
Data Access Specification and the Most Powerful Symbolic Attacker inMSR ∗

Iliano Cervesato

ITT Industries, Inc. — Advanced Engineering and Sciences Division
2560 Huntington Avenue, Alexandria, VA 22303-1410 — USA

Tel.: +1-202-404-4909, fax: +1-202-404-1167
iliano@itd.nrl.navy.mil

Abstract

Most systems designed for the symbolic verification of security protocols operate under the unproved assumption that an
attack can only result from the combination of a fixed number of message transformations, which altogether constitute the
capabilities of the so-called Dolev-Yao intruder. In this paper, we show that the Dolev-Yao intruder can indeed emulate the
actions of an arbitrary symbolic adversary. In order to do so, we extend MSR, a flexible specification framework for security
protocols based on typed multiset rewriting, with a static check called data access specification and aimed at catching
specification errors such as a principal trying to use a key that she is not entitled to access.

1 Introduction

Cryptographic protocols are increasingly used to secure transactions over the Internet and protect access to computer
systems. Their design and analysis are notoriously complex and error-prone. Sources of difficulty include subtleties in the
cryptographic primitives they rely on, and their deployment in distributed environments plagued by powerful and oppor-
tunistic attackers. Most systems designed for protocol analysis,e.g.[1, 5, 14, 16, 20] circumvent the first issue by relying
on a symbolic idealization known as the Dolev-Yao model of security [15, 21]: the cryptography is assumed to be flawless,
which permits viewing message-forming operations such as encryption as symbolic combinators ultimately applied to atomic
abstractions of principal names, keys, nonces, etc, rather than to bit-strings. Systems that adopt the Dolev-Yao idealization
achieve relative tractability by empowering their attacker model with a fixed set of basic capabilities, altogether known as the
Dolev-Yao intruder. It is a commonly held, but unproved, belief that this model is sufficient to expose any attack that can be
mounted by a symbolic adversary,i.e.one playing by the rules of the Dolev-Yao abstraction, but otherwise arbitrary.

MSRoriginated as a simple logic-oriented language aimed at investigating the decidability of protocol analysis within the
Dolev-Yao model [11]. It evolved into a precise, powerful, flexible, and still relatively simple framework for the specification
of complex cryptographic protocols, possibly structured as a collection of coordinated subprotocols [8, 9, 7]. It uses strongly-
typed multiset rewriting rules over first-order atomic formulas to express protocol actions and relies on a form of existential
quantification to symbolically model the generation of nonces and other fresh data. It supports an array of useful static checks
that include type-checking [8]. An earlier version ofMSRfuels theCAPSLauthentication protocol verification tool in the
form of the underlyingCIL intermediate language [14].

In this paper, we useMSRas a formal tool to study the very nature of the Dolev-Yao intruder, and ultimately to show
that it subsumes any other attacker that follows the Dolev-Yao abstraction. In order to do so, we endowMSRwith a novel
static check, data access specification (DAS), aimed at enforcing such sensible requirements as, for example, that a principal
may access the public key of any other principal, but in general not their private keys. The naturalMSRspecification of the
Dolev-Yao intruder is shown not only to satisfy the data access policy, but in doing so to make use of every facet of it. This
highlights subtle constraints on the Dolev-Yao intruder model that are typically not exposed by other approaches. Since,
differently from most proposals,MSRallows specifying an arbitrary attacker using the same syntax as a regular protocol, we
can provide an effective construction that shows that our formalization of the Dolev-Yao intruder can emulate the deeds of
every adversary that satisfies the typing and data access policies ofMSR.

∗Partially supported by NRL under contract N00173-00-C-2086.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 2002 2. REPORT TYPE

3. DATES COVERED
 00-00-2002 to 00-00-2002

4. TITLE AND SUBTITLE
Data Access Specification and the Most Powerful Symbolic Attacker in
MSR

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
ITT Industries, Inc,Advanced Engineering and Sciences Division,2560
Huntington Avenue,Alexandria,VA,22303-1410

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Software Security - Theories and Systems - ISSS 2002, (Revised Papers of the 2002 Mext-NSF-JSPS
International Symposium) (M. Okada, B. Pierce, Andre Scedrov, H. Tokuda and A. Yonezawa, editors),
pp. 384-416, Springer-Verlag LNCS 2609, Tokyo, Japan, 8-10 November 2002. © Springer-Verlag

14. ABSTRACT
Most systems designed for the symbolic verification of security protocols operate under the unproved
assumption that an attack can only result from the combination of a fixed number of message
transformations, which altogether constitute the capabilities of the so-called Dolev-Yao intruder. In this
paper, we show that the Dolev-Yao intruder can indeed emulate the actions of an arbitrary symbolic
adversary. In order to do so, we extend MSR, a flexible specification framework for security protocols
based on typed multiset rewriting, with a static check called data access specification and aimed at catching
specification errors such as a principal trying to use a key that she is not entitled to access.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

21

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The available tools designed to offer automated support to security protocol verification [4, 14, 18, 20, 22, 24, 25] provide
a limited array of static checks, often just type-checking for simple types. In particular, we are not aware of any proposal
that enforces DAS. Moreover, while nearly all approaches rely on some variant of the Dolev-Yao intruder, we could not find
a formal proof in the literature that this model indeed implements the most powerful symbolic attacker. Finally, it should be
observed that our notion of data access specification is orthogonal to the insightful guidelines of [2, 27], aimed at constructing
protocols that are immune by design to certain classes of attack.

The main contributions of this paper are: 1) the definition of a decidable notion of DAS forMSRthat is preserved by
execution; 2) the formal definition of the concept of a generic symbolic attacker, based on DAS, and the formalization of the
Dolev-Yao intruder; 3) a proof highlight that the Dolev-Yao intruder model can emulate an arbitrary attacker that satisfies the
data access policy (the full proof can be found in [6]). This paper is about the specification of cryptographic protocols, not
about protocol analysis.

This paper is structured as follows: in Section 2, we carefully recall the form of anMSRspecification. Its DAS policy,
a major novelty of this paper, and the relative decidability results are the subject of Section 3. In Section 4, we present the
execution model of our framework and prove that it preserves access control. In Section 5, we formalize the Dolev-Yao
intruder inMSRand in Section 6 we prove that it can emulate the actions of an arbitrary attacker. Section 7 hints at directions
of future work.

2 MSR

In the past, cryptoprotocols have often been presented as the temporal sequence of messages being transmitted during
a “normal” run. Recent proposals champion a view that places the involved parties in the foreground. A protocol is then
a collection of independentroles that communicate by exchanging messages, without any reference to runs of any kind.
A role has an owner, the principal that executes it, and specifies the sequence of messages that he/she will send, possibly
in response to receiving messages of some expected form.MSRadopts and formalizes this perspective. A role is given
as a parameterized collection of multiset rewrite rules that encode the expected message receptions and the corresponding
transmission. An illustrative example can be found in Appendix A. Rule firing emulates receiving (and accepting) a message
and/or sending a message. The messages in transit, the actions and information available to the roles, and other data constitute
the state of execution of a protocol. Rules implement partial transformations between states. Their applicability is constrained
by the contents of the current state. Execution is preceded by static type-checking [8] and DAS validation (see Section 3)
which limits the number of run-time checks and allows catching common specification errors early.

2.1 Messages

Messages, or more properlyterms, are obtained by applying a number of message forming constructs, discussed below, to
a variety ofatomic messages. The atomic messages we will consider in this paper are principal identifiers, keys, nonces, and
raw data (i.e. information that have no other function in a protocol than to be transmitted):

Atomic messages:a ::= A (Principal)
| k (Key)
| n (Nonce)
| m (Raw datum)

Although we will limit our discussion to these kinds of atomic messages, it should be noted that others can be accommodated
by extending the appropriate definitions [9]. Themessage constructorswe will consider are concatenation, shared-key
encryption, and public-key encryption:

Messages: t ::= a (Atomic messages)
| x (Variables)
| t1 t2 (Concatenation)
| {t}k (Symmetric-key encryption)
| {{t}}k (Asymmetric-key encryption)

Observe that we use a different syntax for shared-key and public-key encryption. We could have identified them, as done in
many approaches. We choose instead to distinguish them to show the flexibility and precision of our technique. Again, other
constructors, for example hash functions and digital signatures [9], can easily be accommodated by extending the appropriate
definitions. Their inclusion would lengthen the discussion without introducing substantially new concepts.

2

A parametric messageallows variables wherever terms could appear. We will writeA (or B), k, n andm, variously
decorated, for atomic constants or variables that are principals, keys, nonces and raw data, respectively. Whenever the object
we want to refer to cannot be but a constant, we will use the corresponding seriffed letters:A (or B), k, n andm. Instead, the
lettersx, y andz will stand for terms that must be variable. Constants and variables constitute the class ofelementary terms,
denoted with the lettere. Finally, we write[t/x]t′ for the substitution of a variablex with a termt in another termt′ [7].

2.2 Message Predicates and States

States are a fundamental concept inMSR: they are the central constituent of the configurations of a protocol execution;
they are the objects transformed by rewrite rules to simulate message exchange and information update; finally, together with
execution traces, they are the hypothetical scenarios on which protocol analysis is based. A state is a finite collection of
atomic first-order formulas calledmessage predicates i.e.predicate symbols applied to an ordered sequence of terms:

Message tuples~t ::= · (Empty tuple)
| t, ~t (Tuple extension)

Three kinds of predicates can enter a state or a rewrite rule: First, the predicateN() implements the contents of the
public networkin a distributed fashion: for each (ground) messaget currently in transit, the state will contain a component
of the formN(t). Second, roles rely on a number ofrole state predicates, generally one for each of their rules, of the form
Ll(, . . . ,), wherel is a unique identifying label. The arguments of this predicate record the value of known parameters of
the execution of the role up to the current point. Third, a principalA can store data in private memory predicates of the form
MA(, . . . ,) that survives role termination and can be used across the execution of different roles, as long as the principal
stays the same. Memory predicates are useful in modeling situations that need to maintain data private across role executions:
for example, they allow a principal to remember his Kerberos ticket [9], or the trusted-third-party of a fair exchange protocol
to avoid fraudulent recoveries from aborted transactions. They are also used to encapsulate such entities as local clocks [9].
Finally, they allow an intruder to accumulate knowledge to be used in mounting attacks, as described in Section 5.

