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multiplier, leading to a closed-form solution for linear constraints and an iterative solution for nonlinear constraints. Geometric 
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ABSTRACT 

Linear and nonlinear constrained estimation is 
investigated in this paper as an optimal method to 
integrate GPS fixes with digital maps so as to improve 
accuracy and reliability. In addition to emergency location 
and roadside assistance, the integration of GPS with 
digital maps becomes an increasingly popular application 
in automotives particularly for real-time routing, driving 
guidance, and street prompting. A position fix is obtained 
by a GPS receiver, which may be subject to significant 
errors in urban canyons due to such effects as multipath 
and weak signal, whereas a digital map provides the road 
network of a region in which a user is traveling. When the 
information about roads is as accurate as (or even better 
than) GPS measurements, it is desired naturally to 
incorporate such information into position solution. In this 
paper, roads are modeled with analytic functions and its 
integration (fusion) with a GPS position fix is cast as 
linear and/or nonlinear state constraints in an optimization 
procedure. Similarly, the velocity estimates and the road 
directions are treated as another pair of constraints. The 
constrained optimization is then solved with the 
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Lagrangian multiplier, leading to a closed-form solution 
for linear constraints and an iterative solution for 
nonlinear constraints. Geometric interpretations of the 
solutions are provided for simple cases. Computer 
simulation results are presented to illustrate the 
algorithms. 

INTRODUCTION 

With the rapid build up of the geographic information 
system (GIS) including digital road maps (DRM) and 
digital terrain elevation database (DTED), information 
about roads is becoming more accurate, up to date, and 
more accessible. The best route to a destination can be 
easily found on the internet. Road and terrain information 
has been used in the past for navigation via terrain 
contour matching. An increasingly popular use of digital 
maps is for automobile navigation with a GPS receiver 
[Bullock et al., 2006]. 

This paper is concerned with improving the kinematic 
state (position and velocity) of a user vehicle via 
integrating (or fusing) its GPS fixes with the information 
about a road along which the vehicle is believed to be 
traveling. When the information about roads is as accurate 
as (or even better than) GPS measurements, it is desirable 
to incorporate such information (fusion) into an integrated 
solution. When a vehicle travels off-road or on an 
unknown road, the state estimation problem is 
unconstrained. However, when the vehicle is traveling on 
a known road, be it straight or curved, the state estimation 
problem can be cast as constrained with the road network 
information available from digital road/terrain maps. 
Without making full use of this additional information 
about the state constraints, the state estimates, even 
obtained with the Kalman filter, cannot be truly optimal. 

To use such state constraints, previous attempts can be put 
into several groups. The first group is to incorporate road 
information into the state estimation process. One 
technique is to reduce the system model parameterization. 
Another technique is to translate the state constraints onto 
the state process and/or observation noise covariance 
matrix for the estimation filter [Kirubarajan et al., 2000]. 
Yet another technique is to project a dynamic system onto 
linear state constraints and then apply the Kalman filter to 
the projected systems [Ko and Bitmead, 2006]. Similarly, 
for nonlinear state constraints, there is the one-
dimensional (1D) representation of a target motion along 
a curvilinear road [Yang, Bakich, Blasch, 2005]. The 
technique to model bounded random variables with 
truncated densities also belongs to this group, which 
could easily work with nonlinear filters such as a particle 
filter [Ristic, Arullampalam, and Gordon, 2004].  

The second group is to treat state constraints as perfect 
(pseudo) measurements. For a road segment, its analytic 
model not only constrains the target position but also the 

direction of the velocity vector. Indeed, the velocity 
vector is closely aligned with the road orientation for a 
linear segment and with the tangent vector at the vehicle 
position for a nonlinear segment. Furthermore, an 
estimate of centripetal acceleration can be obtained given 
the curvature and the vehicle speed. 

In the third group, an unconstrained Kalman filter 
solution is first obtained and then the unconstrained state 
estimate is projected onto the constrained surface. This 
technique can also be viewed as post-processing 
(estimation or updating) correction [Simon, and Chia, 
2002], track to road fusion [Yang and Blasch, 2006], or 
GPS and map integration referred to as in this paper. In 
conventional track fusion, two or more tracks are 
available, each consisting of an estimate of the underlying 
track with its estimation error covariance. The fused track 
is typically found that minimizes the sum of covariance–
weighted state errors squared [Bar-Shalom and Li, 1995; 
Blackman and Popoli, 1999]. In contrast to this 
conventional track fusion that operates on individual state 
values (points), fusion with road involves a state value (a 
point) and a subset of state values (an interval). In this 
paper, roads are modeled with analytic functions and its 
fusion with a GPS fix is therefore formulated as linear or 
nonlinear state constraints in an optimization procedure. 

