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ANNUAL REPORT 
 
PCRP 060814----“Transrectal Near-Infrared Optical Tomography for Prostate Imaging” 
 
 

INTRODUCTION 
 

The objective of this research is to explore the technology of trans-rectal near-infrared (NIR) 
optical tomography for accurate, selective prostate biopsy. Prostate cancer is the most common 
non-dermatologic cancer in American men. Prostate cancer suspicion is typically based on an 
elevated serum prostate-specific antigen (PSA) level or a suspicious nodule found during a 
digital rectal exam (DRE). When the PSA level is elevated or the DRE shows abnormal, there is 
a 25 % chance that cancer is present. The existence of prostate cancer can only be confirmed 
by a needle biopsy that is guided by trans-rectal ultrasound (TRUS). Since there are no 
pathognomonic findings for prostate cancer on ultrasound imaging, random biopsies are taken 
systematically throughout the prostate. The accuracy of biopsy is problematic and many men 
undergo multiple biopsies due to the lack of a more specific/sensitive imaging modality. 
Pathologic studies have demonstrated increased vasculature associated with prostate cancer, 
as well as a positive correlation between micro-vessel density and the aggressiveness of the 
disease. Near-infrared (NIR) optical tomography is known of sensitive to vascular-based 
contrast, therefore trans-rectally implemented NIR optical tomography may provide a new way 
of assessing the prostate cancer. One of the outcomes of trans-rectal NIR tomography of the 
prostate will be a more accurate imaging guidance for targeted prostate biopsy. 
 
 

BODY 
 
1. Proposed Specific Aims: 
 
(1) To demonstrate that endoscopic NIR tomography at a probe size of 25mm in diameter can 
be achieved by use of spread-spectral-encoding from a broad-band light source.  
(2) To demonstrate that trans-rectal NIR tomography can image the prostate at the proximity of 
the rectum with significant tumor-tissue contrast. 
(3) To demonstrate that multi-spectral trans-rectal NIR tomography can be implemented with the 
single trans-rectal imaging probe.  
(4) To demonstrate that trans-rectal multi-spectral NIR tomography can quantify the hemoglobin 
concentration and oxygenation saturation in phantom, and further in prostate tumor model if the 
time of research allows. 
 
 
2. Progress on Specific Aim 1 
 
2.1 Development of an applicator for trans-rectal NIR optical tomography 
A 25mm diameter trans-rectal NIR tomography probe for axial imaging was proposed in the 
research. With more discussions and feedback from prostate cancer physician, we decided that 
a 20mm diameter axial-imaging applicator for trans-rectal NIR tomography would be developed. 
This probe dimension change was attributed to the fact that commercial trans-rectal ultrasound 
(TRUS) transducers typically have a size of 20mm in diameter. A 20mm trans-rectal NIR probe 
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will facilitate better ways of comparing with TRUS and would be more comfortable for patients if 
tested clinically.  

       
(a)                                                          (b) 

   
                                                 (c)                                                                (d) 

Figure 1. The 20mm axial-imaging applicator for trans-rectal NIR tomography. (a) 
Illustration of the fiber arrangement inside the applicator. (b) Each source/detector 
channel consists of a 1mm bare fiber, a 45° rod lens of 2mm in diameter, and a drum 
lens of 2mm in diameter. The configuration allows side-firing for axial-imaging. (c) 
Photograph of the probe, where the length of the probe is given. (d) Photograph of the 
distal part of the probe, where the micro-optics components (drum lenses) with anti-
reflection coating are shown and the internal structure of the probe is also sketched.  

