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Abstract: In this paper, we study the model selection property of the Elastic net.

In the classical settings when p (the number of predictors) and q (the number of

predictors with non-zero coefficients in the true linear model) are fixed, Yuan and

Lin (2007) give a necessary and sufficient condition for the Elastic net to consistently

select the true model, which is called the Elastic Irrepresentable Condition (EIC)

in this paper. Here we study the general case when p, q and n all go to infinity. For

general scalings of p, q and n, when gaussian noise is assumed, sufficient conditions

on p, q and n ar given in this paper such that EIC guarantees the Elastic net’s

model selection consistency. We show that to make these conditions hold, n should

grow at a rate faster than q log(p−q). For the classical case, when p and q are fixed,

we also study the relationship between EIC and the Irrepresentable Condition (IC)

which is necessary and sufficient for the Lasso to select the true model. Through

theoretical results and simulation studies, we provide insights into when and why

EIC is weaker than IC and when the Elastic net can consistently select the true

model even when the Lasso can not.

Key words and phrases: Lasso; Elastic net; Model selection consistency; Irrepre-

sentable Condition; Elastic Irrepresentable Condition.

1. Introduction

Regularization has been a popular technique for model fitting in statistical

learning when the number of predictors p is large compared with the number of

observations n. Regularization methods have been shown to have a better accu-

racy of prediction on future data (Tikhonov, 1943; Hoerl and Kennard, 1970).

The Lasso (Tibshirani, 1996) which regularizes with an L1 penalty, can also

generates sparse models, which are more interpretable. The Lasso provides a

computationally feasible way for model selection (Osborne et al, 2000; Efron et

al 2004; Rosset, 2004; Zhao and Yu, 2007). But the Lasso does not perform well

when the predictors are highly correlated or the number of predictors is much

greater than the number of observations. Zou and Hastie (2005) proposed the
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Elastic net, which also has the property of sparsity, to solve the above prob-

lems. Zou and Hastie (2005) state that the Elastic net regularization “is like a

stretchable fishing net that retains all the big fish” and that “Simulation studies

and real data examples show that the Elastic net often outperforms the Lasso in

terms of prediction accuracy”.

In this paper, we intend to understand the model selection performance of

the Elastic net, relative to the Lasso. We obtain theoretical results showing that

the Elastic net can select the true model consistently when the sparsity measure,

the total number of predictors, and the sample size all go to infinity. We use

both theoretical results and simulation studies to shed light on when and why

the Elastic net can outperform the Lasso for model selection.

Assume our data consists of a design matrix X ∈ Rn×p and the response

vector Y ∈ Rn. They follow a linear regression model

Y = Xβ + ǫ, (1.1)

where ǫ = (ǫ1, . . . , ǫn)T is a vector of i.i.d. additive Gaussian noise with mean

0 and variance σ2. Throughout this paper, the design matrix X is treated as

a deterministic (non-random) matrix. For the random case all the conclusions

can be obtained by conditioning on X. β is the vector of model coefficients.

The model is assumed to be “sparse”, i.e. most of the regression coefficients β

are exactly zero corresponding to predictors that are irrelevant to the response.

Without loss of generality, assume the first q elements of vector β are non-zeroes.

Let β(1) = (β1, . . . , βq) and β(2) = (βq+1, . . . , βp), then β(1) 6= 0 element-wise and

β(2) = 0.

Write X(1) and X(2) as the first q and the last p−q columns of design matrix

X respectively and let C(n) = 1
n
XTX. For simplicity, C(n) is denoted by C,

which is a function of n. C can be expressed in a block-wise form:

C =

(
C11 C12

C21 C22

)
,

where C11 = 1
n
XT

(1)X(1),C12 = 1
n
XT

(1)X(2),C21 = 1
n
XT

(2)X(1) and C22 = 1
n
XT

(2)X(2).

The näıve Elastic net estimate β̂ is defined as

β̂(näıve) = arg min
β

||Y −Xβ||22 + λ2||β||22 + λ1||β||1, (1.2)
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where parameters λ1 and λ2 control the amount of regularization applied to the

estimate. λ2 = 0 leads the näıve elastic estimate back to the Lasso estimate.

Since the Elastic net estimate β̂(Elastic net) is defined as (1 + λ2)β̂(näıve),

it selects the same model as the näıve Elastic net estimate. In this paper, we will

call the näıve Elastic net estimate (β̂) the Elastic net estimate.

