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ABSTRACT   
 
Network Centric Warfare experimentation is required in order to transform the Australian 
Defence Force into a net centric force. One area of experimentation is net centric software 
architectures, particularly component-based systems and middleware. The Airborne Early 
Warning & Control Mission System Testbed (AEW&C MST) enables such experimentation to 
be conducted and is overviewed in this report. The AEW&C MST is also one node in the Net 
Warrior Initiative, which aims to conduct net centric experimentation with real systems, 
testbeds and simulators across DSTO. This report discusses Net Warrior and the role of the 
AEW&C MST as the AEW&C node. 
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Executive Summary  
 
Organisations implementing a net centric approach aim to achieve effective and 
efficient outcomes by capitalising on information sharing for better situational 
awareness, improved decision making and enhanced collaboration. The main driver 
for net centricity has been the recent progress achieved in information and 
communication technologies. These technologies can be considered as essential enablers 
for net centric systems and organisations will be required to adapt their structure and 
processes in order to exploit them. 
 
Network Centric Warfare (NCW) applies the idea of net centricity to military 
operations and it is networking that underlies the information advantage that NCW 
may provide. The Australian NCW Concept focuses on an effects-based approach with 
the aim of increasing operational tempo and improving agility by using information to 
maximise operational effect and facilitate collaboration. 
 
In alignment with Defence’s approach to implementing NCW through ‘learning by 
doing’, the DSTO Net Warrior Initiative was conceived to address, through 
experimentation, new and evolving net centric capabilities and mission system 
technologies to enhance ADF joint warfighting capabilities. This experimentation will 
be conducted with real systems, testbeds and simulators across DSTO and, eventually, 
across Defence. Boeing Australia is also involved in Net Warrior through an Interactive 
Project Agreement concerning mission systems in NCW environments. Such 
experimentation will be applied to operational, systems and technical elements of 
NCW and will enable Net Warrior to provide advice to Defence regarding the extent to 
which it needs to consider and implement particular NCW concepts and technologies. 
 
One of the nodes in Net Warrior is the Airborne Early Warning & Control Mission 
System Testbed (AEW&C MST). The AEW&C MST represents the Wedgetail AEW&C 
capability, which will provide the ADF with an enhanced surveillance and control 
capability when delivered. The AEW&C MST has been developed to support 
evaluation of Wedgetail mission computing while providing the freedom to explore 
the integration of NCW enabling technology into Wedgetail and other platforms. 
Development of the AEW&C MST and the associated research program is conducted 
in DSTO’s Air Operations Division (AOD) under task 07/044 and is sponsored by 
DMO. The AEW&C MST is hosted within the AOD Mission System Research Centre 
(MSRC) along with a range of other mission system testbeds. 
 
The transformation to an Australian net centric force requires a shift in the way 
systems are procured, built and used, so that information can flow through a changing 



 

 

network of heterogeneous nodes, each with its own information requirements. For 
example, aircraft, due to their mobility, will have changing contexts and will require 
dynamic connections to other nodes. The AEW&C MST provides the infrastructure to 
conduct research into how information flows can be agile and adaptable in dynamic 
and distributed environments. 
 
Net centric environments are underpinned by a range of standards and technologies. 
Such technologies that are important to the Wedgetail capability include component-
based systems, Service Oriented Architectures (SOAs), middleware and frameworks. 
Component-based architectures, supported by middleware and built on top of 
frameworks, are able to satisfy design needs of applications to produce stable mission 
and net centric systems. Wedgetail mission computing and the AEW&C MST are built 
on the Boeing Australia Software Architecture Framework (SAF), a component-based, 
distributed computing, middleware environment. The SAF employs an SOA approach, 
with common software component mechanisms and interfaces encapsulated within a 
patterned framework. The SAF provides access to resources, such as communication 
through the Common Object Request Broker Architecture (CORBA). SOA concepts, 
when applied to the needs of net centricity, are able to achieve flexible and adaptable 
operational effectiveness through the integration of disparate systems and capabilities. 
 
The components of the AEW&C MST are the stimulation environment, mission 
computing components and monitoring components. The stimulation environment, 
based on the Engenuity STAGE product, simulates the environment of an AEW&C 
aircraft and models its sensors. Mission computing components represent adaptations 
of components from Wedgetail mission computing, while monitoring components 
provide interfaces for observing the information received and processed by the other 
components of the AEW&C MST. 
 
Experimentation with the AEW&C MST will investigate technologies that are 
important for enabling the ADF to become a net centric force. Results from this 
experimentation will enable Defence to be better informed when acquiring capabilities 
that interoperate with other systems. 
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1. Introduction 

The Australian Defence Force (ADF) is currently implementing the Australian Network 
Centric Warfare (NCW) concept. In order for this to be successful, the ADF requires advice 
regarding the underlying technologies that enable NCW. This report is concerned with 
technologies that facilitate the design and implementation of robust software architectures 
and mission systems in net centric environments. 

Two areas of work are presented that enable experimentation to be conducted with net 
centric software architectures. The first is the Net Warrior Initiative, which aims to conduct 
net centric experimentation with real systems, testbeds and simulators across the Defence 
Science & Technology Organisation (DSTO). Net Warrior is a multi divisional response to 
the challenge of enhancing the joint warfighting capability of the ADF. Boeing Australia is 
also involved through an Interactive Project Agreement regarding mission systems in 
NCW environments. 

The second area of work is the Airborne Early Warning & Control Mission System Testbed 
(AEW&C MST), a component-based and distributed system built on CORBA (Common 
Object Request Broker Architecture) middleware and the Boeing Australia Software 
Architecture Framework (SAF). Development of the AEW&C MST and the associated 
NCW research program is conducted in DSTO’s Air Operations Division (AOD) under the 
task 07/044 and is sponsored by DMO. The AEW&C MST is hosted by the AOD Mission 
System Research Centre (MSRC) and allows experimentation into the performance and 
integration of the mission system for the new Australian AEW&C capability and is a node 
within Net Warrior. 

The motivation for this experimentation is presented in Section 2 with a discussion of 
NCW and its adoption by Australian Defence. Section 3 discusses Net Warrior, the 
Wedgetail AEW&C acquisition and the role of the AEW&C MST as the Net Warrior 
AEW&C node. It is argued that experimentation with high fidelity representations of 
platforms is required in order for NCW to be successfully implemented. 

Technologies and methodologies appropriate to net centric software architectures used in 
the AEW&C MST include component-based systems, Service Oriented Architectures 
(SOAs), middleware and frameworks. These are discussed in section 4. Two 
manifestations of the technologies reviewed in section 4 that are relevant to the AEW&C 
MST are CORBA and the SAF. Section 5 overviews these and the architecture of the 
AEW&C MST. 
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2. Network Centric Warfare and Australian Defence 

2.1 Overview 

This section introduces the concepts of net centricity and Network Centric Warfare (NCW) 
with a focus on their application within the Australian Defence Force (ADF) and science 
and technology for the ADF. 

2.2 Net Centricity 

A number of definitions for net centricity exist, however many of these have been 
criticised for lacking clarity [Fewell & Hazen 2003]. Cebrowski [2003] argues that at this 
stage net centricity is still a concept and, as such, only a working definition can be 
articulated. Net centricity involves the simple idea that information sharing is potentially 
of value to an organisation. The aim is to enable the organisation to improve its 
information position and enhance the capabilities of its decision makers. The net centric 
approach aims to achieve effective and efficient outcomes by capitalising on information 
sharing for better situational awareness, improved decision making and enhanced 
collaboration [Knight et al. 2006]. 

The main driver for net centricity has been the rapid progress achieved in the field of 
information and communication technologies (ICT) in the second half of the 20th century 
[Cebrowski & Garstka 1998]. However, merely constructing a superior network is not 
sufficient for an organisation to become net centric. Net centricity requires an organisation 
to adapt its structure and processes to exploit ICT and take full advantage of the benefits 
that it promises. Therefore, communications infrastructure can be considered as an 
essential enabler for net centric systems. 

The concept of net centricity has been widely viewed as a network of nodes: a set of nodes 
(consisting of people, devices, information and services) interact using a communications 
network to optimise the use of resources and achieve synchronisation of effects. This 
concept can be applied to various domains, such as commerce, education and military 
operations. 

From a study of the successful usage of the Internet and other effective networks 
(including social networks), Fewell and Hazen [2003] emphasise the organisational aspects 
of net centricity and propose the following be included in its definition: 

• Nodes may be widely dispersed geographically, but are still able to interact. 

• Use of the network is altruistic and each node considers the benefit of its actions to 
other nodes. 

• The network of nodes is considered to be a community and each node, while 
autonomous, has a sense of responsibility to the community. 
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The last two points imply that a reasonable amount of trust exists between nodes and 
Fewell and Hazen [2003, p. 33] argue that ‘…the difference between a network-enabled 
application and a net-centric system depends on the relationship between nodes’. 

Cebrowski and Garstka [1998] suggest that implementing net centricity requires 
establishing three grids: an information grid to provide a backplane for computing and 
communications; a sensor grid to perceive the environment at high speed; and a 
transaction or engagement grid closely coupled with command and control systems to 
enable nodes to act efficiently and effectively in the environment. 

Keus [2005] uses the simple network-node paradigm as the basis of the Netforce Reference 
Model (NFRM). In this model, the term netforce is used to describe the total collection of 
nodes that together perform a specific network centric capability, while network refers to 
the communications infrastructure. This is illustrated in Figure 2–1. 

The NFRM provides a set of principles with the aim of enabling systems and procedures to 
be developed in net centric environments. These netforce principles comprise node types, 
properties and interactions, and netforce functions and services. The NFRM characterises 
net centricity as both information and network driven: 

• Data and information is collected, processed and interpreted. 

• Quality information is provided through the network to decision makers. 

• Cooperative and synchronised decision making creates tailored measures. 

• These tailored measures are executed in a timely, accurate and synchronised manner. 

 

 

Figure 2–1. The netforce and the network. Source: [Keus 2005] 
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This characterisation is represented diagrammatically in Figure 2–2, which maps aspects of 
net centricity to elements of the observe-orient-decide-act (OODA) loop [Boyd 1996]. From 
this characterisation, the following six basic node types (as shown in Figure 2–1) are 
defined: 

• Collector (C): collects data and information. 

• Information Provider (I): manipulates data and information (e.g. processes, interprets, 
associates, correlates and fuses) and provides that information to other nodes in the 
required format. 

• Decider (D): uses available data and information to decide between different actions. 

• Effector (E): puts into effect the decisions that result from the decision making process. 

• Communicator (Com): transfers data and information using various means. 

• Supporter (S): performs a number of actions that enable net centric operations to be 
performed. 

 

 
Figure 2–2. Mapping net centricity to the OODA loop. Source: [Keus 2005] 
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The nature and behaviour of each node is characterised by a number of properties (which 
may themselves consist of sub-properties). The NFRM specifies the following as a basic set 
of properties: 

• Identity: a unique identifier that distinguishes each node from other nodes in the 
netforce. 

• Status: specifies the operational status of a node. 

• Capability: indicates the operational capability of a node. The NFRM takes a Quality of 
Service (QoS) approach to specifying capability. 

• Structure: as nodes may consist of sub-nodes, the structure property details a node’s 
internal structure. For example, an aircraft can be considered as a composite node that 
consists of sub-nodes representing most of the six basic node types. 

• Control: describes the mechanism that is used to control the capability of a node and 
can be viewed as the node interface. 

• Security: specifies what (if any) security aspects relate to a node. 

• Integration: indicates how nodes integrate into the netforce. 

• Interaction: specifies how nodes interact with other nodes. 

Nodes integrate and interface with the netforce through three layers (Figure 2–3). The 
network communications layer enables a node to connect to the network using security 
mechanisms if required. The interface layer translates between external and internal node 
commands and is compatible with a number of approaches to defining generic interfaces 
for specific objects, e.g. the Object Management Group (OMG). The specification layer 
takes a QoS approach to specifying node identity and services provided to the netforce. 
These three layers provide nodes with a standardised interface that has a layered 
structure. Such an encapsulation mechanism allows legacy systems to be incorporated into 
the netforce by enabling them to exhibit netforce-compliant behaviour while hiding their 
internal functions behind the interface. 

Simple node interactions can be associated with processes that should occur in net centric 
environments. For example, interaction between an information provider and a decider is 
associated with creating situation awareness and interaction between multiple deciders 
supports synchronised decision making. NFRM functions and services emerge from 
interactions between the basic node types. For example, Collector Management is a generic 
NFRM function that employs and controls a number of collectors to optimise activities 
such as picture compilation, threat evaluation and engagement. Collector Management 
uses interactions between collectors, information providers, deciders and effectors. 
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While the NFRM is a generic framework, Keus discusses how its netforce principles can be 
applied to military operations by linking them to the Network Centric Operations and 
Warfare Reference Model (NCOW-RM) and the Global Information Grid (GIG). These are 
discussed in the next section. 