 
 The fabrication method described previously in the research proposal for the 25mm 
diameter probe was applied to the development of this 20mm axial-imaging trans-rectal NIR 
tomography applicator. The design and fabrication details of this 20mm trans-rectal NIR 
applicator are given in Fig. 1. Sixteen bare fibers of 1.0mm core diameter are evenly spaced on 
a circle by having source and detector channel interspersing with each other, as shown in Fig. 
1(a). Each fiber is parallel to the probe axis, and is aligned to a 45° rod lens of 2mm in diameter 
to deflect the beam 90° for side-firing. A 2mm diameter drum lens is then used to provide a 
sealed optical aperture for illumination as well as beam focusing, as shown in Fig. 1(b). 
Photographs of this applicator are presented in Fig. 1(c) and (d), where it can be seen that the 
applicator part having the NIR array is 7” long, and the handle part is 5” long. Inside the 
applicator, there are 4 guiding platforms to maintain the alignment of the fiber in a long distance. 
Each of the guiding platforms has 16 evenly spaced holes on a circle. The most complicated 
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part is the module holding the distal end of the fiber and the 32 micro-optics components. The 
chambers of the fiber, rod lens, and drum lens have been fabricated in a way to assure accurate 
alignment of each channel.  The fiber has been individually polished and placed in the housing 
module. The orientation of the 45° rod lens is aligned using another 45° rod lens in the place of 
the drum lens by matching the hypertension surface, and finally the drum lens is placed. All the 
fibers, rod lenses, and drum lenses are secured with UV-curing epoxy. Among these 16 optical 
channels, it has been found that the source channel 5 has slight miss-alignment of the rod lens 
with respect to the side-firing geometry, but our method [1-2] was able to compensate the non-
uniformity. 
 The 8 channels of source fibers are grouped to a 3-meter long fiber cable, and 
distributed as a linear fiber bundle at the proximal end of the cable (see Fig. 2). The linear 
source fiber bundle couples different spectral-components of a broad-band superluminescent 
diode by use of spread-spectral-encoding configuration [1]. The 8 channels of detection fibers 
are also grouped to a 3-meter long fiber cable and distributed linearly at the proximal end. The 
linear detector fiber bundle is aligned vertically to the entrance slit of a spectrometer. The 
signals from different source channels are separated horizontally by spectral-decoding and the 
vertical positions of the fiber at the spectrometer imaging plane differentiate the detection 
channel [3, 4]. A 16bit CCD camera acquires the 2-D signals corresponding to all source and 
detector pairs.     
 

  
 

Figure 2. Photographs of the 20mm axial-imaging trans-rectal NIR applicator including 
the fiber cable (a) and the complete NIR scanner assembled on a custom-cart (b). 

 
 
2.2 Preliminary sensitivity studies of transrectal NIR optical tomography by use of the 
20mm applicator 
 
2.2.1 Simulation geometry  
Trans-rectal NIR tomography in an axial-imaging geometry is potentially different from all NIR 
tomography approaches investigated previously for breast or brain imaging applications. The 
differences lie in at least three aspects: (1) The array geometry is in a hollow annular shape 
where the source/detectors are in the inner region of the targeted medium. For closer source-
detector pairs, a semi-infinite boundary condition may be valid; for source-detector located at 
the opposite sides of the array, the photon path might not be deep enough to sense the tissue 
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medium. (2) The distances of closest source & detector may be comparable to the mean 
scattering path-length.  (3) Targets close to the probe-tissue interface may need to be 
reconstructed. Therefore it is understood that a diffusion approximation to the radiative transfer 
equation that is conventionally employed in NIR tomography may not be valid everywhere for 
this axial trans-rectal imaging geometry. Nevertheless, the diffusion approximation is a 
manageable approximation and it will be a good starting point to understand the qualitative 
aspects of this new axial trans-rectal imaging geometry. 
  

  
              (a)                                        (b)   

Figure 3. The transversal transrectal imaging geometry and the necessary mesh 
modification for the forward/inverse problem form a typical external imaging geometry like 
that of breast.   

 
 
 We used NIRFAST [5] modeling package to investigate axial-imaging trans-rectal NIR 
tomography. NIRFAST package was developed in Dartmouth College for frequency-domain 
reconstruction based on finite-element solution of diffusion equation, and it was used by several 
groups for conventional NIR tomography systems where the fiber arrays typically have ring-type 
geometry for imaging the internal volume. In axial-imaging trans-rectal NIR tomography the 
imaging geometry is flipped inside-out (shown in Fig. 3(a)), therefore a hollow-centered circular 
mesh (shown in Fig. 3(b)) becomes the first modification we implemented in NIRFAST. Relevant 
modifications have been made to adjust the program in accordance with the axial trans-rectal 
imaging geometry. 
 The simulation using NIRFAST is conducted for frequency-domain even though our 
current imager is in CW mode. The forward problem is solved by finite element method, and the 
absorption and scattering properties is reconstructed by a Levenberg-Marquardt iterative solver.  
The imaging field-of-view in the simulation is set to be 20mm from the probe surface (60mm in 
diameter for the entire volume). In all simulations 1% Gaussian-distributed zero mean noise has 
been added to the source-detector forward data. The size of an inclusion target is set to 7.7mm 

in diameter. The background optical properties are set to 1002.0 −= mmaμ  and 15.0 −=′ mmsμ  
for comparison with experimental measurements using a 5% intralipid solution.  

