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Abstract

This thesis investigates applications of multi-reference frame image registration

for image sets with various translation, rotation, and scale combinations. It focuses

on registration accuracy improvement over traditional pairwise registration, and also

compares the quality of scene estimation from frame averaging. Three experiments are

developed which use cross-correlation to estimate translation, the Radon transform

to estimate translation and rotation, and the Fourier-Mellin transform to estimate

translation, rotation, and scale. Results from applying multi-reference frame registra-

tion in these experiments show distinct improvements in both registration accuracy

and quality of frame averaging compared to single-reference frame registration. Fur-

thermore, it is shown that the new registration technique is equivalent to the optimal

Gauss-Markov estimator of the relative shifts given all pairwise shifts.
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Multi-Reference Frame Image Registration

for Rotation, Translation, and Scale

I. Introduction

Multiple images of a target or scene captured from a single sensor, are generally

distorted from one image to the next. The severity and type of distortion

directly depend on the sensor, target, and information acquired. The term “image”

commonly refers to capturing information of a specific target or scene using the visible

range of the electromagnetic spectrum or light. However, other forms of information

could be gathered and simply converted to a visual representation. Virtually anything

with varying magnitude can be mapped to a range of colors, such as infrared radiation

for thermal imaging or sound waves for ultrasound imaging.

The term “image” should be more loosely defined as any visual representation

of information. The information gathered could also have several dimensions of visual

significance, as in hyperspectral imaging. Hyperspectral imaging is a fairly new field

of imaging science, but as the name suggests, it contains many dimensions of infor-

mation, and there could be several hundred dimensions of data. The distortions for

a hyperspectral image could be completely different than the distortions in an image

of visible light.

To maintain generality, this thesis refers to an image as any two-dimensional (2-

D) visual representation of information taken from a single sensor and analyzes only

linear geometric distortions, specifically translation, rotation, and scale and combi-

nations thereof. These distortions mostly stem from a simple principle: unless the

sensor and target are completely stationary, the act of repeatedly capturing images

introduces relative random distortion.
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1.1 Geometric Image Distortion

For images captured at a relatively fast rate, the distortions are most likely

caused by spatial changes. Even if the images are captured quickly, there could still

be temporal changes that cause relative distortion between images.

Relative translative distortion is present in any set of images that are captured

from non-stationary sensors or targets. A familiar example involves the simple act of

a person photographing multiple pictures of the same object. Random shaking of the

hand causes small differences in where the camera is pointing. The images collected

from the photographs also have rotational distortions because as the photographer

pushes the button to take a picture the camera tilts and twists slightly, introducing

random relative rotation. Any non-stationary sensor could introduce translative or

rotational distortion when capturing multiple images.

For images with significant differences in scaling, the sensor could be moving

relative to the target or vice versa. For example, an airborne sensor may introduce

relative scaling. If a sensor is mounted on a airborne platform that is flying towards a

target, each successive capture of the target is at time when the platform is actually

closer to the target. This discrepancy in distance from one capture to next results

in relative scaling. The airborne sensor undoubtedly has translational and rotational

distortion to some degree. It is difficult to completely stabilize a sensor, especially if

it is mounted to a mobile platform.

Distorted images are not only caused by sensors or even targets; distortion may

be independent of the sensor. The image may also be distorted by some form of post

processing or intentional manipulation, such as encryption or digital watermarking [1].

The foregoing is not an exhaustive account of the causes of distortion: the focus here

is not the cause of geometric distortion but rather correcting the effects of distortion.

1.1.1 Mathematical Models. Each distortion or combinations of distortions

can be modeled mathematically. Let f(x, y) be a 2-D image. A 2-D image fτ (x, y)

2



(a) f(x, y)
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(b) fτ (x, y)

Figure 1.1: Convention for the model of an image translated by [τx, τy].

translated by the vector [τx, τy] is

fτ (x, y) = f(x− τx, y − τy), (1.1)

where τx is the horizontal translation and τy is the vertical translation, as in Figure 1.1.

We assume that an image can only be translated half as much as its width in any

dimension otherwise, the translated image would have more new information than

information that is in common with the original image f(x, y). A 2-D image fφ(x, y)

rotated counter-clockwise about its origin by an angle φ is

fφ(x, y) = f(x cos φ + y sin φ, y cos φ− x sin φ), (1.2)

where φ ∈ [0, 2π], as in Figure 1.2. Finally, an image fβ(x, y) scaled by a positive

factor of β is

fβ(x, y) = f(βx, βy). (1.3)

If β > 1 then fβ(x, y) is smaller than f(x, y). Conversely, if β < 1 then fβ(x, y) is

larger than f(x, y).
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(a) f(x, y)

 

(b) fφ(x, y)

Figure 1.2: Convention for the model of an image rotated by φ.

Mathematical models of combinations of distortions are more complicated be-

cause the order of distortions can change the model, e.g., there is a difference in the

model for an image that is first translated and then rotated versus an image that is

first rotated and then translated. An image translated by the vector [τx, τy] and then

rotated by φ is

fτ,φ(x, y) = f((x− τx) cos φ + (y − τy) sin φ,−(x− τx) sin φ + (y − τy) cos φ), (1.4)

where as an image rotated by φ and then translation by the vector [τx, τy] is

fφ,τ (x, y) = f(x cos φ + y sin φ− τx,−x sin φ + y cos φ− τy). (1.5)

These two models result in different images when the same [τx, τy] and φ are used, as

in Figure 1.3. The order of distortions is denoted by the order of the indices of f . For

example, an image translated and then rotated is denoted fτ,φ(x, y), and an image

rotated and then translated image is denoted fφ,τ (x, y).

4



(a) fφ,τ (x, y) (b) fτ,φ(x, y)

(c) fφ,τ (x, y) & fτ,φ(x, y)

Figure 1.3: Illustration showing the difference between models for an image that
is translated and then rotated, fτ,φ(x, y), versus an image that is rotated and then
translated, fφ,τ (x, y). Each model has the same values for [τx, τy] and φ and are
overlayed to highlight the differences.
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There are six combinations of translation, rotation, and scale. The models for

all six combinations are

fβ,τ,φ(x, y) = f((βx− τx) cos φ + (βy − τy) sin φ,−(βx− τx) sin φ + (βy − τy) cos φ)

(1.6)

fβ,φ,τ (x, y) = f(βx cos φ + βy sin φ− τx,−βx sin φ + βy cos φ− τy) (1.7)

fτ,β,φ(x, y) = f(β(x− τx) cos φ + β(y − τy) sin φ,−β(x− τx) sin φ + β(y − τy) cos φ)

(1.8)

fτ,φ,β(x, y) = f(β[(x− τx) cos φ + (y − τy) sin φ], β[−(x− τx) sin φ + (y − τy) cos φ])

(1.9)

fφ,β,τ (x, y) = f(β[x cos φ + y sin φ]− τx, β[−x sin φ + y cos φ]− τy) (1.10)

fφ,τ,β(x, y) = f(β[x cos φ + y sin φ− τx], β[−x sin φ + y cos φ− τy]) (1.11)

Note that fτ,β,φ(x, y) = fτ,φ,β(x, y). Aside from the obvious mathematical differences

the models are essentially the same they each model an image that has been translated,

rotated, and scaled.

1.2 Image Registration and Applications

It is useful to compare a data set of multiple images of the same target in order

to gather more information than a single image can provide. The relative distor-

tions between images could inhibit proper comparison or processing of the images

and, in turn, adversely affect analysis and conclusions. Image registration determines

parameters of the geometric distortion(s) relating two images and then removes them.

Frame averaging is a common technique that uses registration to average a set

of commonly aligned images; it is a primary focus of this thesis. If the distortions

are not removed, then the average of the image could produce a worse composite

image. The goal of frame averaging is to generate an image with more detail. Image

registration can also be used to stabilize video. It is difficult to extract valuable

6



information from video that is unstable or shaky, and human perception is sensitive

to such instabilities. Image matching is another technique that uses image registration

to determine the presence of a known object or to determine if a set of images contain

the same object. If the object in a set of images is distorted, it could be difficult to

determine if each image contains the same object. Image matching is commonly used

in digital watermarking to determine if a pair of images contain a known watermark,

but often the watermark is distorted and, therefore, image registration is needed to

properly match the images.