Recent works (Zhao and Yu, 2006; Zou, 2006; Meinshausen and Yu, 2007;

Yuan and Lin, 2007) have worked precisely on the model selection consistency

of the Lasso. It has been shown that in the classical case when p and q are

fixed, a simple condition called the Irrepresentable Condition on the generating

covariance matrices is necessary and sufficient for the Lasso’s model selection

consistency. IC is defined in Zhao and Yu (2006) as:

Irrepresentable Condition (IC). There exists a positive constant η > 0,
∥∥∥∥C21C

−1
11

(
sign(β(1))

) ∥∥∥∥
∞

≤ 1 − η, (1.3)

where the inequality holds element-wise.

More precise results for the p >> n case are in Wainwright (2006), which

was the first to give conditions for the Lasso’s model selection consistency in the

case of general scalings of p, q and n. Yuan and Lin (2007) concentrate mainly

on non-negative garotte, but contain a necessary and sufficient condition for the

Elastic net to select the true model in the classical settings when p and q are

fixed. EIC is defined as:

Elastic Irrepresentable Condition (EIC). There exists λ1, λ2 and a pos-

itive constant η > 0,
∥∥∥∥C21(C11 +

λ2

n
I)−1

(
sign(β(1)) +

2λ2

λ1
β(1)

)∥∥∥∥
∞

≤ 1 − η, (1.4)

where the inequality holds element-wise.

EIC is exactly IC when when λ2 = 0 and C11 is invertible. EIC does not

need C11 to be invertible. If λ2 is preselected and fixed, when λ1 goes to ∞, the

Elastic Irrepresentable Condition reverses back to the Irrepresentable Condition.

Generally speaking, if the Irrepresentable Condition holds, then there exist some

λ1 > 0 and λ2 > 0 such that the corresponding elastic Irrepresentable Condition

holds. The relationship between EIC and IC will be further studied in Section 3.

In this paper, we analyze the model selection consistency of Elastic net for
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general scalings of p, q and n. The fixed p and q case is a special case. For

the classical settings, we do more analysis than that in Yuan and Lin (2007).

Through special models and simulations, we study the relationship between EIC

and IC; we show that EIC is weaker than IC and that the Elastic net can select

the true model even when the Lasso can not. For the general case, we give

sufficient conditions on the relationship of p, q and n such that EIC guarantees

the Elastic net’s model selection consistency.

The rest of the paper is organized as follows. In Section 2, we give our main

results. For the general scalings of p, q and n, conditions on the relationship

between p, q and n are given such that that EIC is sufficient for the Elastic net

to select the true model. In Section 3, we compare the Elastic Irrepresentable

Condition with the Irrepresentable Condition. Simulation studies are shown in

Section 4. In Section 5, we conclude and propose the future directions for this

research. The longer proofs can be found in the appendix.

2. Model Selection Consistency

We follow the notations and definitions of sign consistency defined in Zhao

and Yu (2006) and Wainwright (2006). Define β̂ =s β, if vector β̂ and the true

parameter β have the same sign element-wise.

Definition 1. Property R(X,β, ǫ, λ1, λ2): There exists an optimal solution

β̂(λ̂1, λ̂2) for model (1.2) with the property β̂ =s β.

Definition 2. The Elastic net estimate is Sign Consistent if there exists λ1, λ2

such that

lim
n→∞

P (β̂(λ1, λ2) =s β) = 1.

Note that the Elastic net estimate β̂(λ1, λ2) is sign consistent if and only if

P [R(X,β, ǫ, λ1, λ2)] → 1 as n→ ∞.

When p and q are fixed, Yuan and Lin (2007) have shown that EIC is a

necessary and sufficient condition for the Elastic net to consistently select the true

model. We show that when p, q and n all go to infinity, under some conditions

on the relationship between p, q and n, EIC also guarantees that the Elastic net

consistently selects the true model.

We first state necessary and sufficient conditions for property R(X,β, ǫ, λ1, λ2)
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to hold in Lemma 1, which is a consequence of KKT (Karush-Kuhn-Tucker) con-

ditions.

