approximated by the backwards Euler method. Using this approximation, (75)
becomes

M

(
un+1 − un

dt

)
= −Fpres − Fpot +

(
M̄−Mw −Mfr

)
un+1 + Mwuw

where superscripts represent the time step at which a variable is evaluated. Solving this
equation for un+1 yields

[
M− dt

(
M̄−Mw −Mfr

) ]
un+1 = dt

[
−Fpres − Fpot + Mwuw + Mun

]
.
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This equation is used to compute the velocity of each tracked particle in a certain time
step using the velocity of the previous time step. The various matrices for mass, viscosity,
and friction coefficients must be created within each time step previous to evaluating this
equation.

When implemented in MATLAB, the value of un+1 is determined using linear algebra;
specifically, MATLAB’s backsolve feature. The code that solves this equation is

U = ((MM - MMVV + dt*(MMWW + MMFF)) \ (-dt*POT’ - dt*PRES’ + ...
dt*MMWW*UW’ + MM*U’))’;.

In this code, U represents the vector of velocities for all tracked particles. It is updated with
new values when this line of code finishes execution. The matrices M, M̄, Mw, and Mfr

correspond to MM, MMVV, MMWW, and MMFF, respectively. The force vectors Fpres and Fpot

become PRES and POT. The one discrepancy between the equation and the implementation
is that the viscosity matrix–M̄ and MMVV–is multiplied by dt in the equation but not in the
implementation. This is because M̄ as defined in (73) is already multiplied by a factor of
dt. Rather than multiplying by this factor and then later dividing it out, it is more efficient
to simply omit this factor in the code.

After solving for new values of U in each time step, we determine the vector of each
tracked particle’s position, represented in the code by X. This is the second step of (76).
Recall that the differential equation we solve in this step is

dx

dt
= u.

This is implemented in the model as

X = X + U * dt;

After this step is complete, the last piece of information of interest to the model is
the water column. When the method for changing from a system of continuum equations to
discrete equations was presented in Section 7, the relationship between water column and
mass within each fluid element was established in (56) to be

hi =
mo

i

xi+1 − xi

.

This relationship is established at time zero at which time the mass, mo
i , within each fluid

element is fixed. For all other times this relationship still holds; hi and xi+1−xi change with
each time step while mi stays constant. Therefore, in the implementation of the model, the
water column is calculated by the code

H = M./diff(X);.
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The diff function in MATLAB computes the difference between adjacent elements of the
vector X. For a vector holding the elements x1 to xn+1, diff(X) returns a length n vector
where each element has the value xi+1 − xi.

The three lines of code in this chapter are the heart of the implementation of the two-
dimensional model. They lie within a “time-stepping loop” that counts up time steps from
time zero when the program is started. The rest of the code within the loop is devoted to
setting up the various matrices and forces needed to compute the particle velocities and then
plotting the resulting data. Matrices M and M̄ are constant and are set at the beginning
of the program before it enters the time-stepping loop. The pressure and potential terms
are set in sections of the code labeled after them, while Mw and Mfr are set in the wind
and friction section. Within the loop two indices are maintained: t, the time index which
represents model time, and i, the counting index which is the number of iterations through
which the loop has passed. Each time the counting index advances by 1, the time index
advances by dt.

Visualizing the data has no real part to play in the actual operation of the two-
dimensional model. The model will create numerical output representing the velocity and
position of fluid particles and water column of fluid elements from any valid input and
without the help of any plotting. However, visualization provides the human user with a
way to immediately understand the data that is being generated from the model without
having to read and compare huge vectors of raw numbers. As mentioned in the previous
section, there are two graphical outputs from the two-dimensional model: the water column
versus x plot and the center of mass versus average momentum plot. Plotting does not have
to be carried out by the program during every single time step. Instead plotting is done at
a specific time interval, which can be specified by the initialization file.

The initialization takes place before the program enters the time-stepping loop. A
separate function is run that creates initial conditions based on user specifications. Through
its development process, the initialization program has expanded to encompass more and
more user-input so that now almost every aspect of the program is modifiable, from the
magnitude of viscosity and friction, to the initial shape of the bathymetry and wetted area,
to the manner in which functions are defined as inputs. The initialization file is run at the
beginning of the model’s executable and it loads its state date into a structure which is then
passed to the model itself; the model updates this data structure as it steps through time.
Once the model is done running, it compiles all the data back into the state structure which
it returns as function output. This data structure can thus be used as input for another run
of the model.

The complete code for the two-dimensional model is included in (C) and the initial-
ization code is included in (B).
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8.2 Conclusions from the Two-Dimensional Model

The two-dimensional model is a stepping stone that we created to gain better un-
derstanding of the mathematics needed for the three-dimensional model. Because the two-
dimensional model has fewer governing equations it is simpler to trace through the series of
transformations needed to bring this model to implementation. We experimented with our
novel ideas on this simpler model before tackling the three-dimensional problem that is the
ultimate goal of this Trident project.

For first few steps of transformation of the two-dimensional model’s governing equa-
tions, we followed the precedent of the Princeton Ocean Model. The non-dimensionalization
and s-Coordinate transformation both originated with POM. However, we successfully in-
troduced several novel ideas in our derivation. One new concept is the way we handle the
residuals after depth-averaging the conservation of mass and momentum equations in section
6. We replace the evolution equation by the local equilibrium solution, thereby removing a
degree of freedom from our model. This will prove to be particularly useful for the more
complicated three-dimensional model.

Another innovation is using a Lagrangian particle tracking approach for our imple-
mentation rather than the Eulerian method used in POM. By solving the problem on a
domain with a boundary fixed by the locations of the fluid-marker points that we track, we
obtain information about the free boundary. This makes our model ideal for determining
if a location is wetted or not and also helps to make our model more accurate for shallow
water estuaries and enclosed bays.
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9 Moving from the Two Dimensions to Three Dimen-

sions

We now move from the shallow water equations with one lateral dimension to those
with two lateral dimensions. A model of these equations has already been created by J. M.
Greenberg, an adviser on this project. The objective of this part of the project is to take
this model—which is implemented in serial for one processor—and alter it so that it can
run in parallel on multiple processors. To do this, the serial code must first be modified to
make it amenable to efficient parallelization. This entails both dividing up the processor
time required for the calculations in the model so that each processor has a roughly equal
load and providing a means for communicating data between processors.

The mathematics of this model are similar to those of the two-dimensional equations
from sections 3 through 7, except that there are now two lateral coordinates, x and y, in
addition to the vertical coordinate, z. The three dimensional versions of the basic physical
equations of (6)-(8) are

ux + vy + wz = 0, (77)

ut + uux + vuy + wuz + px = (σ11)x + (σ12)y + (σ13)z + fv, (78)

vt + uvx + vvy + wvz + py = (σ11)x + (σ22)y + (σ13)z − fu, (79)

wt + uwx + vwy + wwz + pz = (σ31)x + (σ23)y + (σ33)z − g, (80)

where density is a constant equal to one and v is the velocity in the direction of the new
lateral coordinate y. In addition, the Coriolis acceleration is now an important factor; fv and
fu represent its effect in this model. From this equation we proceed to a set of differential
equations. Instead of having just one equation where we solve for du

dt
as a function of x and

u, we obtain two equations; one for du
dt

and one for dv
dt

, both in terms of x, y, u, and v.

The one important difference between the implementation of the two- and three-
dimensional models is the “geometry”—the decomposition of the lateral space in the fluid
domain into particle locations and fluid elements. This difference is discussed in greater
detail in the next section. Another significant difference is that the three-dimensional model
abandons the implicit Euler method for solving the differential equations in favor of the faster
explicit Euler method. Because the number of particles tracked by the three-dimensional
model is generally much larger than in the two-dimensional model, speed is of greater im-
portance. In addition, this project’s implementation of the three-dimensional model ignores
some complicating factors incorporated into the two-dimensional model. This removes one
of the chief advantages of the implicit method in the two-dimensional problem; namely, that
the implicit method is more stable with complex or unusual initial conditions.

While the equations are being solved by a different method, the process for achieving
a solution is still similar. The three-dimensional model still uses the same two-step operator
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splitting method as the two-dimensional model. In the first part of each time step x and y
are held constant and ¯̄u and ¯̄v are updated; in the second part ¯̄u and ¯̄v are held constant
and x and y are updated. The three-dimensional model uses the same time grid as the
two-dimensional; in both versions dt is the length of the time interval between time tn and
tn+1. The two steps in the three-dimensional model can be described by

Step 1

tn ≤ t ≤ tn+1

dx
dt

= dy
dt

= 0

Mx
du
dt

= F(x,y,u,v), My
dv
dt

= G(x,y,u,v)

Step 2

tn ≤ t ≤ tn+1

dx
dt

= u, dy
dt

= v

Mx
du
dt

= My
dv
dt

= 0

The mass matrices Mx and My differ from the mass matrix M of the two-dimensional model.
The two-dimensional model used tri-diagonal matrices and required linear algebra to solve.
Because we are trying to avoid the use of linear algebra, Mx and My are appropriately
chosen diagonal matrices in the three-dimensional model.

Figure 4: One-dimensional grid

9.1 The Geometry of the Three-Dimensional Model

A Lagrangian solution to the shallow water equations requires a grid where particles
are identified at time zero and then tracked through all subsequent time steps. While the
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two-dimensional model has a simple linear geometry, the three-dimensional model is much
more complex. Since there is only one lateral degree of freedom in the two-dimensional
model, the “grid” was simply a line with particle locations that could move back and forth
across the grid in the one degree of freedom, as seen in (Figure 4). The n+1 particles divide
this one-dimensional grid into n fluid elements.

Figure 5: Two-dimensional grid

For the three-dimensional model, we use the two-dimensional grid depicted in (Figure
5). In this grid, there are two types of nodes which are both analogous to the particle
locations of the two-dimensional model. Some nodes are connected to their four neighboring
nodes in the four cardinal directions; these nodes are designated by circles in the figure.
The other type of node is connected to eight neighbors–the four cardinal neighbors and four
more diagonal neighbors–and is represented by a square. We cannot simply make every node
an eight-node because then there would be additional points where edges intersected that
were not in the initial node grid; specifically, where the diagonal edges of adjacent nodes
crossed each other. The four- and eight-node grid allows for a greater number of edges while
demanding that edges meet only at the nodes.