 

 

Figure 2–3. The layered node structure. Source: [Keus 2005] 

 
 

2.3 Network Centric Warfare 

NCW applies the idea of net centricity to military operations. If a force is able to achieve an 
information advantage this may translate to a competitive advantage. While the concept of 
an information advantage is not new, it is networking that underlies the information 
advantage that NCW may provide. NCW, as a distinct concept, first appeared in the 
public domain in 1998 [Cebrowski & Garstka 1998] as a shift from warfighting based on 
attrition to a faster and more effective warfighting style. The NCW concept was expanded 
in the text Network Centric Warfare [Alberts et al. 1999], which provided the framework for 
the following tenets of NCW to be developed [OSD 2001, p. 4–1]: 

• A robustly networked force improves information sharing. 

• Information sharing enhances the quality of information and shared situational 
awareness. 

• Shared situational awareness enables collaboration and self-synchronisation; and 
enhances sustainability and speed of command. 

• These, in turn, dramatically increase mission effectiveness. 
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NCW involves networking across the physical, information and cognitive domains of 
military operations [Alberts et al. 2001]. The physical domain involves the land, sea, air 
and space environments and the platforms and communications networks that are 
situated in these environments. The information domain contains information created by 
sensing the ground truth in the physical domain and information manipulated by and 
communicated among warfighters. The cognitive domain exists in the minds of the 
participants and involves perception, understanding and decision making. The 
networking of these three domains has the potential to provide secure and seamless 
connectivity, greater collaboration among the elements of a military force, ubiquitous 
information, improved situational awareness, synchronisation of operations, increased 
operational tempo and power to the sharp edge, and improved survivability, lethality and 
responsiveness. 

Realisation of NCW requires technology improvements, the evolution of organisations and 
doctrine, appropriate tactics, techniques and procedures, and the development of relevant 
training. One requirement for NCW is an improved capability for operating in the 
information domain. NCW aims to improve the quality of information and the degree to 
which information can be shared, thus providing access to the net centric part of the 
information domain. A concept for achieving this improved capability is the GIG [Alberts 
& Hayes 2003]. The GIG can be viewed as a mesh of information sources and sinks, 
through which information is able to be managed and provided on demand to 
warfighters, decision makers and support personnel. The United States Department of 
Defense (US DoD) has mandated that the GIG be its technical infrastructure for supporting 
NCW [US JFC 2001]. The aim is for all relevant information systems, national security 
systems, advanced weapons platforms, sensor systems and command and control centres 
to eventually be linked through the GIG. 

The development of the GIG is guided by the US DoD enterprise architecture approach, 
which is represented by the Department of Defense Architecture Framework (DoDAF) 
[DoDAF WG 2004] and the NCOW-RM [US DoD 2004]. Both DoDAF and the NCOW-RM 
take a Service Oriented Architecture (SOA) approach to NCW and mandate the use of 
XML and other web-based standards. While DoDAF and the NCOW-RM specify an 
architectural approach, a number of concrete architectures (e.g. those described by Dekker 
[2005]) can be derived from the one approach by selecting components and services to 
meet the requirements of each specific architecture. 

Compliance with DoDAF is required and it aims to achieve a consistent architectural 
model that will enable information sharing and component reuse across the US DoD. The 
NCOW-RM defines services and standards for the US approach to NCW, which includes 
business and management operations along with warfighting. The NCOW-RM identifies 
the following four features of net centric operations: reach, richness, agility and assurance. 
The intention of this approach is to provide authorised users access to trusted information 
regardless of time or location. 

This section has provided an overview of NCW and its adoption by the US DoD. The next 
section discusses the Australian approach to NCW. 
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2.4 Australian Network Centric Warfare 

The Australian approach to NCW was officially launched in 2003 by the then Minister for 
Defence, Robert Hill, in an address to the ADF Network Centric Warfare Conference [Hill 
2003]. Australian NCW has been defined as 

…a means of organising the force by using modern information 
technology to link sensors, decision makers and weapon systems to 
help people work more effectively together to achieve the 
commander’s intent. [DGCP 2006, p. 5] 

Since Minister Hill’s address, a number of documents have been produced that provide 
high level guidance for the implementation of Australian NCW. 

The document ADDP-D3.1 Enabling Future Warfighting: Network Centric Warfare [DFW 
2004] introduces the endorsed Australian NCW Concept. This concept focuses on an 
effects-based approach for which NCW should contribute at the operational, military-
strategic and national levels. The ADF acknowledges that while new concepts and 
technology will change the character of conflict, the nature of war (e.g. fog, friction and 
chaos) will endure. Australian NCW aims to increase operational tempo and improve 
agility by using information to maximise operational effect and facilitating collaboration. 

The NCW Concept is a balanced approach in which the human dimension is seen as 
fundamental to NCW: 

The network is only an enabler to warfighting effectiveness; it 
supplements but cannot replace the skill, intuition and willpower of 
the ADF’s people. The focus on training, doctrine, leadership and 
organisation will balance the technical aspects that often dominate 
discussion of NCW. [DFW 2004, p. 3–1] 

The human (or organisational and sociological) dimension is concerned with training, 
education, doctrine, organisation and leadership and requires trust to enable effective 
collaboration. The network (or technological) dimension connects engagement, sensor and 
command systems. A third component, networking, describes how the ADF’s human and 
network dimensions will collaborate to build a system of systems [DGCP 2007]. 

Therefore, the Australian focus is on the adaptation of military structure, tactics and 
concept of operations to net centric environments so that greater improvement can be 
achieved (for a discussion of this applied to the Australian Army see [Krause 2005]). In 
other words, a key feature of Australian NCW is ‘how the user uses the network’ [Fewell 
& Hazen 2003, p. 33]. 

Five premises have been developed to explain how the human dimension, the network 
dimension and networking will produce a warfighting advantage. These premises are 
depicted in Figure 2–4. 
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Figure 2–4. The five premises of the NCW Concept. Source [DGCP 2006, p. 10] 

 

The following elements have been proposed in order to achieve self-synchronisation 
(premise 5) and deliver the desired operational effects: 

• A sensor grid, which consists of sensors and intelligence sources. 

• A C2 grid and an engagement grid will use information from the sensor grid to 
achieve more effective command, control and targeting. 

• An information grid, which is a network that better connects elements of Defence and 
protects its information. 

Each of these grids consists of a human dimension and a network dimension along with a 
networking component. Figure 2–5 illustrates how these grids will interact. In practice 
they may not be separate and some systems will consist of a combination of grids. 
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Figure 2–5. Interaction between the key elements of Australian NCW. Source [DGCP 2007, p. 6] 

 

The NCW Concept is the foundation for the NCW Roadmap [Director General Capability 
and Plans 2007], which provides a plan for the implementation of Australian NCW. A 
‘learn by doing’ approach is taken in the NCW Roadmap with the aim of achieving a 
seamless force in 2020. This is illustrated in Figure 2–6. 

Defence has established the Network Centric Warfare Program Office (NCWPO) to 
monitor and provide support to the development of capabilities for Australian NCW. The 
NCWPO will achieve this through testing compliance of each capability against constructs 
such as the Defence Architecture Framework (DAF) and the Approved Technology 
Standards List (ATSL). These constructs are discussed in Section 4. 

While this section has discussed the motivation for and concept of Australian NCW, it is 
not yet clear how this will be achieved. For example, a challenge is achieving 
interoperability with our allies. While the aim for the US GIG is to provide a ubiquitous 
network that enables global connectivity for thousands of nodes, the Australian NCW 
network will probably have constrained bandwidth and significantly fewer nodes than the 
US network (a factor of ten or more has been suggested [McKenna et al. 2006])1. However, 
key Australian nodes will need to interoperate with US nodes (and those of other allies). 
Therefore, Defence requires advice regarding the extent to which it needs to consider and 
implement concepts and technologies that have been adopted by other countries and 
organisations. 

                                                      
1 For a discussion of the implications of the GIG to Australian NCW see [Chase et al. 2006]. 
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Figure 2–6. The approach taken to develop a seamless force by 2020. Source: [DGCP 2007, p. 20] 

 

In alignment with Defence’s approach to implementing NCW by ‘learning by doing’, one 
of the aims of articulating the NCW Concept was to provide guidance for Defence’s 
research and experimentation activities [DFW 2004]. Some of these activities are discussed 
in the next section. 

2.5 Science and Technology for Australian Network Centric Warfare 

The Defence Science & Technology Organisation (DSTO) is the primary provider of 
science and technology (S&T) advice to Defence. The DSTO NCW S&T Initiative (NSI) was 
established in 2004 to coordinate NCW activities across DSTO and foster collaboration for 
NCW research. The DSTO NSI aims to provide a focal point for NCW research, improve 
delivery of support to stakeholders, better inform S&T planning and identify areas for 
further research. 

DSTO has produced a significant body of work for Australian NCW. This includes areas 
such as architectures [Dekker 2005], metrics [Hue 2007], standards [Vencel 2006], 
compliance processes [Knight et al. 2006], modelling and characteristics [Fewell & Hazen 
2003], force transformation studies [Chim et al. 2007], an Australian Regional Information 
Grid (RIG) [Chase et al. 2006] and force design [DSTO NCW Tiger Team 2 2005]. However, 
experimentation has been limited. According to Moon, experimentation is 

…of significance and importance not only to the progression of our 
understanding of the behaviour of complex networks, but also to the 
application of net-centric approaches to military operations. [Moon 
2006, p. 11] 
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Two recent programs complement the DSTO NSI. The DSTO Experimentation Initiative 
aims to develop a coordinated approach to experimentation across Defence, and the 
Defence Rapid Prototyping, Development and Evaluation (RPDE) program works with 
stakeholders to identify issues and solutions for high priority NCW problems. However, 
the missing element is a research network of connected battlelabs across DSTO. 

DSTO’s Net Warrior Initiative was established in late 2005 to connect and conduct net 
centric experiments with real systems, testbeds and simulators across DSTO and, 
eventually, wider Defence. Net Warrior will enable the principle of ‘learn by doing’ to be 
applied to operational, systems and technical elements of NCW. 

2.6 Summary 

This section reviewed the origin and concept of net centricity and outlined how this has 
been applied to develop the NCW approach for the US DoD. The Australian NCW 
Concept was then discussed along with an overview of the beginnings of its 
implementation and associated science and technology research and experimentation. 

It was argued that DSTO requires a research network of battlelabs in order to support the 
ADF’s move towards a networked force. The Net Warrior Initiative aims to address this 
requirement and is discussed in the next section along with one of its nodes, which 
represents the Airborne Early Warning & Control (AEW&C) capability. 
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3. Net Warrior and the AEW&C Node 

3.1 Net Warrior 

The Net Warrior initiative in DSTO was conceived to address, through experimentation, 
new and evolving net centric capabilities and mission system technologies to enhance ADF 
joint warfighting capabilities. With this as the prime objective, Net Warrior is part of the 
realisation of a general ambition in DSTO to create a research network of battlelabs. Net 
Warrior is also a multi-divisional response that supports the DSTO Network Centric 
Warfare Strategic Initiative (NSI), as discussed in Section 2.5. 

The overall purpose of Net Warrior is to contribute to the mitigation of risk to acquisition 
and implementation of Network Centric Warfare (NCW) and the exploitation of 
opportunities that NCW presents. Net Warrior will fulfil its purpose if it influences NCW 
related decisions on defence capabilities and the implementation of NCW in defence. 

As a first step, the Net Warrior initiative aims to develop a research capability in NCW by 
connecting a participating set of nodes that are testbeds representing ADF assets or 
potential assets in the three domains of air, land and sea. Participating nodes satisfy at 
least one of the criteria of a) the need for interoperability of the real assets, b) the 
significance of the real assets in joint operations, c) whether high fidelity representations of 
the assets exist or are planned in DSTO, and d) whether experimental representations of 
potential assets would benefit from participating. Seven divisions and Boeing Australia are 
collaborating in Net Warrior at present. The DSTO divisions which own participating 
nodes are Air Operations Division (AOD), Maritime Operations Division (MOD), 
Intelligence Surveillance & Reconnaissance Division (ISRD), Land Operations Division 
(LOD), Electronic Warfare & Radar Division (EWRD), Weapon Systems Division (WSD), 
and Command Control Communications & Intelligence Division (C3ID). Other 
participants from the ADF, industry and academia are likely to join. 