 
2.2.2 Depth-dependent detection sensitivity profile 
It is known that the accuracy of the image reconstruction is dependent upon many factors, 
including the mesh size [6]. The biggest mesh that NIRFAST can handle has 40674 nodes; 
however, it is not desirable to use the 40674-node mesh for reconstruction investigations since 



5 

 

it is too time-consuming as it requires over 500 seconds calculating the Jacobian and at least 
7.6 GB of memory. A balance between computation time and accuracy needs to be determined 
to find the optimum mesh size for image reconstruction study. One method to evaluate the 
accuracy of the mesh, in the case of NIRFAST, is to compare the Jacobian matrix values 
between two meshes of different densities at each node. To compare the Jacobian values, the 
sum of all source-detector measurements were normalized with respect to the element areas of 
each mesh. Then, using a modified approach from Yalavarthy [6], the normalized Jacobian 
values were interpolated to a 60mm×60mm grid with 0.25mm spacing. Figure 4 shows a plot of 
the normalized, interpolated Jacobian values for the 40674 node mesh. For comparison, the  

  
Figure 4. Plot of the Jacobian values summed over all source-detector measurements 

 
Figure 4. Jacobian values along radial line from probe surface for different mesh sizes 

 
Jacobian values were extracted along a 2 degree radial slice at 0.25mm intervals from the 
probe surface to the outer boundary. A qualitative analysis of the Jacobian values can be 
obtained from Fig. 4. For small mesh sizes, the Jacobian values are drastically different from the 
reference, especially near the probe surface. There is little difference between the 1700 and 
28030 meshes as compared to the mesh of 40674; however, a mesh size of only 212 isn’t. A 
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quantitative analysis of the error and computation time is conducted to determine the optimum 
mesh size for further studies. 
 
2.2.3 Optimum mesh size 
The difference between the curves of varying mesh sizes were quantified by computing the 
RMS value of the difference between each mesh and the reference by [6]  

( )∑
=

−=
N

i
ireferenceitest JJ

N
errorRMS

1

2
,,

1_       (1) 

 
Table. 1. Error between Jacobian matrices for various mesh sizes compared to the 
reference mesh 

Mesh Size RMS Error Error Decrease Jacobian Computation Time (s) Time Factor Increase from 
Previous Mesh Size 

28030 0.11528 0.0002 107.40 1.57 

20795 0.11549 0.0009 68.47 2.85 

10284 0.11634 0.0009 24.05 1.39 

8061 0.11726 -0.0001 17.34 1.29 

6619 0.11713 0.0047 13.40 4.64 

3291 0.1218 0.0008 2.89 1.42 

2628 0.12264 0.0059 2.04 1.62 

1700 0.12858 0.0138 1.26 1.48 

1165 0.14233 0.0069 0.85 1.42 

856 0.14926 0.0165 0.60 1.07 

685 0.16579 0.0175 0.56 1.70 

495 0.18328 0.0245 0.33 1.32 

361 0.20781 0.0293 0.25 1.04 

287 0.23714 0.0192 0.24 1.60 

212 0.25637   0.15  

Where N is the number of values within the radial Jacobian values, itestJ ,   is the i -th value of 

the test Jacobian value, and ireferenceJ , is the i -th value of the reference Jacobian. The value 
from equation (1) is a measure of the average difference between the reference Jacobian and 
the Jacobian under test. The Jacobian calculation is almost the most time consuming 
calculation during reconstruction, thereby is used for speed comparisons. Table 1 lists the RMS 
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error to the reference mesh and Jacobian calculation times for each mesh size. Figure 5 plots 
the RMS error values as a function of mesh size to visualize the data in Table 1. The “time 
factor increase” in Table 1 is calculated by dividing the current mesh size computation time by 
the previous mesh size computation time. 

It is found from Table 1 or Fig. 5 that the total error decrease for node sizes above 1700 
to 28030 is not as much as the error decrease from 1165 nodes to 1700 nodes; furthermore the 
calculation time for the 2628 node mesh is nearly twice the time as the 1700 node mesh, while 
the time factor increase between mesh sizes below 1700 nodes is nearly 1.50. Therefore, the 
1700 node mesh is chosen for further simulative studies as it gives a good balance between 
accuracy and computation time. 