Lemma 1. For any given λ1 > 0, λ2 > 0 and noise vector ǫ ∈ R
n, property

R(X,β, ǫ, λ1, λ2) holds if and only if

∣∣∣∣2X
T
(2)X(1)

(
XT

(1)X(1) + λ2I
)−1

[
XT

(1)ǫ−
λ1

2
sign(β(1)) − λ2β(1)

]
− 2XT

(2)ǫ

∣∣∣∣ ≤ λ1,

(2.1)
∣∣∣∣
(
XT

(1)X(1) + λ2I
)−1

[
XT

(1)X(1)β(1) +XT
(1)ǫ−

λ1

2
sign(β(1))

]∣∣∣∣ > 0. (2.2)

For shorthand, define
−→
b := sign(β(1)) and denote by ei the vector with 1 in

the i′th position and zeroes elsewhere. For each index i ∈ S = {1, 2, . . . , q} and

j ∈ Sc = {q + 1, . . . , p}, define the following random variables:

Ui := eTi

(
XT

(1)X(1) + λ2I
)−1

[
XT

(1)ǫ−
λ1

2

−→
b

]
, (2.3)

Vj := 2XT
j

{
X(1)

(
XT

(1)X(1) + λ2I
)−1

(
λ1

2

−→
b + λ2β(1))

−
[
X(1)

(
XT

(1)X(1) + λ2I
)−1

XT
(1) − I

]
ǫ

}
. (2.4)

These random variables will play an important role in our analysis. In par-

ticular, condition (2.1) holds if and only if the event

M(V ) :=

{
max
j∈Sc

|Vj | ≤ λ1

}
(2.5)

holds. On the other hand, if we define ρ := min

∣∣∣∣
(
XT

(1)X(1) + λ2I
)−1 [

XT
(1)X(1)β(1)

]∣∣∣∣,
then the event

M(U) :=

{
max
i∈S

|Ui| < ρ

}
(2.6)

is sufficient to guarantee that condition (2.2) holds.

In the zero-noise setting (ǫ = 0), the conditions in Lemma 1 will reduce to

∣∣∣∣X
T
(2)X(1)

(
XT

(1)X(1) + λ2I
)−1

[
sign(β(1)) +

2λ2

λ1
β(1)

]∣∣∣∣ ≤ 1, (2.7)

∣∣∣∣
(
XT

(1)X(1) + λ2I
)−1

[
XT

(1)X(1)β(1) −
λ1

2
sign(β(1))

]∣∣∣∣ > 0. (2.8)
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When noises exist, under some conditions on the relationship between the

scalings of p, q and n, the Elastic Irrepresentable Condition is still sufficient for

the property of R(X,β, ǫ, λ1, λ2) to hold with probability tending to 1 as n→ ∞:

Theorem 1. Suppose that Y = Xβ + ǫ, where each column of X is nor-

malized to l2-norm n and ǫ ∼ N(0, σ2I). Assume EIC (1.4) holds. Define

ρ := min

∣∣∣∣
(
C11 + λ2

n
I
)−1 [

C11β(1)

]∣∣∣∣, and Cmin = Λmin(C11) + λ2

n
, where Λmin(·)

denotes the minimal eigenvalue. If λ1 is chosen such that

(a)
λ2

1

n log(p−q) → ∞,

(b) 1
ρ

{√
log q

nCmin
+ λ1

n

∥∥∥∥
(
C11 + λ2

n
I
)−1 −→

b

∥∥∥∥
∞

}
→ 0,

then P [R(X,β, ǫ, λ1, λ2)] → 1 as n→ ∞.

A proof of Theorem 1 can be found in the appendix.

Theorem 1 gives a general result for general scalings of p, q and n. In the

classical setting where p and q are fixed, if C11 converges to a non-negative definite

matrix C0, ρ will converge to a non-negative number ρ0. Suppose ρ0 > 0, then

condition (a) is equivalent to λ1/
√
n → ∞ and condition (b) is equivalent to

λ1/n→ 0, if Cmin ≥ α for some α > 0.

Corollary 1. When p and q are fixed, suppose that C11 converges to C0, ρ0 > 0

and Cmin ≥ α for some α > 0, then EIC implies P [R(X,β, ǫ, λ1, λ2)] → 1 as

n→ ∞, if

(a) λ1/
√
n→ ∞,

(b) λ1/n → 0.

Note that λ1 =
√
n log n is a suitable choice. A similar conclusion is also

reached in Meinshausen and Buhlmann (2006), Zhao and Yu (2006), Zou (2006)

and Wainwright (2007) for the Lasso to select the true model. Regarding con-

straints on λ2: when C11 is invertible and Λmin(C11) ≥ α, for some α > 0, any

λ2 > 0 can be chosen as long as it satisfies EIC; when C11 is not invertible,

λ2 = γn can be chosen, for any γ > 0 which satisfies EIC.