Boeing Australia’s involvement in Net Warrior is through an Interactive Project 
Agreement (IPA) under the DSTO/Boeing Australia Strategic Alliance. The IPA, titled 
Mission Systems in Network Centric Warfare Environments, spans the three years until the end 
of 2009 and defines a collaborative NCW work program. Boeing Australia’s interest in Net 
Warrior is focussed on the analysis of air/ground cooperation and air space management 
using linked battle management and tactical air operations systems. Linked data systems 
provide significant opportunity for shared situational awareness; however the operational 
effects of this type of capability will be seen in the orchestration of air and ground 
operations, air defence coordination, and air space management. 

A characteristic of DSTO nodes participating in Net Warrior at present is that all are high 
fidelity representations of existing or proposed airborne, land and maritime assets or 
operational entities. A tenet of the Net Warrior philosophy is that if NCW is to be 
successfully implemented, NCW concepts and technologies need to be evaluated in 
environments that closely represent real systems. The nodes exist, in some form, but at 
present they are not able to interoperate. High fidelity testbeds allow evaluation of real 
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systems and investigation of technical issues. The testbeds will evolve in themselves as 
integral components of the Net Warrior network and as stand alone components for 
research capabilities with platform centric research objectives. Where there is common 
interest, exercises will be run that involve all nodes or a subset. Physical infrastructure is 
now being rolled out in DSTO that has been specified to satisfy Net Warrior objectives. 

A node at Boeing Australia in Brisbane will represent a component from the land domain. 
The Boeing Australia node will supplement the participating land nodes in LOD. As a 
result of discussions with Boeing US, a possible future addition is a node at the Boeing US 
AISR ECC (Aerospace Intelligence Surveillance and Reconnaissance Enterprise Capability 
Centre) in Seattle, US. 

In the Net Warrior context, there are two significant and feasible means of connecting to 
sites external to DSTO. They are the TDL WAN (Tactical Data Link Wide Area Network), 
which is now available at DSTO Edinburgh and the CFBLNet (Coalition Federated Battle 
Lab Network). The two links will provide connectivity between the Net Warrior network 
and external assets, such as real platforms and battlelabs in other coalition member 
countries and industry partner facilities. 

Through Net Warrior, technological and systems issues can be investigated that are 
multidisciplinary in nature, such as platform connectivity, mission system integration, 
multi sensor integration and human system integration. The networked environment will 
allow emergent properties to be measured and new functions, which may be possible in a 
networked environment, to be evaluated. Operator in the loop experimentation is 
envisaged as well as other forms of technical evaluation. The emphasis will be on net 
centricity and new mission system technologies although it could be regarded as another 
environment for operations research. Regular coordination meetings aim to identify 
opportunities for experimentation involving two or more nodes. 

3.2 AEW&C Node in Net Warrior 

3.2.1 Wedgetail AEW&C 

Project AIR 5077, also known as Project Wedgetail, is the acquisition project for Australia’s 
new Airborne Early Warning & Control (AEW&C) capability. The AEW&C capability will 
provide the ADF with an enhanced surveillance and control capability in the broad 
expanse of the Australian north. The acquisition contract was signed with The Boeing 
Company in 2000 with first delivery expected in 2008. 

The Wedgetail system consists of the Airborne Mission Segment (AMS), depicted in Figure 
3–1, and the Ground Support Segments required for mission support, training and 
maintenance. Each AMS consists of seven subsystems, as shown in Figure 3–2, which 
provide the functions of surveillance radar and Identify Friend Foe (IFF), communications, 
navigation, Electronic Support Measures (ESM), Electronic Warfare Self Protection 
(EWSP), mission processing, and the Boeing 737 aircraft. 
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Figure 3–1. The Wedgetail airborne mission segment. 
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Figure 3–2. Airborne mission segment subsystems. 

The Mission Computing Subsystem (MCS) is the critical subsystem at the heart of the 
Wedgetail mission system. The MCS provides the mission processing for sensor fusion, 
sensor management, battle management, communications management and system 
control. The MCS also includes 10 mission consoles and the Flight Deck Tactical Display 
with associated display processing. 

System enhancements using wideband technology will be a vital contributor to allow 
Wedgetail to be a participant in future NCW but will greatly increase the amount of 
information that must be processed by the MCS. Software programmable radio technology 
(such as that provided through the Joint Tactical Radio System (JTRS) program) opens the 
possibility of innovative approaches to communication requiring extensive software 
support. New sensors and sensor processing algorithms (for example Ground Moving 
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Target Indicator (GMTI), Synthetic Aperture Radar (SAR), Inverse Synthetic Aperture 
Radar (ISAR), Surveillance InfraRed Search and Track (SIRST) and Electo Optics (EO)) will 
bring new demands on processing. Ongoing improvements to tracking and sensor fusion 
algorithms (such as Multi-Hypothesis Tracking) and the Human-Machine Interface will 
further stretch computing resources. 

To support these enhanced platform capabilities the MCS will undergo updates 
throughout the Life of Type of the platform. Traditionally mission systems have been 
upgraded in major increments, such as mid-life updates. The upgrade philosophy for 
Wedgetail is ongoing minor increments in capability (Pre-Planned Product Improvement) 
to allow capability enhancements more in line with operational requirements. This 
approach of growth in place of wholesale replacement has guided the specification and 
design for the MCS. Growth options for the Wedgetail capability are further discussed in 
[Lawrie et al. 2005]. 

3.2.2 AEW&C Mission System Testbed Motivation 

As part of the AEW&C integration into the Australian Defence Force, DSTO provides 
advice in support of the Wedgetail system acquisition, activities leading up to full in-
service capability and through life. A number of research areas are relevant to these stages 
of the AEW&C program, including mission system integration, multi sensor integration, 
human system integration and platform connectivity and interoperability. 

The AEW&C Mission System Testbed (MST) has been developed to support evaluation of 
the Wedgetail MCS while providing the freedom to develop custom software for NCW 
experimentation. The AEW&C MST is located within the AOD Mission System Research 
Centre (MSRC). The MSRC hosts a range of mission system testbeds representing 
helicopter, fast jet and surveillance aircraft. The focus of the MSRC is on mission system 
integration, platform connectivity and operator system integration. The MSRC provides an 
experimentation environment that combines simulation with real system hardware and 
operator-in-the-loop. 

The direction for development of the AEW&C MST and associated research is consistent 
with a number of drivers. The high level DSTO guidance is to pursue cross divisional 
coordination and to establish connectivity between DSTO testbeds. Under this vision the 
testbeds become nodes in a network. Interconnection of DSTO testbeds will provide 
improved infrastructure to conduct research into cross platform connectivity and NCW 
operations. 

The nature of future defence operations will be based on networking assets and sharing 
information. Information exchange will be based on more flexible ad-hoc networks. Future 
tactical networks are likely to make extensive use of the Internet Protocol (IP). In the 
interim, information exchange using legacy tactical datalinks and tactical datalink message 
sets will increase. 
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The ADF’s NCW Roadmap [DGCP 2007] provides goals for the ADF’s NCW capability out 
to 2020. It identifies capability improvements to the command and control, information, 
sensor, and engagement grids to enable a more effective networked force. 

Alberts et al. [1999] identify three forms of experimentation to support the coevolution of 
NCW: Discovery Experiments; Hypothesis Testing; and Confirming Experiments. Each is 
essential to the development of capability and methodology supporting NCW, and as 
shown in Section 2 is lacking from an Australian perspective. Section 2 highlights a vast 
amount of the work carried out at DSTO in researching concepts, operations and 
technologies applicable to an NCW environment, however little has been achieved in the 
way of validating this research. The use of a high fidelity testbed such as the AEW&C MST 
provides a means for carrying out these three phases of experimentation, as opposed to 
solely relying on modelling and simulation. Modelling and simulation does however play 
a role in experimentation by stimulating the AEW&C MST with data to immerse it within 
a realistic and flexible environment. 

3.2.3 AEW&C Mission System Testbed Objectives 

The Future Warfighting Concept [PGAD 2002] discusses the importance of concept 
development and experimentation in providing better advice to decision makers. Concept 
development and experimentation is essential as it reduces risk and enables military 
innovators to prove and improve their ideas without outlaying significant resources. 
Concept development gives broad and sometimes ill-defined ideas a chance to be 
examined by groups of experts in a logical process. However, the results of 
experimentation must be integrated into the capability development process. Enabling 
Future Warfighting: Network Centric Warfare [DFW 2004] builds on this and discusses the 
concept of ‘learning by doing’. The AEW&C MST is being developed and used to explore 
NCW concepts through a ‘learning by doing approach’ where expertise in the concepts, 
technology, and understanding of emergent properties is gained through experimenting 
with operational software. In line with this, future research direction will be derived from 
the outcomes of the initial research. 

In broad terms, the AEW&C MST and its supporting research program is under 
development to support performance evaluation of the Wedgetail MCS and to provide a 
testbed for exploring the integration of NCW enabling technology into Wedgetail and 
other platforms. 

To assist DSTO in developing research capabilities in these areas, it has been proposed that 
an AEW&C mission system be acquired to provide a Wedgetail Integration Research 
Environment (WIRE). This will provide a functionally equivalent subset of the Wedgetail 
mission system and will be a complementary capability to the AEW&C MST. The WIRE 
will be used to explore integration issues using functionally equivalent hardware and the 
actual Operational Flight Programs (OFPs) from the Wedgetail mission system. Of 
particular importance will be the ability to facilitate operator in the loop experimentation 
to address Decision Support System (DSS) technology suitability and operator / system 
interaction optimisation. 
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It is proposed to link the AEW&C MST and the WIRE with other laboratory environments 
under the Net Warrior activity. Initial planned demonstrations include ‘ping’ connectivity, 
followed by shared Common Operating Picture (COP) using J-series messages and 
Distributed Interactive Simulation (DIS) to share a scenario. Longer term, regional grid 
concepts [Chase et al. 2006] will be investigated. 

AOD research areas which are relevant to AEW&C include: mission system integration; 
multi sensor integration; human system integration; platform connectivity and 
interoperability; and architectures and architectural styles appropriate to net centric 
environments. 

Mission system integration research addresses issues associated with the integration of 
additional systems, with maintenance of mission computing performance baselines and 
with ensuring that the system is architecturally suited to long term evolution given a 
rapidly changing technical and operational environment. 

Multi Sensor Integration (MSI) research addresses technical issues associated with 
integration of data from multiple sensors and data sources such as onboard sensors (radar, 
IFF and ESM), from offboard data sources (data links), from operators and from prior 
information. MSI functions are tracking, identification, situation assessment, threat 
assessment, and sensor Management. MSI is implemented with a variety of algorithms to 
reason in the presence of large amounts of disparate, uncertain data. Consequently, 
algorithm development is central to MSI research. 

Platform connectivity and interoperability research in AOD is addressing issues associated 
with integration of Tactical Information Exchanges (TIEs) with airborne mission systems. 
It aims to provide the knowledge to ensure minimal impact of addition of proposed new 
systems on mission system architectures. System latencies, capacities and quality of service 
are issues that are inherent to different network and system configurations. Connectivity 
research aims to address these issues for selected network and system configurations. In 
particular, it is addressing the performance of gateways which have the potential to 
minimise integration impact and to solve TIE interoperability and TDL beyond line of 
sight issues. The potential of future technologies such as Cooperative Engagement 
Capability (CEC), JTRS, Tactical Targeting Network Technology (TTNT), Weapon Data 
Link (WDL), Integrated Broadcast Service (IBS), Common Link Integration Processing 
(CLIP) and Multi-Channel Data Link (MCDL) and their impact on mission systems need to 
be assessed. 

Specific research objectives for the AEW&C MST include: 

• Evaluation of net centric connectivity of a Wedgetail platform to: 

o another Wedgetail (e.g. mission cooperation/handover) 

o Air Defence Ground Environment (ADGE) 

o Air Warfare Destroyers (AWD) 
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o Jindalee Operational Radar Network (JORN) 

o Joint Strike Fighters (JSF) 

o Orion AP3Cs 

o Unmanned Aerial Vehicles (UAV) and Unmanned Combat Aerial Vehicles 
(UCAV) 

o The Australian Advanced Air Traffic System (TAAATS) 

o Australian customs/immigration. 

• Demonstration of Australian Regional Information Grid (RIG) concepts and 
architectures. 

• Evaluation of emergent properties related to the AEW&C node in the Australian RIG, 
for example: 

o architectures 

o services (e.g. messaging, collaboration, services management, security, 
discovery and mediation) 

o protocols (e.g. XML, SOAP, meta-data, trusted filters, GIG services, CODECs 
and DDS (Data Distribution Service—pub-sub)) 

o scalability (how does the system scale with increased information flow?) 

o adaptability/agility (ability to dynamically adapt to changing conditions) 

o information assurance/security 

o information sources and sinks (including analysis of meta-services and meta-
data) 

o Quality of Service (QoS) – performance, availability, reliability and 
modifiability2. 