Traditionally, image registration is performed using a single reference image to

which all other images are compared. This procedure results in registration estimates

that are inherently biased to the reference image. Also, there is information in the

data that is not used. A registration technique is needed that is unbiased and utilizes

all available information. Multi-reference frame image registration has exactly this

function [2].

1.3 Research Objective

The objective of this thesis is to further investigate the work of Bruckart [2]

in the area of multi-reference frame image registration by expanding its applications

to include not only translation but also rotation and scale. This research focuses on

multi-reference frame registration accuracy improvements over traditional registra-

tion and its implications, while also comparing the quality of scene estimation from

frame averaging. The results will demonstrate the advantages of multi-reference frame

registration and its possible applications. To accomplish this objective, several exper-

iments are developed that use combinations of geometric distortions and that apply

different registration algorithms to estimate distortions. The aim of this research is

to compare the performance of the multi-reference and single reference frame regis-

trations methods and the quality of their respective frame averaging processes.

7



1.4 Resources

All coding of registration algorithms and post-processing of results are per-

formed using Matlabr version 7.4.0287 (R2007a) on a dual processor Intel Zeon 3.6

Ghz with 3 GB of memory using Windows XP Service Pack 2. All simulations are

performed using Matlabr version 7.1.0.183 (R14) Service Pack 3 on a Linux High

Performance Computing (HPC) cluster, which has 64 nodes (64 bit) and 128 Opteron

248 2.2 GHz CPUs with 4 GB of memory per CPU.
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II. Review of Registration Techniques

A majority of the literature on image registration is based on a single reference

frame approach where one frame, the reference image, is compared or matched

to another frame, the secondary image. Image registration for a set of frames is

performed by repeating this process for different secondary images, using the same

reference image, hence the name “single reference frame method”. When only one

reference image is used, registration estimates are biased to the reference image. If

this image is heavily corrupted by noise or other interference, the results of the regis-

tration are inaccurate. However, under most circumstances the single reference frame

approach works well and is computationally less taxing than a multi-reference frame

approach.

2.1 Single Reference Frame Image Registration

One common and effective single reference frame technique for image registra-

tion is based on the 2-D cross-correlation [3]. The cross-correlation technique requires

complicated calculations when the geometric transforms between the two images in-

clude rotation and scaling. Another technique uses moments and moment invariants

for image matching. Moments are sensitive to noise, moment invariants have limited

discriminating power, and high-order moments require extensive computations [4].

Image matching using symmetric phase-only matched filters (SPOMF) have been

shown to be computationally efficient, to be robust against noise, and to have high

discriminating power (sharpness in correlation peak), but they are sensitive to varia-

tion in rotation and scale [5] [6].

Ideally, techniques are needed that are invariant to some of the geometric trans-

forms relating two images, thus reducing complexity and dimensionality. An invariant

technique, if applied to a distorted image, results in an output that is equivalent to

the undistorted input image, assuming that the technique is invariant for the spe-

cific distortions of the image. One such technique is the Fourier-Mellin transform

(FMT) [1] [7]. The FMT is invariant to translation, rotation, and scale, making it

9



an ideal image matching technique. Another such technique is the Radon Transform

(RT) [8] [9] [10] [11]. This thesis focuses on registration using cross-correlation, FMT,

and RT.

2.1.1 Cross-Correlation. Cross-correlation is commonly used in many signal

processing applications such as image registration and pattern recognition. It mea-

sures the similarity in shape of two signals. The un-normalized cross-correlation of

two discrete vectors g(n) and h(n) both of size N is

c(m){g, h} =





m∑
n=1

g(n)h∗(n + (N −m)), 1 ≤ m ≤ N

2N−m∑
n=1

g(n + (m−N))h∗(n), N + 1 ≤ m ≤ 2N − 1.

(2.1)

If one vector is shorter than the other, then the shortest is zero padded to the length

of the other vector. Cross-correlation computes a sum of the product of the two

vectors for all possible combinations of overlap. The location of the maximum of the

cross-correlation can be used to estimate the translation between two vectors.

If the cross-correlation is used for estimating translation between two discrete

vectors and a reasonable estimation for the maximum possible translation in either

direction, τ̂max, is known, then the cross-correlation can be modified to possibly in-

crease accuracy. Using one vector as a reference vector, the non-reference vector is

windowed by removing samples from the ends, where the amount removed depends

on the estimated maximum possible translation. For example, if the two vectors are

128 samples and the estimated maximum shift is τ̂max = 10 samples, then 10 samples

are removed from each end of the non-reference vector, resulting in a reference vector

with 128 samples and another vector of 108 samples.

Here equation (2.1) does not apply because the shorter vector should not be

zero padded and partial overlaps should not be calculated. Not calculating partial

overlap has the added benefit of reducing the number of computations required to

10



perform the correlation. The windowed cross-correlation of two discrete vectors g(n)

and h(p) of size N and P , respectively, is

cwin(m){g, h} =
N∑

n=1

g(n)h∗(n + m− 1), 1 ≤ m ≤ 2τ̂max + 1, (2.2)

where N = P − 2τ̂max and N ≥ 4τ̂max. The computations of the windowed cross-

correlation is reduced to 2τ̂max + 1 compared to the 2N − 1 computations of equa-

tion (2.1).

To possibly even further improve the performance of cross-correlation for esti-

mating translation between vectors, the vectors can be normalized. There are many

ways to normalize vectors, but the focus focus here is on normalizing by the power of

each vector. The vector g normalized by its power is

ǧ =
g√
〈g, g〉 , (2.3)

where 〈g, g〉 is the inner product of g with itself. Applying normalization to equa-

tion (2.2), results in the normalized, windowed cross-correlation

cnorm
win (m){g, h} =

N∑
n=1

ǧ(n)ȟ∗(n + m− 1), 1 ≤ m ≤ 2τ̂max + 1. (2.4)

The term normalized, windowed cross-correlation is misleading because it is not the

cross-correlation that is normalized but rather the vectors being correlated.

Cross-covariance is similar to cross-correlation except that cross-covariance uses

mean-removed vectors. The un-normalized cross-covariance of two discrete vectors

11



g(n) and h(n) both of size N is

v(m){g, h} =





m∑
n=1

(g(n)− µg)(h
∗(n + (N −m))− µh) 1 ≤ m ≤ N

2N−m∑
n=1

(g(n + (m−N))− µg)(h
∗(n)− µh) N + 1 ≤ m ≤ 2N − 1,

(2.5)

where µg and µh are the means of g(n) and h(n), respectively. The terms cross-

correlation and cross-covariance are often used interchangeably despite their distinct

differences. The same normalization and windowing used for cross-correlation can be

applied to the cross-covariance to possibly achieve better performance.

Until now, all cross-correlations discussed here have used vectors, but cross-

correlation can also apply to 2-D functions, such as images. Equations (2.1), (2.2),

and (2.4) can be expanded to the 2-D case, but would require drastically more compu-

tations. To resolve this computational complexity issue, the spectral implementation

of the cross-correlation can be used. Let g and h be digital images and let GF and

HF be their discrete Fourier transforms (DFT), respectively. The spectral implemen-

tation of the cross-correlation is the inverse DFT of the cross-power spectrum of g

and h:

C{g, h} = F−1{GF (HF )∗}, (2.6)

where F−1 is the inverse DFT and GF (HF )∗ is the cross-power spectrum of g and h.

The DFT and inverse DFT are fast implementations of the Fourier transform (FT)

and, therefore, are an ideal choice for 2-D cross-correlation.

2.1.2 Phase Correlation. One special case of the spectral implementation

of the cross-correlation is called phase correlation [3]. As its name implies, phase

correlation measures the correlation between two images using the phase of the FT.