When all three parameters (n, p, q) grow into infinity, suppose that Cmin ≥ α,

for some α > 0 and ρ ≥ ρ0, for some ρ0 > 0. Then we have
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Corollary 2. EIC implies that the Elastic net has sign consistency if

(a)
λ2

1

n log(p−q) → ∞,

(b) log q
n

→ 0,

(c)
λ1

√
q

n
→ 0.

Proof. Note that

∥∥∥∥
(
C11 + λ2

n
I
)−1 −→

b

∥∥∥∥ ≤ C−1
min||

−→
b ||2 = C−1

min

√
q. So, conditions

(b) and (c) in Corollary 2 guarantee that condition (b) in Theorem 1 holds.

The conditions
λ2

1

n log(p−q)(= (
λ1

√
q

n
)2 × n

q log(p−q)) → +∞ and
λ1

√
q

n
→ 0 imply

that the number of observations n must grow at a rate faster than q log(p− q).

3. Relationship between EIC and IC

As shown in Zou and Hastie (2005), the Elastic net can select the “important”

variables for prediction and it often outperforms the Lasso in terms of prediction

accuracy. Under some conditions, we have shown that in theory it consistently

selects the relevant predictors. In this section, we will show theoretically that the

Elastic net often outperforms the Lasso in terms of model selection consistency.

Proposition 1. Irrepresentable Condition implies Elastic Irrepresentable Con-

dition, but Elastic Irrepresentable Condition does not imply Irrepresentable Con-

dition.

This result is trivial, since λ2 = 0 or small λ2 > 0 leads EIC back to IC.

Proposition 1 shows that when the Lasso can select the true model, the

Elastic net also can select the true model; the Elastic net often outperforms the

Lasso in terms of model selection consistency. We have to point out that it may

happen that in some situations neither the Lasso nor the Elastic net can select

the true model, which can be seen by simulations in Section 4.

An interesting question is under what conditions, the Elastic net will do a

much better job than the Lasso for model selection. In other words, what prior

information about the model parameters would suggest that the Elastic net will

select the true model while the Lasso does not? It is hard to answer this question

in general. But, in some situations, we can provide some insight into when the

EIC will hold while IC does not.
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Consider the case p−q = 1, that is, there exists only one irrelevant predictor.

This is the simplest model selection problem. For this kind of problem, we can

give a simple necessary and sufficient condition such that EIC holds.

Theorem 2. In the case when p− q = 1, EIC holds if and only if

C21(C11 +
λ2

n
)−1sign(β(1)) ≥ 1 and C21(C11 +

λ2

n
)−1β(1) < 0, (3.1)

or

C21(C11 +
λ2

n
)−1sign(β(1)) ≤ −1 and C21(C11 +

λ2

n
)−1β(1) > 0, (3.2)

or

|C21(C11 +
λ2

n
)−1sign(β(1))| ≤ 1 − η, for some 0 < η < 1 . (3.3)

Proof. When p− q = 1, C21(C11 + λ2

n
)−1sign(β(1)) and C21(C11 + λ2

n
)−1β(1) are

both scalers. Immediately, (1.4) is equivalent to conditions (3.1), (3.2) and (3.3)

by choosing a suitable λ1.

Choosing the appropriate λ2 for Theorem 2 requires difficult manipulations.

Below, we give sufficient conditions to ensure that EIC holds and IC does not for

any fixed value of λ2.

Corollary 3. Suppose C11 invertible, in the case when p − q = 1, for any fixed

value λ2, when n is very large, EIC holds while IC does not if

C21C
−1
11 sign(β(1)) ≥ 1 and C21C

−1
11 β(1) < 0 (3.4)

or

C21C
−1
11 sign(β(1)) ≤ −1 and C21C

−1
11 β(1) > 0 (3.5)

Proof. When λ2 = 0, (3.1) is exactly condition (3.4) and (3.2) is exactly condition

(3.5). λ2 is not allowed to be 0, a small λ2 or a small λ2

n
can be chosen, such that

conditions (3.1) and (3.2) hold, each of which is sufficient for EIC to hold.