A stateis a finite collection of ground message predicates, as formalized in the following grammar:

States: S ::= · (Empty state)
| S, N(t) (Extension with a network predicate)
| S, Ll(~t) (Extension with a role state predicate)
| S, MA(~t) (Extension with a memory predicate)

We interpret the extension construct “,” as a multiset union operator, abstracting in this way from the order of the component
predicates of a state.

Protocol rules transform states by removing a number of component predicates, and adding other, usually related, state
elements. The antecedent and consequent of a rewrite rule embed therefore parametric substates whose variables are instanti-
ated at application time. However, role state predicates need to be created on the spot in order to avoid interferences between
concurrently executing role instances. We achieve this by introducing variables, denotedL, that are instantiated to actual role
state predicates during execution.

2.3 Types

Typing is available inMSR, as in many languages, as a mechanism for abstracting away aspects of a specification con-
sidered too low-level. In the case of a protocol, we are abstracting the method by which a principal distinguishes objects of
a different nature and categorizes them: for example field lengths, redundancy, database accesses, trusted subprotocols, etc.
MSRoffers simple yet powerful means to express this abstraction. However, it is ultimately the specifier who is in charge of
laying out a sensible set of types for a protocol, and in particular to avoid the danger of over-abstraction.

The typing machinery ofMSR[8] is based on the type-theoretic notion ofdependent product types with subsorting[12,
17, 3, 23]. In this paper, we use the following types to classify terms:

Types: τ ::= principal (Principals)
| nonce (Nonces)
| shK AB (Shared keys)
| pubKA (Public keys)
| privK k (Private keys)
| msg (Messages)

3

The types “principal” and “nonce” classify principals and nonces, respectively. The next three productions allow distin-
guishing between shared keys, public keys and private keys. Dependent types offer a simple and flexible way to express the
relations that hold between keys and their owner or other keys. A key “k” shared between principals “A” and “B” will have
type “shK A B”. Here, the type of the keydependson the specific principals “A” and “B”. Similarly, a constant “k” is given
type “pubK A” to indicate that it is a public key belonging to “A”. We use dependent types again to express the relation
between a public key and its inverse. Continuing with the last example, the inverse of “k” will have type “privK k”.

We use the typemsg to classify generic messages. Clearly raw data have typemsg. This is however not sufficient since
nonces, keys, and principal identifiers are routinely part of messages. We address this issue by imposing asubsortingrelation
between types, formalized by the judgment “τ :: τ ′” (read τ is a subsort ofτ ′). In this paper, the subsorting relation will
amount to having each of the types discussed above be a subtype ofmsg. Its extension can be found in Appendix B.

Again, the above types should be thought of as a reasonable instance of our approach rather than the approach itself. Other
schemas can be specified by defining appropriate types and how they relate to each other. For example, digital signatures
can be accommodated by introducing dedicated dependent types akin to “pubK A” and “privK k” [9]. An untyped setting is
obtained by ascribing typemsg to every entity. On the other hand, other applications may find convenient to define distinct
types for long-term keys and have them not be a subsort ofmsg, prohibiting in this way the transmission of long-term secrets
as parts of messages [8].

We use dependent Cartesian product types, here calleddependent type tuples, to classify term tuples and consequently
predicate symbols. These objects are defined as follows:

Type tuples ~τ ::= · (Empty tuple)
| τ (x) × ~τ (Type tuple extension)

The notation(x) on the left of the Cartesian product symbol binds the variablex in the type tuple~τ to its right. Dependencies
allow capturing fine associations between arguments, such as between a principal and his/her own public key: for example
the type tuple “principal(A)×pubKA” will only classify pairs(A, k) wherek is the public key ofA. Given a dependent tuple
typeτ (x) × ~τ , we will drop the label(x) whenever the variablex does not occur (free) in~τ . Examples of dependent tuples
can be found in Appendix A.

Ground objects are type-checked against asignature, defined as a list of type declarations for atomic constants and memory
and role state predicate symbols (the network predicate is hardwired inMSR):

Signatures Σ ::= · (Empty signature)
| Σ, a : τ (Atomic message declaration)
| Σ, Ll : ~τ (Local state predicate declaration)
| Σ, M : ~τ (Memory predicate declaration)

Objects containing variables rely instead on atyping context, defined as a signature extended with declarations for variables
and role state predicate parameters:

Typing context Γ ::= Σ (Plain signature)
| Γ, x : τ (Variable declaration)
| Γ, L : ~τ (Role state predicate parameter declaration)

We assume that each object in a signature (or context) is declared exactly once. We promote “,” to denote union. This
operation is defined only if the resulting sequence does not contain multiple declaration for the same object.

The typing judgments and rules ofMSRare thoroughly analyzed in [8] and summarized in Appendix B. In the sequel, we
will make use of the typing judgments for terms “Σ ` t : τ ”, signatures “̀ Σ” and states “Σ ` S”. Binary judgments
“Σ ` X” will also be used for entitiesX still to be introduced, in particular rules, protocol theories, and active role sets.
Type-checkingMSRspecifications has been proved decidable in [8].

2.4 Rules

Rules are the basic mechanism that enables the transformation of one state into another, and therefore the simulation
of protocol execution: whenever the antecedent matches part of the current state, this portion may be substituted with the
consequent (after some processing). Protocol rules are generally parametric so that the same rule can be used in a number of
slightly different scenarios (e.g.without fixing interlocutors or nonces). Therefore a typical rule mentions variables that are
instantiated to actual terms during execution. We introduce them by means of typed universal quantifiers:

Rule: r ::= lhs → rhs (Rule core)
| ∀x : τ. r (Parameter closure)

4

Free variables can occur in the construction of a rule, but well-typed roles themselves have all their variables bound [8].
The left-hand side, or antecedent, of a rule is a finite collection of parametric message predicates:

Predicate sequences:lhs ::= · (Empty predicate sequence)
| lhs, N(t) (Extension with a network predicate)
| lhs, L(~e) (Extension with a role state predicate)
| lhs, MA(~t) (Extension with a memory predicate)

Predicate sequences differ from states mainly by the limited instantiation of role state predicates: in a rule, these objects
consist of a role state predicate variable applied to as many elementary terms as dictated by its type (this is enforced by the
typing rules in [8]). Network and memory predicates will in general contain parametric terms, although not necessarily raw
variables as arguments. An example involving network and role state predicates is given in Appendix A. In Section 5, we
rely on memory predicates to model the intruder’s knowledge. Other usages can be found in [9].

The right-hand side, or consequent, of a rule consists of a predicate sequence possibly prefixed by a finite string of fresh
data declarations such as nonces or, in some applications, short-term keys. We rely on the existential quantification symbol
to express data generation.

Right-Hand sides: rhs ::= lhs (Sequence of message predicates)
| ∃x : τ. rhs (Fresh data generation)

We write [t/x]rhs for the capture-free substitution of a termt for a variablex in the consequentrhs [7]. We adopt a similar
notation for rules and predicate sequences.

2.5 Roles and Protocol Theories

Role state predicates record information accessed by a rule. They are also the mechanism by which a rule can enable the
execution of another rule in the same role. Relying on a fixed protocol-wide set of role state predicates is dangerous since it
could cause unexpected interferences between different instances of a role executing at the same time. Instead, we make role
state predicates local to a role by requiring that fresh names be used each time a new instance of a role is executed. As in the
case of rule consequents, we achieve this effect by using existential quantifiers.

Rule collections: ρ ::= · (Empty role)
| ∃L : ~τ . ρ (Role state predicate parameter declaration)
| r, ρ (Extension with a rule)

A role is given as the association between arole ownerA and a collection of rulesρ. Some roles, such as those imple-
menting a server or an intruder, are intrinsically bound to a few specific principals, often just one. We call themanchored
rolesand denote them asρA. Here, the role ownerA is an actual principal name, a constant. Other roles can be executed by
any principal. Thesegeneric rolesare denotedρ∀A where the implicitly typed universal quantification symbol implies that
A should be instantiated to a principal before any rule inρ is executed. We require that the owner of a roleρ be the first
argument of all the role state predicates and be the subscript of every memory predicate inρ. These constraints are formally
expressed through the typing and DAS policy ofMSR.

A protocol theory, writtenP, is a finite collection of roles (see Section 5 and Appendix A for concrete examples):

Protocol theories: P ::= · (Empty protocol theory)
| P, ρ∀A (Extension with a generic role)
| P, ρA (Extension with an anchored role)

It should be observed that we do not make any special provision for the intruder. The adversary is expressed as a set of roles
in the same way as proper protocols, as described in Section 5 for the standard Dolev-Yao intruder.

2.6 Active Roles

Several instances of a given role, possibly stopped at different rules, can be present at any moment during execution. We
record the role instances currently in use, the point at which each is stopped, and the principal who is executing them in an
active role set. These objects are finite collections ofactive roles, i.e.partially instantiated rule collections, each labeled with
a principal name.

Active role sets: R ::= · (Empty active role set)
| R, ρA (Extension with an instantiated role)

5

The notationρA is reminiscent of anchored roles. Active roles are actually more liberal in that some of the role state predicate
symbols as well as their arguments may be instantiated. Intuitively,ρA results from instantiating the contents of some role,
with A is its elected owner.

3 Data Access Specification

Well-typing does not prevent a rule from looking up and using information its owner should not have access to. For
example, the fact that principalA is initiating a session withB shall not allow him/her to access a key thatB shares with a
server. Similarly,A should not be able to access the memory predicates of any other party. The following role incorporates
several violations of this kind:

(∀B :principal. kB :pubKB. k′B :privK kB . kBS :shK B S. n :nonce. N({{n}}kB) −→ N({n}kBS
), MB(n))∀A

In this section, we will use the typing declarations ofMSRto formalize and implement these and other requirements by
means of statically checkabledata access specification(DASfor short) judgments. We shall assume that all the expressions
we will be analyzing are well-typed. We will start with the presentation of DAS for macroscopic objects such as protocol
theories and roles, and only later describe how it is enforced on their components. Therefore, the premises of inference
rules will sometimes mention a judgment that has not yet been defined. We mark such occurrences by enclosing them in a
gray boxand always give abundant explanations. We ask the reader to ignore theboxedtext that follows most rules in this
section. We will interpret it in Section 6.