To extract the phase from g and h, the cross-power spectrum is normalized by its

magnitude

p{g, h} =
GF (HF )∗

|GF (HF )∗| . (2.7)
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Phase correlation is the inverse FT of the normalized cross-power spectrum

P{g, h} = F−1{p}, (2.8)

which is equivalent to the normalized spectral implementation of the cross-correlation

Cnorm{g, h} = F−1

{
GF (HF )∗

|GF (HF )∗|
}

= P{g, h}. (2.9)

Relative translative movement between g and h can also be estimated using the loca-

tion of the maximum of the phase correlation.

2.1.3 Radon Transform. The RT recently received attention for use in a

wide range of applications, one of which is image registration. There are several

definitions of the RT, all of which are related. The Radon transform HR(r, θ) for a 2-

D continuous function h(x, y) is found by computing line integrals along h, where the

lines are defined by their perpendicular distance from the origin, r, and the angle that

r makes with the horizontal axis, θ, as in Figure 2.1. The RT of a two-dimensional

function h(x, y) is

R{h(x, y)} =

∫ ∫
h(x, y)δ(r − x cos θ + y sin θ)dxdy = HR(r, θ). (2.10)

For discrete applications such as digital image registration, the line integrals in equa-

tion (2.10) are replaced by projections, and interpolation is required because the

projections do not always pass through the centers of pixels. There are many al-

gorithms to compute the discrete RT. Here, the discrete RT is computed using the

Matlabr command radon, as in Figure 2.2. An example of the discrete RT is shown

in Figure 2.3.

The power of the RT for image registration comes from its unique properties

with respect to rotation, translation, and scale. The 2-D image fφ(x, y), as shown in
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Figure 2.1: Illustration of the continuous RT. The line integrals across h, shown
as dotted lines, are defined by their distance along r and the angle r makes with the
x-axis, θ. The origin for the RT is the same as the origin of the the function h(x, y).
The result of the RT for θ = 45◦ is also shown. This figure is adapted from [8].
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Figure 2.2: The discrete RT of an image is the sum of RTs of each individual pixel.
The radon command divides each pixel in the image into four subpixels, each with
the same value as the original pixel, and projects each subpixel separately. Each
subpixels contribution is proportionally split into the two nearest bins according to
the distance between the projected location and the bin centers. If the subpixel
projection intersects the center of a bin, the bin has the full value of the subpixel. If
the subpixel projection intersects the border between two bins, the subpixel value is
divided evenly between bins. The origin of the RT and the image axes is the center
pixel of the image. This figure and description is adapted from the Matlabr help
document for the radon command.
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Figure 2.3: The RT of the digital image f(x, y). Also shown is the discrete RT for
θ = 45◦. Note the similarity to Figure 2.1.
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equation (1.2), can be represented by its RT as

R{fφ(x, y)} = FR(r, θ − φ) = FR
φ (r, θ). (2.11)

This equation shows that a rotation of an image corresponds to a translation of the an-

gular variable of the RT [8], as in Figure 2.4. The image fτ (x, y), as in equation (1.1),

can be represented by its RT as

R{fτ (x, y)} = FR(r − τx cos θ + τy sin θ, θ) = FR
τ (r, θ). (2.12)

Therefore, translating an image corresponds to a translation of the spatial variable of

the RT by an amount that depends on both the image translation, [τx, τy], and the

angular variable, θ, as in Figure 2.5.

However, for a given θ the RT of a translated image is translated along the spatial

variable. Certain choices of θ lead to direct estimation of [τx, τy], as in Figure 2.6.

The RT of fτ (x, y) evaluated for θ = 0 is

FR
τ (r, θ = 0) = FR(r − τx cos(0) + τy sin(0), 0)

= FR(r − τx, 0).
(2.13)

This choice of θ eliminates the effect of vertical translation. Therefore, the vector

R{fτ (x, y)} for θ = 0 is translated along the spatial domain by τx relative to the

vector R{f(x, y)} for θ = 0.

The RT of fτ (x, y) evaluated for θ = 90◦ is

FR
τ (r, θ = 90◦) = FR(r − τx cos(90◦) + τy sin(90◦), 90◦)

= FR(r + τy, 90◦).
(2.14)

This choice of θ eliminates the effect of horizontal translation. Therefore, the vec-

tor R{fτ (x, y)} for θ = 90◦ is translated along the spatial domain by τy relative to

the vector R{f(x, y)} for θ = 90◦. The translations τx and τy can be directly ex-
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Figure 2.4: The RT of the digital image f(x, y) and the rotated digital image
fφ(x, y) displayed together for visual comparison. The rotated image is by 25 degrees.
Note that the RT of the rotated image is by shifted φ = 25◦ relative to the original
image.
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tracted using the location of the maximum of the cross-correlation of R{f(x, y)} and

R{fτ (x, y)} for θ = 0◦ and 90◦, respectively.

Lastly, the image fβ(x, y) can be represented by its RT as

R{fβ(x, y)} =
1

β
FR(βr, θ) = FR

β (r, θ). (2.15)

Scaling an image corresponds to scaling the spatial variable of the RT and scaling

the intensity values [8]. The combination of these properties make the RT a powerful

technique for image registration.

2.1.4 The Fourier-Mellin Transform. The FMT is an application of the

shifting property of the FT combined with a log-polar coordinate mapping. The

shifting property of the FT states that a spatial shift, τo, corresponds to a linear

phase change in the spectral domain [12]

F{f(x− τo)} = F (ejw)e−jwτo . (2.16)

The magnitude of the FT of the f(x− τo) is

|F{f(x− τo)}| = |F (ejw)e−jwτo | = F (ejw) = F{f(x)}. (2.17)

Therefore, the magnitude of the FT is translation invariant.

This same property can be applied to both rotation and scaling if log-polar co-

ordinate mapping is used. Using a point (x, y) in the real-valued Cartesian coordinate

plane, the log-polar mapping is

x = eµ cos(θ), (2.18)

y = eµ sin(θ), (2.19)
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Figure 2.5: The RT of the digital image f(x, y) and the same image translated by
τx = 10 pixels and τy = 5 pixels, fτ (x, y), displayed together for visual comparison.
The RT of the translated image is warped along the r axis relative to the RT of the
original image.
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Figure 2.6: The RT the original image f(x, y) and the translated image fτ (x, y) for
specific values of θ, showing that τx and τy can be estimated from their RTs.
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where eµ ∈ < is the scaling factor and θ ∈ [0, 2π) is the rotation angle. For every

µ and θ there is a unique point in the Cartesian plane. A change in rotation or

scale of an image corresponds to a translation of θ or µ, respectively. Therefore, the

magnitude of the FT of the log-polar mapping is rotation and scaling invariant [1] in

accordance with equation (2.17).

The FMT is the FT of the log-polar mapping of the magnitude of the FT of a

function, as shown in Figure 2.7. The FMT of a 2-D function h(x, y) is

M{h(x, y)} = F{HF (µ, θ)} = HM(u, v), (2.20)

where HF (µ, θ) is the log-polar mapping of the magnitude of the FT of h(x, y). The

magnitude of the FT of h(x, y) is not represented directly in equation (2.20) but is

implicit. The FMT is invariant to translation because it uses the magnitude of the

FT of h(x, y), which is translation invariant as described above.

The magnitude of the FMT is invariant to both rotation and scale. The FMT

of the image fτ,β,φ(x, y), (see equation (1.8)), which is translated by the vector [τx, τy],

scaled by β, and rotated by φ, is

M{fτ,β,φ(x, y)} = FM(u, v)e−ju ln βe−jvφ = FM
τ,β,φ(u, v) (2.21)

and its magnitude is

|FM
τ,β,φ(u, v)| = |FM(u, v)e−ju ln βe−jvφ| = FM(u, v). (2.22)

Therefore, rotation and scaling of an image result in linear phase shifts in the FMT.

Notice that translation does not appear in the FMT and that neither rotation nor

scale appear in the magnitude of the FMT, thus showing that the FMT is invariant

to translation, rotation, and scale.
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Figure 2.7: Flow chart for computing the FMT for the 2-D function h(x, y).