 
Figure 5  Plot of the RMS error values in table 1 

 
2.3 Simulative image reconstruction studies of transrectal NIR optical tomography by use 
of the 20mm applicator 
 
One of the most critical parameters in axial-imaging trans-rectal NIR tomography may be the 
imaging depth that it can achieve. Using the mesh size of 1700 nodes suggested by previous 
investigations, different contrast levels with respect to the background absorption coefficient 
were evaluated to determine the maximum depth the phantom is detectable: first a 100X 
contrast target is used to simulate an infinite absorbing phantom, and a 3X contrast is used to 
simulate a tumor-like lesion. All distances are quoted as the distance from the center of the 
inclusion target to the surface of the probe.  
 
2.3.1 Imaging targets having infinite absorption contrast 
The absorption coefficient of the infinite contrast target is set at 0.2mm-1, and the reduced 
scattering coefficient value is maintained at the background value of 0.5mm-1. Figure 6 shows 
the variability of the maximum reconstructed aμ  values as a function of distance between the 
target center to the probe surface. The general decrease in reconstructed aμ  values is to be 
expected, since as the target is moved away from the probe’s surface, the Jacobian value 
decreases.  
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Figure 6  Plot of the maximum reconstructed μa value for each reconstructed infinite absorbing 
phantom image plotted by distance between center of phantom and surface of the probe.  

 
 The reconstructed images for target depths of 5, 10, and 15mm are displayed in Fig. 7.  
It is indicated from Fig. 7 that a strong absorbing target at depth up to 15mm may be 
reconstructed at the correct azimuth direction, but with less accurate depth localization. The 
error in the depth location is apparently related to the decrease of the sensitivity along the 
depth, which tends to reconstruct the target at the highest sensitivity location [7].     

                              
 (a) target at 5mm  (b) target at 10mm (c) target at 15mm 

                 
    (d) reconstruction at 5mm (e) reconstruction at 10mm (f) reconstruction at 15mm 

 
Figure 7 Reconstructed Images for the infinite phantom case. (a)-(c) Phantom locations. (d)-(f) 

Reconstructed images. 
 
2.3.2 Imaging targets having 3 folds of absorption contrast 

The tissue-like phantom properties were set at 10059.0 −= mmaμ  and 103.1 −=′ mmsμ , which 
are the properties of a phantom available in the experiment. The variability of the maximum 
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reconstructed aμ value was also measured for this phantom at various distances and plotted in 
Figure 8. Although the values for each distance are not as consistent as the infinite phantom 
case, there appears to be some reduction in the average maximum reconstructed μa values as 
distance increases. Figure 9 shows the reconstructed images for various depths of the tissue-
like phantom. As with the infinite phantom case, the reconstructed tissue-like phantom appears 
within the region with a high Jacobian value (~5mm from the probe surface). The azimuthal 
location cannot be correctly determined as deep as the infinite case, but is determinable up to 
7mm.  
 

 
Figure 8. Plot of the maximum reconstructed μa value for each reconstructed tissue-like phantom 
image plotted by distance between center of phantom and surface of the probe. 

 

                         
 (a) 5mm (b) 7mm (c) 9mm 

                                
  (d) 5mm (e) 7mm (f) 9mm 

Figure 9. Reconstructed images for the tissue-like phantom. (a)-(c) Phantom locations. 
(d)-(f) Reconstructed images. 
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2.4 Experimental phantom studies of transrectal NIR optical tomography by use of the 
20mm applicator 
         
Phantom experiments have been conducted to validate the findings of numerical simulations. A 
0.5% bulk Intralipid solution was set as the background. A black absorbing rod of 8mm diameter 
was used to emulate an infinite absorbing target, A linear translation stage held the rod in 
parallel to the TR-NIR probe, and moved the rod away from the probe from 5mm depth at an 
increment of 1mm, up to 20mm. The reconstructed images in Figure 10 show that the strong 
absorbing target may be imaged at a depth greater than 13mm; however, the overall accuracy 
of depth localization is low. 

      

        (a) 5mm        (b) 10mm   (c) 13mm 

   
     (d) 15mm        (e) 20mm 
 

Figure 10. Experimental results for an 8mm blob of black absorbing rod in a 0.5% 
Intralipid solution. (a) Target depth of 5mm.  (b) Target depth of 10mm.  (c) Target depth 
of 13mm.  (d) Target depth of 15mm.  (e) Target depth of 20mm.  

  
 Similar experiments were repeated for the solid phantom of 7.8mm diameter having 

10059.0 −= mmaμ  and 103.1 −=′ mmsμ  used to simulate a 3× contrast target. The images are 
shown in Fig. 11, where the blob at depth of 7mm can be reconstructed. However, considerable 
artifacts appear for blob depth at or above 9mm. The phantom experimental results agree with 
the prediction by the numerical simulations, and both justify the need of a rigorous investigation 
of the forward modeling for this endoscopy NIR geometry or a method of compensating the 
degrading sensitivity along the depth.  