3.1 Protocol Theories and Roles

The judgment “Σ
 P” expresses the fact that a protocol theoryP realizes correct DAS with respect to a signatureΣ. It
is implemented by the following three inference rules (in structured operational semantics style), corresponding to the three
productions in the syntax of a protocol theory. The right-hand premise of ruleshas grole andhas arole invoke the DAS
judgment “Γ
A ρ” for rule collections, that will be introduced shortly.

has dot

Σ
 ·

Σ
 P (Σ, A : principal)
A ρ
has grole

Σ
 P, ρ∀A
Σ
 P Σ
A ρ

has arole

Σ
 P, ρA

The central rule, which applies to generic roles, pushes the declaration for the role ownerA in Σ, with the effect of invoking
its right-hand premise with a typing context. Rulehas arole deals with anchored roles; since we are working under the
assumption that all expressions are well-typed, we do not check thatA is has typeprincipal.

Since DAS is about what information the owner of a role is entitled to access, it should come at no surprise that the
judgments that operate on rule collections and their components have a principal as a distinguished parameter. We first
see this in the rule collection DAS judgment “Γ
A ρ”, whereA is the owner ofρ: It is implemented by the following
syntax-directed rules:

oas dot ·
Γ
A ·

(Γ, L : ~τ)
A ρ
oas rsp ·

Γ
A ∃L : ~τ . ρ

Γ
A r Γ
A ρ
oas rule ·

Γ
A r, ρ

Ruleoas rsp collects the declaration of an existentially quantified role in the context and verifies its body. We rely on implicit
α-conversion to renameL in case a parameter with the same name is already declared inΓ. The rightmost inference rule,
oas rule, implements the situation where a collection starts with a ruler. Its left premise validatesr itself by means of the
DAS judgment for rules, “Γ
A r”.

The judgment “Γ
A r” expresses DAS-validity for rules. It is implemented by the following two rules:

Γ; ·
A lhs > · � ∆ Γ; ∆
A rhs
uas core ·

Γ
A lhs → rhs

(Γ, x : τ)
A r
uas all ·

Γ
A ∀x : τ. r

Intuitively, the judgment in the left premise of ruleuas core, “Γ; ·
A lhs > · � ∆”, collects the data,~t say, the rule owner
A is given in the left-hand sidelhs. This includes network messages and previously gathered information stored in memory
or role state predicates. This judgment also produces the knowledge context∆ (defined shortly), which contains information
thatA can reasonably deduce from~t and later use in the right-hand side. Since it contains information about which key

6

belongs to whom, etc., the contextΓ plays an important role in deciding what can legitimately enter∆. This judgment and
its realization are the topic of Section 3.2. Informally, the judgment on the right premise of this rule, “Γ; ∆
A rhs” uses
the knowledge∆ produced by analyzing the antecedent to verify thatA can construct all the messages mentioned in the
right-hand siderhs. This judgment and the inference rules implementing it are the subject of Section 3.3.

We conclude this section by introducing the notion ofknowledge context, often simply referred to asknowledge. These
entities collect the information known to the owner of a rule during DAS-validation. Knowledge is deduced by means
of simple inferences from data stored in role state or memory predicates, and messages received from the network. The
knowledge context of a rule consists of atomic constants or variables only. Active role sets additionally allow ground terms
(obtained by instantiating variables).

Knowledge contexts: ∆ ::= · (Empty knowledge context)
| ∆, a (Extension with atomic knowledge)
| ∆, x (Extension with parametric knowledge)
| ∆, t (Extension with ground terms)

We will ignore the last production until Section 3.4, where DAS for active roles is discussed. It is convenient to view
knowledge contexts as multisets. A knowledge context∆ is said to becompatiblewith a signatureΣ if for each termt in ∆,
there is a typeτ such thatΣ ` τ andΣ ` t : τ .

3.2 Accessing Information in the Left-Hand Side

The left-hand side of a rule gathers the information necessary for constructing the messages transmitted or stored in the
consequent. The information in the left-hand side of a ruler consists of the arguments of the role state predicates and the data
embedded in the messages received from the network or retrieved from memory predicates. We will now take an informal
look at each of these sources:

• The arguments~e = (e1, . . . , en) of a role state predicateL represent data passed to a rule from its logical predecessor.
The owner ofr, call him/herA, knows this information because he/she has put it there. These elementary symbols
will generally stand for principal names, keys, or nonces, but variables may also represent complex terms whose inner
valuesA cannot or does not need to access (e.g. a message encrypted with a key he/she does not know) [8]. For
example, even if it is clear from the protocol at hand that the variablee3 can only be substituted with a term of the form
{y}k, it cannot be used to accessy, even ife7 is preciselyk. (This form of delayed message interpretation can easily
be realized using memory predicates.)
• The termt in an incoming network messageN(t) will generally consist of a number of operators applied to variables

(in rare occasions to constants). Some of the associated values are expected to match previously known data (e.g.a
nonce coming back in response to a challenge), and will be represented by variables listed in a role state predicate.
Others will be unknown (e.g.a nonce generated by an interlocutor) and shall be bound to previously unused variables.
The goal of DAS is to make sure thatA has legitimate rights to access this information.
• Finally, A can retrieve previously stored information from a memory predicateMA(~t). As for network messages,

each term in~t may consist of a series of constructors applied to variables. Again, writing an argument in this way
means accessing the subcomponents corresponding to each constant or variable, with the option of using them in the
right-hand side. Observe that the fact thatA generatedMA(~t) does not automatically grant him/her access to the
submessages of~t. For example, the third argumentt3 may have the form{{t}}k: A is entitled to accesst only if he/she
is in possession of the private key corresponding tok.

In this section, we will ultimately devise a procedure that certifies thatA is entitled to access all the elementary terms
mentioned in the antecedent of a ruler. This proceeds in two phases: first we collect the arguments of all the predicates in
the left-hand side ofr, and then break the composite messages gathered in this way into their elementary components.

The judgment “Γ; ∆
A lhs > ~t � ∆′” collects the arguments of the predicates in the left-hand side of a rule. Its
meta-variables are interpreted as follows:A is the owner of the ruler whose left-hand side we are analyzing.Γ is the typing
context ofr. The predicate sequencelhs is the portion of the antecedent ofr that has still to be examined. The terms~t are
the arguments that have been gathered so far and that may need further processing. Theinput knowledge∆ lists collected
arguments that are known to be elementary. Finally, theoutput knowledge∆′ stands for the elementary information that will
ultimately be extracted fromr’s left-hand side. It is convenient to interpret this judgment operationally as a partial function
that givenA, Γ, lhs, ~t and∆ computes a value for∆′ if the DAS policy is obeyed. We shall interpret~t as a multiset. As

7

we start processing the antecedent of a rule in ruleuas core, ∆ and~t are empty (written “·”) as no argument has yet been
collected.

Our first rule describes how a role state predicateL(A,~e) is processed. Remember that, by definition,L is a parameter,
its first argumentA is a principal name, and the terms(A,~e) must be either constants or variables. Therefore, each object
among(A,~e) is an elementary piece of information. We can therefore merge(A,~e) into the current input knowledge context
∆ and use the resulting knowledge context∆′ to analyze the remaining predicateslhs. We have the following rule, which
makes use of the merge judgment “∆ > ~e > ∆′”, whose simple realization is given in Appendix C.

∆ > (A,~e) > ∆′ Γ; ∆′
A lhs > ~t ′ � ∆′′
las rsp] ·

Γ; ∆
A (L(A,~e), lhs) > ~t ′ � ∆′′

We next turn to network and memory predicates in the antecedent of a rule. Since the messages in their arguments may
not be elementary, we shall include them in the list of unprocessed arguments~t ′ before examining the remaining predicates
lhs. Only memory predicates belonging toA are accepted.

Γ; ∆
A lhs > (t,~t ′)� ∆′′
las net INT

Γ; ∆
A (N(t), lhs) > ~t ′ � ∆′′

Γ; ∆
A lhs > (~t,~t ′)� ∆′
las mem ·

Γ; ∆
A (MA(~t), lhs) > ~t ′ � ∆′

Once the arguments of all the predicates on the left-hand side of the rule have been collected, we move to the second phase
which ascertains that the uninterpreted terms~t satisfy the DAS policy. This is done in the following rule by invoking the
judgment “Γ; ∆
A ~t� ∆′”, discussed below.

Γ; ∆
A ~t� ∆′
las dot ·

Γ; ∆
A · > ~t� ∆′

The judgment “Γ; ∆
A ~t � ∆′”, used in rulelas dot, examines possibly composite terms. The interpretation of
its meta-variable is inherited from the argument collection judgment above. Again, this judgment can be seen as a partial
function that computes a value for∆′ when givenA, Γ, ∆ and~t. It should be observed thatA does have legitimate access to
each term in~t: we want to verify that this property extends to their subterms.

Our first two rules deal with unchecked elementary messagese. There are two possibilities: eithere is known and therefore
appears in the current input knowledge, or it must be looked up in the typing contextΓ.

Γ; (∆, e)
A ~t� ∆′
tas kn] DEL

Γ; (∆, e)
A e,~t� ∆′

(Γ, e : τ,Γ′); (∆, e)
A ~t� ∆′
tas ukn ·

(Γ, e : τ,Γ′); ∆
A e,~t� ∆′

The rule ownerA can access the cleartextt of an encrypted message{t}k (or {{t}}k) only if he/she is entitled to access the
decryption key corresponding tok. This is ascertained by the left premises of the following rules. The judgmentΓ; ∆
sA
k � ∆′ (resp.Γ; ∆
aA k � ∆′) verifies thatA can accessk (resp. its inverse) and if necessary updates the knowledge
context∆ to ∆′. Once the key has been resolved, the cleartextt is put back in the pool of pending messages, which is
recursively analyzed in the rightmost premise.

Γ; ∆
sA k � ∆′ Γ; ∆′
A t,~t� ∆′′
tas ske

SDCΓ; ∆
A {t}k,~t� ∆′′
Γ; ∆
aA k � ∆′ Γ; ∆′
A t,~t� ∆′′

tas pke

PDCΓ; ∆
A {{t}}k,~t� ∆′′

Concatenated messages can be split unconditionally before recursively analyzing their submessages. Once all possibly
composite terms have been reduced to their elementary constituents (and have been shown to respect the DAS policy), we
simply return the accumulated input knowledge context as the output knowledge.