In this paper, the constrained optimization is solved with 
the Lagrangian multiplier, leading to a closed-form 
solution for linear constraints and an iterative solution for 
nonlinear constraints. In the latter case, we present a 
method that allows for the use of second-order nonlinear 
state constraints. The method can provide better 
approximation to higher order nonlinearities. The new 
method is based on a computational algorithm that 
iteratively finds the Lagrangian multiplier. The use of a 
second-order constraint vs. linearization is a tradeoff 
between reducing approximation errors to higher-order 
nonlinearities and keeping the problem computationally 
tractable. 

The GPS/map integration considered in this map is a 
“point” operation in the sense that each GPS fix is 
updated onto a road. It is possible to implement an 
“interval” operation in which a sequence of GPS fixes 
(e.g., angular turns vs. distance traveled) can be compared 
with a digital road map. Another way to use map 
information to improve navigation in a stop-go urban 
environment is to perform map-predictive model selection 
and updating. These and other aspects will be addressed 
in a future paper. 

TRACK FUSION WITH LINEAR SEGMENTS 

When a road segment is straight, it can be modeled as a 
linear state constraint. In this section, we first summarize 
the results for linearly constrained state estimation [Simon 
and Chia, 2002] as an approach to GPS integration with 
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linear road segments. We then show that this linearly 
constrained state estimation is equivalent to use of 
constraints as measurements in state update. Finally, we 
provide a simple geometric interpretation of the linearly 
constrained state estimation. 

Linearly Constrained State Estimation 

Consider a linear time-invariant discrete-time dynamic 
system together with its measurement as 

kkkk wuBxAx ++=+1  (1a) 

kkk
vxCy +=  (1b) 

where the underscore indicates a vector quantity, the 
subscript k is the time index, x is the state vector, u is a 
known input, y is the measurement, and w and v are state 
and measurement noise processes, respectively. It is 
implied that all vectors and matrices have compatible 
dimensions, which are omitted for simplicity. 

The goal is to find an estimate denoted by kx̂  of xk given 
the measurements up to time k denoted by Yk = {y0, …, 
yk}. Under the assumptions that the state and 
measurement noises are uncorrelated zero-mean white 
Gaussian with w ~ N{0, Q} and v ~ N{0, R} where Q and R 
are positive semi-definite covariance matrices, the 
Kalman filter provides an optimal estimator in the form of 

}|{ˆ kkk YxEx =  [Anderson and Moore,1979]. Starting 
from an initial estimate }{ˆ 00 xEx =  and its estimation 
error covariance matrix })ˆ)(ˆ{( 00000

TxxxxEP −−=  
where the superscript T stands for matrix transpose, the 
Kalman filter equations specify the propagation of kx̂  and 
Pk over time and the update of kx̂  and Pk by measurement 
yk as 

kkk uBxAx +=+ ˆ1  (2a) 

QAAPP T
kk +=+1  (2b) 

)(ˆ 11111 +++++ −+= kkkkk xCyKxx  (2c) 

111 )( +++ −= kkk PCKIP  (2d) 
1

11 )( −
++ += RCCPCPK T

k
T

kk  (2e) 

where 1+kx  and 1+kP  are the predicted state and prediction 
error covariance, respectively. 

Now in addition to the dynamic system of (1), we are 
given the linear state constraint equation 

dxD k =  (3) 

where D is a known constant matrix of full rank and d is a 
known vector. The number of rows in D is the number of 
constraints, which is assumed to be less than the number 
of states. If D is a square matrix, the state is fully 
constrained and thus can be solved by inverting (3). 
Although no time index is given to D and d in (3), it is 

implied that they can be time-dependent, leading to 
piecewise linear constraints. 

The constrained Kalman filter according to [Simon and 
Chia, 2002] is constructed by directly projecting the 
unconstrained state estimate kx̂  onto the constrained 
surface S = {x: Dx = d}. It is formulated as the solution to 
the problem 

)ˆ()ˆ(minarg xxWxxx T

Sx
−−=

∈

(  (4) 

where W is a symmetric positive definite weighting 
matrix.  

Based on the Lagrangian multiplier technique, the 
solution to the constrained optimization in (4) is given by 

)ˆ()(ˆ 111 dxDDDWDWxx TT −−= −−−(  (5) 

Several interesting statistical properties of the constrained 
Kalman filter are presented in [Simon and Chia, 2002]. 
This includes the fact that the constrained state estimate 
as given by (5) is an unbiased state estimate for the 
system in (1) subject to the constraint in (3) for a known 
symmetric positive definite weighting matrix W. 
Furthermore when W = P-1, the constrained state estimate 
has a smaller error covariance than that of the 
unconstrained state estimate, and it is actually the smallest 
for all constrained Kalman filters of this type. Similar 
results hold in terms of the trace of the estimation error 
covariance matrix when W = I. 