2.2 Multi-Reference Frame Image Registration

Multi-reference frame image registration aims to minimize or eliminate image

biasing and to be more robust in noisy environments than traditional single reference

frame registration. A multi-reference frame image registration technique for esti-

mating translational shifts uses the location of the maximum of the two-dimensional

cross-correlation as the initial estimator. The initial estimator is the single refer-

ence frame registration technique used to estimate the relative distortion between all

combinations of two images [2].

An initial reference image is chosen, and all images in the set of N images

are compared to the reference image to obtain relative distortion estimates. Each

reference image results in a different set of distortion estimations, as in Figure 2.8.

This procedure is repeated for all images in the set using a different reference im-

age each time. To ensure comparable distortion estimates, each collection of relative

estimates from a particular reference image are normalized to zero mean. Final dis-

tortion estimates are made by averaging the relative distortion estimates with respect
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(c) Frame 2 Reference
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Figure 2.8: The result of distortion estimation using different reference frames. The
estimations are made from 5 frames that have random translative distortion.

to dimensionality and reference frame, as in Figure 2.9. This averaging requires N2

estimations, which implies significantly more calculations then single reference frame

registration [2].

The process is applied with a model using a N ×N matrix with each element of

the matrix corresponding to one distortion estimation. Let Ω̂{i, j} be the estimation

of some distortion between image i and image j. The matrix of multi-reference frame
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Figure 2.9: The overlapped results of translation estimation using each image as
a reference. This figure highlights the differences in estimation when using different
reference frames. Multi-frame registration combines all data to compute the distortion
estimation by averaging the cluster of estimations. The means of the clusters are the
final distortion estimates for a given frame.
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estimations is

Ω̂ =




Ω̂{1, 1} Ω̂{1, 2} · · · Ω̂{1, N}
Ω̂{2, 1} Ω̂{2, 2} Ω̂{2, N}

...
. . .

...

Ω̂{N, 1} Ω̂{N, 2} · · · Ω̂{N, N}




. (2.23)

Simplifications can be made using symmetry. Specifically, the distortion between an

image and itself is zero or one,

Ω̂{i, i} = 0 or 1. (2.24)

The distortion is zero for translation or rotation, and one for scaling. Also, switching

the reference frame with the frame to be registered results in the same distortion

estimate only negated or inverted,

Ω̂{i, j} = −Ω̂{j, i} or
1

Ω̂{j, i} . (2.25)

The estimate is negated for translation or rotation, and inverted for scaling. These

simplifications reduce the number of estimations to (N2 − N)/2. and reduce equa-

tion (2.23) to

Ω̂ =




0 Ω̂{1, 2} · · · Ω̂{1, N}
−Ω̂{1, 2} 0 Ω̂{2, N}

...
. . .

...

−Ω̂{1, N} −Ω̂{2, N} · · · 0




or

=




1 Ω̂{1, 2} · · · Ω̂{1, N}
1

Ω̂{1,2} 1 Ω̂{2, N}
...

. . .
...

1

Ω̂{1,N}
1

Ω̂{2,N} · · · 1




.

(2.26)
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Another consequence of these simplifications is that the initial distortion estimates do

not need to be normalized because the sum of all values in each matrix is zero. The

final vector of distortion estimates is calculated by averaging the columns or rows of

the matrix of multi-reference frame estimations [2]:

Ω̂M(m) =

N∑
n=1

Ω̂(m,n)

N
, ∀m ∈ {1, 2, . . . , N}. (2.27)

This multi-reference frame registration method is independent of the distortion

model and can account for prior knowledge of the distortion by using a different initial

estimator. Multi-frame registration is an unbiased estimator if the initial estimator

used is unbiased. It is shown that the multi-reference frame registration for shift

estimation (using cross-correlation as the initial estimator) performs better than single

reference frame cross-correlation [2].

2.2.1 Optimal Gauss-Markov Estimator. The new multi-reference frame es-

timation technique is equivalent to the optimal Gauss-Markov estimator for distortion

estimation, as in [13]. In [13], the Gauss-Markov estimator is used for time difference

of arrival estimation in radio navigation given all pairwise estimations of delay. The

Gauss-Markov estimate for the vector, D, of N − 1 true distortions relative to the

first image is

D̂ = [AT P−1
E A]−1AT DM , (2.28)

where

D{1, k} = [Ω{1, k}]T , for k ∈ {2, . . . , N}, (2.29)

DM is the vector of (N2 −N)/2 distortion estimates for all N images taken two at a

time or

DM{i, j} = [Ω̂{1, 2}, Ω̂{1, 3}, · · · , Ω̂{1, N}, Ω̂{2, 3}, · · · , Ω̂{N − 1, N}]T , (2.30)
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PE is the normalized error covariance of the distortion estimates which for independent

and identically distributed estimates is equal to the identity matrix of size (N2−N)/2

or

A = δ{j, k} − δ{i, k}, (2.31)

and δ is the Kronecker delta function

δ{i, j} =





1, for i = j

0, for i 6= j



 . (2.32)

Using the multi-frame estimates, Ω̂M , it can be shown that the Gauss-Markov esti-

mator is equal to the multi-frame estimates with respect to the first image

D̂ = Ω̂M(1)−




Ω̂M(2)
...

Ω̂M(N)


 . (2.33)

Appendix A provides an example of the calculations that lead to the result in equa-

tion (2.33).

28



III. Experimental Research Methodology

The basic methodology for the experiments developed in this thesis involves single

and multi-reference frame registration using a set of N images. Here, single

reference frame registration is also called the single frame method, and multi-reference

frame registration is also called the multi-frame method. The set of N images are

multiple images of a true object taken at different times and/or perspectives, which

results in relative geometric distortions of translation, rotation, and/or scale. The

final results of registration are estimates of the relative distortions and an estimate of

the true object or scene for both the single and multi-frame methods. The goal is to

compare the quality of the scene estimate and the performance of the methods used

for image registration.

Comparisons of the single and multi-frame methods are made for different com-

binations of geometric distortions using appropriate registration algorithms to es-

timate and remove the distortions. The first experiment, focuses on data that has

relative translation and uses cross-correlation to register the data as in [2]. The second

experiment, uses data distorted translationally and rotationally and registered using

the RT and cross-correlation. The last experiment, uses images translated, rotated

and scaled, and registered using the FMT and phase correlation. For each experiment

a simulated data set is used for comparing the performance of single and multi-frame

registration.

3.1 Simulated Experiment Setup

Simulated data is used to compare the single and multi-frame methods. Initially,

an over-sampled image (1024 by 1024 pixels) is converted to a grayscale image, I(x, y),

with magnitude values from 0 to 255. The grayscale image is randomly distorted

N times using a mathematical model, found in section 1.1.1, to simulate geometric

distortions from capturing multiple images of the same object. This procedure results

in N images that are randomly distorted relative to a true image, IΩ(x, y, n), and

a vector of the true distortion, Ω(n). The grayscale undistorted image is the true
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image. Next, Gaussian white noise is added to all images. Interpolation is required to

simulate rotation and scale. Also, to correct/remove rotation or scale interpolation is

required, although this need is not unique to simulated data. The same interpolation

techniques are used for the single and multi-frame methods.

Thus the simulated data consists of N distorted, noisy images and one undis-

torted, noiseless image (the true image). An unrealistic limitation of simulated data

is that translation can only be an integer number of pixels unless computationally

intense interpolation is used. In reality, multiple images of the same target has non-

integer pixel shifts between frames. To account for sub-pixel shifts, the simulated

data is downsampled. Downsampling also has the benefit of reducing the computa-

tional time needed for registration. Downsampling yields the final simulated data,

fΩ(x, y, n) + n(x, y, n), consisting of N noisy images that are randomly and realisti-

cally distorted between frames and one undistorted, noiseless image, f(x, y), (the true

image), all of which are 256 by 256 pixels.

The simulated data is registered using single and multi-frame methods. The

results of registration are distortion estimates, Ω̂(n), and a scene estimate, f̂(x, y).

The root mean square error (RMSE) of the distortion estimates is computed and

the signal-to-noise ratio (SNR) of the scene estimate is computed. The SNR and

the RMSE provide a comparison of the performance of the single and mutli-frame

registration methods. Figure 3.1 provides a flow of the methodology used for the

simulated experiments.