                                                      
2 Performance is the ability of a system to allocate its computational resources to requests for service 
in a manner that will satisfy timing requirements (i.e. latency requirements). Impacts are such 
things as periodic or aperiodic messaging, synchronous or asynchronous protocols, resource 
contention and locking, network bandwidth and latency, and asking ‘big picture’ questions rather 
than individual requests for data across a network. Availability is the long-term proportion of time 
the system is working and delivering its services. (Reliability is the probability a system will not fail 
over some specified interval of time.) Modifiability is the ability of a system to be changed after it is 
implemented (or deployed). 
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• Investigation of impact of net centric design and information flows on Wedgetail 
system performance. 

• Investigation of Wedgetail communication upgrade paths and related integration. For 
example, General Inter-ORB Protocol (GIOP) or IP tunnelling over Link 16, IP 
gateways over extant radios and JTRS. 

The US DoD Net-Centric Checklist [DCIO 2004] provides further net centric attributes that 
may be explored using the AEW&C MST. Experimentation using the AEW&C MST will 
require an evaluation methodology and metrics appropriate to net centric systems, for 
example [Hue 2007]. 

Future defence operations will be based on networking assets and sharing information. 
Development to this end can be observed in many US programs, perhaps none better 
demonstrating this fact than the army’s Future Combat System (FCS) [US Army 2004]. It 
consists of a number of manned and unmanned systems, a System of Systems (SoS), 
connected via a common network to enable improved capability. Data is to be passed 
through this network in a five layered model, and will make use of standards to conform 
to the Service Oriented Architecture (SOA) approach of the GIG. Like other defence 
environments, it will incorporate both existing and future platforms, and thus a number of 
heterogeneous communication mechanisms such as legacy TDLs will remain initially. The 
possible techniques for transitioning between these two stages of information sharing thus 
become crucial, allowing for effective operations to continue with minimal interference. 

One transitioning technique has been investigated by the Weapon Systems Open 
Architecture (WSOA) program [Corman & Gossett 2001] funded jointly by the Air Force 
Research Laboratory (AFRL), Defense Advanced Research Project Agency (DARPA), and 
the Open Systems Joint Task Force and will be incorporated into the AEW&C MST. WSOA 
has introduced the concept of using a TDL as a ‘virtual backplane’, with a CORBA 
middleware layer tunnelling mechanism formed on top to achieve greater synergy with a 
layered communication model (the advantages gained through the use of a middleware 
layer in this situation are discussed in Section 4). The Common Object Request Broker 
Architecture (CORBA) Common Data Representation (CDR) provides a machine 
independent way of representing data, with stubs and skeletons handling requests 
between objects to simplify application development. Forming a CORBA layer over a TDL 
is made possible through tunnelling the CORBA pluggable protocols framework. This 
framework permits the transparent use of custom Object Request Broker (ORB) messaging 
and transport protocols by CORBA applications. This is particularly important where hard 
latency and jitter constraints exist, rendering the standard GIOP and Internet Inter-ORB 
Protocol (IIOP) protocols within an IP communication environment inappropriate. 

Permitting information sharing across heterogeneous communication mechanisms is one 
necessary capability for NCW, however a number of characteristics are required or are 
desirable for its successful implementation. Adaptability and extendibility are two such 
characteristics and their support may be investigated through a EUROCONTROL concept, 
the connector [Ehrmanntraut 2003]. Much like the Defence Information Environment 
(DIE), the air-ground technologies co-existing in the EUROCONTROL’s Air Traffic 
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Management system are vast and require integration. The connector, an entity that 
represents the interaction between components in a component-based software 
architecture (CBSA), encapsulates middleware functionality and separates a component 
from implementation dependencies. This abstraction hides the complexities introduced 
through interactions with legacy systems such as TDLs, and thus improves the 
upgradeability of the system. The connector also permits dynamic component 
management and linking to improve the adaptability of the system in ever changing 
network and mission configurations. 

The encapsulation of middleware functionality lends itself to the investigation of a 
multitude of technologies and will therefore prove useful in the Net Warrior Initiative. 

3.3 Summary 

The transformation to an Australian net centric force will require a shift in the way 
systems are procured, built and used so that information can flow through a changing 
network of heterogeneous nodes, each with its own information requirements. For 
example, aircraft, due to their mobility, will have changing contexts and will require 
dynamic connections to other nodes. This necessitates that research is conducted into how 
information flows can be agile and adaptable in dynamic and distributed environments. 
These environments will be underpinned by a range of standards and technologies (such 
as component-based architectures and middleware), which are discussed in the next 
section. 
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4. Component-based Architectures and Middleware 

4.1 Overview 

In net centric environments, information interoperability is paramount and the ability to 
seamlessly share information between and within systems in a timely manner is essential. 
In order to satisfy these requirements new software design techniques and architectures 
need to be adopted. Capability procurement had typically concentrated on platforms and 
usually resulted in stovepiped systems that satisfied a capability gap. In net centric 
environments capabilities need to be acquired with the ability to interoperate with other 
systems. 

This section aims to describe these new approaches, methodologies and architectures to 
enable the design of interoperable component-based systems. Section 4.2 describes 
software engineering approaches relevant to producing distributed interoperable systems, 
and in particular, component-based software engineering (CBSE) methodologies. It also 
highlights Australia’s Defence Architecture Framework (DAF) as a guide for system 
designers and a tool for Defence capability managers. Section 4.3 introduces the concepts 
of architectural approaches and the need for reference models. It describes how Service 
Oriented Architectures (SOAs) are relevant to net centric systems and outlines the 
importance of reference models to ensure conformance with a particular architectural 
approach. Section 4.4 examines the relationship between patterns, middleware and 
frameworks and how they can be combined to produce architectural environments that 
support component-based designs and SOAs. 

4.2 Engineering Approaches and Methodologies 

4.2.1 Evolution of Engineering Approaches 

Engineering approaches and methodologies applied to large software systems have 
evolved over time. Figure 4–1 depicts the timeline of the types of systems developed as 
software engineering design methodologies have evolved and new approaches have been 
adopted. 

 

Figure 4–1. Evolution of software architecutres. Adapted from [Cureton 2007 slide 3] 
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Today large and complex software systems reside on platforms with multiple processors 
and networks and can span the globe using distributed computing techniques. Many of 
these systems have been developed in isolation, with little thought of interaction with 
systems outside of the initial design. Such systems are commonly referred to as stovepiped 
systems and many Defence platforms fit this description. The concept of Network Centric 
Warfare (NCW) requires improved interoperability between software systems and this can 
be satisfied by adopting a System-of-Systems Engineering (SoSE) approach. 

SoSE is an emerging field of systems engineering with the following goals defined by the 
System of Systems Engineering Center of Excellence [SoSECE 2007]: 

• Individual systems can operate as autonomous components with one or more System-
of-Systems (SoS) while satisfying the functional requirements of each system. 

• The SoS can explicitly accommodate a wide range of ambiguous and changing 
conditions. 

• The composition of a particular SoS can be reconfigured to form new SoS 
implementations as conditions demand. 

This section explores the DAF, which can be used to document systems and visualise the 
interrelations of Defence capabilities as a SoS. CBSE is then discussed as it enables systems 
to be produced that conform with the SoSE approach. CBSE was adopted in the 
development of the AEW&C node in Net Warrior. 

4.2.2 Defence Architecture Framework 

The Australian Defence Organisation (ADO) has recognised the need to standardise how 
Defence describes, models and designs Defence information capabilities within the 
Defence Information Environment (DIE). The DIE (Figure 4–2) is described as: 

…the aggregate of individuals, their expertise, organisation and 
systems in the Australian Defence Organisation (ADO) that create, 
collect, process or disseminate information, including the information 
itself. [CIOG 2006, Introduction p. 4] 

Architecture in relation to the DIE is a disciplined approach to planning, design and 
implementation of information capability. The Chief Information Officer Group (CIOG) 
defines this approach to be the DAF and have presented the DAF model, see Figure 4–3. 
The application of the DAF allows for planners and decision makers to visualise and 
optimise the DIE as a system of systems. This ensures that through the DIE, the right 
information is delivered to the right people at the right time to support decision making at 
all levels. 

The DAF has evolved through the combination of elements of the US Department of 
Defense Architecture Framework (DoDAF) [DoDAF WG 2004] and Metagroup’s (now 
Gartner) Enterprise Architecture Strategy. While not strictly a SOA approach like DoDAF,  
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Figure 4–2. Defence Information Environment. Source: [CIOG 2006, Chapter 1 p. 4] 
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DSTO-TR-2093 

 
25 

the DAF is continually evolving and appears to be more closely aligning with DoDAF. 
Other information interoperability frameworks in the defence domain include the Ministry 
of Defence Architecture Framework (MoDAF), the NATO Architecture Framework (NAF) 
and the Network Centric Operations Industry Consortium (NCOIC) Interoperability 
Framework (NIF). 

Scope for the application of the DAF is broader than technical architecture design as it is 
applicable from system design through to operations and Defence enterprise business 
modelling. Thus, the minimum set of outputs defined as essential are those views that are 
required to define a capability at a high-level to facilitate planning and an understanding 
of a capabilities place within the DIE. 

Experimentation under the Net Warrior Initiative involves the exploration of NCW 
technologies and techniques, using component-based middleware and frameworks, which 
is firmly grounded in the Defence Information Infrastructure (DII) component of the DIE. 

It is intended that processes and tools from the DAF be used to document the Net Warrior 
architecture and experiments. As most of the information required to describe the nodes 
and their interrelations exists in documents produced under Net Warrior, this information 
could be formally documented using the DAF products to improve common 
understanding of the architecture in place. The DAF could then be applied to Net Warrior 
experimental design, with DAF products used to describe the experiments, participants, 
information and technologies required to generate the required outcome. 

4.2.3 Component-based Software Engineering 

4.2.3.1 Components 
Component-based software engineering is a software design methodology based on the 
notion of third party composition of software products (components), to produce 
applications and systems with goals of certifiable, predictable behaviour and quality 
attributes, with reduced time to market. Benefits of component-based software 
engineering include: 

• software reuse 

• possibility of compartmentalised upgrades and maintenance 

• allows parallel development 

• can improve scalability through the ease of use of replication 

• extensibility of a system 

• enforced use of standards 

• marketplace of components to be assembled. 
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Components are self-contained and deployable software elements that form applications 
when assembled with other components. Bachmann et al. [2000] propose that components 
should exhibit the following properties: 

• be an opaque implementation of functionality 

• be subject to third party composition 

• conform to a component model. 

The first point implies that components are interchangeable. Any component 
implementation that satisfies the required behaviour and interface can be substituted for 
any other. A component can therefore be treated as a ‘black box’ and users of the 
component need not rely on the knowledge of the exact implementation details. 

The second point represents the need for components to be assembled and deployed into a 
larger system by any system integrator according to a composition standard. Any system 
can be comprised of components from a range of sources. 

The third point is used to define a component-based architectural design. A conformant 
component is subject to interface descriptions and architectural constraints imposed by the 
model. These features enable components to easily interact with other components that 
conform to the same component model. 

4.2.3.2 Component-based Design Pattern 
The composition of components to form applications is based on a component-based 
design pattern [Bachmann et al. 2000] realised through the use of well-defined interfaces, 
conformance to a component model and supported by a component framework. The 
component-based design pattern (Figure 4–4) comprises software components (1), which 
are deployable and can be run on a physical or logical device. Components are required to 
implement one or more interfaces (2) that facilitate conformance to the component model 
(6). The contractual obligations imposed by the interfaces (3) ensure that independently 
developed components are able to interact in predicable ways and be deployable in 
standard build-time and run-time environments (4). Component-based systems comprise 
specialised component types (5) that perform different roles in the system that are 
described by interfaces. A component model (6) is the set of component types, their 
interfaces, and a specification of the patterns of interaction allowed between the 
components types. A component framework (7) enforces and supports the component 
model and provides a range of run-time services (8) similar to how operating systems 
support applications. 

4.2.3.3 Component Models 
D’Souza and Wills [1999] introduce the concept of a component kit, such that collections of 
components are designed to work together using a unifying set of principles. This is 
referred to as a component architecture type. Bachmann et al. [2000] and Heineman and 
Councill [2001] further refine this idea to define and report on component models and 
component frameworks. 
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Figure 4–4. Component-based design pattern. Source: [Bachmann et al. 2000, p. 3] 

Generally, a component model is the specification of well-defined standards, interfaces 
and conventions that developers must adhere to when developing components. 
Conformance with a component model is one property that distinguishes components 
from other packages of software. Table 4–1 lists the core standards and services required of 
any component model. 