Γ; ∆
A t1, t2,~t� ∆′
tas cnc DCM

Γ; ∆
A (t1 t2),~t� ∆′
tas dot ·

Γ; ∆
A · � ∆

We conclude the treatment of the left-hand side of a rule by devising a method to establish when the owner of a rule
can decipher (and therefore access) a message encrypted with a keyk. Since we assumed in Section 2 to have two kinds
of encryption operations (shared-key and public-key), we will present two judgments and the relative rules. It should be

8

noted that richer schemes,e.g.including digital signatures or a more refined key taxonomy, would need to define additional
judgments and to provide the corresponding DAS rules.

We express the fact that the ownerA of a rule can access the cleartextt of a message{t}k encrypted with a shared key
k by means of the judgment “Γ; ∆
sA k � ∆′”, where Γ, ∆ and∆′ are the typing context, and the input and output
knowledge respectively. Again,∆′ is computed from the other entities in this relation. In order forA to decrypt{t}k, he/she
must have access tok itself since we are in a symmetric-key setting. There are two scenarios to analyze in order to decide
this judgment. First,A may knowk, for example if it was previously transmitted in the clear. Then,k can be found in the
input knowledge context.

kas ss DUP

Γ; (∆, k)
sA k � (∆, k)

The second scenario involves a keyA does not know (yet) about, but to which he/she has legitimate access. A principal
has the right to access a shared key only if this key was intended to communicate with him/her:

kas su1 IS1

(Γ, k : shK AB,Γ′); ∆
sA k � (∆, k)
kas su2 IS2

(Γ, k : shK B A,Γ′); ∆
sA k � (∆, k)

Observe that the relationship between the key owner and the rule owner is encoded in the dependent type that qualifies the
key itself. Sincek was unknown toA but is being accessed, we include it among the output knowledge of these rules.

The judgment “Γ; ∆
aA k � ∆′” expresses the similar relation concerning public-key encryption, where the meaning
of the meta-variables is as for symmetric keys. In order to decipher a message encrypted with a public keyk, we must have
access to the corresponding private key, call itk′. As for shared keys, the first place where to look is the current knowledge
context. If the private keyk′ of some principalB has previously been encountered, then we can decipher transmissions
encoded with the corresponding public keyk.

kas pus DUP

(Γ, k : pubKB,Γ′, k′ : privK k,Γ′′); (∆, k′)
aA k � (∆, k′)

If A does not knowk′, then he/she is entitled to access the cleartext of the encrypted message{{t}}k only if he/she ownsk:

kas puu IPV,DUP

(Γ, k : pubKA,Γ′, k′ : privK k,Γ′′); ∆
aA k � (∆, k′)

3.3 Processing Information in the Right-Hand Side

The right-hand side of a rule is where messages are constructed, either to be emitted over the public network, or stored for
future use. However, the first rule of an initiator role will generally have an empty left-hand side, and yet it can send complex
messages in its consequent. Therefore, the right-hand side of a rule can also access data on its own, information that is not
mentioned in its antecedent. This can happen in two ways: first by generating fresh data (e.g.nonces), and second by using
information that is “out there” (e.g. the name of an interlocutor, or a key shared with him/her). Both alternatives have the
potential of violating the DAS policy (e.g.when trying to access the private key of a third party).

DAS on the right-hand siderhs of a ruler is expressed by the judgment: “Γ; ∆
A rhs”, whereA is the owner of
r, Γ is its typing context, and∆ is the knowledge gained by examining its antecedent, it is implemented by rules whose
number depends on the intended application of the protocol at hand. Given a consequent of the form “∃x : τ. rhs”. It is
tempting to indiscriminately addx to the current knowledge context and proceed with the validation ofrhs. This is in general
inappropriate since it would allow any principal to construct information that can potentially affect the rest of the system. In
most protocols, nobody should be allowed to create new principals. Similarly, only key-distribution protocols should enable
a principal to create keys, and typically only short-term keys. On the other hand, principals will generally be allowed to
generate nonces and atomic messages (e.g.an intruder may want to fake a credit card number). These considerations produce
a family of rewrite rules that differ only by the type of the existential declaration they consider. In all cases, we recursively
check the bodyrhs after inserting “x : τ ” in the context (for appropriateτ ’s) and addingx to the current knowledge:

(Γ, x : nonce); (∆, x)
A rhs
ras nnc

GNCΓ; ∆
A ∃x : nonce. rhs

(Γ, x : msg); (∆, x)
A rhs
ras msg

GMSΓ; ∆
A ∃x : msg. rhs

Γ; ∆#A lhs
ras ps

·Γ; ∆
A lhs

We must emphasize again that the exact set of rules for data generation depends on the intended functionalities of the protocol.
Ruleras ps invokes the predicate sequence validation judgment “Γ; ∆ #A lhs”, discussed shortly, to verify that the inner
corelhs of the rule’s consequent satisfies DAS.

9

The premises of ruleras ps above included the judgment “Γ; ∆ #A lhs” which verifies that all the messages in the
predicate sequencelhs can be constructed in the current rule. It is implemented by the following rules. Whenlhs is not
empty, we rely on the term constructions judgments “∆# t” and “∆# ~t ” that will be explained shortly.

ras dot DEL(∆)
Γ; ∆#A ·

Γ; ∆#A t Γ; ∆#A lhs
ras net DUP(∆),TRN

Γ; ∆#A N(t), lhs

Γ; ∆#A
~t Γ; ∆#A lhs

ras mem DUP(∆)

Γ; ∆#A MA(~t), lhs

Γ; ∆#A (A,~e) Γ; ∆#A lhs
ras rsp] DUP(∆)

Γ; ∆#A L(A,~e), lhs

Empty predicate sequences are always valid. Moreover, a principalA is allowed to publish any information he/she can
construct on the public network, but he/she shall be able to update only his/her own role state and memory predicates.

The constructibility of a termt in the right-hand side of a rule is expressed by the judgment “Γ; ∆ #A t”. Elementary
information appearing in a rule consequent can come from of two sources: rulecas kn handles the case where it has been
collected in the knowledge context while validating the antecedent and fresh data declarations of a rule. This can also be
the first appearance of this information in the rule, in which case we must verify that the role owner is effectively entitled to
access it. This achieved in rulecas ukn through the right-hand side access judgment “Γ#A e”, discussed below.

cas kn] DEL(∆)
Γ; (∆, e)#A e

Γ#A e
cas ukn DEL(∆)

Γ; ∆#A e

The simple rules implementing composite terms can be found in Appendix C, together with the implementation of the
judgment “Γ; ∆#A

~t” that allows constructing message tuples~t from the knowledge∆ at hand.

We conclude this section by describing the judgment “Γ #A e” that checks that a rule ownerA has legitimate access to
elementary datae that appear only in the rule consequent. Its implementation depends entirely on the atomic data that can
be part of a message and therefore on the types that have been defined to classify them. We will now present inference rules
relative to the types defined in Section 2, but it should be clear that different type layouts will require different rules.

Let us start with non-dependent types. We should clearly be able to access any principal name:

eas pr IPR

(Γ, e : principal,Γ′)#A e

The remaining simple types arenonce andmsg. Were we to have a rule similar toeas pr for nonces would allowA to access
any nonce in the system, including nonces that he/she has not generated. This is clearly undesirable. The only noncesA is
entitled to access are the ones he/she has created and the ones he/she has retrieved in received messages or as previously stored
data. In all these cases, these nonces are included in some knowledge context. A similar argument applies to elementary
objects of typemsg: a rule akin toeas pr would giveA access to any message that can be constructed in the system, when
invoked with a variable. This is particularly undesirable sincemsg is a supersort of all our types (see Section 2.3).

Next, we consider keys:A should have free access to all of his/her shared keys, but not to others; similarly,A has
legitimate access to his/her private keys, and to the public keys of any principal.

eas s1 IS1

(Γ, e : shK AB,Γ′)#A e
eas s2 IS2

(Γ, e : shK B A,Γ′)#A e

eas pp IPV

(Γ, e : privK k,Γ′, k : pubKA,Γ′′)#A e
eas p IPB

(Γ, e : pubKB,Γ′)#A e

It should be observed that protocols that make use of a key distribution center should not rely on these rules. These kinds of
protocols require a language and type layout that is more elaborate than the one in our running example.

3.4 Active Roles

In Section 2.6 we defined an active role as a role suffix whose free variables have been instantiated to ground terms. They
correspond to roles in the midst of execution. Active roles should clearly be subject to the same access constraints as protocol
theories. They are handled by allowing ground terms anywhere variables can appear in a role, and by treating them in the
same way. Formally, for every of the above rules that look up or store (elementary) information in an active role set, we
introduce a variant that performs the same operation on a ground term. The affected rules are marked with the symbol] in the

10

above discussion and in Appendix C. Furthermore, since execution may instantiate a role state predicate parameterL with a
constantLl, we need additional variants of ruleslas rsp andras rsp.

The judgment “Σ
 R” expresses the fact that an active role setR satisfies our DAS policy in signatureΣ. It is
implemented by the following two simple rules:

aas dot ·
Σ
 ·

Σ
 R Σ
A ρ
aas ext ρA if A 6= I

Σ
 R, ρA

3.5 Decidability of DAS

All the judgments presented in this section have decidable implementations. Furthermore, the ones to which we have
ascribed a functional behavior implement computable relations. For space reasons, we only give a sketch of the argument
underlying this result and a condensed statement relative to protocol theories and active role sets only. A detailed proof of
this statement for each of these judgments can be found in [6].

Property 3.1 Given a signatureΣ, a protocol theoryP and an active role setR, it is decidable whether the judgments
Σ
 P and Σ
 R hold.

Proof: All DAS rules are syntax-directed and, with the exception ofuas core, las rsp (and variants),tas ske andtas pke,
none contains meta-variables in its premises that are not also mentioned in its conclusion. The leftmost premise of each of
these rules is a left-hand side judgmentJ that produces an output knowledge context∆′ (the one meta-variable that does not
appear in their conclusion). Thus, we reduce our decidability result to proving that there are only finitely many such∆′ for
whichJ is derivable, assuming all other parameters fixed. A close inspection of the DAS rules reveals a number of pairs of
rules (for exampletas ukn andtas kn) that may both apply in certain situations, and therefore haveJ succeed with two
output knowledge contexts. In the worst case, the number of output knowledge contexts is exponential (but finite) in the
number of symbols appearing in the other parts ofJ . 2

When validating rules, alternative output knowledge contexts are identical up to the duplication of data. On the basis of this
observation, we claim that DAS can be implemented with a complexity linear in the number of elementary terms in a rule.
This argument extends to active role sets by prioritizing rules that look information up in the current knowledge context (e.g.
tas kn).