3.1.1 Metrics. Appropriate metrics are required to compare the multi-frame

and single frame methods for the simulated experiments. The SNR is a popular image

quality metric; it is the ratio of signal power to noise power. The SNR of the true
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image, f(x, y), and its estimate, f̂(x, y), is

SNR(f, f̂) =

N∑
n=1

M∑
m=1

[
f(n,m)− 1

RS

R∑
r=1

S∑
s=1

f(r, s)

]2

N∑
n=1

M∑
m=1

[
f̂(n,m)− f(n,m)

]2
. (3.1)

The scene estimate, f̂(x, y), is the result of averaging the N images that are commonly

aligned using the distortion estimates, Ω̂(n). However, the scene estimates and the

true image are not commonly aligned and, therefore, the scene estimates are registered

and aligned to the true image before calculating the SNR.

The RMSE is a standard metric for measuring registration accuracy. For the

simulated data, the geometric distortions are artificially applied to the images, and,

therefore, the true values are known. The distortion estimates from the two methods

can be compared with the known, true distortion values when using simulated data.

The distortion estimates from the two methods cannot be directly compared

to the true distortion values because the true values and estimated values have a

different reference point from which they are measured. Therefore, the differences of

true and estimated values are used to compute the error. A difference matrix for the

true distortion, Ω(n), is computed, where each element corresponds to a difference

between distortion values,

∆Ω =




Ω(1)− Ω(1) · · · Ω(1)− Ω(N)
...

. . .
...

Ω(N)− Ω(1) · · · Ω(N)− Ω(N)


 , (3.2)

and similarly for the estimates, ∆Ω̂. These matrices are compared using the RMSE.

The RMSE between the known distortion differences, ∆Ω, and the estimated distor-
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tion differences, ∆Ω̂, is

RMSE (∆Ω, ∆Ω̂) =

√√√√√√
N∑

n=1

N∑
m=1

(∆Ω(n,m)−∆Ω̂(n,m))2

N2
. (3.3)

However, the distortion differences have zeros along the diagonal, which creates a

bias in the RMSE. To remove this bias, the zeros along the diagonal of the difference

matrix are not used in the calculation of the RMSE leaving only N(N−1) calculations

and resulting in a new RMSE

RMSE (∆Ω, ∆Ω̂) =

√√√√√√√√

N∑
n=1

N∑
m=1
m6=n

(∆Ω(n, m)−∆Ω̂(n,m))2

N(N − 1)
. (3.4)

Also, the error is calculated using (N − 1)2 more calculations then needed because

the vector of N estimates is used to create a matrix of N2 estimates . Therefore, the

actual RMSE is calculated using
√

N(N−1)
(N−1)2

RMSE or
√

N
(N−1)

RMSE. The RMSE of the

distortion estimates is

RMSE (∆Ω, ∆Ω̂) =

√√√√√
N∑

n=1

N∑
m=1
m6=n

(∆Ω(n, m)−∆Ω̂(n,m))2

(N − 1)
. (3.5)

3.2 Experiment for Translative Distortion

This section further develops the work of Bruckart [2] in the area of multi-frame

image registration for translation only.

The methodology for the experiment for translation applies the spectral im-

plementation of the 2-D cross correlation, equation (2.6). The model fτ (x, y), as in

equation (1.1), is used to simulate the translative distortion. The translation [τx, τy]

32



Estimate Distortions 

Using Multi-Frame 

Method

Align Images 

and Average

Align Scene Estimates to 

True Image and 

Calculate SNR

Calculate RMSE of 

Difference Matrix

),(ˆ yxf i

),,(),,( nyxnnyxf +
Ω

)(ˆ niΩ

),( yxI

)(nΩ

),( yxf

)ˆ,( iRMSE
��

∆∆

)ˆ,( iffSNR

Randomly Distort N times 

using Mathematical Model

Downsample and 

Add Noise

),,( nyxI
Ω

Estimate Distortions 

Using Single Frame 

Method

1=i 2=i

Figure 3.1: Process flow in the simulated experiments for analyzing the perfor-
mance of single and multi-frame image registration methods. The chart outlines the
process of using an oversampled gray scale image, I(x, y), to create a simulated data
set of randomly distorted images and to register them using single and multi-frame
registration methods.
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10

5

Figure 3.2: The 2-D cross correlation of the image f(x, y), Figure 2.3(a), and the
same image translated by τx = 10 pixels and τy = 5 pixels, fτ (x, y). The location of
the maximum is indicated by the labelled markers, which correspond to the estimates
τ̂x and τ̂y, in accordance with equation (3.6).

is estimated from the location of the maximum of the cross-correlation of f(x, y) and

fτ (x, y)

[τ̂x, τ̂y] = arg max
x,y

C{f(x, y), fτ (x, y)}, (3.6)

as in Figure 3.2. After the estimates for translation are computed, the distortion can

be removed. Once the shifts are removed the images are all commonly aligned and can

be averaged together, which reduces the noise. This process is image averaging. The

registration is performed using both single and multi-frame methods, resulting in two

reconstructed images, or scene estimates, of the true object. The goal is to compare

the quality of the two scene estimates and the performance of the multi-frame and

single frame methods.

3.3 Experiment for Translative and Rotational Distortion

The methodology for the experiment for translation and rotation combines nor-

malized, windowed 1-D cross correlation in the spatial domain and properties of the
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RT. As stated in section 2.1.3, translations in an image correspond to a translation in

the spatial parameter of the RT as a function of angle parameter, as in equation (2.12).

Also, rotation in an image corresponds to a translation in the angle parameter of the

RT, as in equation (2.11). An effective registration method is developed using a

combination of these properties for images that are rotated and translated.

Several papers use the RT or a combination of the RT and other methods for

image registration [8] [9] [10] [11] [14]. However, few of those papers explicitly and

properly deal with registering images that are rotated and translated. The few that

do so use images that contain a white shape on a black background, have different

textures, or contain lines or borders, all of which are cases where the RT excels in

discriminating translation and/or rotation. When realistic images are used these

methods do not work accurately for a wide range of images. Therefore, it is necessary

to develop a novel approach for rotation and translation estimation using the RT for

realistic images.

A model for rotated and translated images is needed to develop the new method.

There is a difference in the model for an image that is first translated and then rotated

versus an image that is first rotated and then translated, as indicated in section 1.1.1.

The 2-D image fτ,φ(x, y), equation (1.4), is represented by its RT as

R{fτ,φ(x, y)} = FR(r − τx cos(θ − φ) + τy sin(θ − φ), θ − φ) = FR
τ,φ(r, θ). (3.7)

The 2-D image fφ,τ (x, y), equation (1.5), can be represented by its RT as

R{fφ,τ (x, y)} = FR(r − τ ′x cos(θ − φ) + τ ′y sin(θ − φ), θ − φ) = FR
φ,τ (r, θ), (3.8)

where

τx = τ ′x cos φ + τ ′y sin φ, (3.9)

τy = −τ ′x sin φ + τ ′y cos φ, (3.10)
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and

τ ′x = τx cos φ− τy sin φ, (3.11)

τ ′y = τx sin φ + τy cos φ. (3.12)

The vector [τx, τy] is the rotational transformation of the vector [τ ′x, τ
′
y]. The order of

translation and rotation does not matter for registering the images, but if the param-

eters φ and [τx, τy] are to be estimated, then the order is important. For simplicity,

equation (3.7) is used as the model.