Table 4–1: Basic elements of a component model. Source: [Heineman & Councill 2001, p. 38] 

Standards for Description 
Interfaces Specification of component behaviour and properties; Definition 

of Interface Description Languages (IDL). 
Naming Global unique names for interfaces and components. 
Meta-data Information about components, interfaces and their relationships; 

API’s to services providing such information. 
Interoperability Communication and data exchange among components from 

different vendors, implemented in different languages. 
Customisation Interfaces for customising components. User-friendly 

customisation tools will use these interfaces. 
Composition Interfaces and rules for combining components to create larger 

structures and for substituting and adding components to 
existing structures. 

Evolution Support Rules and services for replacing components or interfaces by 
newer versions. 

Packaging and Deployment Packaging implementation and resources needed for installing 
and configuring a component. 

Interfaces 

An interface describes a provided behaviour; a user of a component can only 
rely on the specification of the interfaces that a component supports. The 
interface acts as a contract between the component and its clients, it describes 
constraints of a particular service, what the client can expect from the 
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component and what the client needs to provide in turn. A component model 
may also specify interfaces that a component must implement in order to 
provide services that the component expects from the run-time environment 
such as lifecycle management or security. The interfaces that a component 
implements define the type of the component. If the component implements 
multiple interfaces, its use can be considered polymorphic and can represent 
itself as any one of these types. 

Naming 

Components need to be discoverable and uniquely identifiable. This can be 
achieved through the use of unique identifiers, naming or directory services. 
The risk of name clashes can be reduced through the use of hierarchical 
namespaces. 

Meta-Data 

Meta-data is used in a component model to provide descriptions of 
components and interfaces. The model should define how meta-data is 
described and how to access the data. Examples of meta-data use include Java 
Beans reflection and introspection and reflection in the Common Object 
Request Broker Architecture (CORBA) Component Model (CCM) specification. 

Interoperability 

Interoperability standards define how components communicate with each 
other and share data. These standards can ensure that components from 
multiple vendors are able to interact in the same process space, the same 
machine or over a network. A normalised data representation should be 
specified to provide a machine independent view of data, which facilitates 
sharing across a network. For example, the Object Management Group (OMG) 
has specified the use of Common Data Representation (CDR) in CORBA 
systems. Standards for Interface Description Languages (IDL) can be used to 
allow component implementations to be programming language independent. 
Examples of this include the CORBA IDL specification and Microsoft’s CLR 
(Common Language Runtime) for .NET. Bridging specifications can be defined 
to allow components designed for different component models to interoperate. 
For example, the OMG specifies how CORBA components can interoperate 
with Microsoft COM (Component Object Model) objects and Sun Enterprise 
Java Beans. 

Customisation 

Customisation in the context of components is defined in [Heineman & 
Councill 2001, p. 42] as ‘…the ability of a consumer to adapt a component prior 
to its installation or use’. Customisation can be facilitated through the use of 
specialised interfaces and can be performed using customisation and 
deployment tools. Customisable aspects of components include properties and 
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behaviour, generally implemented through the use of strategy patterns and 
policies. 

Composition 

A fundamental property of component-based systems is the ability to assemble 
applications from components, potentially sourced from a range of vendors. In 
order to facilitate this functionality, connector standards are required to enable 
component connectivity. The two main forms of component connection are 
asynchronous and synchronous communication methods. Asynchronous 
interactions are typically based on publish and subscribe mechanisms with 
event propagation. This method produces loosely coupled systems where the 
location of event sources and destinations may not be known to either end 
point. Synchronous communications are based on client/server principles and 
direct method calls on (potentially distributed) components. This method 
produces tightly coupled systems that rely on the knowledge of the servant’s 
interface. 

Evolution Support 

In general, large component-based systems do not remain static. Requirements, 
interfaces and component implementations can change as new functionality is 
added. Ideally existing clients of a component whose interface or 
implementation is modified should be unaffected by the change. It is therefore 
important that a component model defines rules and standards to enable 
versioning of interfaces and components. 

Packaging and Deployment 

Since components are units of standalone deployment, a component model 
needs to define how a component is packaged as part of the deployment 
process. Component deployment consists of everything required to install and 
configure the component within its component framework. 

4.2.3.4 Frameworks 
A component framework is complementary to the component model and implements 
infrastructure and services that support or enforce a component model. The framework is 
similar in concept to an operating system, and provides services and an environment in 
which components can be deployed and utilised. The framework manages shared 
resources used by components and facilitates the connections and communications 
between components. Examples of component frameworks include Enterprise Java Bean 
servers and containers, and CCM implementations such as the Component Integrated 
ACE3 ORB (CIAO). Experimentation in distributed component systems using the Airborne 
Early Warning & Control Mission System Testbed (AEW&C MST) has explored the use of 
CIAO and Boeing Australia’s Software Architecture Framework (SAF), which is based on 
open standards. 
                                                      
3 http://www.cs.wustl.edu/~schmidt/ACE.html. 
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Component models and frameworks can be general in nature and provide a number of 
horizontal4 standards and services. They can also be domain specific and provide a 
number of vertical standards and services. Horizontal frameworks while more general and 
applicable to a wider variety of applications normally require more effort from the 
developer to implement components. Conversely, vertical frameworks simplify the 
development of components in a particular domain, but are difficult to apply more widely. 

In order for components to successfully interact, they need to conform to the same 
component model or use bridging and adaptation mechanisms to allow interaction across 
heterogeneous frameworks. 

4.3 Architectural Approaches and Reference Models 

4.3.1 Software Architecture 

There are many definitions of software architecture and many variations on what software 
architecture entails. The following is a succinct definition: 

Software architecture is the fundamental organization of a system 
embodied in its components, their relationships to each other and to 
the environment and the principles guiding its design and evolution. 
[Dikel et al. 2001, p. 20] 

An architectural approach is more than a design and is broader than an architectural style 
or specification. The approach guides the architect and developer to design systems 
according to a high-level concept of organisation and interactions. One architectural 
approach that is particularly suited to the design of net centric systems is the SOA 
approach5. Reference models assist an architect to design a specific architecture that 
conforms to an architectural approach. 

4.3.2 Service Oriented Architectures 

SOAs make software resources available and discoverable as services to end-user 
applications and other services through public or published interfaces. The most basic goal 
of SOAs is to implement business processes for enterprise systems. SOAs are able to be 
applied across enterprise boundaries and are an enabler for the integration of 
heterogeneous information technology systems. 

Net centric operations and warfare require resources to be ubiquitously available within 
Defence enterprises and across operational boundaries, within security limitations. SOA 
concepts when applied to the needs of net centricity are able to achieve flexible and 
                                                      
4 Horizontal descriptions refer to the applicability of the subject to a wide variety of situations and 
domains, while vertical descriptions refer to subjects that are very domain specific and not 
applicable outside of the given context. 
5 [Krishnamurthy 2006] provides a detailed comparison of several architectural approaches to 
designing net centric software systems and their associated frameworks. 
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adaptable operational effectiveness through the integration of disparate systems and 
capabilities. For this report the following is adopted as the definition of a service: 

A service is generally implemented as a course-grained, discoverable 
software entity that exists as a single instance and interacts with 
applications and other services through a loosely-coupled (often 
asynchronous) message-based communication model. [Brown et al. 
2002, p. 4] 

SOAs and CBSE share similar concepts, but services are distinct from components due to 
their course-grained and discoverable properties. Services generally implement more 
functionality than components, deal with larger data sets and need to be discoverable at 
design-time and run-time. 

While definitions of SOAs vary, the following key characteristics can be identified [Lewis 
& Wrage 2004; O’Brien et al. 2005; Brown et al. 2002; NCOIF 2005]: 

• Standards-based interfaces: Services are required to implement at least one interface. 
The interface acts as a formal contract between the service provider and the service 
requestor. The use of interfaces standards allows for platform or implementation 
technology-independent definitions of an interface to facilitate the use of services in 
heterogeneous environments and is key to achieving the net-centric vision. 

• Abstract underlying logic: Services hide their implementation, only the interface and 
the interface description are made public. Service requestors only rely on the defined 
behaviour of the interface. This has the advantages of allowing the use of any service 
that supports the interface, as well as potentially shielding the client from any 
modifications to the implementation of the service.  

• Course-grained: Services usually implement more functionality and operate on larger 
data sets than components. A service focuses on high level business processes using 
standard interfaces. If a service is too fine grained, service requestors may need to 
make more requests than necessary, resulting in inefficient use of resources. 

• Loosely coupled: Services are generally connected to other services and applications 
through standard message-based techniques that reduce dependencies. 

• Discoverable: Service interfaces and their descriptions should be discoverable at 
design-time and run-time and should be understandable to humans and service users. 
Discovery can be aided through the use of a directory provider or through the use of 
its network address if known. 

• Modular and autonomous: A service represents a boundary around a discrete unit of 
business logic, and within this boundary, should not be dependent on other services to 
execute this logic. 

• Reusable: Services are designed to support reuse, and use by multiple service 
requestors. 
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• Composable: Due to the reusable, modular and course-grained characteristics of 
services and their implementation of well-defined interfaces, systems and higher-level 
services can be built through the composition of services and evolved through the 
addition of new services. 

Typical business goals that may lead an organisation to implement a SOA include the 
ability to be agile and adapt quickly to new opportunities or threats, to reduce costs 
through streamlining business processes, and removing unnecessary duplication of 
services. SOAs also introduce the opportunity to share capabilities offered by existing 
legacy systems. 

In order to transition to a SOA, an organisation needs to identify what pieces of 
functionality or business processes could be represented as services. The granularity of the 
service needs to be determined, and public or published interfaces need to be designed to 
expose the functionality. Legacy systems can be incorporated into a SOA through an 
adaptor. The adaptor is designed to make the legacy system appear as a service by 
providing a public interface for service requestors to call, while dealing directly with the 
existing system to access the functionality. 

Applications based on a SOA are developed by combining services to realise an emergent 
behaviour, which is potentially greater than the sum of the parts. Services can be sourced 
exclusively within the organisation or from external organisations. Each service can also be 
reused in different applications. This design methodology allows applications to be 
evolved through the addition of new services. 

SOAs require some form of inter-service infrastructure to facilitate interaction and 
communication between services and applications. Currently, the most common 
technology used to realise SOAs are Web Services, but this is not the only middleware 
environment available. J2EE, .NET and CORBA are other commonly used technologies. 
Importantly, these technologies specify standards for interfaces, communications and data 
representation, and are all middleware and framework based. 

4.3.3 Technical Reference Models 

In net centric environments, a Technical Reference Model (TRM) can be described as 
defining the software components, services and component interactions that may be 
implemented in a system. To achieve an open systems environment, the layered structure 
of a TRM aims to ensure separation of data from applications and applications from the 
computing platform. While a TRM specifies an architectural approach (e.g. a SOA TRM), a 
number of architectures (e.g. those described by [Dekker 2005]) can be derived from the 
one TRM by selecting components and services to meet the specific requirements of each 
architecture. The TRM is analogous to a checklist for conformance of a specific architecture 
to the architectural approach. 

Knight et al. [2006] have developed an NCW Enterprise Model that includes a TRM layer 
and recommend the ADO endorse a TRM with which Defence projects should comply. As 
one of the aims of Net Warrior is to integrate a set of disparate nodes in a net centric 
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environment, achieving technical interoperability will require adherence to an 
architectural approach and standards through a TRM. The Net Warrior TRM will provide 
a mechanism for achieving a common understanding and identifying issues associated 
with portability, scalability and interoperability.  

According to [Vencel 2006], the US and NATO are moving away from their existing 
platform centric TRMs and are in the process of adopting TRMs that define services and 
standards for net centric environments. The UK is still developing its architectural 
approach. The US Network Centric Operations and Warfare Reference Model (NCOW-
RM) [US DoD 2004] is more mature than the NATO model, but is still an emerging TRM. 
Therefore, basing the development of the AEW&C MST (section 5) on, and linking the Net 
Warrior TRM to, an established industry TRM may be appropriate at this stage. 

Boeing in their involvement with the NCOIC has recommended the adoption of the 
Strategic Architecture Reference Model (SARM) [Logan 2003] or similar model as its TRM. 
The SARM is a SOA TRM and is consistent with high-level reference models such as the 
NCOW RM and Open System Interconnection (OSI) model. The SARM is a 
communication, information, application and presentation architecture framework (Figure 
4–5).  