The significance of the edges is in the geometry of the triangles that they form in the
grid. Each interior node of the grid has a square split into two triangles to its upper left.
These two triangles are identified by the node to their lower right; the nodes are numbered
sequentially as in (Figure 6). The triangles are divided into two classes depending on their
spatial orientation, numbered either “1” or “2”. Triangle numbers stay the same over vertical
and horizontal edges lines, while alternating over diagonal edges. This is shown in (Figure
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Figure 6: Numbered two-Dimensional grid

Figure 7: Two-dimensional grid with numbered triangles
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7). We can see from this figure that each square has both a 1-type triangle and a 2-type
triangle in it. This allows us to distinguish the two triangles from each other. Each triangle
is identified by the node that is below it and on its left, as well as by its type number.

Figure 8: Two-dimensional grid with one pair of triangles highlighted

With this numbering scheme for triangles, we now have a way to label the edges of
each triangle. For example, in (Figure 8), the darkened triangle can be identified as the
“1-type” triangle belonging to node (3, 4). When this model is implemented, it will be
important to keep track of the changes in x, y, u, and v along each of the edges in the
grid; this trianglular numbering scheme allows us to have a unique identifier for each edge.
Another important piece of information to store is the area of each triangle. Because this
is a Lagrangian scheme, the mass in each triangle at time zero will be constant for all time.
In the two-dimensional model, this was also the case, and the water column in each fluid
element was calculated by dividing the constant mass in that element—as established in the
initial conditions at time zero—by the distance between the two fluid particles that form the
boundary of that fluid element. In the three-dimensional version, the water column in each
triangular element will be a constant that can be calculated from the constant mass in the
triangle and the area of the triangle as it deforms through time.

The grid depicted in (Figure 5) has an eight-node—that is, a node that is connected
to eight neighbors—at all four corners. If the nodes are numbered in a m+1× n+1 square,
then both m+1 and n+1 must be odd in order for all corners to have an eight-node. The
grid is implemented this way in order to be consistent, such that there will always be a set
triangle geometry on the edges. By demanding a set geometry, the implementation of the
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model becomes much easier: there is no longer any need to test the types of node at any
given point. Instead we can be sure that all nodes where both m+1 and n+1 are both either
odd or even are eight-nodes while all nodes where one of m+1 and n+1 is even and the other
is odd are four-nodes. For example, (1, 1) and (4, 2) are both eight-nodes while (1, 2) and
(4, 3) are four-nodes. It is important to know whether a node is an eight-node or four-node
because that tells us about the orientation of the two triangles that belong to that node.
For an eight-node, the hypotenuse of the two triangles has a positive slope, that is it goes
from the bottom left of the square to the upper right. The hypotenuse of the four-node has
a negative slope.

9.2 Implementing the Three-Dimensional Model in Serial

The serial version of the two-dimensional model solves the final form of the shallow
water equations explicitly. This is done because the linear algebra needed to use the implicit
Euler method becomes extremely time-consuming as the number of edges connecting nodes
increases with the two-dimensional grid. Despite using the faster explicit Euler method
to solve the differential equations of the operator splitting method, the three-dimensional
model still runs significantly slower than the two-dimensional version. One reason is that
more processor time is spent calculating the differences between nodes along the various
edges; this data is needed to calculate pressure and viscosity terms. In the two-dimensional
model there is a maximum of two edges per node along which differences must be calculated
for the variables of interest: depth-averaged velocity, position, and water column. In the
three-dimensional model, as noted in the previous section, there are up to eight edges per
node; this is what causes the linear algebra to be impractical with the implicit Euler method.
In addition, there are more variables of interest: depth velocity is represented by both a ¯̄u
and ¯̄v component and position is represented by both x and y. The calculation of differences
in water column is even more complex. In the two-dimensional version, the fluid elements
are connected only at tracked particle locations, so it is only at these locations that we are
interested in finding the difference in water columns. In the three-dimensional version the
fluid elements are the triangles pictured in (Figure 5). There are approximately two triangles
per node, and each triangle has three edges that have a unique water column difference.

Because the three-dimensional model uses the explicit method to solve its differential
equations, care must be taken to ensure the stability of the model. In the two-dimensional
model, the implicit method for numerical approximation was chosen to help ensure stability.
Since the three-dimensional model uses the explicit method, it is necessary to choose time
steps that are sufficiently small to ensure that there is no “cross-over.” Cross-over is an
error that occurs when the nodes of (Figure 5) move in such a way that some of the triangles
overlap each other. The equivalent error in the two-dimensional model occurs when a particle
that started with a x value greater than an adjacent particle gets a position value that is less
than that adjacent node. Carefully choosing time-steps that are sufficiently small can prevent
this error from occuring: in practice stability has been ensured when the ratio between dt
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and the dx and dy of the initial grid is 0.02 or less.

The increased complexity of the three-dimensional model in serial causes greatly
increased runtime; this is the motivation for the parallelization efforts of this project. The
computationally intensive parts of the model must be organized in a way that makes it
easier to divide the workload of the three-dimensional model over multiple processors. The
serial implementation of the three-dimensional model can be broadly divided into three
parts. Recall from the two-dimensional implementation that there are three lines of code
which constitute the “core” of the model; these lines compute the depth-averaged velocity,
position, and water column and exist within the time-stepping loop. The other code within
the loop computes the various forces and matrices that are necessary to evaluate the three
core lines. The three-dimensional code is constructed similarly. There are a few core lines
that compute the three lines of interest, and these lines are inside the time-stepping loop
along with code that calculate the necessary forces and matrices–which are much more
complex in the three-dimensional model as mentioned above.

The three parts into which the three-dimensional model can be divided are everything
inside of the time-stepping loop, the loop itself and everything outside the loop. The calcu-
lations inside the time stepping loop can be treated as a single-step calculation that takes
the three variables of interest on a two-dimensional grid and returns these variables on that
same grid one time step later. This can be treated as a separate function, and implementing
the serial version in this way greatly eases the transition to the parallel version. Note that
the grid input into this one-step function must follow all the rules established for the grid
in the last section; specifically, that it must be rectangular and have an odd length in both
dimensions in order to ensure that there is an eight-edge node on all four corners.

The loop itself is almost trivial in the serial version of the three-dimensional model. It
only needs to incorporate the same two counting indices from the two-dimensional model—t
and i—along with the logic for advancing the loop and ending it at the end of the runtime.
The last part is the setup code that runs before entering the loop. This can also be treated
as a separate self contained function.

9.3 Implementing the Three-Dimensional Model in Parallel

To produce efficient parallel code, work must be divided equally among several processors.
A simple way to do this is to divide the two-dimensional particle grid evenly between the
number of available processors. This then presents the problem of communication: each
node has a separate set of differential equations to solve–specifically the solutions to

Mx
du

dt
= F(x,y,u,v)

and

My
dv

dt
= G(x,y,u,v)
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which constitute the first step of the two-step operator splitting paradigm that this model
uses. Both of these equations use vector variables to represent a set of n + 1 differential
equations, each equation operating at one node on the two-dimensional grid. A sub-set
of these equations and their associated nodes will be assigned to each separate processor.
However, to solve any of the differential equations at a node, it is necessary to have data from
all nodes connected to that node. If the node in question is on the edge of an area that has
been split from the whole and assigned to a certain processor, then it may need data from
nodes that have been assigned to a different subset on a different processor. Overcoming this
problem requires a scheme for passing data between parallel processors, and this requirement
drives the way in which the sub-domains are divided from the whole two-dimensional grid
and assigned to processors.

Communication is, in general, more time consuming than processing. To optimize the
parallel code, communication must be avoided as much as possible; therefore, the process for
splitting the two-dimensional grid is designed to keep the amount of communication necessary
small. Furthermore, each parallel processor should be assigned an equal share of the work
to perform. Each time a processor pauses to communicate, it must wait for all processors to
complete the computational tasks they had been assigned. Assuming that each processor is
of roughly equal speed—an assumption that holds true for the Naval Academy’s cluster—
each processor should be assigned an equal sized sub-domain of the whole two-dimensional
grid and equally sized sub-set of the differential equations.

Figure 9: Two-dimensional grid divided into square sub-domains

Two of the easiest ways to divide the two-dimensional grid into sub-domains are by
squares as depicted in (Figure 9) or by rectangles as in (Figure 10). If the goal is simply to
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Figure 10: Two-Dimensional grid divided into rectangular sub-domains

divide in a way that results in minimal communication, the square is the superior method.
For the rectangular method on an m+1×n+1 grid with P processors, there are n+1 (P − 1)
edges that cross sub-domain edges. For the same m+1×n+1 grid with sub-domains assigned

to P processors by the square method there are (m + n + 2)
(√

P − 1
)
. Despite requiring

more communication, the rectangular method has several advantages. Firstly, it is divided
in only one coordinate. Thus, only the n columns in the x—or the y direction depending
on the orientation of the grid—need be divided among the processors. This allows each
processor to evaluate over the 1 : m in the non-divided direction. This not only simplifies
the code for solving differential equations at each node, but also greatly simplifies the code
for communication between processors.

A second advantage of the rectangular method is in the pattern of communication.
In a cluster using the square method for creating sub-domains, each processor may need to
communicate with as many as eight other processors. With the rectangular method, each
processor is guaranteed to only have two communication partners at most. Depending on
the configuration of the hardware of the cluster, this can be a great advantage. For clusters
organized in a lattice or a ring, the necessity to only communicate with two adjacent proces-
sors eliminates the need for any communication to pass through multiple processors in order
to get from its source to its destination. Despite the fact that the Naval Academy’s Beowulf
cluster uses an InfiniBand Ethernet connection that allows all nodes to communicate with
each other equally, this project’s three-dimensional model uses the rectangular method to
create sub-domains because of its increased viability on other types of clusters and espe-
cially because it greatly simplifies the process of writing code for communication between
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processors. The rectangular shape of each sub-domain is the first constraint in the scheme
for splitting the whole two-dimensional grid.