This model is developed as an iterative algorithm to estimate the relative trans-

lation and rotation between a pair of images. To estimate τx, let θ − φ = 0◦ and

FR
τ,φ(r, θ = φ) = FR(r − τx cos(0) + τy sin(0), 0)

= FR(r − τx, 0).
(3.13)

Therefore, if φ is known then the vector R{fτ,φ(x, y)} for θ = φ is translated along

the spatial domain by τx relative to the vector R{f(x, y)} for θ = 0. The translation

is estimated using the maximum of the 1-D normalized, windowed cross-covariance

between the pair of vectors

τ̂x(φ̃) = arg max
m

vnorm
win (m){FR(r, 0), FR

τ,φ(r, θ = φ̃)}. (3.14)

To estimate τy, let θ − φ = 90◦ and

FR
τ,φ(r, θ = 90◦ + φ) = FR(r − τx cos(90◦) + τy sin(90◦), 90◦)

= FR(r + τy, 90◦).
(3.15)

Therefore, if φ is known, then the vector R{fτ,φ(x, y)} for θ = 90◦ + φ is translated

along the spatial domain by τy relative to the vector R{f(x, y)} for θ = 90◦. The

translation is again estimated using the maximum of the 1-D normalized, windowed
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cross-covariance between the pair of vectors

τ̂y(φ̃) = arg max
m

vnorm
win (m){FR(r, 90◦), FR

τ,φ(r, θ = 90◦ + φ̃)}. (3.16)

Since φ is unknown, the previous estimations cannot be computed directly. How-

ever, with an iterative approach the rotation can be accurately estimated. Performing

the previous steps for a range of rotation values results in a set of maxima of 1-D nor-

malized, windowed cross-covariances that correspond to the range of rotation values,

as in Figures 3.3 and 3.4. The location of the highest maxima gives the estimate for

the rotation

φ̂ = arg max
φ̃

M(φ̃), (3.17)

where

M(φ̃) = max
m

vnorm
win (m){FR(r, 0), FR

τ,φ(r, θ = φ̃)} (3.18)

and φ̃ ranges from −φ̂max to φ̂max incremented by ∆φ̃, as in Figure 3.5. Using the

estimate of φ from equation (3.17), the parameters τx and τy can then be accurately

estimated as described in equations (3.14) and (3.16).

The 1-D normalized, windowed cross-covariance is used to estimate the distor-

tion parameters, because other correlation techniques are ineffective for a wide range

of digital images when correlating using the RT, primarily due to the fact that the

RT of most digital images varies drastically in magnitude. Normalizing eliminates

the effect of varying magnitude and windowing reduces the number of computations

and can increase the accuracy of correlation. Another important design consideration

when using the RT is the need for circular windowing of the images. Digital images

have rectangular boundaries, and the boundaries create a fixed pattern in the RT,

Figure 3.6. Circular windowing eliminates the fixed pattern caused by the boundaries

of the image, as in Figure 3.7.

This iterative algorithm requires some criteria. First, the range of rotation

values must be wide enough to account for the maximum possible rotational difference
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Figure 3.3: The RTs FR(r, 0◦) and FR
τ,φ(r, θ = φ̃) for two values of φ̃, showing that

τx can be estimated using the RT. The image f(x, y), Figure 2.3(a), is translated by
τx = 10 pixels and τy = 5 pixels then rotated by φ = 5◦. When φ̃ = φ the estimation
of τx is easily seen because R{fτ,φ(x, y)} is translated by τx relative to R{f(x, y)} in
accordance with equation (3.13).
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Figure 3.4: The RTs FR(r, 0◦) and FR
τ,φ(r, θ = φ̃) for another two values of φ̃, show-

ing that if φ̃ 6= φ then the RTs do not correlate well. The image f(x, y), Figure 2.3(a),
is translated by τx = 10 pixels and τy = 5 pixels then rotated by φ = 5◦, illustrat-
ing that the RT algorithm can accurately estimate the translation because the RTs
correlate best when φ̃ = φ.
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Figure 3.5: Maximum of the 1-D normalized, windowed cross-covariance between

FR(r, 0◦) and FR
τ,φ(r, θ = φ̃) for a range of φ̃; see equation (3.18). The estimate of φ is

the value of φ̃ at the maximum of M(φ̃); see equation (3.17). The estimated rotation,
φ̂, is 5 degrees, which equals the true φ.
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(d) R{bφ(x, y)}

Figure 3.6: The RT of an image of a brick wall, b(x, y), and the same image rotated
by 30 degrees, bφ(x, y). Note that the RTs both have a similar diamond-shaped
pattern, which masks the translation along the θ-axis due to the rotation.
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(b) Windowed R{b(x, y)}

(c) Windowed bφ(x, y)
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(d) Windowed R{bφ(x, y)}

Figure 3.7: The RT of a windowed image of a brick wall and the same windowed
image rotated by 30 degrees. With windowing the diamond pattern is removed be-
cause the edges of the image no longer contribute to the magnitude of the RT, so the
translation due to rotation is more obvious.
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between any two images in the set. Second, the 1-D normalized, windowed cross-

covariance requires that the assumed maximum translation for each dimension be

large enough to account for the maximum possible translational difference between

any two images in the set. Thus, registration always fails for rotation and translation

above the maximum assumed value.

After the estimates for translation and rotation are computed, the distortions

can be removed, thus aligning the images. The aligned images are averaged to create a

scene estimate. There is a scene estimate for both single and multi-frame registration.

The goal is to compare the quality of the two scene estimates and the performance of

the registration methods.

3.4 Experiment for Translation, Rotation, and Scale Distortion

The methodology for the experiment for translation, rotation, and scale com-

bines the FMT and phase correlation. As discussed in section 2.1.4, a scale and/or

rotation corresponds to linear shifts in the phase of the FMT, as in equation (2.21).

Also, translations in a image correspond to linear shifts in the phase of the FT, as

in equation (2.16). An effective registration method has been developed by Adam

Wilmer using these properties and is used for registering images that are translated,

rotated, and scaled.

The model fτ,β,φ(x, y), as in equation (1.8), is used to simulate the distortion

for this experiment. The algorithm computes the FMT of two images and uses phase

correlation to estimate the relative rotation and scale, which is accomplished by first

computing the normalized cross-power spectrum

p{F F (µ, θ), F F
τ,β,φ(µ, θ)} =

F{F F (µ, θ)}F{F F
τ,β,φ(µ, θ)}∗

|F{F F (µ, θ)}F{F F
τ,β,φ(µ, θ)}∗|

=
FM(u, v)FM

τ,β,φ(u, v)∗

|FM(u, v)FM
τ,β,φ(u, v)∗| ,

(3.19)
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and, using equation (2.21), the normalized cross-power spectrum is

p{F F (µ, θ), F F
τ,β,φ(µ, θ)} =

FM(u, v)FM(u, v)∗ej(u ln β+vφ)

|FM(u, v)FM(u, v)∗ej(u ln β+vφ)|

=
FM(u, v)FM(u, v)∗ej(u ln β+vφ)

|FM(u, v)FM(u, v)∗|
= ej(u ln β+vφ).

(3.20)

The scale and rotation are estimated from the maximum of phase correlation

[ln β̂, φ̂] = arg max
µ,θ

P{F F (µ, θ), F F
τ,β,φ(µ, θ)}

= arg max
µ,θ

F−1{p{F F (µ, θ), F F
τ,β,φ(µ, θ)}}

= arg max
µ,θ

F−1{ej(u ln β+vφ)}

= arg max
µ,θ

δ(µ + ln β, θ + φ),

(3.21)

as in Figure 3.8. The phase correlation of the FMT in Figure 3.8 does not result in a

delta function because the log-polar mapping for discrete functions requires interpo-

lation.

The log-polar mapping can have a resolution different from the original images.

The resolution of the log-polar mapping determines the logarithmic spacing of the

translation due to scaling and the proportional spacing of the translation due to

rotation. For scaling, if the log-polar mapping has a resolution of 256 pixels for

the scale axis, the pixels correspond to logarithmically spaced values from log(1)

to log(128). For this algorithm, the logarithmic spacing only extends to half the

resolution of the scale axis because beyond half the resolution the scale is less than

one. For rotation, if the log-polar mapping has a resolution of 512 pixels for the

angular axis then the translation of a pixel corresponds to 360◦
512

≈ 0.703◦ per pixel.