Denote Ψ by the estimated regression of the linear model X(2) = X(1)ψ +

noise. It can be the OLS estimate C−1
11 C12 as in Corollary 3 or the ridge regres-

sion estimate (C11 + λ2

n
)−1C12 as in Theorem 2. Theorem 2 and its corollary
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(Corollary 3) suggest that if the Lasso does not select the true model, it is be-

cause |ΨT sign(β(1))| is too large. But the Elastic net might be able to conquer

this problem by introducing another penalty term ΨTβ(1) on ΨT sign(β(1)) such

that the absolute value of the new term ΨT sign(β(1))+αΨTβ(1) is not very large

for some α > 0. The small absolute value of the new term implies that the EIC

holds, and therefore the Elastic net can consistently select the true model.

In the situations when p − q ≥ 2, explanations about EIC are complicated.

But conditions (3.1) and (3.2) are necessary conditions such that EIC holds. We

state it as a corollary of Theorem 2.

Corollary 4. In the case when p− q > 1, EIC holds only if

[
C21(C11 +

λ2

n
)−1β(1)

]

i

< 0 when

[
C21(C11 +

λ2

n
)−1sign(β(1))

]

i

≥ 1,

(3.6)

and
[
C21(C11 +

λ2

n
)−1β(1)

]

i

> 0 when

[
C21(C11 +

λ2

n
)−1sign(β(1))

]

i

≤ −1,

(3.7)

where, [·]i denote the i−th element of a vector.

Proof. When condition (3.6) or (3.7) does not hold, then

∣∣∣∣C21(C11 +
λ2

n
)−1[

2λ2

λ1
β(1) + sign(β(1))]i

∣∣∣∣ ≥
∣∣∣∣[C21(C11 +

λ2

n
)−1β(1)]i

∣∣∣∣

≥ 1

which violates EIC.

4. Simulations

Zou and Hastie (2005) contain many experiments to show that the Elastic

net performs much better than the Lasso, OLS and ridge regression in terms of

prediction accuracy, but they did not compare the model selection performances

between the Lasso and the Elastic net. Yuan and Lin (2007) also have no example

to show the differences of the performance on the model selection consistency
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between the Lasso and the Elastic net. In this section, some simulations are

provided to show that when the Lasso can not select the true model, the Elastic

net may still select the true model. When p >> n, especially when q > n, the

Lasso can select at most n variables before the model saturates. So, when q > n,

the Lasso theoretically can not select all of the true predictors . We will give an

example to show that the Elastic net might be able to solve this kind of problems.

In the first 3 examples, p and q are small compared to n = 1000. These

examples can be treated as fixed p and q cases. Because of the large number

of observations, the results are consistent and the plots appear the same for

multiple simulations. From Corollary 1 and Corollary 3, it can be seen that the

choice of λ2 is not very important. In these examples, we take λ2 = 100. We did

many simulations with different λ2’s, and did not see much effect of λ2 on the

performance of model selection consistency.

Example 1. The first example has the same settings as Zhao and Yu (2006).

They gave an example with p = 3 to show that when the Irrepresentable Con-

dition holds there is a consistent Lasso solution and when the Irrepresentable

Condition does not hold, there is no consistent Lasso solution.

X1,X2, e and ǫ are first generated from the standard normal distribution

with mean 0 and variance 1. X3 is generated to be correlated with X1 and X2

by

X3 =
2

3
X1 +

2

3
X2 +

1

3
e,

which also has a standard normal distribution. The true linear model is:

Y = X1β1 +X2β2 + ǫ.

Now, consider two settings: (a) β1 = 2, β2 = 3 and (b) β1 = −2, β2 = 3. In

both settings, X(1) = (X1,X2),X(2) = X3 and it is easy to check that C22C
−1
11 =

(2
3 ,

2
3). So, setting (b) makes Irrepresentable Condition hold, while setting (a)

does not. The Lasso and the Elastic net are applied to both settings (a) and

(b) respectively and the solution pathes are shown in Figure 4.1 and Figure 4.2.

Figures 4.1 and 4.2 show that in setting (a), neither the Lasso nor the Elastic

net can select the true model and in setting (b), both the Lasso and the Elastic

net can select the true model.

Example 2. This example is used to illustrate that when the Irrepresentable
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Figure 4.1: the Lasso solution paths for setting (a)
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Figure 4.2: Elastic net solution paths for setting (b)
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Condition does not hold, the Elastic Irrepresentable condition may hold and the

Elastic net will select the true model, while the Lasso does not. In this example,

p = 6. X1,X2,X3,X4,X5, e and ǫ are first generated from the standard normal

distribution. X6, also from the standard normal distribution, is generated to be

correlated with X1,X2,X3,X4 and X5 by

X6 =
1

8
X1 +

1

4
X2 +

1

2
X3 +

1

2
X4 +

1

2
X5 + ηe,

where the constant η =
√

11
8 is used to make X6 have variance 1. The regression

model is

Y = β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + ǫ.