Determining that this project will use the rectangular method to create sub-domains
from the whole two-dimensional grid sets the shape of each sub-domain. The next step
is to determine the size of these sub-domains. The driving factor when determining the
size is the three parts into which the serial implementation of the three-dimensional model
was divided. Recall that all of the calculations—including the core code that computes the
three variables of interest—within the time-stepping loop can be organized into a discrete
single-step function. The parallel version of the code will use this same function completely
unchanged from the serial version. In order to support this, the parallel version of the code
must be able to pass this function data from the nodes of a two-dimensional grid that has all
the same properties as the whole grid. The rectangular shape of each sub-domain already
ensures that the m+1 dimension of each sub-domain is the same as in the whole m+1×n+1
grid. The n+1 dimension of each sub-domain must have an odd number of nodes so that the
four corner nodes of each sub-domain are eight-edge nodes. This is the second constraint for
the sub-domains.

Figure 11: Sub-domain scheme with adjacent columns as used in three-dimensional model

A third constraint on each sub-domain is that each sub-domain should contain an
extra column of nodes that “belong” to each of the up to two adjacent sub-domains. As
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in (Figure 11), the left-most sub-domain should contain at least one column of nodes from
the second left-most sub-domain. The reason for this is that in order for each node that
“belongs” to a processor to be correctly updated, that processor must have access to the
data from all adjacent nodes. These two constraints are enough to develop a scheme for
splitting sub-domains from the whole two-dimensional grid.

Let the number of parallel processors that are available to the model be P = 2p

and let the number of nodes along the m + 1 dimension of the two-dimensional grid be
m + 1 = 2M + 1. While these two assumptions hold, each processor will be responsible for a
sub-domain of

2M

2p
= 2M−p

columns of n+1 nodes, except for the right most sub-domain which will “own” the one extra
column for a total of 2M−p + 1 columns of n + 1 nodes. This division is pictured in (Figure
10). To fulfill the second constraint each sub-domain will have attached to it a column of
nodes from each adjacent sub-domain. To fulfill the third constraint, each sub-domain will
have one extra column from the adjacent sub-domain to the left appended to it as in (Figure
11). As can be seen in the figure, each of the sub-domains now has a rectangular shape, has
eight-edge nodes at all four corners, and contains all the data necessary for the processor to
perform single-step calculations on all the nodes that processor owns. Each processor has
been assigned 2M−p + 3 nodes except for the first processor which only has 2M−p + 1. It
would be better for each processor to be assigned the exact same number of nodes, thereby
allowing each processor to run exactly the same single-step computation function. Therefore,
the first processor is assigned two extra columns of nodes to the right of it, bringing its node
count even with all the other processors.

The parallel version of the model first runs a modification of the set-up code that
began the serial version. It then moves into the loop. During each iteration of the loop, it
runs the same single-step function that was run in the serial version; making this possible is
the prime motivation for the scheme for grid splitting. The last piece that must be added to
make the parallel version work is a section within the loop that communicates the necessary
data between processors. The geometry establishes that each processor needs to be passed
only two columns of node data—or one column for the two end processors—to run each time
step. Therefore all interior processors must pass two columns of node data and receive two
columns of this data, while the end processors must pass and receive one column.

The extra columns of nodes that were appended to each sub-domain to comply with
geometry requirements do not need to be passed. There were initially concerns that because
this data is not updated to reflect the changes taking place in other parts of the model, that
it might eventually become so divergent from the data that is passed that it would cause
errors. The most likely error that would be caused would be the “zero area triangle” error in
which one of the triangle’s area approaches zero and therefore its water column approaches
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infinity. However, it has been determined experimentally that although this data will not
be updated accurately, it will remain “reasonable” enough to not cause any errors in the
program; no run of the three-dimensional model has ever caused this error.
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10 Results of Test Data and Conclusions

Table 1: Results of Testing

Domain Size Serial 4 Proc. 4 Processor 8 Proc. 8 Processor 16 Proc. 16 Processor
Rect. Parallel Rect. Parallel Rect. Parallel

65 x 65 0.7953 0.2839 0.3766 0.1939 0.2976 0.1461 0.3158
129 x 129 4.1803 0.8650 0.9338 0.4878 0.5743 0.3205 0.5210
257 x 257 24.5459 4.7274 5.0877 1.8032 1.9852 0.9316 1.1136

The data in (Table 1) was generated through test runs on the Naval Academy’s
Beowulf cluster with the MATLAB Distributed Computing Toolbox. The tests are run on
square two-dimensional grids whose sides are of length 2n + 1. Three grid sizes were tested:
n = 6, n = 7, and n = 8. The code for both the serial and parallel versions were modified
from the versions attached in (D) and (E) to track runtime. Note that the times in (Table
1) are not processor times but “real” times. The code starts tracking time for each test
after the initialization of data is done and right before the time-stepping loop begins. In the
parallel version, this means that the initial grid and data are distributed to all processors
before the timing starts.

The domain size is the number of nodes along each edge of a square grid created for
the test. The column of data labeled “Serial” is that runtime for that domain size in the
serial version. The data labeled “Parallel” is the runtime for P parallel processors. The data
labeled “Rect.” represents the runtime for one single processor when the domain is divided
between P parallel processors. This represents the theoretical maximum speed of the model
without any communication. The data in (Table 2) is calculated from the data in (Table 1)
and shows the speedup factor for each domain size and number of processors, as well as the
percentage of time spent communicating.

Table 2: Speedup and Communication Time

Domain Size 4 Processor 4 Processor 8 Processor 8 Processor 16 Processor 16 Processor
Speedup Comm. Time Speedup Comm. Time Speedup Comm. Time

65 x 65 2.11 24.6% 2.67 34.8% 2.52 53.7%
129 x 129 4.48 7.4% 7.28 15.1% 8.02 38.5%
257 x 257 4.82 7.1% 12.36 9.2% 22.04 16.4%

The results of the test data show that the implementation of the three-dimensional
model in parallel is successful. For a sufficiently large grid, increasing the number of pro-
cessors available will increase the speed of the model. There is a reduction in efficiency as
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the number of processors increases. This is result of increased communication between the
processors. However, this is partially counterbalanced by a significant reduction in runtime
for smaller domains. The ratio of runtime between larger and smaller domains is greater
than the ratio between the number of nodes in each domain. This means that while one
domain may be half the size of another, the processing time for the smaller domain will
be less than half of the time for the larger domain. We suspect that this is because larger
domains require more memory usage, and make proportionately less use of caching when
performing calculations.

We see that the speedup on larger domains can exceed the number of processors. This
can be seen in the tests on the grid of size n = 8, where the speedup with 8 processors is over
12, and the speedup with 16 processors is over 22. However, once the number of processors
becomes too large, the losses introduced by communication overcome the advantages gained
by using smaller domains. In the grid of size n = 6, 16 processors actually run slower than 8
processors because communication time takes up such a large percentage of the total runtime.

The results of this test data confirm that the methodology for splitting work between
processors used in this project is a success. The deliverable three-dimensional model created
by this Trident project is a proof-of-concept for the domain-splitting and communication
strategy we introduce. As the complexity is added to the three-dimensional model we have
created, the strategy for parallelization should remain valid.
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A Surface Traction Derivation

The normal to the surface z̄ = ā(x̄) is

nā =
1√

1 + λ2ā2
x̄

[ −λāx̄

1

]
(A-1)

and the normal to the surface z̄ = ā(x̄) + h̄(x̄, t̄) is

nā+h̄ =
1√

1 + λ2
(
āx̄ + h̄x̄

)2

[ −λ
(
āx̄ + h̄x̄

)
1

]
(A-2)

Using the values of σ̄11 and σ̄13 from (17) and (A-1) and (A-2) we find that

〈σ̄11, σ̄13〉 · nā =
−2εāx̄ūx̄(x̄, ā, t̄) + ε

(
w̄x̄(x̄, ā, t̄) + 1

λ2 ūz̄(x̄, ā, t̄)
)

√
1 + λ2ā2

x̄

(A-3)

and

〈σ̄11, σ̄13〉 · nā+h̄ =
−2ε

(
āx̄ + h̄x̄

)
ūx̄(x̄, ā + h̄, t̄) + ε

(
w̄x̄(x̄, ā + h̄, t̄) + 1

λ2 ūz̄(x̄, ā + h̄, t̄)
)

√
1 + λ2

(
āx̄ + h̄x̄

)2

(A-4)
Let Ĵ be the physical Cartesian stress tensor

Ĵ =

[
σ̂11 σ̂13

σ̂31 σ̂33

]

or in non-dimensionalized form

J̄ =
EU

l

[
2ūx̄

1
λ
ūz̄ + λw̄x̄

1
λ
ūz̄ + λw̄x̄ 2w̄z̄

]
(A-5)

The traction vectors are
Tā = J̄ · nā

and
Tā+h̄ = J̄ · nā+h̄.

We evaluate the traction vectors using (A-1), (A-2), and (A-5) to obtain

Tā =
EU

l

[ −2λāx̄ūx̄ + 1
λ
ūz̄ + λw̄x̄

ūz̄ + λ2w̄x̄ + 2w̄z̄

]
1√

1 + λ2ā2
x̄

(A-6)

and

Tā+h̄ =
EU

l

[ −2λ
(
āx̄ + h̄x̄

)
ūx̄ + 1

λ
ūz̄ + λw̄x̄

ūz̄ + λ2w̄x̄ + 2w̄z̄

]
1√

1 + λ2
(
āx̄ + h̄x̄

)2
(A-7)
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Note that the first components of Tā and Tā+h̄ are 〈σ̄11, σ̄13〉 · nā from (A-3) and 〈σ̄11, σ̄13〉 ·
nā+h̄ from (A-4), respectively. The tangential components of these traction vectors are found
by the dot product of the traction vectors and a unit vector tangential to the surface as in

Sā =
(
J̄ · nā

) · t̄ā, Sā+h̄ =
(
J̄ · nā+h̄

) · t̄ā+h̄.