4 Execution Model

Execution is concerned with the use of a protocol theory to move from a situation described by a stateS to another
situation modeled by a stateS′. Referring to the situation that the execution of a protocol has reached by means of a state is
an oversimplification. Indeed, execution operates onconfigurations[S]RΣ consisting of a stateS, an active role setR and a
signatureΣ: R records the roles that can be used in order to continue the execution, at which point they were stopped, and
how they were instantiated, whileΣ is needed to ensure that variable instantiation is well-typed. No element in a configuration
contains free variables. Configurations will be indicated with the letterC.

Given a protocolP, we describe the fact that execution transforms a configurationC intoC ′ in one step by means of the
judgment “P . C −→ C ′”. The next two rules specify how to extend the current active role setR with a role fromP.

ex arole

(P, ρA) . [S]RΣ −→ [S]R,ρ
A

Σ

Σ ` A : principal
ex grole

(P, ρ∀A) . [S]RΣ −→ [S]R,([A/A]ρ)A

Σ

Anchored roles are simply copied to the current active role sets since their syntax meets the requirements for active roles.
We instead make a generic role available for execution in ruleex grole by assigning it an owner. The typing judgment in its
premise makes sure thatA is defined as a principal name.

Once a role has been activated, chances are that it contains role state predicate parameter declarations that require to be
instantiated with actual constants before any of the embedded rules can be applied. In ruleex rsp, Ll shall be a new symbol
that appears nowhere in the current configuration (in particular it should not occur inΣ).

ex rsp

P . [S]R,(∃L:~τ. ρ)A

Σ −→ [S]R,([Ll/L]ρ)A

(Σ,Ll:~τ)

Σ ` t : τ
ex all

P . [S]R,((∀x:τ. r),ρ)A

Σ −→ [S]R,(([t/x]r),ρ)A

Σ

11

Ruleex all instantiates the universal variables that may appear in a rule. The attentive reader may be concerned by the fact
that the construction of the instantiating termt is not guided by the contents of the stateS. This is a legitimate observation:
the rule above provides an idealized model of the execution rather than the basis for the implementation of an actual simulator.
An operational model suited for implementation is the subject of current research. It should also be observed that the premise
of ex all describesA’s acceptance oft as a term of typeτ . How this happens is kept abstract, but it should correspond to
some lower level mechanism to adequately express the protocol at hand.

We now consider execution steps resulting from the application of a fully instantiated rule(lhs → rhs) from the current
active role setR. The antecedentlhs must be ground and therefore it has the structure of a legal state. This rules identifies
lhs in the current state and replaces it with a substatelhs ′ derived from the consequentrhs by instantiating its existential
variables with fresh constants of the appropriate type. This latter operation is performed in the premise of this rule by the
right-hand side instantiation judgment “(rhs)Σ � (lhs ′)Σ′ ”, whose implementation is given in Appendix C.

(rhs)Σ � (lhs ′)Σ′
ex core

P . [S, lhs]R,((lhs→rhs),ρ)A

Σ −→ [S, lhs ′]R,(ρ)A

Σ′

Security protocols often allow various forms of branching. In a protocol theory, the control structure is mostly realized by
the role state predicates appearing in a role. Branching can indeed be modeled by having two rules share the same role state
predicate parameter in their left-hand side. Roles, on the other hand, are defined as a linear collection of rules. Therefore,
in order to access alternative role continuations, we may need toskipa rule,i.e. discard it and continue with the rest of the
specification.

ex skp

P . [S]R,(r,ρ)
A

Σ −→ [S]R,(ρ)A

Σ

ex dot

P . [S]R,(·)
A

Σ −→ [S]RΣ

Ruleex dot does some housekeeping by throwing away active roles that have been completely executed.

The judgment “P . C −→∗ C ′” allow chaining atomic transitions into multi-step firings. It is defined in Appendix C as
the reflexive and transitive closure of the above one-step relation. A parallel version of this judgment has been defined in [7].
Moreover, we have proved in [8] that well-typing is preserved by execution,i.e. that when starting from well-typed objects
firing will always produce well-typed entities (a detailed proof can be found in [6]).

A similar result applies to DAS. Indeed, the DAS Preservation Theorem below states that, under reasonable typing
assumptions, no execution sequence can take a configuration that satisfies the DAS policy to a situation that violates it. In
particular, instantiating variables cannot invalidate DAS.

Theorem 4.1 (DAS Preservation)

LetP be a protocol theory,Σ andΣ′ signatures,R andR′ active role sets, andS andS′ states such that̀ Σ, Σ ` P,
Σ ` R, Σ
 P and Σ
 R. If

P . [S]RΣ −→∗ [S′]R
′

Σ′ ,

then the judgmentsΣ′
 P and Σ′
 R′ are derivable.

Proof: The proof proceeds by induction on a derivation of the given execution judgment. Rulesex rsp andex core rely
on aWeakening Lemmathat allows extending the signature of an DAS judgment without affecting its derivability. Rules
ex grole andex all make use ofSubstitution Lemmathat states that DAS is preserved under substitution, assuming some
simple preconditions are met. 2

Because of its passive role, the stateS is not required to be well typed for this result to hold, although applications will
generally operate on well-typed states. This theorem and the fact that the execution rules do not depend on any DAS judgment
makes DAS verification a purely static check.

5 The Dolev-Yao Intruder

The Dolev-Yao abstraction[15, 21] assumes that elementary data such as principal names, keys and nonces are atomic
symbols rather than the bit-strings implemented in practice. Furthermore, it views the operations needed to assemble mes-
sages,i.e.concatenation and encryption, as pure constructors in an initial algebra. Therefore, for example, a term of the form
{t}k cannot be mistaken for a concatenation(t1 t2), and{t}k = {t′}k′ if and only if t = t′ andk = k′. This also means that

12

the Dolev-Yao model abstracts away the details of the cryptographic algorithms in use, reducing in this way encryption and
decryption to atomic operations. Indeed, it is often said to adopt ablack boxview on cryptography.

The atomicity and initiality of the Dolev-Yao abstraction limits considerably the attacks that can be mounted against a
protocol. In particular, its idealized encryption model makes it immune to any form of crypto-analysis: keys cannot be
exhaustively searched, piecewise inferred from observed traffic, or guessed in any other manner. An encrypted message can
be deciphered only when in possession of the appropriate key. The symbolic nature of this abstraction allows then to very
precisely circumscribe the operations an intruder has at his disposal to attack a protocol. All together, they define what has
become to be known as theDolev-Yao intruder. This attacker can do any combination of the following eight operations:

1. Intercept and learn messages.
3. Decompose concatenated messages he has learned.
5. Decipher encrypted messages if he knows the keys.
7. Access public information.

2. Transmit known messages.
4. Concatenate known messages.
6. Encrypt known messages with known keys.
8. Generate fresh data.

MSR, like most current systems geared toward specifying security protocol, is an instance of the the Dolev-Yao abstraction.
Elementary data are indeed atomic, messages are constructed by applying symbolic operators, and the criterion for identifying
terms is plain syntactic equality. We will now give a specification of the Dolev-Yao intruder inMSR.

Let I be the elected intruder. We represent the knowledgeI has at his disposal to mount an attack in a distributed fashion
as a collection of memory predicates of the formI(t) for all known termst (for conciseness, the subscript “I” of the correct
form II(t) is kept implicit). Thus, the declarations “I : principal” and “I : principal×msg” constitute thestandard Dolev-Yao
intruder signature, that we denoteΣDY . We express each of the Dolev-Yao intruder’s capabilities as one or more one-rule
roles anchored atI. We give them a name (written in bold to its left) that will be referred to in Section 6. We also organize
rule constituents in columns for legibility. These roles constitute thestandard Dolev-Yao intruder theorythat we denotePDY .

Items (1) and (2) of the description of the Dolev-Yao intruder are specified by rulesINT andTRN below, respectively.
The former captures a network messageN(t) and stores its contents in the intruder’s memory predicate. Observe that the
execution semantics ofMSRimplies thatN(t) is removed from the current state and therefore this message is not available
any more to the principal it was supposed to reach. RuleTRN emits a memorized message out in the public network.

INT:
(
∀t : msg. N(t) → I(t)

)I
TRN:

(
∀t : msg. I(t) → N(t)

)I

From now on, we will only deal with the memory predicateI(), which acts as a workshop whereI can dismantle inter-
cepted communications and counterfeit messages. Concatenated messages can be taken apart and constructed at will:

DCM:

(
∀t1, t2 : msg. I(t1 t2) → I(t1)

I(t2)

)I

CMP:

(
∀t1, t2 : msg.

I(t1)
I(t2) → I(t1 t2)

)I

Items (5) and (6) of the above specification state thatI must know the appropriate decryption keys in order to access the
contents of an encrypted message. Dually, he must be in possess of the correct key in order to perform an encryption.

SDC:

∀A,B : principal.
∀k : shK AB.
∀t : msg.

I({t}k)
I(k) → I(t)

I

SEC:

∀A,B : principal.
∀k : shK AB.
∀t : msg.

I(t)
I(k) → I({t}k)

I

PDC:


∀A : principal.
∀k : pubKA.
∀k′ : privK k.
∀t : msg.

I({{t}}k)
I(k′) → I(t)


I

PEC:

∀A : principal.
∀k : pubKA.
∀t : msg.

I(t)
I(k) → I({{t}}k)

I

We now tackle the often overlooked item (7) of the Dolev-Yao intruder specification: the ability to access public informa-
tion. The intruder should clearly be entitled to look up the name and public keys of principals, but any attempted access to
more sensitive information such as private keys should be forbidden. Our DAS policy already enforces this kind of require-
ments. Therefore, we will express the capabilities of the intruder with respect to public information access by means of the
strongest rules that satisfy DAS.

IPR:
(
∀A : principal. · → I(A)

)I

IS1:

(
∀A : principal.
∀k : shK IA.

· → I(k)
)I

IS2:

(
∀A : principal.
∀k : shK A I.

· → I(k)
)I

IPB:

(
∀A : principal.
∀k : pubKA.

· → I(k)
)I

IPV:

(
∀k : pubK I.
∀k′ : privK k.