     
                  (a) 5mm         (b) 7mm       (c) 9mm. 

 
Figure 11. Experimental results for a 7.8mm blob of ~3x contrast in a 0.5% Intralipid 
solution. (a) Target depth of 5mm.  (b) Target depth of 7mm. (c) target depth of 9mm.  
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2.5 Simulation studies of transrectal NIR optical tomography by use of an applicator 
having elliptical cross-section  
 
The previous simulation and experimental studies have found that the 20mm trans-rectal NIR 
probe is capable of imaging target at a depth of ~15mm for highly absorbing target and ~7mm 
for lower contrast target. It is speculated that the circularly symmetric arrangement of optodes 
has limited the imaging depth of this probe, therefore we also investigated a side-firing NIR 
probe geometry having an elliptical cross-section with single or multiple layers of NIR arrays. 
The shape of the probe is shown in Fig. 12 (a), where the probe cross-section is elliptical and 2 
arrays of optodes are included, with one detector array in the center and 2 source arrays run 
parallel to the detector array at 10mm separation. The probe is an elliptical cylinder of length 
40mm with major radius 20mm and minor radius of 10mm. The three arrays have a longitudinal 
separation of 10mm and placed along the minor axes at positions z = -10 mm, z = 0 mm and z = 
10 mm about x = 0 mm. Two different data collection strategies are considered: (1) 5 sources 
and 4 detectors interleaved in a single line (Array 2 in Fig. 12(a)), and (2) three separate rings of 
8 sources (Array 2) at z=0mm and 8 detectors (Array 1 and 3) at z =10 mm and -10 mm. The 
sensitivity studies in (b) and (c) reveal that when the cross-sections of a circular and elliptical 
probes are comparable to each other, the elliptical-shape probe can interrogate target of 20mm 
deep [8]. This study indicates that transversal imaging of prostate peripheral zone beyond 2cm 
is feasible by an elliptical array.    

 
(a) 
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(b) 

 

 
(c) 

                                                       
Figure 12. (a) Design of an elliptical probe. (b) Comparison of normalized cross-sectional 
sensitivity profiles of cylindrical and elliptic probes. (c)  The normalized sensitivity of each 
probe design and fiber arrangement strategy. The images presented are coronal cross-
sections of the probe at different sections. Note that for the cylindrical case the depth of 
tissue modeled as surrounding the probe is set at 10 mm, where as in the elliptic case 
the depth of tissue surrounding the probe is set at 20 mm in the short axis and 10 mm in 
the long axis. 
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 In order to further analyze the depth sensitivity of the measurements with respect to 
absorption changes within the surrounding tissue, simulated data was generated for the elliptical 
probe, assuming either a single array or three array of fibers. A small 5 mm diameter anomaly 
with 3 times the background absorption was placed at either 6 or 8 mm depth within the tissue 
and intensity only data was simulated using NIRFAST with 1% noise. The results in Fig. 13 
demonstrate the improvement of imaging depth as well as the depth localization using this 
elliptical probe when compared with the previous circular probe. An elliptical probe may be 
fabricated to validate these findings from experiments.  
 

 
(a)                                        (b)               (c) 

 
Figure 13. Reconstructed tomographic absolute images of absorption using simulated 
data for the elliptical probe. The images presented are coronal cross-sections of the 3D 
model at z = 0 mm. (a) target setting. (b) Reconstructions using single array in the Z=0. 
(c) Reconstructions using 3 arrays of fibers. 

 
 

KEY RESEARCH ACCOMPLISHMENTS 
 
The following research accomplishments have been made during the first year of this project: 
1. Developed a 20mm diameter axial-imaging cylindrical applicator for trans-rectal NIR 
optical tomography. The design and fabrication procedures were validated. The use of micro-
optics in the fabrication of this trans-rectal NIR tomography represents an unprecedented 
approach in the development of NIR tomography applicator for use in restricted space, and may 
set as a template for future instrumentation of NIR diffuse optical tomography probes for 
imaging of other internal organs.      
2. Conducted simulations to investigate the imaging performance of this 20mm trans-
rectal NIR applicator. The sensitivity of this cylindrical probe having one array of interspersed 
source and detector channels is found to degrade rather rapidly along the depth. For target of 
highly absorbing contrast, it may be reconstructed at depth up to ~15mm, while for target of 
lower absorption contrast, it may be detected at depth within 10mm.   