The tangential components of the traction vectors (A-6) and (A-7) are

Sā =
EU

l (1 + λ2ā2)

[ ūz̄

λ

(
1− λ2ā2

)
+ λw̄x̄

(
1− λ2ā2

)]
(A-8)

and

Sā+h̄ =
EU

l
(
1 + λ2(ā2 + h̄2)

)
[ ūz̄

λ

(
1− λ2(ā2 + h̄2)

)
+ λw̄x̄

(
1− λ2(ā2 + h̄2)

)]
(A-9)
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B MATLAB Code: initialize2d.m

function struc = initialize2d()

%***************************USER INPUT AREA****************************
%NOTE: ALL USER INPUT FUNCTIONS MUST BE DESIGNED FOR MATRIX OPERATIONS.
%THUS INSTEAD OF *, /, AND ˆ, THE INPUT SHOULD BE IN THE FORM .*, ./,
%AND .ˆ UNLESS THE OPERATION IS BETWEEN A VARIABLE AND A SCALAR.

%Settings for this simulation. A number of features can be turned on or
%off. THese features are set below, with either ’true’ for on, or
%’false’ for off.

%Timing - If set to ’true’, this run will measure the execution time
%for the number of time steps specified in ’timesteps’. If ’false,’
%timesteps is ignored and runtime is set by runtime variable below.
timing = false;
timesteps = 100;

%Movie - If set to true, this run will be recorded as a movie.
%name is the name of the file to which the movie will be stored
mov = false;
name = ’movie1.avi’;

%Residual - If set to ’false’ only the depth averaged mean will be
%used in calculations, and none of the variation at different depths
%will be considered
resid = true;

%Friction - If set to ’false’ then there will be no friction terms in
%the calculations. Note that setting friction to ’false’ automatically
%sets the residual to ’false’ as well. Also note that the upper and
%lower friction constants can be turned off individually with the Kw
%and Kf constants below.
friction = true;

% Set N or dx. if isN is true, then val is N, if isN is false, then val
% is dx.
isN = true;
val = 100;

% Set the function defining the bathymetry as a function of x
% If bathymetry is an inline function, bath_type is true, if it is an
% m-file function, then bath_type is false.
bath_type = true;
bathym = ’(x.ˆ2)/2’;

% Set the domain of the bathymetry. This domain should be the absolute
% boundary of the problem. For now the only purpose of this is to set
% axes for plotting.
hi_b = 3.5;
lo_b = -3.5;

% Set the initial domain of the fluid
hi_f = 2;
lo_f = 1;

% Set the function defining the initial water column as a function of x
% If water column is an inline function, water_type is true, if it is
% an m-file function, then water_type is false.
water_type = true;
water = ’0*x+5/3’;
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% Set the function defining the initial velocity of the fluid as a
% function of x
% If initial velocity is an inline function, vel_type is true, if it is
% an m-file function, then vel_type is false.
vel_type = true;
vel = ’0*x+0’;

% Set constants for surface frictions. Kw is the upper surface friction
% and Kw is the lower surface friction. If these terms are set to zero,
% then there will be no effect from that friction source.
Kf = 0.002;
Kw = 0.0005;

% Set wind as a function of x and t FOR NOW JUST X
% If wind is an inline function, wind_type is true, if it is a m-file
% function, then wind_type is false.
wind_type = true;
wind = ’0*x-1’;

% Set the value of lambda
lambda = .001;

% Set the value of mu. Mu is the percentage between 0 and 1 of the
% damping to be used
mu = .8;

% Set the ratio dt/dx. A typical value is 0.1
rat = 0.1;

% Set the runtime for this model.
time = 100;

%************************ERROR CHECKING AREA***************************

%*************************CALCULATION AREA*****************************

% Set the features to be turned on and off
struc.res = resid;
struc.fric = friction;

% Set the bathymetry and its domain.
if bath_type

struc.bath = inline(bathym,’x’);
else

struc.bath = bathym;
end
struc.hi = hi_b;
struc.lo = lo_b;

% For a given N, calculate the x-array: constant mass, variable dx
if isN == true

struc.n = val+1;
if water_type

wat = inline(water,’x’);
else

wat = water;
end
el_mass = quad(wat, lo_f, hi_f, 1.e-10) / val;
int_dom = lo_f:(hi_f-lo_f)/10000:hi_f;
cum = cumtrapz(int_dom, feval(wat, int_dom));
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struc.X(1) = lo_f;
j = 1;
for i = 1:10000

if cum(i) > j * el_mass;
j = j + 1;
struc.X(end+1) = int_dom(i);

end
end
struc.X(end+1) = hi_f;

approx_dx = (hi_f - lo_f) / val;
struc.dt = rat * approx_dx;

% For a given dx, calculate the x-array: constant dx
else

% Since not every dx will divide evenly into the domain, round off
% N to the next highest whole number and recalculate dx.
struc.n = ceiling((hi_f-lo_f) / val)
struc.dx = (hi_f-lo_f) / (struc.N-1)
struc.dt = rat * struc.dx;
struc.X = lo_f:struc.dx:hi_f;

end

% Set the initial h vector. First evaluate ’water’ at all points in the
% x-array, then find the midpoints between these values, leaving N-1
% datapoints in h.
for i = 1:length(struc.X)-1

struc.M(i) = quad(wat, struc.X(i), struc.X(i+1), 1.e-10);
end

% Set the initial u vector. Evaluate ’vel’ at all points in the
% x-array.
if vel_type

struc.U = feval(inline(vel,’x’), struc.X);
else

struc.U = feval(vel, struc.X);
end

% Set friction constants of the model.
struc.k_lo = Kf;
struc.k_hi = Kw;

% Set the wind function for the model
if wind_type

struc.uw = inline(wind,’x’);
else

struc.uw = wind;
end

% Set the lambda value for the model
struc.lam = lambda;

% Set the mu value for the model
struc.moo = mu;

% Set the runtime of the model.
if timing

struc.time = timesteps;
struc.timing = true;

else
struc.time = time;
struc.timing = false;

end
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%Determing if movie or not
struc.mov = mov;
if mov

struc.name = name;
else

struc.name = ’’;
end
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C MATLAB Code: shallow2d.m
function out = shallow2d()

%close all other windows
close

%%Autoruns initialize.m to get setup data. Alternate option is to allow user
%to specify input file in function definition.
data = initialize2d();

%used to time execution of the program
if data.timing

tic;
end

%Get initialization data from initialize.m
resid = data.res;
friction = data.fric;
bath = data.bath;
n = data.n;
dt = data.dt;
X = data.X;
M = data.M;
U = data.U;
hi_b = data.hi;
lo_b = data.lo;
kw = data.k_hi;
kf = data.k_lo;
wind = data.uw;
lambda = data.lam;
mu = data.moo;
runtime = data.time;

%Set a vector of the mass in each interval and total mass in problem
H = M./diff(X);

%%initialize time and counting indices to zero
t = 0;
i = 0;

% sundry variables set to zero: HH and XX for formatted display, xc and vc
% are centers of mass and momentum
XX = 0;
HH = 0;
XC = 0;
VC = 0;
T= .1/dt;
mov = 0;

% constants for plotting
%axes for mass vs. momentum
AX = -2:.1:2;
AY = AX*0;

%x and y for plotting potential function
X_POT = data.lo:.1:data.hi;
Y_POT = feval(bath, X_POT);

%% calculate (time independant) terms
% Mass matrix
MM = spdiags([[M 0]’/8,3*([0 M] + [M 0])’/8,[0 M]’/8],-1:1,n,n);
% Viscosity matrix
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MMV = spdiags([[M 0]’/8,([0 M] + [M 0])’/-8,[0 M]’/8],-1:1,n,n);
% Total mass
mass = sum(MM * ones(size(1:n))’);

%% Looping
%If timing then count by index numbers, otherwise count by elapsed time
if data.timing

runtime = runtime * dt;
end

while t < runtime

% update time increment to t_n+1 and increment counting index
t = t + dt;
i = i + 1;

% WE UPDATE U TERM BY TERM

%%MASS AND VISCOCITY MATRICES

%MM has already been set

MMVV = MMV * mu;

%END MASS MATRIX

%%PRESSURE TERMS
if resid == true

%This section evaluates the integral of the square of the residual at
%each point x. This becomes one of the pressure terms in the solution
%for the depth averaged mean velocity.

%These next calculations must be evaluated at x_i-1/2 and x_i+1/2 for each
%point x_i. This means there will be n+1 points of evaluation where
%n is the number of x points. For the two endpoints at x_1/2 and
%x_n+1/2, we will estimate their value by x_1 and x_n,
%respsectively.
U_AVG = ([U(1) U] + [U U(end)])/2;

%We set X_AVG to equal all the midpoints so that we can find the
%wind function for those points.
X_AVG = ([X(1) X] + [X X(end)])/2;

UW_AVG = feval(wind, X_AVG);

%At the two points beyond the boundary x values, h equals zero.
H_EVAL = [0 H 0];

%This is optimized code generated by MAPLE. SOL represents the
%vector of solutions to this integral at each point x_i+1/2 and
%x_i-1/2 multiplied by h.
T1 = kw*H_EVAL;
T2 = UW_AVG-U_AVG;
T4 = H_EVAL.ˆ2;
T5 = kf*T4;
t12 = kfˆ2;
T18 = 1./(1 + kw*H_EVAL/3 + t12*T4/3 + kw*kf*T4.*H_EVAL/12);
T20 = 1./(1 + T1/3 + t12*T4/3 + kw*kf*T4.*H_EVAL/12);
T29 = T1.*T2.*T20;
T35 = (1 + T1/4)*kf.*T4.*U_AVG.*T20;
T37 = -T29/6 - T35/6;
T40 = T1.*T2/2 - T5.*U_AVG/2 - T1.*((1/3 + T5/12)*kw.*H_EVAL.* ...

T2.*T20 + T5.*U_AVG.*T20/6)/2 - T5.*T37/2;
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T41 = T40.ˆ2;
T45 = U_AVG - T29/6 - T35/6;
T51 = T4.ˆ2;
T53 = T45.ˆ2;
T59 = T37.ˆ2;
SOL = H_EVAL.*(T41/5 + T5.*T45.*T40/2 +2/3*T37.*T40 + t12*T51.* ...