 

 

Figure 4–5. Strategic Architecture Reference Model. Source: [Logan 2003, p. 23] 

The focus of the SARM is the communication and information layers as these support 
interoperability between nodes and the application and presentation layers are node 
specific. The SARM can be decomposed further than Figure 4–5 into a hierarchical 
collection of components and services based on open standards. Mechanisms for 
accommodating legacy systems are specified and include adaptors, translators and 
emulators. The SARM has been adopted in the development of the AEW&C MST and 
proposed for use as the Net Warrior TRM. 
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4.4 Reference Architectures, Patterns, Middleware and Frameworks 

4.4.1 Reference Architectures 

New approaches to designing distributed applications both for net centric and mission 
system environments are using techniques based on components supported by layered 
middleware environments that utilise the benefits of frameworks and patterns to produce 
applications. Boeing’s Bold Stroke [Doerr & Sharp 1999; Paunicka et al. 2001] and the 
Weapon Systems Open Architecture (WSOA) program [Corman & Gossett 2001] are 
examples in the defense domain of experimentation with this technology in the United 
States. 

These approaches conform to CBSE principles by using a layered hardware and software 
infrastructure that provides a standardised environment in which components can interact 
with each other and the infrastructure. That is, they describe a component model and 
provide a framework for conformance. In these environments components are ‘plugged 
into’ the underlying infrastructure or fabric. The fabric provides a logical connection 
between components within systems and across system boundaries. It therefore becomes a 
trade-off of quality attributes and functionality to determine where a component resides 
rather than tightly coupling the producer and consumer. The use of hierarchical contexts 
or domains can be employed where logical separation of components or component 
systems are required. 

Figure 4–6 depicts a layered Reference Architecture that supports distributed component 
systems. The base layer represents the platform environment of operating system and 
services that run on top of hardware. The communications layer sits above the platform 
environment and provides standard transport and protocol support. Above the 
communications layer is the middleware environment that provides operating system 
abstraction and distribution standards and services to support networked components and 
systems. Specific domain environments at the top level provide a framework layer to host 
applications. Components are developed and deployed on top of the domain environment 
by extending the framework and may interact directly with the middleware environment. 

Importantly, standards are relied on at every layer of the reference architecture to provide 
consistent interfaces between layers and predicable behavior overall. The use of open and 
established standards at all layers means that a developer mainly needs to design and 
develop the business logic, while relying on lower layers to provide services for 
networking, security, lifecycle management and operating system abstraction, among 
others, while avoiding the need for the developer to write complex, and possibly error 
prone, ‘non-business’ logic. Existing systems are not precluded from integration into this 
layered model. Through the use of adaptors, legacy systems can be presented as a service 
to other components. The adaptor normalises the legacy system’s interface to the fabric 
and allows the components to effectively and seamlessly ‘plug-in’. 

The rest of this section will discuss patterns, middleware and frameworks in the context of 
the Reference Architecture and outline the relationships between these three concepts. 
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Figure 4–6. Component system reference architecture. 

4.4.2 Patterns 

Software patterns are solutions to common problems encountered in architecting and 
designing software. Patterns provide an effective means of communication between 
software architects, designers and developers. By describing a design using patterns, a 
common understanding can be imparted of the design problem, its context and an outline 
of the solution through the description of the structure and dynamics of collaborating 
classes [Gamma et al. 2005]. While not providing strict code reuse, patterns facilitate reuse 
of the knowledge and experience of previous designs. Patterns themselves are abstract 
descriptions of problem solutions that need to be implemented by a developer. 

There are in general three categories of patterns: architectural patterns, design patterns 
and idioms. The application of patterns in each category becomes more specialised the 
further a software system design is delved into. 

Architectural patterns [Buschmann et al. 1996] solve problems at a system-wide level by 
describing how elements within a system are organised and structured, and specifying 
predefined subsystems and their responsibilities. The correct choice of which architectural 
pattern(s) to implement is essential as it impacts on system-wide attributes. 

Design patterns [Gamma et al. 1995; Buschmann et al. 1996] are applicable for solving 
design issues at a subsystem level. They describe the components and their relationships 
to solve a general design problem. Design patterns are smaller in scale than architectural 
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patterns but they are general enough to be paradigm or programming language 
implementation independent. 

Idioms [Buschmann et al. 1996] are low-level patterns targeted for a specific programming 
language. They describe how to implement a component or relationship for a specific 
language. 

No single pattern is able to provide the solution for an entire system. Patterns need to be 
combined to produce a desired outcome or design and some patterns work together better 
than others. The relationships between patterns can be represented through a Pattern 
Language [Schmidt et al. 2000]. A pattern language is not a formal language, but a guide to 
how patterns collaborate. These languages are specific to a particular context. For example, 
a language of concurrent and networked objects (Figure 4–7) has been used in the 
development of the AEW&C MST. 

 

Figure 4–7. Concurrent and networked objects pattern language. Source: [Schmidt et al. 2000, 
inside rear cover] 

4.4.3 Middleware 

Middleware is the glue infrastructure that makes distributed component-based systems 
and SOAs possible. It provides reusable software that functionally bridges two key gaps 
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between (1) end-to-end application functional requirements and (2) the lower-level 
operating systems, networking protocol stacks, databases and hardware devices [Schmidt 
& Bushchmann 2003]. The middleware layer can be decomposed into multiple layers 
(Figure 4–8) much like a network protocol stack, each providing distinct functionality. 

 

Figure 4–8. Middleware layers 

Host infrastructure middleware abstracts and enhances operating system (OS) 
mechanisms to provide reusable interprocess communication, event demultiplexing, 
concurrency and synchronisation. This layer provides an OS independent environment for 
using low level OS application programming interfaces (APIs) by encapsulating the 
peculiarities of an OS and presenting a normalised interface to the layers above. 

Common examples of host infrastructure middleware include Sun’s Java Virtual Machine, 
Microsoft’s CLR, and ACE. The AEW&C MST uses ACE to provide the host infrastructure 
middleware in the experimentation environment. 

Distribution middleware builds on host infrastructure middleware and defines 
programming models for distributed computing. Distribution middleware enables clients 
to invoke methods remotely on a target object in a location independent manner, without 
depending on hard-coding communication protocols and interconnects, or dealing directly 
with hardware. 

Popular forms of distribution middleware include CORBA, Sun’s Java Remote Method 
Invocation (RMI) and Microsoft’s .NET. Common to these technologies, and what enables 
the distribution, is the reliance on request brokers. Request brokers enable objects to 
interoperate, usually via proxies, across heterogeneous platforms and networks. Other 
distribution middleware technologies that are gaining popularity are Web Services, which 
rely on XML-based SOAP. The AEW&C MST relies on CORBA-based distribution 
middleware provided by The ACE ORB (TAO)6. 

                                                      
6 http://www.cs.wustl.edu/~schmidt/TAO.html. 

Operating Systems/Services 
(Windows/Solaris/...) 

Host Infrastructure Middleware 
(ACE/CLR/JVM) 

Distribution Middleware 
(CORBA/RMI/Web Services) 

Common Middleware Services 
(Concurrency/Threading/Transactions/...) 

Domain Specific Middleware Services 
(Aero-Space/Medical/Financial) 

Applications 



 
DSTO-TR-2093 

 
38 

Common middleware services expand on the capabilities provided by distribution 
middleware through the definition of domain-independent, reusable software services 
that are available for application developers. These services negate the need for the 
application developers to write ‘plumbing’ code via lower-level middleware that handles 
distributed resources and allows them to concentrate on writing business logic. Some 
examples of the types of services typically provided are transactional behavior, location 
independence, security, fault tolerance, concurrency, scheduling, pooling and threading. 

The difference between distribution middleware and common middleware services is that 
distributed middleware is designed to manage and coordinate end-system resources 
conforming to a distributed programming model. Common middleware services focus on 
the allocation, scheduling and coordination of various resources throughout the 
distributed system in a structured and consistent manner. 

Domain-specific middleware services are specific to the requirements of a particular 
domain, such as telecommunications, commerce, health and aerospace. The previous 
middleware layers and services mentioned have been general in nature and are applicable 
and reusable ‘horizontally’ in many domains. Domain-specific middleware services satisfy 
‘vertical’ markets and product-line architectures. These services are designed to reduce the 
development effort while increasing the quality of products in a limited field through 
reuse. Bold Stroke [Doerr & Sharp 1999; Paunicka et al. 2001] and WSOA [Corman & 
Gossett 2001] are examples where domain-specific middleware has been developed to 
provide component architectures for military avionics mission systems. The AEW&C MST 
uses Boeing Australia’s SAF, which provides domain specific services for real-time, 
distributed and concurrent components in the mission system domain. 

4.4.4 Frameworks 

Development of middleware and complex component-based systems would be difficult 
without the support of frameworks. They facilitate the reuse of design knowledge and 
code by providing developers with a toolkit of patterns and components geared towards 
simplifying and standardising programming practices in a particular domain. 

Contrary to traditional software design processes where developers create an application 
from scratch, often resulting in the reengineering of solutions to problems that have 
already been solved, frameworks provide commonly recurring solutions for infrastructure 
and services requirements. A framework can be considered to be an incomplete 
application that can be extended and customised by application developers to create 
complete applications. That is, a framework is a collection of classes, some complete, that 
developers can instantiate, and others that are abstract with hook methods that are 
implemented by developers. Developers have the responsibility of structuring and 
defining the behaviour of the application, but can call upon the concrete realisations of 
patterns provided by the framework to achieve application goals. Frameworks differ from 
middleware in their completeness, role and usage. A framework is extended and 
customised to produce a complete application, while middleware is a complete application 
that a developer uses to fulfil the roles described in Section 4.4.3. 
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The use of frameworks leads to an inversion of control of the software system. Normally 
when a developer writes an application, they write the body of the code and call on 
methods or routines from components and libraries. In this case execution is controlled by 
the developer. However, frameworks provide facilities for event loop execution, 
demultiplexing and connection of software components. The framework is the body of the 
application and it invokes methods implemented by the developer to execute the business 
logic, which results in the framework controlling the flow of execution.  

4.5 Summary 

Component-based architectures supported by middleware and built on top of frameworks 
are able to satisfy design needs of applications to produce stable mission and net centric 
systems. Basing an architectural design on a TRM and in particular the SARM, CBSE 
concepts have been combined with a layered architectural style to introduce the 
component-based reference architecture. This model aligns with a SOA approach and 
particular emphasis is placed on the use of open and well-defined standards at all layers. 
These systems rely heavily on interface definition and implementation, which facilitates 
the assembly of applications and systems through the composition of components. 

This section has explored aspects of these engineering and architectural approaches and 
methodologies at a theoretical level and has briefly mentioned experimentation conducted 
using these technologies and concepts. The next section describes the application through 
experimentation of these concepts through the implementation of the AEW&C MST. 
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5. AEW&C Mission System Testbed 

5.1 AEW&C Mission System Testbed Architecture 

5.1.1 Common Object Request Broker Architecture 

The Airborne Early Warning & Control Mission System Testbed (AEW&C MST) is built on 
a component-based distributed computing framework that incorporates many 
architectural design patterns. This framework was developed by Boeing Australia and is 
called the Software Architecture Framework (SAF). The SAF encapsulates the details of the 
Common Object Request Broker Architecture (CORBA) middleware and transports, and 
provides a series of services aiding in the production of a reliable and robust distributed 
computing environment. The SAF is discussed further in section 5.1.2. 

The CORBA specification supplies a set of abstractions and services to address the 
problems associated with distributed heterogeneous computing, which include reliance on 
programming languages, operating systems, communication protocols and hardware. The 
CORBA reference architecture (Figure 5–1) provides interface sets linked by an Object 
Request Broker (ORB) [Schmidt & Buschmann 2003]. 

 

Figure 5–1. CORBA features. Source: [CORBA 2006] 
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The following description of the features of CORBA is based on [Henning & Vinoski 1999] 
and [CORBA 2006]: 

• Interface Definition Language (IDL): A programming language independent interface 
that defines supported operations and the data passed to and from these operations. 

• Object: An entity that is locatable by an ORB and capable of having client requests 
invoked upon it. 

• Client: A program that makes a request on an object through its defined interface. 

• Servant: A programming language entity that implements one or more CORBA 
objects. 

• Stub: A proxy to the servant, generated from IDL, on the client-side. The client makes 
requests using this stub, which marshals operations into General Inter-ORB Protocol 
(GIOP) messages in the ORB core. 

• ORBs: Enable communication between clients and objects through GIOP messages. 
Communication takes place in two stages, with the client ORB transmitting requests to 
a server-side ORB core, which then passes these requests to the object adapter 
responsible for creating the target object. 

• Object adapter: Takes requests dispatched by a server-side ORB core and dispatches 
them to the skeleton for further delegation. 