· → I(k′)
)I

13

The last item of the specification of the Dolev-Yao intruder hints at the fact that he should be able to create fresh data. We
must again be very careful when implementing this requirement: in most scenarios, it is inappropriate forI to generate keys
or to create new principals. As for the DAS rules, nonces and atomic messages are however risk-frees.

GNC:
(
· → ∃n : nonce. I(n)

)I
GMS:

(
· → ∃m : msg. I(m)

)I

Observe that the rationale behind these two rules, although reasonable, may conflict with idiosyncrasies of individual proto-
cols. For example, the full version of the Needham-Schroeder public-key authentication protocol presented in [9] is accurately
validated only in the presence of an intruder who can create public keys.

Last,PDY contains the following two administrative rules that allow the Dolev-Yao intruder to forget information and to
duplicate (and therefore reuse) fabricated data, respectively.

DEL:
(
∀t : msg. I(t) → ·

)I
DUP:

(
∀t : msg. I(t) → I(t)

I(t)

)I

It is easy to verify that the aboveMSRformalization of the Dolev-Yao intruder is well-typed and satisfies DAS:

Property 5.1 The judgments` ΣDY , ΣDY ` PDY and ΣDY
 PDY are derivable.

The validation of the judgment “ΣDY
 PDY ” makes use of all the DAS rules in Section 3, except the ones dealing with
role state predicates.

A few aspects of this encoding deserve to be emphasized: first, this specification lies completely withinMSRand can
therefore be adapted, were the protocol at hand to require it. This differentiatesMSRfrom most other formalisms which
either rely on a fixed intruder, or express it in a language distinct from regular protocols. Second, typing allows a very precise
characterization of what the intruder’s capabilities actually are, especially as far as access to public information and fresh
data generation are concerned. Third,PDY can be automatically generated from DAS rules of the given term language [10].

6 The Most Powerful Symbolic Attacker

The Dolev-Yao intruder is by no means the only way to specify a protocol adversary. Indeed,MSRallows writing attacker
theories of much greater complexity by using multi-rule roles, branching, long predicate sequences, diversified memory
predicates, and deep pattern-matching. It is however commonly believed that any attack mounted by such an attacker can
be uncovered by using the Dolev-Yao intruder. The assumption that the Dolev-Yao intruder subsumes any other symbolic
adversary (i.e. that plays by the rules of the Dolev-Yao abstraction) is built into the most successful security protocol verifica-
tion systems [4, 14, 18, 20, 22, 24, 25]. To our knowledge and from discussions with several security experts, it appears that
this strongly held belief has never been proved. This is worrisome considering the seldom-acknowledged subtleties that our
formalization of the Dolev-Yao intruder has exposed in Section 5. Our precise definition of DAS and the fact that an attacker
is specified withinMSRas any other protocol fragment give us the means to phrase that question and to formally prove that
it has a positive answer. We dedicate this section to this task.

Again, let I be the intruder (we will consider situations involving multiple intruders at the end of this section). Assume
that we are given a derivation of a generic well-typed and DAS-valid execution judgmentP . [S]RΣ −→∗ [S′]R

′

Σ′ . Clearly,
P, R andR′ can mention arbitrary (active) roles anchored on the intruder. Similarly,S andS′ can contain role state and
memory predicates belonging toI. We will show that we can construct an encodingp q for the entities appearing in that
judgment such that: 1)pPq, pRq and pR′q do not mention any intruder specification besidesPDY ; 2) pSq and pS′q
do not contain any role state predicate forI nor any intruder memory predicate except at mostI(); and 3) the judgment
pPq,PDY . [pSq] pRqpΣq −→∗ [pS′q] pR

′q
pΣ′q is derivable.

The encodingpPq of a protocol theoryP implements the idea that every role anchored on the intruder can be emulated
by means ofPDY . Therefore, we simply filter out every component of the form(ρ)I:

p·q = ·
pP, (ρ)∀Aq = pPq, (ρ)∀A

pP, (ρ)Aq =
{
pPq, (ρ)A if A 6= I
pPq otherwise

The Dolev-Yao intruder model does not refer to any role state or memory predicate besideI(). Whenever one of these
objects appears in a stateS, the encodingpSq will account for it by including one instance of the Dolev-Yao intruder memory

14

predicateI() for each of its arguments, as specified by the following definition:

p·q = ·
pS,N(t)q = pSq,N(t)

pS,MA(~t)q =
{
pSq, p~t q if A = I
pSq, MA(~t) otherwise

pS, Ll(A,~t)q =
{
pSq, pA,~t q if A = I
pSq, Ll(A,~t) otherwise

where

[
p·q = ·
pt,~t q = I(t), p~t q

The encoding of a signatureΣ is obtained by including any part of the Dolev-Yao intruder signatureΣDY that may be
missing inΣ. More precisely,pΣq is defined asΣDY ∪ (Σ \ (Σ ∩ ΣDY)). The target signatureΣ′ of an execution judgment
may contain role state predicate symbol declarations introduced by the execution of a (non Dolev-Yao) attacker role. We
shall remove them from the translation, as indicated in the statement of Theorem 6.3.

While the above entities can be given an encoding based exclusively on their structure, this approach does not work
smoothly for active role sets. Attacker rules are problematic: clearly, we want to map their operations to Dolev-Yao intruder
roles, but the direct realization of this idea requires a wider context than what offered by a simply-minded recursive definition.
For example, upon encountering a term{t}k in an incoming message, we may or may not need to use one of the shared-key
rolesIS1 andIS2 to look upk. Furthermore, it is not clear whether a copy ofk is needed in other parts of the rule.

If we only consider entities that satisfy the typing and DAS restrictions, we can circumvent this difficulty by basing the
encoding of an active role setR on a derivationA of the DAS judgmentΣ
 R, for a given signatureΣ. Indeed,A would
specify how the keyk in the above example is accessed, and indirectly how many times it is needed in the rule it appears in.
The translation of each DAS rule is given in Section 3 as aboxedannotation next to the name of each rule. These annotations
are either 1) a non-intruder active roleρA, 2) the name of a role inPDY , 3) “·” if no role needs to be mapped to this rule, or
finally 4) the abbreviationsDEL(∆) andDUP(∆) which stand for as many copies of roleDEL (resp.DUP) as there are
elements in the knowledge context∆ appearing in this rule (see [6] for a formal definition).

Given a derivationA of Σ
 R, we constructpAq by collecting the active roles corresponding to the annotation of each
rule that appears inA. We definepRq aspAq. This definition entails that the encoding of any active role anchored onI
consists exclusively of Dolev-Yao roles fromPDY .

As an example, consider an active role consisting of the partially instantiated ruleρI = (∀nB : nonce. L(I,B, kB, nI),N({{nInB}}kI
)→

N({{nB}}kB
))I, taken from the specification of the Needham-Schroeder protocol in Appendix A. This rule is being executed

by the intruder. Assuming an appropriate signatureΣ, we have the following derivation forρI, where we have reported the
non-empty boxed annotations.

kas puu

IPV,DUPΓ; ∆
aA kI � (∆, k′I)

tas dot

Γ; ∆′, nB
A · � (∆′, nB)
tas ukn

Γ; ∆′
A nB � ∆′′

tas kn

DELΓ; ∆′
A nI, nB � ∆′′

tas cnc

DCMΓ; ∆′
A (nI nB)� ∆′′

tas pke PDCΓ; ∆
A {{nI nB}}kI
� ∆′′

las net,las dot INTΓ; ∆
A N({{nI nB}}kI
) > · � ∆′′

las rsp

Γ; ·
A L(I,B, kB, nI),N({{nI nB}}kI
) > · � ∆′′

cas kn

DEL6Γ; ∆′′ #A nB

cas kn

DEL6Γ; ∆′′ #A kB
cas pke

DUP6,PECΓ; ∆′′ #A {{nB}}kB
ras net,ras dot

DUP6,TRN,DEL6Γ; ∆′′ #A N({{nB}}kB
)

uas core
(Σ, nB : nonce)
A L(I,B, kB, nI),N({{nI nB}}kI

)→ N({{nB}}kB
)

aas ext,aas dot,uas all
Σ
A ∀nB : nonce. L(I,B, kB, nI),N({{nI nB}}kI

)→ N({{nB}}kB
)

whereΓ = (Σ, nB : nonce), ∆ = (I,B, kB, nI), ∆′ = (∆, k′I) and∆′′ = (∆, nB). The translation ofρI is the active role given
by collecting the boxed Dolev-Yao intruder actions:pρIq =INT,PDC,IPV,DCM,TRN,PEC,DUP13,DEL19. Observe that, the
first six rules correspond to the operations needed to dismantle the messageN({{nI nB}}kI

) and constructN({{nB}}kB
). Most

of the duplication and deletion rules elide each other; the remaining six are used to get rid of the knowledge∆′′ since it is
not memorized in any way in the consequent ofρI.

The family of translationsp q for our various objects preserves any entity not pertaining directly to the intruder. In
particular, network messages, memory and role state predicates of other principals, and the roles that transform them are
unaffected. It is easy to prove thatp q preserves typing and DAS [6].

15

Lemma 6.1 LetΣ be a signature,P a protocol theory,S a state, andR an active role set.
If ` Σ, Σ ` P, Σ ` S, Σ ` R, Σ
 P and Σ
 R,

then ` pΣq, pΣq ` pPq, pΣq ` pSq, pΣq ` pRq, pΣq
 pPq and pΣq
 pRq.

Theorem 6.3 below states that the Dolev-Yao intruder is the most powerful attacker, in the sense that it can emulate the
deeds of any other attacker. A proof of this result relies on a number of lemmas that describe how the translation of derivations
for each of the DAS judgments from Section 3 is mapped to an execution sequence. Due to space limitations, we shall refer
the interested reader to [6] for a presentation of these auxiliary results and of their proofs. We give a flavor of the elegant proof
technique underlying our Theorem 6.3 by displaying the statement of one of these lemmas, which shows how the Dolev-Yao
intruder can emulate the access to the information appearing in terms in the left-hand side of a rule. The representationp∆q
of a knowledge context is defined as for term tuples (see [6] for a formal definition). We write “A :: J” to indicate thatA is
a derivation of the judgmentJ .

Lemma 6.2 LetΣ be a signature,~t a term tuple, and∆ and∆′ knowledge contexts compatible withΣ.
If A :: Σ; ∆
I

~t � ∆′, then · . [p∆q, p~t q] pAqpΣq −→∗ [p∆′q] ·pΣq is derivable.