T53/3 + T37*kf.*T4.*T45 + T59);

%The value of the integral over x at each point x is the difference
%between adjacent terms
PRES = .5*(([H 0].ˆ2 - [0 H].ˆ2) + diff(SOL));

else % resid = false case
PRES = .5*(([H 0].ˆ2 - [0 H].ˆ2));

end
%END PRESSURE TERMS

%%POTENTIAL TERM
BATH = feval(bath,X); %bathymetry evaluated at each point in X
BATH_MID = BATH(1:end-1) + diff(BATH)/2; %bathymetry at midpoints in X
POT = [0 H] .* (BATH - [0 BATH_MID]) + [H 0] .* ([BATH_MID 0] - BATH);
%END POTENTIAL TERM

%%FRICTION TERMS
if friction == true

%Evaluate wind at all X points from the user-defined function
%passed to this method in wind.
UW = feval(wind, X);

%temporary solution: average h_i-1 and h_i to get the value at x_i
H_AVG = ([0 H] + [H 0])/2; %This is may not be correct

%This section calculates the values of u_tilde if the residual
%functionality is turned on by the user, otherwise it returns a
%zero array for the residual values.
if resid == true

%This section calculates the values of u_tilde at s=0 and s=1.
%These formulae were automatically generated by Maple.
T1 = kw*H_AVG;
T2 = UW-U;
T4 = H_AVG.ˆ2;
T5 = kf*T4;
t12 = kfˆ2;
T18 = 1./(1 + kw*H_AVG/3 + t12*T4/3 + kw*kf*T4.*H_AVG/12);
T20 = 1./(1 + T1/3 + t12*T4/3 + kw*kf*T4.*H_AVG/12);

UHI = (1/3 + T5/12)*kw.*H_AVG.*T2.*T18 + T5.*U.*T18/6;
ULO = -T1.*T2.*T20/6 - (1 + T1/4)*kf.*T4.*U.*T20/6;

else %resid = false case

UHI = zeros(1, length(X));
ULO = UHI;

end

%This section creates the matrices M_fr and M_w used to multiply
%the UW, U, U(1), and U(0) vectors.

%Using this method means that extended edges can cause way too much
%friction.
%DELTA_X = diff(X).ˆ3

%By making the DELTA_X constant, we prevent having runaway friction
%at the edges.
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DELTA_X = ((X(end)-X(1)) / (n - 1))ˆ3 * ones(1,n-1);

MMWW = ((kw*mu)/(64*lambdaˆ2))* spdiags([[DELTA_X 0]’,...
3*([0 DELTA_X] + [DELTA_X 0])’,[0 DELTA_X]’],-1:1,n,n);

DELTA_X_H = DELTA_X .* H;

MMFF = ((kf*mu)/(64*lambdaˆ2))* spdiags([[DELTA_X_H 0]’,...
3*([0 DELTA_X_H] + [DELTA_X_H 0])’,[0 DELTA_X_H]’],-1:1,n,n);

%The simpler method is to pick a constand to represent M_fr and m_w

end
%END FRICTION

%%solve for u
%EXPLICIT, NO FRICTION
%U = (MM\((MM + MMVV)*U’ - dt*PRES’ - dt*POT’))’;

if friction == false
%IMPLICIT, NO FRICTION
U = ((MM - MMVV)\(-dt*PRES’ - dt*POT’ + MM*U’))’;

else
%IMPLICIT, WITH FRICTION
U = ((MM - MMVV + dt* (MMWW + MMFF)) \ (-dt*POT’ - dt*PRES’ + ...

dt*MMWW*(UW - UHI)’ - dt*MMFF*ULO’ + MM*U’))’;
end

% update x at t_n+1
X = X + U*dt;

% calculate h at t_n+1
H = M./diff(X);

%% Plotting
if i-T*floor(i/T) < 1 | i == 1

XX = X;

HH = ([0 H] + [H 0])/2;
HH(1) = 0;
HH(end) = 0;

%calculate center of mass and momentum in continuing vectors
%not a general solution...depends specifically on the masses being
%equally distributed among the intervals

XC = [XC sum(MM*X’)/mass];
VC = [VC sum(MM*U’)/mass];

%set title fields
ti = [’Water Elevation - red, Bottom Profile - black, Water’ ...

’ Height - blue vs. distance’];
tstr = sprintf(’Time: %.1f’,t);
istr = sprintf(’Index: %d’, i);
indices = [tstr ’ ’ istr];
lstr = sprintf(’Left Boundary: %.4f’,X(1));
cmass = sprintf(’Center of Mass: %.4f’, XC(end));
rstr = sprintf(’Right Boundary: %.4f’,X(n));
dists = [lstr ’ ’ cmass ’ ’ rstr];
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%make second version of H for elevation above potential
H_PLOT = HH + feval(bath, XX);

%this is the lower end of the plot. this needs to be user set
%somehow
lower = 0;

%Alternate displays for movie or otherwise
if data.timing
else if data.mov %movie case

mov = mov + 1

plot(X_POT,Y_POT,’k’,XX,HH+lower,’b’,XX,H_PLOT,’r’,X(1), ...
feval(bath,X(1)),’+ r’,X(n),feval(bath,X(n)),’+ r’);

title(strvcat(ti, indices, dists));
axis([lo_b hi_b 0 ((3.5)ˆ2)/2]);

if i == 1
set(1,’Position’,[100,200,1000,400])
pause;
playme(mov) = getframe;

else
playme(mov) = getframe;

end
else %not movie case

%display height curves to first plot frame
subplot(211);
plot(X_POT,Y_POT,’k’,XX,HH+lower,’b’,XX,H_PLOT,’r’,X(1), ...

feval(bath,X(1)),’+ r’,X(n),feval(bath,X(n)),’+ r’);
title(strvcat(ti, indices, dists));
axis([lo_b hi_b 0 ((3.5)ˆ2)/2]);
%axis([data.lo data.hi lower 6]);

%display center of mass vs center of momentum plot
subplot(212);
plot(AX,AY,’k’,AY,AX,’k’,XC(2:end),VC(2:end),’b’,XC(end), ...

VC(end),’+ b’);
title(’Center of Mass vs. Average Momentum - blue’);
axis([-2 2 -2 2]);
axis square

drawnow
if data.mov

playme(mov) = getframe;
end
if i == 1

pause;
end

end
end

end

end

if data.timing
toc

end

if data.mov



73

movie2avi(playme, data.name, ’fps’, 10)
end

%%create the output data
if data.timing

out = toc;
else

out.res = resid;
out.bath = bath;
out.hi = hi_b;
out.lo = lo_b;
out.n = n;
out.dt = dt;
out.X = X;
out.H = H;
out.U = U;
out.time = 0;
out.k_hi = kw;
out.k_lo = kf;
out.uw = wind;
out.lam = lambda;
out.timing = data.timing;
out.mov = data.mov;
out.name = data.name;

end

end
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D MATLAB Code: initialize3d.m
function data = initialize3d()

%% Data input for initial conditions

% 2ˆN+1 is the number of grid lines in each direction in the original
% square domain
N=5;

% Coefficient of rotation: analogous to a coriolis force
b=1.5;

% Maximum time before computation stops
Tmax=10;

% Bottom friction coefficient: a=0 corresponds to no friction
a = 0;

% Initial x-coordinate of the fluid center of mass
xc = 1/sqrt(2);

% Initial y-coordinate of the fluid center of mass
yc = 0;

% Eddy viscosity
mu= .05;

% Ratio of dt/dx
a1 = .01;

%% Setting up domain and initial values of X, Y, u, and v
m=2ˆN;

x=-.5:1/m:.5;
y=ones(size(1:m+1));

X=(y’*x)’;
Y=(x’*y)’;

dx=1/m ;
H=1;

dt=a1*dx;

d=0;
s=0;
w=0;
T=0;
u=((d+w)*X+(w+T)*Y)/2;
v=((T-w)*X+(d-s)*Y)/2;
X=X+xc;
Y=Y+yc;

%% Calculating area of the fluid elements

DxX1(1:m,1:2:m-1)=X(2:m+1,1:2:m-1)-X(1:m,1:2:m-1);
DxY1(1:m,1:2:m-1)=Y(2:m+1,1:2:m-1)-Y(1:m,1:2:m-1);
DxX1(1:m,2:2:m)=X(2:m+1,3:2:m+1)-X(1:m,3:2:m+1);
DxY1(1:m,2:2:m)=Y(2:m+1,3:2:m+1)-Y(1:m,3:2:m+1);

DxX2(1:m,1:2:m-1)=X(2:m+1,2:2:m)-X(1:m,2:2:m);
DxY2(1:m,1:2:m-1)=Y(2:m+1,2:2:m)-Y(1:m,2:2:m);
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DxX2(1:m,2:2:m)=X(2:m+1,2:2:m)-X(1:m,2:2:m);
DxY2(1:m,2:2:m)=Y(2:m+1,2:2:m)-Y(1:m,2:2:m);

DyX1(2:2:m,1:m)=X(2:2:m,2:m+1)-X(2:2:m,1:m);
DyY1(2:2:m,1:m)=Y(2:2:m,2:m+1)-Y(2:2:m,1:m);
DyX1(1:2:m-1,1:m)=X(2:2:m,2:m+1)-X(2:2:m,1:m);
DyY1(1:2:m-1,1:m)=Y(2:2:m,2:m+1)-Y(2:2:m,1:m);

DyX2(1:2:m-1,1:m)=X(1:2:m-1,2:m+1)-X(1:2:m-1,1:m);
DyY2(1:2:m-1,1:m)=Y(1:2:m-1,2:m+1)-Y(1:2:m-1,1:m);
DyX2(2:2:m,1:m)=X(3:2:m+1,2:m+1)-X(3:2:m+1,1:m);
DyY2(2:2:m,1:m)=Y(3:2:m+1,2:m+1)-Y(3:2:m+1,1:m);

% area of type 1 and type 2 triangles assigned to each node
A1=(DxX1.*DyY1-DyX1.*DxY1)/2;
A2=(DxX2.*DyY2-DyX2.*DxY2)/2;

% mass in each fluid element
m1=H*A1;
m2=H*A2;

%% Mass Matrix Computation

mass=sum(sum(sum(A1))+sum(sum(A2)))/m/m;
M=zeros(m+1);
M(1:m+1,1:m+1)=mass;