Now X(1) = (X1,X2,X3,X4,X5), X(2) = X6 and it is easy to check that

C21C
−1
11 = (1

8 ,
1
4 ,

1
2 ,

1
2 ,

1
2). Suppose that β1 < 0, β2 < 0, β3 > 0, β4 > 0 and β5 > 0.

It is easy to check that

|C21C
−1
11 (sign(β(1))| =

9

8
> 1,

so, the Irrepresentable Condition does not hold.

In the settings above, a sufficient condition can be given such that the Elastic

net select a consistent model. This condition is a direct consequence of Corollary

3.

In the settings of Example 2, the Elastic Irrepresentable Condition holds if

−(β1 + 2β2) > 4β3 + 4β4 + 4β5 (4.1)

Now let β1 = −4, β2 = −2, β3 = 0.5, β4 = 0.6 and β5 = 0.7. It is easy to

check that inequality (4.1) holds. The Lasso is first used to get the solution path

shown in Figure 4.3 (a) and then the Elastic net is used to get the solution path

shown in Figure 4.3 (b). The figure shows that the Lasso does not select the true

model while the Elastic net does.

Example 3. As reported in Zou and Hastie (2005), when predictors are

highly correlated, the Lasso tends to select only one of these highly correlated

predictors. Especially, when there are two predictors which are the same, theo-

retically, the Lasso can not select both of them. In this example, we will show

that the Elastic net can select both of them and can select the true model. By

this example, we also show that when C11 is not invertible, we can still consider
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Figure 4.3: Lasso and Elastic net solution paths

the consistency of the Elastic net. While the consideration of consistency of the

Lasso needs the assumption that C11 is invertible.

X1,X2, e and ǫ are first generated from a normal distribution with mean 0

and variance 1. Let X3 = X2. X4 is generated to be correlated with X1,X2 and

X3 by

X4 =
2

3
X1 +

1

3
X2 +

1

3
X3 +

1

3
e,

which also has a standard normal distribution. The true linear model is:

Y = −2X1 +X2 +X3 + ǫ.

The Lasso and the Elastic net are applied separately and the solution paths

are shown in Figure 4.4. This figure shows that the Elastic net selects the true

model while the Lasso does not.

Example 4. In this example, we want to illustrate that if p >> n, and EIC

holds, then conditions in Corollary 2 of Theorem 1 guarantee that the Elastic

net can select the true model. In the p > n case, the Lasso selects at most n

variables before it saturates. So if q > n, the Lasso cannot select the true model.

Set q = 50 and p = 52. From the comments after Corollary 2, n is supposed

to grow at a rate faster than q log(p − q), which is equal to 50 × log 2 = 35. So
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Figure 4.4: Lasso and Elastic net solution paths; X2 = X3

here we choose n = 46 which is less than q. The design matrix X is generated

from joint standard normal distribution N(0, Ip×p). Set λ2 = 0.01 and simulate

X, such that X satisfies C21(C11 + λ2

n
)−1 × 1 < 1, where 1 is a column vector

with all entries being 1. Let β = [β(1), β(2)], where β(1) is a q−vector with

all entries being 1 and β(2) is a (p − q)−vector with all entries being 0. Since

C21(C11 + λ2

n
)−1

(
sign(β(1)) + 2λ2

λ1
β(1)

)
= (1 + 2λ2

λ1
)C21(C11 + λ2

n
)−1 × 1, there

exists some λ1 such that EIC holds. The true model is: Y = Xβ+0.04×ǫ. Then

the Elastic net is applied. The solution path is shown in Figure 4.5.

After examining the solution on the path, we find that the solution corre-

sponding to the vertical line in Figure 4.5 recovers exactly the first q non-zero

predictors. Theoretically, the Lasso can select at most n = 46 variables and so

the Lasso does not perform well on this data. After applying the Lasso on this

simulated data, we find that it can only select 45 variables at most.

5. Conclusion

In this paper, we have discussed the ability of the Elastic net to recover the

sparsity pattern of regression coefficients β. EIC is crucial for the Elastic net’s

model selection consistency. In the classical case when p and q are fixed, EIC is
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necessary and sufficient for the Elastic net to consistently select the true model

(Yuan and Lin, 2007). When p and q both grow as n grows, EIC is not sufficient

any more. Some conditions between the relationship of p, q and n are required.