The relative rotation and scale are removed from the image that is reduced

in scale. The smaller scaled image is used to preserve the size of the images after

each is adjusted for rotation and scale. The images now only have relative translative

distortion. The translation is estimated using phase correlation of the images after the
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4.9219

1.0962

Figure 3.8: Phase correlation of the FMT of f(x, y), as in Figure 2.3(a), and the
FMT of the same image translated by τx = 10 pixels and τy = 5 pixels, scaled by
β = 1.1, and rotated by φ = 5◦, fτ,β,φ(x, y). The location of the maximum is indicated

by the labelled markers, which correspond to the estimates β̂ and φ̂, in accordance
with equation (3.21). The pixels of the vertical axis correspond to logarithmically
spaced values of scale and the labelled marker for scale reflects this spacing. The
pixels of the horizontal axis correspond to equal proportions of 360◦.

rotation and scale have been removed from the smaller scaled image. The cross-power

spectrum of f(x, y) and fτ (x, y) is

p{f(x, y), fτ (x, y)} =
F F (u, v)F F

τ (u, v)∗

|F F (u, v)F F
τ (u, v)∗|

=
F F (u, v)F F (u, v)∗ej(uτx+vτy)

|F F (u, v)F F (u, v)∗ej(uτx+vτy)|
= ej(uτx+vτy)

(3.22)

The relative translation is also estimated using the maximum of phase correlation

[τ̂x, τ̂y] = arg max
x,y

P{f(x, y), fτ (x, y)}
= arg max

x,y
F−1{p{f(x, y), fτ (x, y)}}

= arg max
x,y

F−1{ej(uτx+vτy)}
= arg max

x,y
δ(x + τx, y + τy),

(3.23)

as in Figure 3.9. The translative distortions are then removed, aligning the images.

The aligned images are averaged to create a scene estimate. There is a scene estimate
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Figure 3.9: Phase correlation of the FMT of f(x, y) and the FMT of fτ,β,φ after it
has been adjusted for rotation and scale by the estimates labelled on Figure 3.8. The
location of the maximum is indicated by the labelled markers, which correspond to
the estimates τ̂x and τ̂y, in accordance with equation (3.23).

for both single and multi-frame registration. The goal is to compare the quality of

the two scene estimates and the performance of the registration methods.
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IV. Results and Analysis

For each experiment, statistics on the accuracy and quality of the registration

methods are generated using multiple simulated data sets. Each simulated data

set is defined by the model used to generate distortions, the maximum value of those

distortions, the variance of the Gaussian white noise, and the number of simulations

performed to generate the statistics. Table 4.1 summarizes the parameters for each

experiment. The random translational and rotational distortion are generated using

uniform, zero-mean random generators from −τmax to τmax and −φmax to φmax, re-

spectively. For the experiment using the RT, the rotation estimates depend on the

increments of rotation values, ∆φ̃, as in equation (3.18). The random scaling is gen-

erated using unform random generators from 1 to some maximum scale, βmax. The

same true image is used for each experiment to provide comparable results. The true

image is from NASA and is a satellite image of crops in Kansas, United States [15].

Each experiment produces relatively similar results, therefore, the majority of the

analysis is applied to all experiments.

The cross-correlation experiment has a large noise variance to demonstrate the

robustness of cross-correlation against noise. The added noise is random and unlikely

to correlate. Also, with only translative distortion the experiment is relatively simple.

The decreased noise variance for the FMT experiment is because the algorithm is not

designed to handle noisy data. The algorithm is only designed as a demonstrative

2-D Cross- Radon Fourier-Mellin
Correlation Transform Transform
Experiment Experiment Experiment

Mathematical Model fτ (x, y) fτ,φ(x, y) fτ,φ,β(x, y)
Noise Variance 60 20 10
# of Simulations 1000 10000 10000
Max Translation, 2τmax 25 pixels (10%) 16 pixels (6%) 16 pixels (6%)
Max Rotation, 2φmax 16◦ 16◦

Rotation Increment, ∆φ 1◦

Max Scale, βmax 130%

Table 4.1: Summary of the simulation parameters used for each experiment.

47



tool for the applications of the FMT and, therefore, performs poorly with noisy data.

This result does not indicate that the FMT is a poor technique for noisy data, but

rather that only this particular implementation of the FMT is a poor technique for

noisy data.

The results show an obvious improvement in both registration accuracy and

quality of the scene estimate for the multi-frame method; see Figures 4.1- 4.12. This

result is expected because an unbiased registration method, on average, performs

better than a biased method. More interesting is the non-linear improvement in reg-

istration accuracy for the multi-reference frame estimator with respect to using more

frames. The registration accuracy and quality statistics are computed for different

frame set sizes as indicated by the independent axis of the figures. The goal is to

analyze how the methods perform when more frames are added. However, the statis-

tics for different frame set sizes are not independent, which is intentional. For one

simulation, the metrics are computed for 3 frames then the same 3 frames are used

with another frame added, the metrics re-computed, and so on. The idea is that more

data should produce better results.

It is known that the single frame method is not more accurate with more frames,

which is supported by the results. This effect is a byproduct of the bias of the single

frame method, which highlights a key benefit of the multi-frame approach. The multi-

frame method averages all the available frames, resulting in better accuracy because

there is no bias. The non-linear improvement of the multi-frame method is not only

because it is unbiased, but also because with more frames it averages all combinations

of frames, which provides a boost in performance when more frames are used. With N

frames the single frame method uses only N−1 estimations. The multi-frame method

averages over (N2 −N)/2 estimations. This averaging over more estimations results

in less error and gives the multi-frame method the capability of subpixel estimation.

The multi-frame method produces a better scene estimate as a result of the

improved registration accuracy. The gain in image quality is less drastic for the cross-
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correlation experiment because both methods are accurate to less than one pixel. It

may seem exceptional that the image quality of the scene estimates from the single

frame method improve as more frames are added, since the registration accuracy is

constant, (see Figures 4.2 and 4.3). However, the scene estimate image quality for

the single frame method still improves with more frames because more images are

used in averaging, which decreases the effects of the additive noise. Also, averaging

reduces the effect of a registration error, therefore, even without noise the single frame

method generates an improved scene estimate as more frames are added.

The results from the experiments clearly show the benefits of a multi-frame

registration technique. The primary disadvantage is that the multi-frame technique

requires considerably more computational time due to the increased number of esti-

mations required, as in Figure 4.13, which is especially true for large data sets. If a

real-time application is required this method might prove too costly, but with current

and future computer performance advances this disadvantage is less of a factor.
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(a) True Image (b) Sample Noisy Frame

(c) Multi-Frame Estimate (d) Single Reference Frame Estimate

Figure 4.1: Scene estimates of the multi-frame and single frame registration meth-
ods from the cross-correlation experiment. Scene estimates are made using 24 frames
of data. Also shown are the true image and a sample frame from the noisy data.
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(b) RMSE of Vertical Shift Estimates

Figure 4.2: Registration error of translation estimates (in pixels) from the cross-
correlation experiment using the aerial image of a crop field.
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Figure 4.3: Quality of the scene estimates from the cross-correlation experiment
using the aerial image of the crop field. The SNR is computed using a linear scale.
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(a) True Image (b) Sample Noisy Frame

(c) Multi-Frame Estimate (d) Single Reference Frame Estimate

Figure 4.4: Scene estimates of the multi-frame and single frame registration meth-
ods from the RT experiment. Scene estimates are made using 24 frames of data. Also
shown are the true image and a sample frame from the noisy data.
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(b) RMSE of Vertical Shift Estimates

Figure 4.5: Registration error of translation estimates (in pixels) from the RT
experiment using the aerial image of a crop field.
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Figure 4.6: Registration error of rotation estimates (in degrees) from the RT ex-
periment using the aerial image of a crop field.
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Figure 4.7: Quality of the scene estimates from the RT experiment using the aerial
image of a crop field. The SNR is computed using a linear scale.
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(a) True Image (b) Sample Noisy Frame

(c) Multi-Frame Estimate (d) Single Reference Frame Estimate

Figure 4.8: Scene estimates of the multi-frame and single frame registration meth-
ods from the FMT experiment. Scene estimates are made using 24 frames of data.
Also shown are the true image and a sample frame from the noisy data. The sample
noisy frame visually appears to be higher quality than the scene estimates. However,
the SNR of the individual noisy frame is approximately 20, which is significantly lower
than the SNR for the single and multi-frame scene estimates of approximately 40.5
and 33.5, respectively. Also, the SNR of the sample noisy frame corresponds to the
trend shown in Figure 4.12.
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(b) RMSE of Vertical Shift Estimates