% Each processor calculates its own mass matrix
M(1,2:m)=mass/2;
M(m+1,2:m)=mass/2;
M(2:m,1)=mass/2;
M(2:m,m+1)=mass/2;
M(1,1)=mass/4;
M(m+1,m+1)=mass/4;
M(m+1,1)=mass/4;
M(1,m+1)=mass/4;

data.MM=sum(sum(M));

%% Constants for splitting to processors
p = 3;
P = 4;
n = 2ˆ(N-p+1);

data.m = m;
data.n = n;
data.b = b;
data.a = a;
data.mu = mu;
data.dt = dt;
data.dx = dx;
data.Tmax = Tmax;
data.P = P;
data.xc = xc;
data.yc = yc;

data.X = X;
data.Y = Y;
data.u = u;
data.v = v;
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data.M = M;
data.m1 = m1;
data.m2 = m2;

end
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E MATLAB Code: shallowPar3d.m

function plotData = shallow_par3d()

%% Create a data input objects only on processor 1
if labindex == 1

input = initialize3d();

P = input.P;
m = input.m;
n = input.n;

pass(P).m = m;
% constant data
for i = 1:P

pass(i).m = m;
pass(i).n = n+2;
pass(i).b = input.b;
pass(i).a = input.a;
pass(i).mu = input.mu;
pass(i).dt = input.dt;
pass(i).dx = input.dx;
pass(i).runtime = input.Tmax;
pass(i).P = input.P;
pass(i).xc = input.xc;
pass(i).yc = input.yc;

end

% vertex data
pass(1).X = input.X(:,1:n+3);
pass(1).Y = input.Y(:,1:n+3);
pass(1).u = input.u(:,1:n+3);
pass(1).v = input.v(:,1:n+3);
pass(1).M = input.M(:,1:n+3);

for k = 2:input.P-1
pass(k).X = input.X(:,(k-1)*n-1:k*n+1);
pass(k).Y = input.Y(:,(k-1)*n-1:k*n+1);
pass(k).u = input.u(:,(k-1)*n-1:k*n+1);
pass(k).v = input.v(:,(k-1)*n-1:k*n+1);
pass(k).M = input.M(:,(k-1)*n-1:k*n+1);

end

pass(P).X = input.X(:,(P-1)*n-1:m+1);
pass(P).Y = input.Y(:,(P-1)*n-1:m+1);
pass(P).u = input.u(:,(P-1)*n-1:m+1);
pass(P).v = input.v(:,(P-1)*n-1:m+1);
pass(P).M = input.M(:,(P-1)*n-1:m+1);

% triangle data
pass(1).m1 = input.m1(:,1:n+2);
pass(1).m2 = input.m2(:,1:n+2);

for k = 2:P-1
pass(k).m1 = input.m1(:,(k-1)*n-1:k*n);
pass(k).m2 = input.m2(:,(k-1)*n-1:k*n);

end

pass(P).m1 = input.m1(:,(P-1)*n-1:m);
pass(P).m2 = input.m2(:,(P-1)*n-1:m);
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end

%% End setup, start distribution to labs

if labindex > 1
data = labReceive(1);

else % in this case labindex == 1
for i = 2:P

labSend(pass(i), i);
end
data = pass(1);

end

%% Set output object for constants
if labindex == 1

consts.M = input.M;
consts.MM = input.MM;
consts.xc = input.xc;
consts.yc = input.yc;
consts.m = input.m;
consts.n = input.n;
consts.plotpoints = input.Tmax*10; %this is not yet dynamic

else
consts = 0;

end

%% Begin run on each individual processor

runtime = data.runtime;
dt = data.dt;
P = data.P;

step=.1/dt; %used to determine when to plot
k = 0; %index
t = 0; %time elapsed

%% Set up plotting variables

plotData(runtime*10).empty = 0; %this is also not yet dynamic

c = 0; %plot count

%% Running Loop
while t <= runtime

k = k + 1;
t = t + dt;

%% Computation
data = spOneStep(data);

%% Communication with neighbors

% Share data with adjacent processors
n = data.n;

if labindex == 1
labSend([data.X(:,n-3:n-2) data.Y(:,n-3:n-2) data.u(:,n-3:n-2) ...

data.v(:,n-3:n-2)],2);
else if labindex == P

fromLeft = labReceive(P - 1);
else

fromLeft = labSendReceive(labindex + 1, labindex - 1, ...
[data.X(:,n-1:n) data.Y(:,n-1:n) data.u(:,n-1:n) ...
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data.v(:,n-1:n)]);
end

end

if labindex == 1
fromRight = labReceive(labindex + 1);

else if labindex == P
labSend([data.X(:,3) data.Y(:,3) data.u(:,3) data.v(:,3)],...

P-1);
else if labindex == 2

fromRight = labSendReceive(1, 3, ...
[data.X(:,3:5) data.Y(:,3:5) data.u(:,3:5) ...
data.v(:,3:5)]);

else
fromRight = labSendReceive(labindex - 1, labindex + 1, ...

[data.X(:,3) data.Y(:,3) data.u(:,3) data.v(:,3)]);
end

end
end

% Update matrices with data from adjacent processors

if labindex ˜= 1
data.X(:, 1) = fromLeft(:,1);
data.Y(:, 1) = fromLeft(:,3);
data.u(:, 1) = fromLeft(:,5);
data.v(:, 1) = fromLeft(:,7);
data.X(:, 2) = fromLeft(:,2);
data.Y(:, 2) = fromLeft(:,4);
data.u(:, 2) = fromLeft(:,6);
data.v(:, 2) = fromLeft(:,8);

end
if labindex ˜= P

if labindex == 1
data.X(:, n-1) = fromRight(:,1);
data.Y(:, n-1) = fromRight(:,4);
data.u(:, n-1) = fromRight(:,7);
data.v(:, n-1) = fromRight(:,10);
data.X(:, n) = fromRight(:,2);
data.Y(:, n) = fromRight(:,5);
data.u(:, n) = fromRight(:,8);
data.v(:, n) = fromRight(:,11);
data.X(:, n+1) = fromRight(:,3);
data.Y(:, n+1) = fromRight(:,6);
data.u(:, n+1) = fromRight(:,9);
data.v(:, n+1) = fromRight(:,12);

else
data.X(:, n+1) = fromRight(:,1);
data.Y(:, n+1) = fromRight(:,2);
data.u(:, n+1) = fromRight(:,3);
data.v(:, n+1) = fromRight(:,4);

end
end

%% Plotting every 1/10 second

jj=k-step*floor(k/step);

if jj == 0

c = c + 1

if labindex == 1
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plotData(c).X = data.X(:,1:end-3);
plotData(c).Y = data.Y(:,1:end-3);
plotData(c).u = data.u(:,1:end-3);
plotData(c).v = data.v(:,1:end-3);

plotData(c).A1 = data.A1(:,1:end-3);
plotData(c).A2 = data.A2(:,1:end-3);

else if labindex == P

plotData(c).X = data.X(:,3:end);
plotData(c).Y = data.Y(:,3:end);
plotData(c).u = data.u(:,3:end);
plotData(c).v = data.v(:,3:end);

plotData(c).A1 = data.A1(:,2:end);
plotData(c).A2 = data.A2(:,2:end);

else

plotData(c).X = data.X(:,3:end-1);
plotData(c).Y = data.Y(:,3:end-1);
plotData(c).u = data.u(:,3:end-1);
plotData(c).v = data.v(:,3:end-1);

plotData(c).A1 = data.A1(:,2:end-1);
plotData(c).A2 = data.A2(:,2:end-1);

end
end

plotData(c).t = t;

end

%% Loop

%% Assign objects into ’base’ workspace for easy transfer to client
assignin(’base’, ’out’, plotData);
assignin(’base’, ’static’, consts);

end
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F MATLAB Code: spOneStep.m
function data = spOneStep(data)

%% Data in from last step

% This data is constant
m = data.m; % number of grid lines in x-direction
n = data.n; % number of grid lines in y-direction
b = data.b; % rotation coefficient
a = data.a; % bottom friction coefficient
mu = data.mu; % eddy viscocity
dt = data.dt; % time step
%dx = data.dx;

m1 = data.m1; % matrices of masses
m2 = data.m2;
M = data.M;

% This data is changed
X = data.X; % matrix of x-coordinate values
Y = data.Y; % matrix of y-coordinate values
u = data.u; % matrix of x-components of velocity
v = data.v; % matrix of y-components of velocity

%% Calculate properties along edges of triangles
% positions differences

DxX1(1:m,1:2:n-1)=X(2:m+1,1:2:n-1)-X(1:m,1:2:n-1);
DxY1(1:m,1:2:n-1)=Y(2:m+1,1:2:n-1)-Y(1:m,1:2:n-1);
DxX1(1:m,2:2:n)=X(2:m+1,3:2:n+1)-X(1:m,3:2:n+1);
DxY1(1:m,2:2:n)=Y(2:m+1,3:2:n+1)-Y(1:m,3:2:n+1);

DxX2(1:m,1:2:n-1)=X(2:m+1,2:2:n)-X(1:m,2:2:n);
DxY2(1:m,1:2:n-1)=Y(2:m+1,2:2:n)-Y(1:m,2:2:n);
DxX2(1:m,2:2:n)=X(2:m+1,2:2:n)-X(1:m,2:2:n);
DxY2(1:m,2:2:n)=Y(2:m+1,2:2:n)-Y(1:m,2:2:n);

DyX1(2:2:m,1:n)=X(2:2:m,2:n+1)-X(2:2:m,1:n);
DyY1(2:2:m,1:n)=Y(2:2:m,2:n+1)-Y(2:2:m,1:n);
DyX1(1:2:m-1,1:n)=X(2:2:m,2:n+1)-X(2:2:m,1:n);
DyY1(1:2:m-1,1:n)=Y(2:2:m,2:n+1)-Y(2:2:m,1:n);

DyX2(1:2:m-1,1:n)=X(1:2:m-1,2:n+1)-X(1:2:m-1,1:n);
DyY2(1:2:m-1,1:n)=Y(1:2:m-1,2:n+1)-Y(1:2:m-1,1:n);