14 

 

3. Performed experimental studies to validate the findings in simulation regarding the 
depth sensitivity of the 20mm trans-rectal NIR tomography probe.  
4. Investigated using simulation the depth sensitivity of a trans-rectal NIR probe having 
elliptical cross-section. It is demonstrated that the elliptical probe shape helps to interrogate 
deeper target up to 20mm and improve the depth localization of the target. The outcome is due 
to the improvement of the depth sensitivity profile.  
5. The simulative and experimental results indicated that it is feasible to image a 
significant volume of prostate peripheral zone, where about 80% of prostate cancers are found, 
by axial-imaging trans-rectal NIR tomography probe with proper array design.   
 
The Specific Aim 1 of the project has been achieved. 
 
 

REPORTABLE OUTCOMES 
 
The progress in the first year of this project has results in following publications or manuscripts:   
  
Book Chapter: 
1. Piao D, “Diffuse Optical Techniques: Instrumentation”, an invited chapter in 
“Translational Multimodality Optical Imaging,” Editors: Fred S. Azar and Xavier Intes, Publisher: 
Artech House. Expected publication by Spring, 2008. 
 
Conference Proceeding Papers and Abstracts: 
2. Eames ME, Piao D, Dehghani H, “Source and detector fiber optimization for depth 
sensitivity in endoscopic near-infrared tomography”, OSA Biomedical Topical Meetings, paper 
#BSuE30, St. Petersburg, FL, March 16-19, 2008. (3-page paper) 
3. Xu G, Musgrove C, Bunting CF, Deghani H, Piao D, “Sagittal-imaging transrectal optical 
tomography reconstruction with structural guidance: initial simulative study”,  OSA Biomedical 
Topical Meetings, paper #BSuE31, St. Petersburg, FL, March 16-19, 2008. (3-page paper)  
4. Jiang Z, Xu G, Elgawadi A, Piao D, “Development of a trans-rectal optical tomography 
probe for concurrent sagittal imaging with trans-rectal ultrasound”, OSA Biomedical Topical 
Meetings, paper #BWG4, St. Petersburg, FL. March 16-19, 2008. (3-page paper) 
5. Piao D, “Approach on trans-rectal optical tomography probing for the imaging of prostate 
with trans-rectal ultrasound correlation”, International Symposium on Biomedical Optics, San 
Jose, CA, Jan. 19-24, 2008. Proceedings of SPIE, Vol. 6850, pp. 68500E-68500E-14 (invited 
paper).  
6.  Xu G, Musgrove C, Bunting CF, Piao D, “Transrectal optical tomography of prostate 
with a priori transrectal ultrasound information: initial simulative study”, Oklahoma Research 
Day, Oct. 26, 2007, Edmond, OK. (abstract) 
7.  Piao D, Jiang Z, Xu G, Musgrove C, Bunting CF, Elgawadi A, “Trans-rectal 
implementation of near-infrared diffuse optical tomography for non-invasive prostate imaging,”  
Saratov Fall Meetings (SFM) 07, Saratov, Russia, Sep. 25–28, 2007, internet session. (abstract) 
 
Master’s Thesis: 
Musgrove CH, “Issues related to the forward problem for endoscopic near-infrared diffuse 
optical tomography”, Defended on Nov. 15, 2007.  
 
Student Support During The First Year: 
1. JIANG, Zhen   PhD student 
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2. Musgrove, Cameron H.  MS degree granted on Dec. 2007.  
Employed in Sandia National Lab 

3. XIE, Hao   MS student 
 
Proposals Submitted To: 
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CONCLUSIONS 
 

The objective of this research is to explore the technology of trans-rectal near-infrared (NIR) 
optical tomography for accurate, selective prostate biopsy. The research in the first year has 
made several key advancements that may render future testing of the approach at in vivo 
settings. The development of a 20mm diameter axial-imaging cylindrical applicator for trans-
rectal NIR optical tomography represents an unprecedented engineering approach in the 
development of internal-imaging NIR tomography applicator. Simulations and experiments both 
demonstrated the feasibility of imaging target with absorption contrast by use of trans-rectal NIR 
tomography applicator, even though the interrogation depth may be limited to ~15mm. The 
findings from a trans-rectal NIR probe having elliptical cross-section gives an option of 
potentially imaging deeper tissue volumes up to 20mm at axial-imaging geometry.  
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Abstract: NIR optical tomography in endoscopic imaging geometry is a novel technique for non-
invasive tissue-specific cancer detection in internal organs. The arrangement of source and fiber 
detection system is an important aspect in maximizing depth sensitivity in particular for axial 
imaging. This study demonstrates that using multiple arrays of fibers within an elliptic shaped 
probe increases depth resolution as compared to single array of fibers within a cylindrical shaped 
probe. 