Figure 4.9: Registration error of translation estimates (in pixels) from the FMT
experiment using the aerial image of a crop field.
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Figure 4.10: Registration error of rotation estimates (in degrees) from the FMT
experiment using the aerial image of a crop field.
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Figure 4.11: Registration error of scale estimates from the FMT experiment using
the aerial image of a crop field. Since scale estimates are an estimate of the relative
size ratio, the lower limit for scale estimation is 1.
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Figure 4.12: Quality of the scene estimates from the FMT experiment using the
aerial image of the crop field. The SNR is computed using a linear scale. The curves
flatten because the registration error outweighs the effect of the image averaging,
especially since low noise is added to the images.
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Figure 4.13: Comparison of the number of estimations required for both registration
methods, emphasizing the main disadvantage of the multi-frame method. Consider-
ably more estimations are required for large data sets.
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V. Conclusions

Image distortions such as translation, scale, and rotation potentially obstruct the

ability to gather useful information from a set of images. Three experiments are de-

veloped to simulate systems that introduce different combinations of distortion and

noise. The first uses 2-D cross correlation to estimate translation. The second exper-

iment employs a new registration technique that uses the RT to estimate translation

and rotation. The final experiment uses the FMT and phase correlation to estimate

translation, rotation, and scale. In each experiment, single and multi-frame image

registration are used to estimate distortions and perform frame averaging. A dis-

tinct and noticeable improvement in both registration accuracy and quality of frame

averaging is observed and quantified. The new multi-frame registration method is

shown to be reliable even for the registration algorithms that perform poorly. Also,

the unbiased estimation and utilization all available data for the multi-frame method

proved it to be superior over traditional registration.

The results provide further justification that the new method is superior and

maintains its superiority through a wide range of applications. It is shown that the

multi-frame method displays increased performance with increased number of images

but with decreased processing speed; thus it is ideal for post processing applications.

Multi-frame registration could still be used in pseudo-real-time applications, because

a window of data could be processed to exercise the benefits of the new method.

Furthermore, it is shown that the new registration technique is equivalent to the

optimal Gauss-Markov estimator for relative distortion in images.

5.1 Future Research

Future research on multi-reference frame registration is needed to realize its full

potential. Research in the area of the real-time applications using measured (non-

simulated) data is needed. Multi-frame registration could be applied to registration

algorithms that handle more complex distortions, such as images from different view-

points and/or multiple sensors. For example, image fusion combines images from
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different viewpoints and/or sensors to create a larger 2-D image or 3-D representa-

tion of the scene, and misregistration results in poor construction of the composite

image. Multi-frame registration could improve this process. The multi-frame method

could also be applied to feature detection or feature matching algorithms. These ap-

plications sometimes require accurate detection of multiple features and are sensitive

to image degradations and different imaging conditions. Another area that may prove

fruitful is analyzing systems that have unusual noise patterns or corruption. These

systems could benefit greatly from the unbiased estimation of the multi-frame method.

It may be interesting to investigate systems with non-uniform distributions of distor-

tion. In particular, it may be possible to account for knowledge of the distribution

and improve registration performance.
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Appendix A. Calculations for Optimal Gauss-Markov Estimation

The new multi-frame estimation method is an optimal Gauss-Markov estimator

for N−1 relative distortion in N images given the (N2−N)/2 pairwise distortion

estimates; see section 2.2.1. Here calculations are performed for a specific case, and

the results for this case can be generalized to any N .

For N = 4, the vector of true distortions with respect of the first image is

D{1, k} = [Ω{1, 2}, Ω{1, 3}, Ω{1, 4}]T , (A.1)

and the vector of (N2 − N)/2 distortion estimates for all N images taken two at a

time is

DM{i, j} = [Ω̂{1, 2}, Ω̂{1, 3}, Ω̂{1, 4}, Ω̂{2, 3}, Ω̂{2, 4}, Ω̂{3, 4}]T . (A.2)

The matrices A and PE are

A =




δ{2, 2} − δ{1, 2} δ{2, 3} − δ{1, 3} δ{2, 4} − δ{1, 4}
δ{3, 2} − δ{1, 2} δ{3, 3} − δ{1, 3} δ{3, 4} − δ{1, 4}
δ{4, 2} − δ{1, 2} δ{4, 3} − δ{1, 3} δ{4, 4} − δ{1, 4}
δ{3, 2} − δ{2, 2} δ{3, 3} − δ{2, 3} δ{3, 4} − δ{2, 4}
δ{4, 2} − δ{2, 2} δ{4, 3} − δ{2, 3} δ{4, 4} − δ{2, 4}
δ{4, 2} − δ{3, 2} δ{4, 3} − δ{3, 3} δ{4, 4} − δ{3, 4}




=




1 0 0

0 1 0

0 0 1

−1 −1 0

−1 0 1

0 −1 1




(A.3)
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and

PE =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




. (A.4)

The optimal Gauss-Markov estimator for D is

D̂ = [AT P−1
E A]−1AT DM

=




1
2
Ω̂{1, 2}+ 1

4
Ω̂{1, 3}+ 1

4
Ω̂{1, 4} − 1

4
Ω̂{2, 3} − 1

4
Ω̂{2, 4}+ 0Ω̂{3, 4}

1
4
Ω̂{1, 2}+ 1

2
Ω̂{1, 3}+ 1

4
Ω̂{1, 4}+ 1

4
Ω̂{2, 3} − 0Ω̂{2, 4} − 1

4
Ω̂{3, 4}

1
4
Ω̂{1, 2}+ 1

4
Ω̂{1, 3}+ 1

2
Ω̂{1, 4}+ 0Ω̂{2, 3} − 1

4
Ω̂{2, 4}+ 1

4
Ω̂{3, 4}


 .

(A.5)

The same result is achieved using the multi-frame estimations. The matrix of

N2 distortions estimates for all N images taken two at a time is

Ω̂ =




0 Ω̂{1, 2} Ω̂{1, 3} Ω̂{1, 4}
−Ω̂{1, 2} 0 Ω̂{2, 3} Ω̂{2, 4}
−Ω̂{1, 3} −Ω̂{2, 3} 0 Ω̂{3, 4}
−Ω̂{1, 4} −Ω̂{2, 4} −Ω̂{3, 4} 0




. (A.6)

The multi-frame estimates are calculated by averaging along the rows, as in equa-

tion (2.27),

Ω̂M =




1
4
Ω̂{1, 2}+ 1

4
Ω̂{1, 3}+ 1

4
Ω̂{1, 4}

−1
4
Ω̂{1, 2}+ 1

4
Ω̂{2, 3}+ 1

4
Ω̂{2, 4}

−1
4
Ω̂{1, 3} − 1

4
Ω̂{2, 3}+ 1

4
Ω̂{3, 4}

−1
4
Ω̂{1, 4} − 1

4
Ω̂{2, 4} − 1

4
Ω̂{4, 4}




. (A.7)
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The N − 1 distortion estimates may now be computed relative to the first image by

subtracting the first image estimates, Ω̂M(1), from all other multi-frame estimates:

D̂ = Ω̂M(1)−




Ω̂M(2)

Ω̂M(3)

Ω̂M(4)




=




1
2
Ω̂{1, 2}+ 1

4
Ω̂{1, 3}+ 1

4
Ω̂{1, 4} − 1

4
Ω̂{2, 3} − 1

4
Ω̂{2, 4}+ 0Ω̂{3, 4}

1
4
Ω̂{1, 2}+ 1

2
Ω̂{1, 3}+ 1

4
Ω̂{1, 4}+ 1

4
Ω̂{2, 3} − 0Ω̂{2, 4} − 1

4
Ω̂{3, 4}

1
4
Ω̂{1, 2}+ 1

4
Ω̂{1, 3}+ 1

2
Ω̂{1, 4}+ 0Ω̂{2, 3} − 1

4
Ω̂{2, 4}+ 1

4
Ω̂{3, 4}


 .

(A.8)
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