• Skeleton: A proxy to the servant, generated from IDL, on the server-side. It is 
responsible for dispatching requests received through the object adapter to the servant 
implementing the target object. 

5.1.2 Software Architecture Framework 

The SAF expresses a Service Oriented Architecture (SOA) approach, with common 
software component mechanisms and interfaces encapsulated into a patterned framework. 
The general aims of the SAF comply with those outlined in Section 4.4. In SOAs, resources 
are made available independently through collaborating mechanisms. Requests are made 
on resources through services, which manage the resources without consideration to 
underlying platform dependent constraints. This is supported by the SAF through the 
layered hardware and software infrastructure described in Section 4.4. 

The SAF is built on ACE7, the ADAPTIVE8 Communication Environment. ACE is an open-
source object oriented (OO) framework, developed by the Distributed Object Computing 
(DOC) Group, that implements many core patterns for concurrent communication 
software. Like the SAF, the main application of ACE is the development of high 

                                                      
7 http://www.cs.wustl.edu/~schmidt/ACE.html. 
8 A Dynamically Assembled Protocol Transformation, Integration, and eValuation Environment. 
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performance, real-time and distributed communication services, with the aim of reducing 
complexity through higher layer abstractions. Portability is guaranteed by the SAF 
through ACE’s operating system adaptation layer (Figure 5–2), which isolates applications 
from distinct operating system and network mechanisms by normalising specific 
operating system differences to standard mechanisms and interfaces. An additional 
abstraction layer, The ACE ORB (TAO), implements the CORBA middleware specification 
while utilising the patterns and mechanisms of the lower ACE abstraction. 

 

Figure 5–2. ADAPTIVE Communication Environment structure. Source: [ACE 2006] 

CORBA is further supported by the SAF through ORB adapter components that ensure 
compatibility with TAO9, Orbacus10 and ORBExpress11 implementations, making for a 
pluggable ORB capability. The SAF is currently proven on both Solaris and Windows 
platforms [Boeing Australia 2005]. The facilities and services provided by the SAF include: 

• Core services: The SAF provides two core services, component bus and component 
model. The component bus encapsulates the CORBA ORB, providing distributed 
components with context, deployment and configuration services. The component 
model provides developers with a common interface and interaction model for 
distributable components. 

                                                      
9 http://www.cs.wustl.edu/~schmidt/TAO.html. 
10 http://www.orbacus.com/. 
11 http://www.ois.com/products/. 
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• Streams: Provide a framework for transferring continuous flows of data constrained by 
Quality of Service (QoS) requirements. The type of data transmitted is defined by IDL 
and can employ various CORBA transfer mechanisms, including multicast UDP (User 
Datagram Protocol) and TCP/IP (Transmission Control Protocol/Internet Protocol). 

• Events: Support the passing of asynchronous messages between components through 
event channels. System complexity is reduced by this concept due to the decoupling of 
event producers from their consumers. 

• Domain management: Allows multiple instances of a system to reside on the same 
computing resources. Each instance can run isolated from the other installations while 
still providing the capability for resources to be shared. 

• Start-up and reliability: Addresses dependency issues between components at start-up, 
and models the ability of a software component to handle requests at a given time. It 
also assists with the reliability of components and the ability to handle failures of 
individual server processes. 

• Deployment control: Processes can be configured from multiple sources during 
deployment and have that configuration managed at run-time. The SAF divides the 
deployment configuration of processes into properties (attributes of the process and its 
configuration) and services (the components that are executable within the process 
space). 

• Instrumentation and logging: Log and tracing mechanisms are provided through the 
command line and configuration files. 

A key service provided by the SAF is concurrency. The complexity introduced through 
concurrency in an OO system is perhaps best summarised by Lea [1999] who defines an 
OO system as consisting of both objects and activities. These two concepts are interrelated 
as a ‘…given object may be involved in multiple activities, and conversely a given activity 
may span multiple objects’ [Lea 1999, p. 38]. Interactions such as these lead to a system 
with execution that is nondeterministic and thus cannot provide guaranteed correctness or 
quality. Four key issues can be identified under these categories: 

• correctness 

o safety—nothing bad happens to an object 

o liveliness—something eventually happens within an activity 

• quality 

o reusability—the utility of objects and classes across multiple contexts 

o performance—the extent to which activities execute soon and quickly. 
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A number of constructs exist to support concurrent processing and operation handling. 
The SAF extensively employs the use of one such construct, known as threads, which 
provide shared access to resources within a single process. Communication between 
threads is more efficient than many other concurrency constructs as memory address 
spaces are not swapped until a process is context switched. However, this introduces its 
own complexity, requiring further synchronisation and notification patterns to ensure the 
quality and correctness of code is maintained. 

The SAF provides a number of patterns designed to address the four concurrency issues 
highlighted in [Lea 1999] and thus assists in the development of reliable and robust 
software. These patterns include latches, barriers, channels, rendezvous, executors, 
synchronous variables, and a variety of locks, such as mutexes and semaphores. A detailed 
explanation of these concurrency patterns can be found in [Lea 1999] and [Huston et al. 
2003]. 

5.2 AEW&C Mission System Testbed Overview 

All custom applications developed for the AEW&C MST take the form of software 
components12, primarily based on the SAF component model. This reduces coupling and 
permits communication via an ORB. At present these custom applications have been 
developed with the use of CORBA, however any of the technologies described in Section 4 
could be used. CORBA has been chosen as it overcomes, through abstraction and services, 
the problems associated with heterogeneous computer networks [Henning & Vinoski 
1999]. 

The components of the AEW&C MST can be grouped into four main categories (Figure 5–
3) and represent: Commercial Off-The-Shelf (COTS); the stimulation environment; mission 
computing components; and monitoring components. The stimulation environment 
generates traffic to alter the state of the AEW&C MST. Mission computing represents 
adaptations of components from the AEW&C Mission Computing Subsystem (MCS), 
while monitoring components provide interfaces for observing the information received 
and stored by the other components of the AEW&C MST. The remainder of this section 
provides a brief description of each component; more detailed descriptions are in 
Appendix A. 

                                                      
12  Components are ‘…units of composition with contractually specified interfaces and explicit 
context dependencies only’ [Szyperski 1998, p. 41]. 
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Figure 5–3. The AEW&C Mission System Testbed structure. 

The stimulation environment components include the Test Track Generator, Pilot Model, 
Air Vehicle Model, and the Stimulation Toolkit and Generation Environment (STAGE). All 
of these components, except STAGE, are simple applications aimed at achieving a specific 
experimental goal. For example, the Air Vehicle component is a simple model of an 
aircraft, maintaining aircraft position with basic limits on speed, altitude, acceleration, 
turn-rate and climb-rate. Such a simple model presents problems for experimentation, but 
is useful in investigating different designs for data transmission while providing 
temporary input data with which to test mission computing components. The 
functionality provided by the stimulation environment components has been improved by 
the inclusion of the COTS product STAGE. Through the use of the STAGE/MST Interface, 
which takes data from STAGE’s internal data structures and outputs the information in a 
format compatible with the AEW&C MST, the AEW&C MST is able to use STAGE for all 
ownship sensor and flight modelling. Currently, this provides kinematic data from an 
ownship flight model, while an ownship radar model provides target data for all 
Distributed Interactive Simulation (DIS) entities it detects. 

Of particular use in an experimentation context are the mission computing components, 
which are the main utilities for storing and processing local and remote information. 
Within the AEW&C MST the Track Manager is responsible for maintaining the tactical 
state of the AEW&C aircraft. It does so through a common repository of tracks and a 
collection of capabilities that can be applied to these tracks. The Ownship component 
complements the Track Manager by maintaining the kinematic state of the AEW&C 
aircraft. 
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In addition to maintaining the state of the AEW&C MST, the mission computing 
components are responsible for interfacing with the tactical data link gateway, Rosetta. To 
achieve this goal two separate components have been created. One transmits the AEW&C 
MST’s ownship kinematic state while the other is responsible for receiving tactical data at 
periodic intervals. 

The interactions of the mission computing components as well as those of other 
components are depicted in Figure 5–4. The existing components of the AEW&C MST, and 
their interactions with internal and external systems are shown in black, while those 
components and interactions in blue represent items yet to be developed. This distinction 
highlights the development still required on the tactical data link interface. Tracks 
contained within the Track Manager are yet to be forwarded to Rosetta, limiting the 
tactical information communicated to other systems such as the Dual Link Simulator with 
Extended Capability (DLS-EC). Also separated in Figure 5-4 are the components 
contributing to the AEW&C MST’s involvement in modelling and simulation and the 
components directly related to mission computing. 

 

Figure 5–4. The AEW&C Mission System Testbed component interactions. 
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6. Summary 

The transformation of the Australian Defence Force (ADF) into a net centric force requires 
the adaptation of the way systems are procured, built and used. This report has argued 
that in order for this transformation to be successful, experimentation is required with the 
technologies that underpin Network Centric Warfare (NCW). 

The Net Warrior Initiative is enabling such experimentation to occur by implementing a 
network of real systems, high fidelity testbeds and simulators across DSTO and wider 
Defence. Net Warrior aims to address new and evolving net centric capabilities and 
mission system technologies to enhance the joint warfighting capability of the ADF. 
Multiple DSTO divisions are participating in Net Warrior and Boeing Australia is involved 
through an Interactive Project Agreement concerning mission systems in NCW 
environments. 

The Airborne Early Warning & Control Mission System Testbed (AEW&C MST) is one of 
the nodes in Net Warrior and has been developed to support the Wedgetail AEW&C 
capability. The AEW&C MST supports the evaluation of Wedgetail mission computing 
and enables the exploration of technologies that are relevant to net centric software 
architectures and mission systems. 

Technologies that enable robust mission systems to be developed and implemented for 
NCW environments include component-based systems, Service Oriented Architectures 
(SOAs), middleware and frameworks. The AEW&C MST is built on such technologies 
through the use of the Common Object Request Broker Architecture (CORBA) and the 
Boeing Australia Software Architecture Framework (SAF). Experimentation using the 
AEW&C MST will provide insight into how information can be agile and adaptable in 
NCW environments. Such experimentation will enable DSTO to provide advice to Defence 
regarding the implementation of particular NCW concepts and technologies, and the 
acquisition of systems and platforms that interoperate. 
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Appendix A:  AEW&C Mission System Testbed 
Components 

Two types of components exist within the Airborne Early Warning & Control Mission 
System Testbed (AEW&C MST): (1) architectural components within the component-based 
software engineering (CBSE) development methodology discussed in Section 4.1 and (2) 
Commercial-Off-The–Shelf (COTS) components. The interfaces of architectural 
components conform to the component model of the Software Architecture Framework 
(SAF) and have been developed specifically for the AEW&C MST. These components can 
be grouped according to their roles of mission computing, stimulation and monitoring. 
The native interfaces of COTS components do not conform to the SAF component model 
and are identified separately. 

A.1. Mission Computing 

Mission computing components represent adaptations of architectural components that 
exist in the AEW&C Mission Computing Subsystem (MCS). 

A.1.1 Track Manager 

The Track Manager is responsible for maintaining the tactical state of the AEW&C MST. It 
does so through a repository of tracks and a collection of capabilities that can be applied to 
manage tracks. This behaviour can be compared to patterns associated with component 
technologies employing containers13, in which components of a single type can be added, 
removed, located and returned. The track objects managed by the Track Manager have an 
interface defined in the Interface Definition Language (IDL), which provides 
independence from the programming language implementation and supports integration 
of separate applications and heterogeneous systems [Henning & Vinoski 1999]. 

The Track Manager interface supports the dynamic nature of tracks by allowing updates 
to occur on its stored collection. These updates are handled through a Fused Track 
Updater, utilising an Active Object pattern14. The Fused Track Updater separates the track 
repository update from the general execution of the Track Manger, permitting internal 
processing and requests from other clients to occur concurrently. The Active Object 
pattern is supported by the SAF using a Runnable object, which provides facilities for the 
execution of a Fused Track Updater through inheritance. The SAF Runnable object is 
similar in nature to a Java Runnable, which provides concurrent execution via a separate 
thread. 

                                                      
13 Home in CORBA 3 [OMG 2004], EJBHome in Enterprise Java Beans [DeMichiel & Keith 2006], 
and Container in .NET [MSDN 2007]. 
14 An Active Object ‘…decouples method execution from method invocation to enhance 
concurrency’ [Rising 2001, p. 347]. 
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A requirement of the Track Manager is to handle multiple update requests 
simultaneously. Simply being multi-threaded does not guarantee efficiency in the 
execution or the handling of these requests, leading to the employment of the 
Leader/Followers pattern as a hand-off strategy [Schmidt et al. 2000]. To accommodate the 
Leader/Followers pattern a thread pool is required. Although a Singleton [Gamma et al. 
1995] thread pool is available through the SAF, a controllable one is useful in this 
application, leading to the instantiation of a thread pool within the scope of Fused Track 
Updater. The Leader/Followers pattern permits the Fused Track Updater’s threads to take 
turns processing requests to improve the liveliness of the Track Manager throughout the 
update process. 