This result is proved by induction on the structure of the given DAS derivationA [6]. We have the following statement for
the main result in this section.

Theorem 6.3 (The Dolev-Yao Intruder is the Most Powerful Attacker)

LetP be a protocol theory,S andS′ two states,R andR′ two active role sets,Σ andΣ′ signatures such that

` Σ Σ ` P Σ ` S Σ ` R Σ
 P A :: Σ
 R A′ :: Σ,Σ′
 R′

If E :: P . [S]RΣ −→∗ [S′]R
′

Σ,Σ′ , then (pPq,PDY) . [pSq] pAqpΣq −→∗ [pS′q] pA
′q

pΣq,Σ∗ is derivable.

whereΣ∗ is a subsignature ofΣ′ such thatΣ′ = Σ∗,ΣL andΣL consists only of role state predicate symbol declarations.

Proof: This proof is constructive and proceeds by induction on the structure ofE . Due to space constraints, we refer
the reader to [6] for the technical development and instead give the intuition behind the emulation of the most interesting
execution rules.

Our emulation does not interfere with actions that involve non-intruder roles. Installing a roleρI anchored onI into
the current active role set (ruleex arole) is emulated by copying as many instances of objects fromPDY as specified by
the encoding ofρI. Intruder-instantiated generic roles (ruleex grole) are treated in the same way, which means that our
emulation does not allowI to directly execute a generic role. Uses of ruleex all to instantiate a universal variable in an
active intruder rule do not correspond to any action: we have proved that DAS is preserved under substitution [8] and that
this process does not affect the encoding of a DAS derivation [6]. Finally, the application of a fully instantiated intruder rule
(ex core) relies on results such as lemma 6.2 above that specify the behavior of its constituents. 2

Since, in models that relies on black-box cryptography, an attack of any kind is ultimately an execution sequence between
two configurations, this theorem states that a security protocol has an attack if and only if it has a Dolev-Yao attack. This
justifies the design of tools that rely on the Dolev-Yao intruder [4, 14, 18, 20, 22, 24, 25], but it does not mean that considering
other specifications of the attacker is pointless. Indeed, precisely because of its generality, a straight adoption of the Dolev-
Yao intruder often results in inefficient verification procedures. Overhead can be greatly relieved by relying on general
optimizations that cut the search space [7, 13, 19, 24] and on per-protocol specializations, for example allowing the intruder
to construct only message patterns actually used in the protocol [20, 22]. Finally, the environment in which a particular
protocol is deployed may be so constraining that a weaker attacker model is sufficient to ensure the desired security goals.

Our result extends to settings that involve multiple intrudersI1, . . . In. We process each of these attackers independently
as specified above, obtainingn copies ofPDY , each anchored on a particularIi. We then make use of the attack-preservation
result in [26] to reduce them to a single attackerI.

7 Conclusions and Future Work

In this paper, we have presented a data access specification system for the security protocol specification framework
MSR [8, 9, 11] and used it to show that the Dolev-Yao intruder model embedded in most crypto-protocol verification
tools [4, 14, 18, 20, 22, 24, 25] is indeed the most powerful attacker. In the near future, we intend to further investigate
the relations between DAS and the Dolev-Yao intruder. While it appears that a specification of this attacker can be auto-
matically constructed from the DAS rules [10], it is not yet clear whether a DAS policy can always be derived from an

16

attacker specification. In order to answer this question, we are constructing an extended library of case studies [8, 6, 9] that
require different DAS assumptions. Another important question that we intend to tackle usingMSRis whether it is possible
to derive sensible DAS rules (and a most powerful intruder model) from the specification of a protocol (including its term
language) rather than by imposing them from above [10]. On a more practical side, we want to address the issues of type-
reconstruction [9] and deterministic variable instantiation in order to develop a usable security protocol verification system
based onMSR.

Acknowledgments

We are grateful to Catherine Meadows, Paul Syverson and Grit Denker for the insightful discussions on the topics presented
in this paper. We would also like to thank Frank Pfenning and Andre Scedrov for their interest and encouragement.

References

[1] M. Abadi and A. Gordon. A calculus for cryptographic protocols: the spi calculus.Information and Computation, 148(1):1–70,
1999.

[2] M. Abadi and R. Needham. Prudent engineering practice for cryptographic protocols. Research Report 125, Digital Equipment
Corp., System Research Center, 1994.

[3] D. Aspinall and A. Compagnoni. Subtyping dependent types. In E. Clarke, editor,Proceedings of the 11th Annual Symposium on
Logic in Computer Science, pages 86–97, New Brunswick, New Jersey, July 1996. IEEE Computer Society Press.

[4] S. Brackin. Automatically detecting most vulnerabilities in cryptographic protocols. InProceedings of the 2000 DARPA Information
Survivability Conference and Exposition — DISCEX’00, volume 1, pages pp. 222–236, Hilton Head, SC, 2000. IEEE Computer
Society Press.

[5] M. Burrows, M. Abadi, and R. Needham. A logic of authentication.Proceedings of the Royal Society, Series A, 426(1871):233–271,
1989.

[6] I. Cervesato. Typed multiset rewriting specifications of security protocols. Unpublished manuscript. Accessible as
http://www.cs.stanford.edu/˜iliano/TMP/msr.ps.gz .

[7] I. Cervesato. Typed multiset rewriting specifications of security protocols. In A. Seda, editor,Proceedings of the First Irish Confer-
ence on the Mathematical Foundations of Computer Science and Information Technology — MFCSIT’00, Cork, Ireland, 19–21 July
2000. Elsevier ENTCS.

[8] I. Cervesato. A specification language for crypto-protocol based on multiset rewriting, dependent types and subsorting. In
G. Delzanno, S. Etalle, and M. Gabbrielli, editors,Workshop on Specification, Analysis and Validation for Emerging Technologies —
SAVE’01, Paphos, Cyprus, 2001.

[9] I. Cervesato. Typed MSR: Syntax and examples. In V. Gorodetski, V. Skormin, and L. Popyack, editors,Proceedings of the First
International Workshop on Mathematical Methods, Models and Architectures for Computer Network Security — MMM’01, pages
159–177, St. Petersburg, Russia, 2001. Springer-Verlag LNCS 2052.

[10] I. Cervesato. The wolf within. In J. Guttman, editor,Second Workshop on Issues in the Theory of Security — WITS’02, Portland,
OR, 2002.

[11] I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. A meta-notation for protocol analysis. In P. Syverson,
editor, Proceedings of the 12th IEEE Computer Security Foundations Workshop — CSFW’99, pages 55–69, Mordano, Italy, June
1999. IEEE Computer Society Press.

[12] P. de Groote, editor.The Curry-Howard Isomorphism, volume 8 ofCahiers du Centre de Logique, Département de Philosophie,
Universit́e Catholique de Louvain. Academia, 1995.

[13] G. Denker, J. Millen, A. Grau, and J. Filipe. Optimizing protocol rewrite rules of CIL specifications. In P. Syverson, editor,13th
IEEE Computer Security Foundations Workshop — CSFW’00, pages 52–62, Cambrige, UK, July 2000. IEEE Computer Society
Press.

[14] G. Denker and J. K. Millen. CAPSL Intermediate Language. In N. Heintze and E. Clarke, editors,Proceedings of the Workshop on
Formal Methods and Security Protocols — FMSP, Trento, Italy, July 1999.

[15] D. Dolev and A. C. Yao. On the security of public-key protocols.IEEE Transactions on Information Theory, 2(29):198–208, 1983.
[16] F. J. T. F́abrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Why is a security protocol correct? InProceedings of the 1998

IEEE Symposium on Security and Privacy, pages 160–171, Oakland, CA, May 1998. IEEE Computer Society Press.
[17] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.Journal of the Association for Computing Machinery,

40(1):143–184, Jan. 1993.
[18] G. Lowe. Casper: A compiler for the analysis of security protocols.Journal of Computer Security, 6:53–84, 1998.
[19] W. Marrero, E. M. Clarke, and S. Jha. Model checking for security protocols. InProceedings of the 1997 DIMACS Workshop on

Design and Formal Verification of Security Protocols, 1997. A Preliminary version appeared as Technical Report TR-CMU-CS-97-
139, Carnegie Mellon University, May 1997.

[20] C. Meadows. The NRL protocol analyzer: an overview.J. Logic Programming, 26(2):113–131, 1996.
[21] R. Needham and M. Schroeder. Using encryption for authentication in large networks of computers.Communications of the ACM,

21(12):993–999, 1978.

17

[22] L. Paulson. Proving properties of security protocols by induction. InProceedings of the 10th Computer Security Foundations
Workshop, pages 70–83. IEEE Computer Society Press, 1997.

[23] F. Pfenning. Refinement types for logical frameworks. In H. Geuvers, editor,Informal Proceedings of the Workshop on Types for
Proofs and Programs, pages 285–299, Nijmegen, The Netherlands, May 1993.

[24] V. Shmatikov and U. Stern. Efficient finite-state analysis for large security protocols. InProceedings of the 11th Computer Security
Foundations Workshop, pages 106–115, Rockport, MA, 1998. IEEE Computer Society Press.

[25] D. Song. Athena: a new efficient automatic checker for security protocol analysis. InProceedings of the Twelth IEEE Computer
Security Foundations Workshop, pages 192–202, Mordano, Italy, June 1999. IEEE Computer Society Press.

[26] P. Syverson, C. Meadows, and I. Cervesato. Dolev-Yao is no better than Machiavelli. In P. Degano, editor,First Workshop on Issues
in the Theory of Security — WITS’00, pages 87–92, Geneva, Switzerland, 7-8 July 2000.

[27] P. F. Syverson. A different look at secure distributed computation. InTenth IEEE Computer Security Foundations Workshop —
CSFW-10, pages 109–115. IEEE Computer Society Press, June 1997.

A Example

In this appendix, we show an actualMSRspecification by reprinting from [9] the simple protocol theory that describes the two-party
nucleus of the Needham-Schroeder public-key authentication protocol [21]. We choose this example for its conciseness and the fact that
most reader will be familiar with it. More complex (and interesting) specifications can be found in the same paper and in [8].