In this paper, for our consistency results, it is required that n grows at a rate

faster than q log(p− q). When p > n, as in Example 4, the Elastic net performs

better than the Lasso.

We compared the ability of the Elastic net to select the true model with that

of the Lasso. EIC is weaker than IC. So, the Elastic net always performs better

than the Lasso in terms of model selection consistency. From Example 2, it can

be seen that when the Lasso can not select the true model, the Elastic net may

select the true model. But we also see that in some situations, neither the Lasso

nor the Elastic net selects the true model (see Example 1). Example 3 is used

to show that when the true predictors are highly correlated, the Lasso does not

select all the highly correlated variables. Yet, the Elastic net can select all of

them.

At last, we propose future directions for this research. From Theorem 1

and its corollaries, the choice of λ2 does not affect the Elastic net’s ability to
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select the true model when EIC hold. This suggests that, in practice, we can

find a suitable λ2 such that the EIC holds before the Elastic net is applied to do

model selection and prediction. In some situations (see Corollary 3), any fixed

λ2 satisfies EIC. But in general, how to choose a suitable λ2 such that EIC holds

should be studied further.
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Appendix: Proofs

Proof of Lemma 1. By standard (KKT) conditions for optimality in

convex program, the point β̂ is optimal if and only if

2XTXβ̂ − 2XTY + 2λ2β̂ + λ1ẑ = 0. (1)

Here

ẑ =

{
sign(β̂i) β̂i 6= 0

any real number which ∈ [−1, 1] β̂i = 0.

Substituting Y by Xβ + ǫ yields:

2XTX(β̂ − β) − 2XT ǫ+ 2λ2β̂ + λ1ẑ = 0. (2)

Since condition R(X,β, ǫ, λ1, λ2) holds if and only if we have

β̂(2) = 0, β̂(1) 6= 0, and ẑ(1) = sign(β(1)), |ẑ(2)| ≤ 1.

From these conditions and using equation (2), we conclude that the condition

R(X,β, ǫ, λ1, λ2) holds if and only if

2XT
(2)X(1)(β̂(1) − β(1)) − 2XT

(2)ǫ = − λ1ẑ(2), (3)

2XT
(1)X(1)(β̂(1) − β(1)) − 2XT

(1)ǫ+ 2λ2β̂(1) = − λ1sign(β(1)). (4)
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By these two equations, we may solve for β̂(1) and ẑ(2) to conclude that

−λ1ẑ(2) = 2XT
(2)X(1)(X

T
(1)X(1) + λ2I)

−1(XT
(1)ǫ−

λ1

2
sign(β(1)) − λ2β(1)) − 2XT

(2)ǫ,

β̂(1) = (XT
(1)X(1) + λ2I)

−1(XT
(1)X(1)β(1) +XT

(1)ǫ−
λ1

2
sign(β(1))).

The conditions β̂(1) 6= 0 and |ẑ(2)| ≤ 1 yield conditions (2.1) and (2.2) re-

spectively. �

Before proving Theorem 1, we state without proof one well-known compari-

son result on Gaussian maxima (see Ledoux and Talagrand, 1991).

Lemma 2. For any Gaussian random vector (X1, . . . ,Xn), we have

E max
1≤i≤n

|Xi| ≤ 3
√

log n max
1≤i≤n

√
EX2

i (5)

Proof of Theorem 1.

1. Analysis of M(V )

Note that Vj is Gaussian with mean

µj = E(Vj) = XT
j X(1)

(
XT

(1)X(1) + λ2I
)−1

(λ1
−→
b + 2λ2β(1)).

Recall that the Elastic Irrepresentable Condition is:
∣∣∣∣X

T
(2)X(1)

(
XT

(1)X(1) + λ2I
)−1

[
sign(β(1)) +

2λ2

λ1
β(1)

]∣∣∣∣ ≤ 1 − ǫ. (6)

By condition (6), |µj | ≤ (1 − η)λ1.