DyX2(2:2:m,1:n)=X(3:2:m+1,2:n+1)-X(3:2:m+1,1:n);
DyY2(2:2:m,1:n)=Y(3:2:m+1,2:n+1)-Y(3:2:m+1,1:n);

% calculate this data to avoid storing it

A1=(DxX1.*DyY1-DyX1.*DxY1)/2;
A2=(DxX2.*DyY2-DyX2.*DxY2)/2;

h1=m1./A1;
h2=m2./A2;

% velocity differences
Dxu1(1:m,1:2:n-1)=u(2:m+1,1:2:n-1)-u(1:m,1:2:n-1);
Dxv1(1:m,1:2:n-1)=v(2:m+1,1:2:n-1)-v(1:m,1:2:n-1);
Dxu1(1:m,2:2:n)=u(2:m+1,3:2:n+1)-u(1:m,3:2:n+1);
Dxv1(1:m,2:2:n)=v(2:m+1,3:2:n+1)-v(1:m,3:2:n+1);
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Dxu2(1:m,1:2:n-1)=u(2:m+1,2:2:n)-u(1:m,2:2:n);
Dxv2(1:m,1:2:n-1)=v(2:m+1,2:2:n)-v(1:m,2:2:n);
Dxu2(1:m,2:2:n)=u(2:m+1,2:2:n)-u(1:m,2:2:n);
Dxv2(1:m,2:2:n)=v(2:m+1,2:2:n)-v(1:m,2:2:n);

Dyu1(2:2:m,1:n)=u(2:2:m,2:n+1)-u(2:2:m,1:n);
Dyv1(2:2:m,1:n)=v(2:2:m,2:n+1)-v(2:2:m,1:n);
Dyu1(1:2:m-1,1:n)=u(2:2:m,2:n+1)-u(2:2:m,1:n);
Dyv1(1:2:m-1,1:n)=v(2:2:m,2:n+1)-v(2:2:m,1:n);

Dyu2(1:2:m-1,1:n)=u(1:2:m-1,2:n+1)-u(1:2:m-1,1:n);
Dyv2(1:2:m-1,1:n)=v(1:2:m-1,2:n+1)-v(1:2:m-1,1:n);

Dyu2(2:2:m,1:n)=u(3:2:m+1,2:n+1)-u(3:2:m+1,1:n);
Dyv2(2:2:m,1:n)=v(3:2:m+1,2:n+1)-v(3:2:m+1,1:n);

%% Pressure terms in x momentum eqn.

p1RLx=(h1.ˆ2).*(DyY1)/4;
p2RLx=(h2.ˆ2).*(DyY2)/4;
p1UDx=(h1.ˆ2).*(DxY1)/4;
p2UDx=(h2.ˆ2).*(DxY2)/4;

P1rxx=0*X;
P1rxx(1:m,1:n)=p1RLx;

P1Lxx=0*X;
P1Lxx(2:m+1,1:n)=p1RLx;

P2rxx=0*X;
P2rxx(1:m,1:n)=p2RLx;

P2Lxx=0*X;
P2Lxx(2:m+1,1:n)=p2RLx;

P2Uxy=0*Y;
P2Uxy(1:m,1:n)=p2UDx;

P2Dxy=0*Y;
P2Dxy(1:m,2:n+1)=p2UDx;

P1Uxy=0*Y;
P1Uxy(1:m,1:n)=p1UDx;

P1Dxy=0*Y;
P1Dxy(1:m,2:n+1) = p1UDx;

% Pressure Forces in x eqn

PPx=0*X;
PPx(:,1)=PPx(:,1)+ dt*(P1Lxx(:,1)-P1rxx(:,1));
PPx(:,3:2:n+1)=PPx(:,3:2:n+1)+dt*( P1Lxx(:,3:2:n+1)-P1rxx(:,3:2:n+1));
PPx(:,3:2:n+1)=PPx(:,3:2:n+1)+dt*(P1Lxx(:,2:2:n)-P1rxx(:,2:2:n));
PPx(:,2:2:n)=PPx(:,2:2:n)+dt*(P2Lxx(:,1:2:n-1)-P2rxx(:,1:2:n-1));
PPx(:,2:2:n)=PPx(:,2:2:n)+dt*(P2Lxx(:,2:2:n)-P2rxx(:,2:2:n));
PPx(1,:)=PPx(1,:)-dt*(P2Dxy(1,:)-P2Uxy(1,:));
PPx(3:2:m+1,:)=PPx(3:2:m+1,:)-dt*(P2Dxy(3:2:m+1,:)-P2Uxy(3:2:m+1,:));
PPx(3:2:m+1,:)=PPx(3:2:m+1,:)-dt*(P2Dxy(2:2:m,:)-P2Uxy(2:2:m,:));
PPx(2:2:m,:)=PPx(2:2:m,:)-dt*(P1Dxy(1:2:m-1,:)-P1Uxy(1:2:m-1,:));
PPx(2:2:m,:)=PPx(2:2:m,:)-dt*(P1Dxy(2:2:m,:)-P1Uxy(2:2:m,:));

%% Pressure terms in y momentum eqn.
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p2udy=(h2.ˆ2).*(DxX2)/4;
p1udy=(h1.ˆ2).*(DxX1)/4;
p2RLy=(h2.ˆ2).*(DyX2)/4;
p1RLy=(h1.ˆ2).*(DyX1)/4;

P2uyy=0*Y;
P2uyy(1:m,1:n)= p2udy;

P2dyy=0*Y;
P2dyy(1:m,2:n+1)=p2udy;

P1uyy=0*Y;
P1uyy(1:m,1:n)= p1udy;

P1dyy=0*Y;
P1dyy(1:m,2:n+1)= p1udy;

P1ryx=0*X;
P1ryx(1:m,1:n)= p1RLy ;

P1Lyx=0*X;
P1Lyx(2:m+1,1:n)=p1RLy;

P2ryx=0*X;
P2ryx(1:m,1:n)=p2RLy;

P2Lyx=0*X;
P2Lyx(2:m+1,1:n)= p2RLy;

% Pressure Forces in y eqn

PPy=0*Y;
PPy(1,:)=PPy(1,:)+dt*(P2dyy(1,:)-P2uyy(1,:));

PPy(3:2:m+1,:)=PPy(3:2:m+1,:)+dt*(P2dyy(3:2:m+1,:)-P2uyy(3:2:m+1,:));
PPy(3:2:m+1,:)=PPy(3:2:m+1,:)+dt*(P2dyy(2:2:m,:)-P2uyy(2:2:m,:));

PPy(2:2:m,:)=PPy(2:2:m,:)+dt*(P1dyy(1:2:m-1,:)-P1uyy(1:2:m-1,:));
PPy(2:2:m,:)=PPy(2:2:m,:)+dt*(P1dyy(2:2:m,:)-P1uyy(2:2:m,:));

PPy(:,1)=PPy(:,1)-dt*(P1Lyx(:,1)-P1ryx(:,1));

PPy(:,3:2:n+1)=PPy(:,3:2:n+1)-dt*(P1Lyx(:,3:2:n+1)-P1ryx(:,3:2:n+1));
PPy(:,3:2:n+1)=PPy(:,3:2:n+1)-dt*(P1Lyx(:,2:2:n)-P1ryx(:,2:2:n));

PPy(:,2:2:n)=PPy(:,2:2:n)-dt*(P2Lyx(:,2:2:n)-P2ryx(:,2:2:n));
PPy(:,2:2:n)=PPy(:,2:2:n)-dt*(P2Lyx(:,1:2:n-1)-P2ryx(:,1:2:n-1));

% this ends the pressure computation

%% viscous stresses computation

s1=mu*(h1).*(-(DxX1).*(Dyv1)+(Dxu1).*(DyY1)+(DyX1).*(Dxv1)-(DxY1).*(Dyu1));
s2=mu*(h2).*(-(DxX2).*(Dyv2)+(Dxu2).*(DyY2)+(DyX2).*(Dxv2)-(DxY2).*(Dyu2));

T1=mu*(h1).*((DxX1).*(Dyu1)+(DyY1).*(Dxv1)-(DyX1).*(Dxu1)-(DxY1).*(Dyv1));
T2=mu*(h2).*((DxX2).*(Dyu2)+(DyY2).*(Dxv2)-(DyX2).*(Dxu2)-(DxY2).*(Dyv2));

V1rxx=0*X;
V1rxx(1:m,1:n)=(s1.*DyY1-T1.*DyX1)/2;
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V1Lxx=0*X;
V1Lxx(2:m+1,1:n)=(s1.*DyY1-T1.*DyX1)/2;

V2rxx=0*X;
V2rxx(1:m,1:n)=(s2.*DyY2-T2.*DyX2)/2;

V2Lxx=0*X;
V2Lxx(2:m+1,1:n)=(s2.*DyY2-T2.*DyX2)/2 ;

V1uxy=0*X;
V1uxy(1:m,1:n)=(T1.*DxX1-s1.*DxY1)/2;

V1dxy=0*X;
V1dxy(1:m,2:n+1)=(T1.*DxX1-s1.*DxY1)/2;

V2uxy=0*X;
V2uxy(1:m,1:n)=(T2.*DxX2-s2.*DxY2)/2;

V2dxy=0*X;
V2dxy(1:m,2:n+1)=(T2.*DxX2-s2.*DxY2)/2;

% Viscous Forces in x eqn
VVx=0*X;

VVx(:,1)=VVx(:,1)+(V1rxx(:,1)-V1Lxx(:,1));

VVx(:,3:2:n+1)=VVx(:,3:2:n+1)+(V1rxx(:,3:2:n+1)-V1Lxx(:,3:2:n+1));
VVx(:,3:2:n+1)=VVx(:,3:2:n+1)+(V1rxx(:,2:2:n)-V1Lxx(:,2:2:n));

VVx(:,2:2:n)=VVx(:,2:2:n)+ (V2rxx(:,2:2:n)-V2Lxx(:,2:2:n));
VVx(:,2:2:n)=VVx(:,2:2:n)+ (V2rxx(:,1:2:n-1)-V2Lxx(:,1:2:n-1));

VVx(1,:)=VVx(1,:)+(V2uxy(1,:)-V2dxy(1,:));