 ©2008 Optical Society of America 
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1. Introduction 

Near-infrared (NIR) optical tomography is a non-invasive functional imaging technique that has shown the 
potential of acquiring unique tissue-specific functional contrast by using tomographic measurement of NIR 
attenuation within tissue. The high contrast of NIR optical tomography originates from the stronger light attenuation 
of hemoglobin relative to water in parenchymal tissue at the 650-900 nm range, as well as the distinct spectral 
differences of hemoglobin between the oxygenated and deoxygenated states. Contrast as high as 300 percent has 
been demonstrated in NIR tomography for vascular densities of only 2 percent [1]. Such high blood-based contrast 
allows pathognomic diagnosis of increased vascularity in malignant tissues and hemodynamic imaging of tissue 
function and physiology.  

Over the past two decades, NIR optical tomography has been advanced steadily by investigating and 
clinical testing of key applications in the characterization of breast cancer [2], the assessment of brain functionality 
[3] and the evaluation of extremity abnormality [4]. The majority of applications to date have focused on using 
external applicator arrays. Specifically, most applications have used a method by which NIR light is directed into 
tissue using optical fibers at the external surface of the imaging volume and measuring the emitting light at other 
points on the same surface using either seperate fibers or a non-contact imaging detector array. The potential of 
imaging internal organs like prostate has driven the growing interest that extends NIR optical tomography to 
endoscopic or transrectal geometries. The key factor in attempting NIR tomography of internal organs has been the 
development of appropriate applicator arrays. Recently, novel applicator array was constructed and demonstrated as 
an NIR optical tomography system that allows two dimensional (2D) NIR contrast mapping of internal organs using 
a non-invasive internal interrogation [5]. The technique incorporates a broadband light source with spectrometer-
based detection. The broadband light that disperses with a grating and passes a collimating lens forms a one- 
dimensional linear distribution of the source spectrum, which is coupled to the tissue by linearly aligned fibers. The 
fibers are arranged into a circular geometry inside an endoscope probe, Figure 1(a) and (b), where either a coated 
cone prism or a set of microoptics assembly is used for circumferential light deflection. The wavelength separation 
coupled to each fiber generates spread-spectral-encoding of the illumination over to the tissue, which accommodates 
concurrent sampling of all source-detector pairs when using a spectrometer and CCD in the detection. This design 
enables both the probing in transrectal geometry and the rapid sampling for NIR optical tomography. 

Imaging in trans-rectal geometry gives little flexibility to the placement of optodes when axial imaging is 
aimed for. Little work has been done to investigate the optimum arrangement of the optodes for the excitation and 
detection of the NIR signal, within the compact transrectal geometry. The current method uses a cylindrical design 
with 8 sources and 8 detectors placed uniformly around a single ring of the probe, Figure 1.  Upon the excitation of 
tissue using the sources (S in Figure 1(b)), measurements are made at all 8 detectors, simultaneously, to reconstruct 
cross-sectional images of optical perturbations within the region being imaged. One limitation that may exist with 
this 2D single plane measurement scheme is in the depth resolution and sensitivity. It is therefore important to 
investigate the merits and benefits of using multiple plane source and detection arrays, mounted within the 
cylindrical probe to assess any improvement possible in depth sensitivity of the measured signal.  
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In this work, sensitivity analysis of multiple detection systems in terms of increasing the number and 
configuration of source / detect arrangements will be investigated for the current cylindrical probe, in three 
dimensions (3D) as well as exploring the use of non-cylindrical, elliptic probe designs that may offer alternative 
improvements in depth resolution. 

 
(a)        (b)    (c) 

Figure 1. (a) The cylindrical transrectal probe and (b) 2D cross-section showing the source and detector arrangements. (c) proposed 
elliptical probe design consisting of either a single layer of source and detectors in a single array, or two array of detectors with a single array  of 

sources in between. 
2. Methods 

The first probe design cylindrical shape is shown in Figure 1(a) and (b). This probe is modeled as a 
cylinder of length 40mm (-20mm ≤ z ≤ 20mm) with inner radius 10mm and outer radius 20mm. Two different data 
collection strategies are considered: (a) 8 sources and 8 detectors distributed evenly in a single ring of fibers at z = 0 
mm and (b) three separate rings of 8 sources and 8 detectors, at z = 0 mm, 10 mm and -10 mm. In this case, the 
depth of tissue modeled as surrounding the probe is set at 10 mm. This design is better suited for imaging through a 
lumen that can enclose the probe completely without much airgap between the probe surface and surrounding tissue.   