To manage the lifecycle of a track object, the Track Manager requires mechanisms for the 
removal and deactivation of tracks from the repository. Data associated with a track object 
is volatile and dynamic and therefore becomes useless to the Track Manager if not 
updated periodically. These time-expired tracks are removed through a track eviction 
mechanism, which itself employs an Active Object pattern for parallel execution. 

The Track Manager must also provide an interface that allows clients to access tracks that 
are managed and contained by the Track Manager. This interface encapsulates iteration 
over the track container, employing the Façade pattern [Gamma et al. 1995]. This provides 
independence from the Track Manager’s internal representation of a track and ensures 
access occurs within the context of the Track Manager’s internal read/write locking 
mechanisms. These locking mechanisms ensure the containment remains consistent 
despite the volatile nature of the data. 

A.1.2 Rosetta Adapter 

The AEW&C MST makes use of the COTS tactical gateway Rosetta, described in Section 
A.4.2, to interface to Tactical Data Link (TDL) networks. Use of this software reduces the 
development needs of the AEW&C MST, which otherwise would have incorporated 
coding of data link message sets and the handling of data from varying hardware 
interfaces. Rosetta isolates the user from these details, enabling programmers to focus on 
Rosetta’s Real-Time Query Language (RQL), a language similar in many respects to the 
Sequential Query Language (SQL) associated with regular databases. RQL enables the 
integration of different TDLs into the experimental environment of the AEW&C MST. This 
forms the basis of two Rosetta clients, which interact with the rest of the AEW&C MST as 
shown in Figure 5–4. 

The first Rosetta client allows data to flow from the AEW&C MST to the track containment 
of a remote Rosetta Server. Currently, this supports the transmission of the AEW&C’s 
ownship data, providing information equivalent to that observed normally in a tactical 
situation. Extension of this interface will enable the transmission of other information, 
such as surveillance data. 

The second Rosetta client permits data flow in the opposite direction, from a remote 
Rosetta server to the AEW&C MST. Through RQL statements, this client represents a 
source of tactical information for the AEW&C MST, on which the AEW&C MST can 
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periodically poll for updated track data. To external systems the client represents a tactical 
information sink and facilitates the flow of data from potentially many systems to the 
AEW&C MST. 

A.1.3 Ownship Status 

The Ownship component maintains the kinematic state of the aircraft represented by the 
AEW&C MST. Access to this data is provided through an interface defined in IDL and 
updates occur through a callback. The Ownship employs the Home pattern to gain access 
to the component generating this kinematic data, which for example could be registered 
with Air Vehicle (Section A.2.2) to receive regular kinematic data updates. 

A.2. Stimulation Environment 

The stimulation environment components represent information sources that exercise 
scenarios with the AEW&C MST. 

A.2.1 Track Source Adapter 

The Track Source Adapter is an abstract entity for input sources. Track input sources 
typically come in many forms, which necessitates the transformation to a common 
behavioural model for the stimulation of the Track Manager (Section A.1.1). This is 
achieved through the use of a Strategy pattern15. Conforming to this pattern, a Track 
Generation Strategy provides a common abstract interface for defining a track, with the 
implementation of the track definition unique to the particular track source. 

Track data is provided to the Track Manager through a separate class, a Track Writer, 
using an Active Object pattern. The Track Writer Active Object decouples requests to the 
Track Manager from any internal processing required on the part of the Track Source 
Adapter’s concrete implementation. This processing is likely to maintain the state of those 
tracks under the concrete implementation’s control, and is able to execute concurrently 
with the Track Writer to remove any dependencies on the possibly remote calls to the 
Track Manager. 

The Test Track Generator provides a concrete implementation of the abstract Track Source 
Adapter for the generation and maintenance of random tracks. This component defines its 
own strategy, a Test Track Generation Strategy, for the creation of tracks. Its concrete 
implementation produces a defined number of tracks with random data. This random data 
is generated to conform to the common representation outlined by the Track Manager in 
Section A.1.1. 

The Test Track Generator is responsible for the maintenance as well as the generation of 
random tracks, requiring local storage to maintain internal state. This storage is similar to 
that within the Track Manager and periodic updates occur to each stored track in 

                                                      
15 A Strategy pattern can be categorised as a family of encapsulated algorithms that are made 
interchangeable [Gamma et al. 1995]. 
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accordance with its randomly generated initial conditions. Data stored within the Track 
Manager’s container must remain consistent with these updates and thus results in further 
requests made to the Track Manager. As such, those arguments made for the use of a 
Track Writer Active Object are valid here, leading to the creation of a Track Updater 
Active Object. 

A.2.2 Air Vehicle Model 

The Air Vehicle component is a simple model of an aircraft, maintaining aircraft position 
with basic limits on speed, altitude, acceleration, turn-rate and climb-rate. A pilot 
command interface is defined to control each of these attributes and thus the basic 
movement of the modelled aircraft, which can also be configured manually prior to 
deployment. 

The Air Vehicle component is strictly stimulus for the mission computing elements of the 
AEW&C MST, therefore requiring the Ownship Status to be notified of any necessary 
updates to the state of the AEW&C MST. Consistent with other component requests, Air 
Vehicle contains an Updater that is an Active Object for this purpose. As the Updater itself 
does not contain any state data, the Home pattern is employed to access the relevant 
kinematic data within Air Vehicle. 

A.2.3 STAGE 

Distributed Information Simulation (DIS) is one method by which simulation can 
stimulate AEW&C MST experimentation. A DIS interface is provided for the AEW&C 
MST by a COTS product, the Stimulation Toolkit and Generation Environment (STAGE). 
STAGE is described in more detail in Section A.4.1. Currently version 5 has been, and will 
be further integrated into the AEW&C MST. Version 4 will be reverted to for user modules 
and simulation models received from the AEW&C program that are incompatible with the 
latest version of STAGE. STAGE version 5 provides an enhanced set of DIS Protocol Data 
Units (PDUs) over its predecessor, with the inclusion of the Electromagnetic Emission 
PDU, and supports extension to include any other type of PDU. 

The STAGE interface to the AEW&C MST acts as a source of information for simulation 
entities. This enables the AEW&C MST to observe and interact with scripted platforms and 
events, all under the control of a scenario running internally within STAGE. Through its 
DIS interface, STAGE also has the ability to receive information about entities scripted by 
other external simulations, thus forming the basis for the AEW&C MST’s inclusion in 
distributed simulations. Further development will automate the activation of the STAGE 
DIS interface, include additional simulation models and incorporate track data fusion. 
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A.3. Monitoring 

Monitoring components provide interfaces for observing the information received and 
stored by the other components of the AEW&C MST. 

The Track Monitor is a simple component that periodically accesses and displays the 
details of all tracks in the Track Manager to an operator. The Track Monitor itself is 
responsible for activating two Active Objects, each tasked with presenting alternative 
outputs. 

Track Streamer is one of the Active Objects activated by the Track Monitor. Unlike other 
Active Objects described previously it does not incorporate the Home pattern, and 
therefore does not have any reference to the Track Monitor. The Track Streamer defines an 
output stream within the SAF as its means for output, which is a common interface for 
writing data. This output stream conforms to a push model for writing, indicating that it 
knows the identity of the receiver before pushing the message. A callback is defined to 
encapsulate the writing of tracks to this output stream. 

TDFAdapter is the second Active Object activated by the Track Monitor. Like the Track 
Streamer is does not employ the Home pattern and does not have any reference to the 
Track Monitor. The TDFAdapter employs an Adapter Pattern as described in Section A.4 
to provide a service oriented interface to the COTS Tactical Display Framework (TDF) 
(Section A.4.3). This adaptation is encapsulated within a callback to ensure the necessary 
data conversions take place for accurate representation on the TDF Graphical User 
Interface (GUI). 

A.4. Commercial Off-The-Shelf 

A COTS component is distinguished from those developed specifically for the AEW&C 
MST by its lack of conformance to a component model. Fitting the CBSE general 
description of a component, COTS components provide both behaviour and coordination, 
thus specifying not only what a component does but also how it interacts. However, a 
COTS component implements these details in a way that is unique to the product and not 
bound by component interactions or other architectural constraints [Bachmann et al. 2000]. 

COTS components are generally, but not always, produced by a third party. This makes 
editing the native interfaces difficult. However, an adapter class can be written to translate 
the proprietary nature of the software. An adapter allows access to the desired behaviour 
of a component without necessarily using its expected interface and, in experimentation 
with the AEW&C MST, normalises the behaviour of the COTS component to adopt a 
Service Oriented Architecture (SOA) approach. This SOA approach leads to the 
production of a service that conforms to the layered communication model discussed in 
Section 4 and preserves the existing capabilities of the component. This alternative 
interface interacts directly with the middleware layer and enables platform abstraction to 
be preserved. Examples of these adapters are discussed in Section A.4.2 and Section A.4.3 
as applied to Rosetta and TDF respectively. 
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A.4.1 STAGE 

STAGE is a software tool that supports many utilities in the tactical domain. Its uses 
include training and evaluation, analysis of tactical scenarios and systems, and the 
simulation of real and synthetic systems. To support these utilities STAGE provides the 
facility to build and display real-time synthetic environments consisting of entities 
interacting through detection, engagement and destruction. STAGE is highly customisable 
with several techniques available for the extension of various aspects of the synthetic 
environment as well as its own simulation engine. 

STAGE consists of a number of applications whose interactions with each other and 
internal and external data sources are shown in Figure A–1. 

 

Figure A–1. Relationship of STAGE applications. Source: [CAE 2006] 

The STAGE applications are described as follows: 

• Scenario Manger (SM): Provides a number of environments to assist each phase of a 
scenario’s lifecycle. The Scenario and Database editors handle the development and 
assembly of components for a scenario, while the Runtime Environment monitors and 
controls its execution. Embedded within the Runtime Environment is the Situation 
Awareness Display (SAD), which is responsible for visualising the simulation. 
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Additional behaviour and extensions to scenario elements are managed through the 
script and mission editors. 

• Simulation Engine (SIM): The simulation of the synthetic environment. It includes a 
simulation engine and modules that model the behaviour of entities within the 
synthetic environment. 

• Integrated Development Environment (IDE): An interface allowing for the 
modification of simulation data structures. 

• Map Generator (Genmap): Converts maps from different data formats into STAGE’s 
proprietary format. 

• Logger: Supports scenario review through recording and playback facilities. 

A.4.2 Rosetta 

Rosetta is a software package that allows processing, translation and forwarding of real-
time sensor, navigation and data link data. To accomplish and assist this objective a 
number of applications are provided, each discussed below. 

The Rosetta engine can be subdivided into individual software modules. These modules 
include a text parsing engine, RQL and a Forwarding Rules Object Gateway (FROG). 

The text parsing engine eliminates the need for hard coding by defining Interface Control 
Documents (ICDs) as plain ASCII files. These are parsed on initialisation to generate a 
normalised form inside a Real-Time Track Database; a store for all tactical data 
encountered by the system. Track data in the database is accessed using RQL. This permits 
users to request details on any track or command via queries on the common field names. 
The FROG handles forwarding from one tactical data link message set to another, 
conforming to rules generated from the relevant standards. 

The Joint Moving Map Tactical Information Display System (JMMTIDS) is a command and 
control (C2) GUI displaying in real-time and providing control over information from a 
variety of data links. It also supports a mission playback facility, where data can be 
recorded and then played back with various timing controls. 

The Rapid Loader enables users to control Link 16 terminals through network initialisation 
loads and a variety of diagnostic tools. The Rapid Loader can also act as a MIL-STD-155316 
bus controller, providing further control of terminal characteristics such as JTIDS17 Unit 
(JU) number. 

The Scenario Generation Toolset (SGT) is a data link scenario generator capable of creating 
a scenario incorporating multiple links in an offline GUI. SGT also supports the capability 
to add link data into the Rosetta database in real-time. 

                                                      
16 A military standard that defines the electrical and protocol characteristics of a data bus. 
17 Joint Tactical Information Distribution System. 
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A.4.3 Tactical Display Framework 

The TDF is a Java based and machine independent tactical display system designed for 
applications such as C2 and air traffic management. It is highly adaptable at both a user 
and application level, with features easily enabled or disabled for particular operators, and 
custom plug-ins added to change or provide new functionality. From a tactical 
perspective, a variety of mapping products are supported, as are multiple symbol sets and 
hooking capabilities. 
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