VVx(2:2:m,:)=VVx(2:2:m,:)+(V1uxy(2:2:m,:)-V1dxy(2:2:m,:));
VVx(2:2:m,:)=VVx(2:2:m,:)+(V1uxy(1:2:m-1,:)-V1dxy(1:2:m-1,:));

VVx(3:2:m+1,:)=VVx(3:2:m+1,:)+(V2uxy(3:2:m+1,:)-V2dxy(3:2:m+1,:));
VVx(3:2:m+1,:)=VVx(3:2:m+1,:)+(V2uxy(2:2:m,:)-V2dxy(2:2:m,:));

V1ryx=0*X;
V1ryx(1:m,1:n)=(T1.*DyY1+s1.*DyX1)/2;

V1Lyx=0*X;
V1Lyx(2:m+1,1:n)=(T1.*DyY1+s1.*DyX1)/2;

V2ryx=0*X;
V2ryx(1:m,1:n)=(T2.*DyY2+s2.*DyX2)/2;

V2Lyx=0*X;
V2Lyx(2:m+1,1:n)=(T2.*DyY2+s2.*DyX2)/2;

V1uyy=0*X;
V1uyy(1:m,1:n)=(T1.*DxY1+s1.*DxX1)/2;

V1dyy=0*X;
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V1dyy(1:m,2:n+1)=(T1.*DxY1+s1.*DxX1)/2;

V2uyy=0*Y;
V2uyy(1:m,1:n)=(T2.*DxY2+s2.*DxX2)/2;

V2dyy=0*X;
V2dyy(1:m,2:n+1)=(T2.*DxY2+s2.*DxX2)/2;

% Viscous Forces in y eqn
VVy=0*Y;

VVy(:,1)=VVy(:,1)+(V1ryx(:,1)-V1Lyx(:,1));

VVy(:,3:2:n+1)=VVy(:,3:2:n+1)+(V1ryx(:,3:2:n+1) -V1Lyx(:,3:2:n+1));
VVy(:,3:2:n+1)=VVy(:,3:2:n+1)+(V1ryx(:,2:2:n)-V1Lyx(:,2:2:n));

VVy(:,2:2:n)=VVy(:,2:2:n)+(V2ryx(:,2:2:n)-V2Lyx(:,2:2:n));
VVy(:,2:2:n)=VVy(:,2:2:n)+(V2ryx(:,1:2:n-1)-V2Lyx(:,1:2:n-1));

VVy(1,:)=VVy(1,:)-(V2uyy(1,:)-V2dyy(1,:));

VVy(3:2:m+1,:)=VVy(3:2:m+1,:)-(V2uyy(3:2:m+1,:)-V2dyy(3:2:m+1,:));
VVy(3:2:m+1,:)=VVy(3:2:m+1,:)-(V2uyy(2:2:m,:)-V2dyy(2:2:m,:));

VVy(2:2:m,:)=VVy(2:2:m,:)-(V1uyy(2:2:m,:)-V1dyy(2:2:m,:));
VVy(2:2:m,:)=VVy(2:2:m,:)-(V1uyy(1:2:m-1,:)-V1dyy(1:2:m-1,:));

% this concludes viscous stress computation

%% Computation of x and y Forces

Fx=PPx+VVx;
Fy=PPy+VVy;

% this concludes the force computation

%% Velocity update

u=(1-a*dt)*u+(Fx./M-dt*(X-b*v));
v=(1-a*dt)*v+(Fy./M-dt*(Y+b*u));

%% Leap Frog

X=X+dt*u;
Y=Y+dt*v;

%% Store data to pass to next step
%update some data
A1=(DxX1.*DyY1-DyX1.*DxY1)/2;
A2=(DxX2.*DyY2-DyX2.*DxY2)/2;

% only store data that has been changed
data.X = X; % matrix of x-coordinate values
data.Y = Y; % matrix of y-coordinate values
data.u = u; % matrix of x-components of velocity
data.v = v; % matrix of y-components of velocity

data.A1 = A1;
data.A2 = A2;
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% This data is stored for plotting - DEPRECATED FOR NOW
%SS = s1.*s1+T1.*T1+s2.ˆ2 +T2.ˆ2;
%data.SS1_1 = max(max(SS));
%data.SS1_2 = max(max(max(A1)),max(max(A2)))/dx/dx;
%data.SS1_3 = min(min(A2))/dx/dx;

end
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G MATLAB Code: spPlot.m
function spPlot()

%% Load data from labs to client
pmode lab2client out 1 set1
pmode lab2client out 2 set2
pmode lab2client out 3 set3
pmode lab2client out 4 set4
pmode lab2client static 1 static

%% Move data from base workspace to function workspace
static = evalin(’base’, ’static’);
set1 = evalin(’base’, ’set1’);
set2 = evalin(’base’, ’set2’);
set3 = evalin(’base’, ’set3’);
set4 = evalin(’base’, ’set4’);

%% Extract data from structures
xc = static.xc;
yc = static.yc;
Time = 0;
R = xcˆ2+ycˆ2;

m = static.m;
n = static.m;
M = static.M;
MM = static.MM;

plotpoints = static.plotpoints;

[pData(1:plotpoints).empty] = deal(0);

for i = 1:plotpoints
pData(i).X = [set1(i).X set2(i).X set3(i).X set4(i).X];
pData(i).Y = [set1(i).Y set2(i).Y set3(i).Y set4(i).Y];
pData(i).u = [set1(i).u set2(i).u set3(i).u set4(i).u];
pData(i).v = [set1(i).v set2(i).v set3(i).v set4(i).v];

pData(i).A1 = [set1(i).A1 set2(i).A1 set3(i).A1 set4(i).A1];
pData(i).A2 = [set1(i).A2 set2(i).A2 set3(i).A2 set4(i).A2];

pData(i).t = set1(i).t;

end

%% Plot
for c = 1:plotpoints

X = pData(c).X; % matrix of x-coordinate values
Y = pData(c).Y; % matrix of y-coordinate values
u = pData(c).u; % matrix of x-components of velocity
v = pData(c).v; % matrix of y-components of velocity

A1 = pData(c).A1;
A2 = pData(c).A2;

t = pData(c).t;

HH=0*X;
AA=0*X;

AA(2:2:m,2:2:n)=(A2(2:2:m,2:2:n)+A2(2:2:m,1:2:n-1)+A2(1:2:m-1,2:2:n)+...
A2(1:2:m-1,1:2:n-1))/4;



88

AA(2:2:m,2:2:n)=AA(2:2:m,2:2:n)+(A1(2:2:m,2:2:n)+A1(2:2:m,1:2:n-1)+...
A1(1:2:m-1,2:2:n)+...A1(1:2:m-1,1:2:n-1))/4;

AA(2:2:m,3:2:n-1)=(A1(2:2:m,3:2:n-1)+A1(1:2:m-1,3:2:n-1)+...
A1(1:2:m-1,2:2:n-2)+A1(2:2:m,2:2:n-2))/2;

AA(3:2:m-1,2:2:n)=(A2(3:2:m-1,2:2:n)+A2(3:2:m-1,1:2:n-1)+...
A2(2:2:m-2,2:2:n)+A2(2:2:m-2,1:2:n-1))/2;

AA(3:2:m-1,3:2:n-1)=(A2(3:2:m-1,3:2:n-1)+A2(2:2:m-2,3:2:n-1)+...
A2(3:2:m-1,2:2:n-2)+A2(2:2:m-2,2:2:n-2))/4;

AA(3:2:m-1,3:2:n-1)=AA(3:2:m-1,3:2:n-1)+(A1(3:2:m-1,3:2:n-1)+...
A1(1:2:m-2,3:2:n-1)+A1(3:2:m-1,2:2:n-2)+A1(2:2:m-2,2:2:n-2))/4;

HH(2:m,2:n)=M(2:m,2:n)./AA(2:m,2:n);

Xc=sum(sum(M.*X))/MM;
Yc=sum(sum(M.*Y))/MM;
uc=sum(sum(M.*u))/MM;
vc=sum(sum(M.*v))/MM;
% This will do for now
xc=[xc,Xc];
yc=[yc,Yc];

if max(size(R))<100;
R=[R,Xcˆ2+Ycˆ2];
Time=[Time,t];

else
R=[R(2:100),Xcˆ2+Ycˆ2];
Time=[Time(2:100),t];

end

XX=X;
YY=Y;

ff=(’velocity fields u-uc and v-vc -- both approximately planar fields’);

ff1=[’surface plots of water elevation h+(xˆ2+yˆ2)/2, the parabolic ...
boundary, and time ’ num2str(t)];

clf

subplot(2,2,1 )
surf(XX,YY,HH)
shading interp
hold on
contour3(XX,YY,HH,20,’k’)
hold on
axis([-2 2 -2 2 0 2])
axis square
title(’surface plot of water column above z=(xˆ2+yˆ2)/2’)

subplot(322)
surf(XX-Xc,YY-Yc,u-uc)
shading interp
hold on
surf(XX-Xc,YY-Yc,v-vc)
shading interp
contour3(XX-Xc,YY-Yc,u-uc,20,’k’)
title(ff)
axis([-1.5 1.5 -1.5 1.5 -1.5 1.5])% -.5 .5])
axis square

subplot(3,2,4)
plot(xc,yc,’r’,Xc,Yc,’+k’,0,0,’+k’,[-2 2],[0 0],’k’,[0 0],[-2 2],’k’)
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axis([-1 1 -1 1])
title(’trajectory of the center of mass-initial position (1/sqrt(2) , 0) ’)

axis square

subplot(223)
ZZ1=((XX.ˆ2+YY.ˆ2)/2) ;
ZZ2=HH+(XX.ˆ2+YY.ˆ2)/2;
surf(XX,YY,ZZ1)
shading interp
hold on
surf(XX,YY,ZZ2)
shading interp
hold on
contour3(XX,YY,ZZ2,20,’k’)
hold on
contour(XX,YY,ZZ2,20,’k’)
axis([-2 2 -2 2 0 2.5])
axis square
title(ff1)

subplot(3,2,6)
plot(Time,R)
axis([min(Time),max(Time), min(R),max(R)])
title(’xcˆ2+ycˆ2 vs time’)
drawnow

%pause(0.1)

end