The second probe design, shown in Figure 1(c) is an elliptical shaped probe. The probe is an elliptical 
cylinder of length 40mm (-20mm ≤ z ≤ 20mm) with major radius 20mm and minor radius 10mm surrounded by a 
cylindrical mesh of radius 30mm. This design of placing the arrays of sources and detectors on just one side of the 
probe is better fitted to imaging prostate through rectal wall. The three arrays have a longitudinal separation of 
10mm and placed along the minor axes at positions z = -10 mm, z = 0 mm and z = 10 mm about x = 0 mm. Two 
different data collection strategies are considered: (a) 5 sources and 4 detectors interleaved in a single line (Array 2 
in Figure 1(c)), and (b) three separate rings of 8 sources (Array 2) at z=0mm and 8 detectors (Array 1 and 3) at z 
=10 mm and -10 mm. In this case, the depth of tissue modeled as surrounding the probe is set at 20 mm in the short 
axis and 10 mm in the long axis. The angular separation of each channel in both cases is 8º. The accuracy of 
diffusion approximation can be maintained for array setup of (b), while it may be comprised in array setup of (a). 

To simulate the propagation and hence the sensitivity of the NIR signal throughout the volume of interest, a 
finite element model is used for each probe design. The propagation of light within the surrounding tissue was 
calculated using the diffusion approximation and the total sensitivity of intensity data to absorption changes within 
the model, for all source and detector combination was calculated. 
 
3. Results  

The normalized total sensitivity of each probe design and fiber arrange strategy is shown in Figure 2. Note 
that for the cylindrical case the depth of tissue modeled as surrounding the probe is set at 10 mm, where as in the 
elliptic case the depth of tissue modeled as surrounding the probe is set at 20 mm in the short axis and 10 mm in the 
long axis. It is evident that by the use of a single array of fibers, the total sensitivity of measured intensity data to 
small changes in absorption rapidly decays as a function of distance away from the source and detector array. In 
each of the models, the maximum sensitivity is seen directly above the detector fibers and for the elliptical probe, 
the sensitivity is more uniform within the tissue being sampled. 

In order to evaluate the increase in depth sensitivity, the cross sectional profile of the sensitivity as a 
function of depth was calculated for each of the models and is shown in Figure 3. It is seen that the use of multiple 
fiber arrays improves the depth sensitivity of both probe designs, with the greater depth seen using the elliptical 
probe. The use of elliptical probe with a single detection array does not provide additional depth sensitivity, whereas 
the addition of multiple arrays to the elliptical probe, not only increased the depth sensitivity, but also provides a 
more uniform sensitivity at lower decay rate as a function of depth. 

 
4.  Discussion 

In this paper we have shown that for axial imaging geometry the use of an elliptic shaped probe together 
with 3 arrays of detection system improves the depth sensitivity of measured intensity signal to absorption changes 

       a202_1.pdf  
 

       BSuE30.pdf  
 

© 2008 OSA / ASSP 2008
       BSuE30.pdf 

 

© 2008 OSA/ BIOMED/DH/LACSEA 2008
       BSuE30.pdf 

 

© 2008 OSA/ BIOMED/DH/LACSEA 2008
       BSuE30.pdf 

 



within the tissue being sampled. This increased sensitivity is crucial when designing a non-invasive axial imaging 
probe for endoscopic NIR tomography imaging of internal organs such as the prostate to detect and characterize 
abnormal lesions. 

 
 z = 0 mm z = 5 mm Z = 10 mm 1 

 
0 

 
Cylindrical 

probe with a 
single array of 
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Figure 2. The normalized sensitivity of each probe design and fiber arrangement strategy. The images presented are coronal cross-sections of the 
3D model at different sections. Note that for the cylindrical case the depth of tissue modeled as surrounding the probe is set at 10 mm, where as in 

the elliptic case the depth of tissue modeled as surrounding the probe is set at 20 mm in the short axis and 10 mm in the long axis. 

 
Figure 3. Cross sectional normalized sensitivity profile for each probe design as a function of depth 
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