Define Ṽj := 2XT
j

[
I −X(1)

(
XT

(1)X(1) + λ2I
)−1

XT
(1)

]
ǫ, then Vj = µj + Ṽj. Note

M(V ) holds if and only if
maxj∈Sc Vj

λ1
≤ 1 and

minj∈Sc Vj

λ1
≥ −1. Since

maxj∈Sc Vj

λ1
=

maxj∈Sc µj + Ṽj

λ1
≤ (1 − η) +

1

λ1
max

j
Ṽj, and (7)

minj∈Sc Vj

λ1
=

minj∈Sc µj + Ṽj

λ1
≥ −(1 − η) +

1

λ1
min

j
Ṽj, (8)

now we need to show that

P

[
1

λ1
max
j∈Sc

Ṽj > η, or
1

λ1
min
j∈Sc

Ṽj < −η
]
→ 0. (9)
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In fact, it is sufficient to show that P

[
maxj∈Sc |Ṽj |

λ1
> η

]
→ 0. By applying

Markov’s inequality and Gaussian comparison results (5), we have

P

[
maxj∈Sc |Ṽj |

λ1
> η

]
≤ E[maxj∈Sc |Ṽj |]

λ1η
≤ 3

√
log(p− q)

λ1η
max

j

√
E[Ṽ 2

j ]. (10)

Straightforward computation yields that

1

4
E[Ṽ 2

j ] = σ2XT
j

[
I −X(1)

(
XT

(1)X(1) + λ2I
)−1

XT
(1)

]2

Xj

= σ2XT
j

[
I − 2X(1)

(
XT

(1)X(1) + λ2I
)−1

XT
(1)

]
Xj

+ σ2XT
j X(1)

(
XT

(1)X(1) + λ2I
)−1

(XT
(1)X(1))

(
XT

(1)X(1) + λ2I
)−1

XT
(1)Xj

≤ σ2XT
j

[
I − 2X(1)

(
XT

(1)X(1) + λ2I
)−1

XT
(1)

]
Xj

+ σ2XT
j X(1)

(
XT

(1)X(1) + λ2I
)−1

(XT
(1)X(1))

(
XT

(1)X(1) + λ2I
)−1

XT
(1)Xj

+ σ2XT
j X(1)

(
XT

(1)X(1) + λ2I
)−1

λ2I
(
XT

(1)X(1) + λ2I
)−1

XT
(1)Xj

= σ2XT
j

[
I −X(1)

(
XT

(1)X(1) + λ2I
)−1

XT
(1)

]
Xj

≤ σ2XT
j Xj = nσ2.

Put it into inequality (10), we have

P

[
maxj∈Sc |Ṽj |

λ1
> η

]
≤ 6σ

√
n log(p − q)

λ1η
,

so, condition (1) in Theorem 5 guarantees that P

[
maxj∈Sc |Ṽj |

λ1
> η

]
→ 0, and

hence P (M) → 1.

2. Analysis of M(U)

Define Zi = eTi

(
XT

(1)X(1) + λ2I
)−1

XT
(1)ǫ, then

max
i

|Ui| = max
i

|Zi −
1

2
eTi

(
XT

(1)X(1) + λ2I
)−1

λ1
−→
b |

≤ max
i

|Zi| +
1

2
λ1

∥∥∥∥
(
XT

(1)X(1) + λ2I
)−1 −→

b

∥∥∥∥
∞
.
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Note Zi is Gaussian with mean 0 and variance

var(Zi) = σ2eTi

(
XT

(1)X(1) + λ2I
)−1

(XT
(1)X(1))

(
XT

(1)X(1) + λ2I
)−1

ei

≤ σ2eTi

(
XT

(1)X(1) + λ2I
)−1

ei

≤ σ2

nCmin

So by standard Gaussian comparison theorem (5), we have

E[max
i

|Zi|] ≤ 3

√
σ2 log q

nCmin

.

1 − P

[∣∣∣∣
(
XT

(1)X(1) + λ2I
)−1

[
XT

(1)X(1)β(1) +XT
(1)ǫ−

λ1

2
sign(β(1))

]∣∣∣∣ > 0

]

≤ P

[
max

i
|Ui| ≥ ρ

]

≤ P

[
1

ρ

{
max

i
|Zi| +

1

2
λ1

∥∥∥∥
(
XT

(1)X(1) + λ2I
)−1 −→

b

∥∥∥∥
∞

}
≥ 1

]

≤ 1

ρ

{
E

[
max

i
|Zi|
]

+
1

2
λ1

∥∥∥∥
(
XT

(1)X(1) + λ2I
)−1 −→

b

∥∥∥∥
∞

}

≤ 1

ρ



3

√
σ2 log q

nCmin
+

1

2
λ1

∥∥∥∥
(
XT

(1)X(1) + λ2I
)−1 −→

b

∥∥∥∥
∞



 .

So, condition (2) in Theorem 1 guarantees that P (M) → 1. �
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