1. A → B: {{nA A}}kB
2. B → A: {{nA nB}}kA
3. A → B: {{nB}}kB

The server-less variant of the Needham-Schroeder public-key protocol [21] is a two-party crypto-
protocol aimed at authenticating the initiatorA to the responderB (but not necessarily vice versa). It is
expressed as the expected run on the right in the “usual notation” (where we have used our syntax for
messages). In the first line, the initiatorA encrypts a message consisting of a noncenA and her own
identity with the public keykB of the responderB, and sends it (ideally toB). The second line describes the action thatB undertakes
upon receiving and interpreting this message: he creates a noncenB , combines it withA’s noncenA, encrypts the outcome withA’s public
key kA, and sends the resulting message out. Upon receiving this message in the third line,A accessesnB and sends it back encrypted
with kB . The run is completed whenB receives this message and successfully recognizesnB .

MSR, like most modern security protocol specification languages, represents roles,i.e. the sequence of actions executed by each indi-
vidual principal. We now express each role in turn in the syntax ofMSR. For space reasons, we will typeset homogeneous constituents,
namely the universal variable declarations and the predicate sequences in the antecedent and consequent, in columns within each rule; we
will also rely on some minor abbreviation.

The initiator’s actions are represented by the following two-rule role:

∃L : principal× principal(B) × pubKB × nonce.

∀B : principal.
∀kB : pubKB.

· → ∃nA : nonce.
N({{nA A}}kB)
L(A,B, kB , nA)

∀ . . .
∀kA : pubKA.
∀k′A : privK kA.
∀nA, nB : nonce.

N({{nA nB}}kA)
L(A,B, kB , nA)

→ N({{nB}}kB)



∀A

Clearly, any principal can engage in this protocol as an initiator (or a responder). Our encoding is therefore structured as a generic role.
LetA be its postulated owner. The first rule formalizes line (1) of the “usual notation” description of this protocol fromA’s point of view.
It has an empty antecedent since initiation is unconditional in this protocol fragment. Its right-hand side uses an existential quantifier to
mark the noncenA as fresh. The consequent contains the transmitted message and the role state predicateL(A,B, kB , nA), necessary to
enable the second rule of this protocol. The arguments of this predicate record variables used in the second rule.

The second rule encodes lines (2–3) of the “usual notation” description. It is applicable only if the initiator has executed the first rule
(enforced by the presence of the role state predicate) and she receives a message of the appropriate form. Its consequent sends the last
message of the protocol.

MSRassigns a specific type to each variable appearing in these rules. The equivalent “usual notation” specification relies instead
on natural language and conventions to convey this same information, with clear potential for ambiguity. We shall mention that most
declarations can be automatically reconstructed [9]: this simplifies the task of the author of the specification by enabling him or her to
concentrate on the message flow rather than on typing details, and of course it limits the size of the specification.

The responder is encoded as the generic role below, whose owner we have mnemonically calledB. The first rule of this role collapses
the two topmost lines of the “usual notation” specification of this protocol fragment from the receiver’s point of view. The second rule
captures the reception and successful interpretation of the last message in the protocol byB: this step is often overlooked. This rule has an

18

empty consequent. 

∃L : principal× nonce.

∀kB : pubKB.
∀k′B : privK kB .
∀A : principal.
∀nA : nonce.
∀kA : pubKA

N({{nA A}}kB) → ∃nB : nonce.
N({{nA nB}}kA)
L(B,nB)

∀ . . .
∀nB : nonce.

N({{nB}}kB)
L(B,nB)

→ ·



∀B

Again, most typing information can be reconstructed from the way variables are used.

B Typing Judgments and Rules

B.1 Typing Judgments

τ :: τ ′ τ is a subsort ofτ ′

Σ ` t : τ Termt has typeτ in signature Σ

Σ ` τ τ is a valid type inΣ

` Σ Σ is a valid signatures

`c Γ Γ is a valid typing context

Σ ` ~t : ~τ Term tuple~t has type~τ in signature Σ

Γ ` ~τ ~τ is a valid type tuple in typing contextΓ

Σ ` P P is a valid message predicate in signatureΣ

Σ ` S S is a valid state in signatureΣ

Γ `r rhs rhs is a valid rule consequent in typing contextΓ

Γ ` r r is a valid rule in typing contextΓ

Γ ` ρ ρ is a valid rule collection in typing contextΓ

Σ ` P P is a valid protocol theory in signatureΣ

Σ ` R R is a valid active role set in signatureΣ

B.2 Typing Rules

τ :: τ ′ τ is a subsort ofτ ′

ss pr

principal :: msg
ss nnc

nonce :: msg

ss shK

shKAB :: msg
ss pbK

pubKA :: msg
ss pvK

privK k :: msg

Σ ` t : τ Γ ` t : τ Termt has typeτ in signature Σ (viz. contextΓ)

Σ ` t1 : msg Σ ` t2 : msg
mtp cnc

Σ ` t1 t2 : msg

Σ ` t : msg Σ ` k : shKAB
mtp ske

Σ ` {t}k : msg

Σ ` t : msg Σ ` k : pubKA
mtp pke

Σ ` {{t}}k : msg

Σ ` t : τ ′ τ ′ :: τ
mtp ss

Σ ` t : τ
mtp a

(Σ, a : τ,Σ′) ` a : τ

Σ ` τ Γ ` τ τ is a valid type in signatureΣ (viz. contextΓ)

ttp pr

Σ ` principal
ttp nnc

Σ ` nonce
ttp msg

Σ ` msg

Σ ` A : principal Σ ` B : principal
ttp shK

Σ ` shKAB

Σ ` A : principal
ttp pbK

Σ ` pubKA

Σ ` k : pubKA
ttp pvK

Σ ` privK k

` Σ Σ is a valid signatures

itp dot

` ·
Σ ` τ ` Σ

itp a

` Σ, a : τ

Σ ` principal(A) × ~τ ` Σ
itp rsp

` Σ, Ll : principal(A) × ~τ

Σ ` principal(A) × ~τ ` Σ
itp mem

` Σ,M : principal(A) × ~τ

19

`c Γ

` Σ
ctp sig

`c Σ

Γ ` τ `c Γ
ctp x

`c Γ, x : τ

Γ ` principal(A) × ~τ `c Γ
ctp rsp

`c Γ, L : principal(A) × ~τ

Σ ` ~t : ~τ Γ ` ~t : ~τ Term tuple~t has type~τ in signature Σ (viz. contextΓ)

mtp dot

Σ ` · : ·

Σ ` t : τ Σ ` ~t : [t/x]~τ
mtp ext

Σ ` (t,~t) : τ (x) × ~τ

Γ ` ~τ ~τ is a valid type tuple in typing contextΓ

ttp dot

Γ ` ·

Γ ` τ Γ, x : τ ` ~τ
ttp ext

Γ ` τ (x) × ~τ

Σ ` P Γ ` P P is a valid message predicate in signatureΣ (viz. contextΓ)

Σ ` t : msg
ptp net

Σ ` N(t)

(Σ, Ll : ~τ,Σ′) ` ~t : ~τ
ptp rsp

(Σ, Ll : ~τ,Σ′) ` Ll(~t)

(Σ,M : ~τ,Σ′) ` (A,~t) : ~τ
ptp mem

(Σ,M : ~τ,Σ′) ` MA(~t)

Σ ` S Γ ` lhs S (viz. lhs) is a valid state (viz. predicate sequence) in signatureΣ (viz. contextΓ)

stp dot

Σ ` ·
Σ ` S Σ ` P

stp ext

Σ ` (S, P)

Γ `r rhs rhs is a valid rule consequent in typing contextΓ

Γ ` τ (Γ, x : τ) `r rhs
rtp nnc

Γ `r ∃x : τ. rhs

Γ ` lhs
rtp seq

Γ `r lhs

Γ ` r r is a valid rule in typing contextΓ

Γ ` lhs Γ `r rhs
utp core

Γ ` lhs → rhs

Σ ` τ (Γ, x : τ) ` ρ
utp all

Γ ` ∀x : τ. ρ

Γ ` ρ ρ is a valid rule collection in typing contextΓ

otp dot

Γ ` ·

Γ ` ~τ (Γ, L : ~τ) ` ρ
otp rsp

Γ ` ∃L : ~τ. ρ

Γ ` r Γ ` ρ
otp rule

Γ ` r, ρ

Σ ` P P is a valid protocol theory in signatureΣ

htp dot

Σ ` ·

Σ ` P (Σ, A : principal) ` ρ
htp grole

Σ ` P, ρ∀A

(Σ,A : principal,Σ′) ` P (Σ,A : principal,Σ′) ` ρ
htp arole

(Σ,A : principal,Σ′) ` P, ρA

Σ ` R R is a valid active role set in signatureΣ

atp dot

Σ ` ·

(Σ,A : principal,Σ′) ` R (Σ,A : principal,Σ′) ` ρ
atp ext

(Σ,A : principal,Σ′) ` R, ρA

20

C Other Omitted Rules

C.1 Omitted Access Control Rules

∆ > ~e > ∆′ Merging context knowledge∆ and term tuple~e yields∆′

mas dot ·
∆ > · > ∆

∆ > ~e > ∆′

mas ukn] ·
∆ > e,~e > (∆′, e)

∆ > ~e > ∆′

mas kn] DEL

(∆, e) > e,~e > (∆′, e)

Γ; ∆#A t Given knowledge∆, principalA can construct termt

Γ; ∆#A t1 Γ; ∆#A t2
cas cnc DUP(∆),CMP

Γ; ∆#A t1 t2

Γ; ∆#A t Γ; ∆#A k
cas ske DUP(∆), SEC

Γ; ∆#A {t}k

Γ; ∆#A t Γ; ∆#A k
cas pke DUP(∆),PEC

Γ; ∆#A {{t}}k

Γ; ∆#A ~t Given knowledge∆, principalA can construct term tuple~t

cas dot DEL(∆)
Γ; ∆#A ·

Γ; ∆#A t Γ; ∆#A ~t
cas ext DUP(∆)

Γ; ∆#A (t,~t)

C.2 Omitted Execution Rules

(rhs)Σ � (lhs)Σ′ Right-hand side instantiation

ex seq

(lhs)Σ � (lhs)Σ

([a/x]rhs)(Σ,a:τ) � (lhs)Σ′

ex nnc

(∃x : τ. rhs)Σ � (lhs)Σ′

P . C −→∗ C′ Multi-step sequential firing

ex it0

P . C −→∗ C

P . C −→ C′ P . C′ −→∗ C′′
ex itn

P . C −→∗ C′′

21