Linear Road Constraint as Pseudo Measurement 

As described above, the linear constrained estimator (5) 
can be obtained by different methods. It is shown in this 
section that it is also equivalent to the solution where the 
linear state constraints are considered as perfect (pseudo) 
measurements. 

For the linear time-invariant discrete-time dynamic 
system (1a) and its measurement (1b), consider the linear 
state constraint (3) as another measurement to the system, 
which can be used to perform the filter measurement 
update (2c) and (2d) right after (1b) without the filter time 
propagation (2a) and (2b) (i.e., stay the same). To apply 
(2), we identify the following equivalence: 

A = I, B = 0; Q = 0 (6a) 
C = D, R = 0, yk = d (6b) 

Given the unconstrained solution ( kx̂ , kP ), the prediction 
step is given by (2a) and (2b): 

1+kx  = kx̂  (7a) 

1+kP  = kP  (7b) 

The Kalman filter gain is given by: 
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1
1 )( −

+ = T
k

T
kk DDPDPK  (8) 

The updated state and error covariance becomes 

)ˆ()(ˆˆ 1
1 k

T
k

T
kkk xDdDDPDPxx −+= −

+
 (9a) 

k
T

k
T

kkk DPDDPDPPP 1
1 )( −

+ −=  (9b) 

If we choose 1−= kPW , (9a) becomes 

)ˆ()(ˆˆ 111
1 k

TT
kk xDdDDWDWxx −+= −−−

+
 (10a) 

 )ˆ()(ˆ 111 dxDDDWDWx k
TT

k −−= −−−  (10b) 

which is exactly the same as the solution given by (5). 

Geometric Interpretation 

It is proved in [Yang and Blasch, 2006] that the linear 
constrained estimation is the orthogonal projection of the 
unconstrained estimate onto the constrained surface. It 
provides a theoretical justification of the intuitive practice 
of finding a point along the road that is of the shortest 
distance. The result thus complements [Simon and Chia, 
2002], providing an interesting geometrical interpretation 
to the linear constrained estimation by estimate 
projection. 

TRACK FUSION WITH NONLINEAR SEGMENTS 

When a road segment is curved, it can be modeled as a 
nonlinear state constraint. In this section, we first analyze 
the linearizing approach and the associated constraint 
approximation error. We then present an iterative solution 
to a second order state constraint. Finally, we offer a 
geometric interpretation of a solution under a circular 
constraint and a simple approach to a more general 
second order state constraint. 

Approximation Errors in Constraint Linearization 

To deal with nonlinearity, a simple approach is to project 
the unconstrained state estimate onto linearized state 
constraints. Once the constraints are linearized, the results 
presented in the previous section for linear cases can be 
applied. However, linearization introduces constraint 
approximation error, which is a function of the 
nonlinearity and, more importantly, of the point around 
which the linearization takes place. This may lead to an 
undesired divergence problem as analyzed below. 

Consider the nonlinear state constraint of the form 

g(x) = h (11) 

We can expand the nonlinear state constraints about a 
constrained state estimate x(  and for the ith row of (11), 
we have 

))((")(
!2

1)()(')()( xxxgxxxxxgxghxg i
TT

iiii
(((((( −−+−+=−  

 0=−+ ihL   (12) 

where the superscripts ′ and ″ denote the first and second 
partial derivatives. 

Keeping only the first-order terms, some rearrangement 
leads to 

xxgxghxxg TT (((( )(')()(' +−≈  (13) 

where g(x) = […gi(x)…]T, d = […di…]T, and g′(x) = 
[…gi′(x)…]. An approximate linear constraint is therefore 
formed by replacing D and d in (3) with g′(x)T and 

xxgxgh T ((( )(')( +− , respectively. 

Fig. 1 illustrates this linearization process and identifies 
possible errors associated with linear approximation of a 
nonlinear state constraint. As shown, the previous 
constrained state estimate −x(  lies somewhere on the 
constrained surface but is away from the true state x. The 
projection of the unconstrained state estimate x̂  onto the 
approximate linear state constraint produces the current 
constrained state estimate +x( , which is however subject to 
the constraint approximation error. Clearly, the further 
away −x(  is from x, the larger error is the approximation 
introduced. More critically, such an approximately linear 
constrained estimate may not satisfy the original 
nonlinear constraint specified in (25). It is therefore 
desired to reduce this approximation-introduced error by 
including higher-order terms while keeping the problem 
computationally tractable. One possible approach is 
presented in the next section. 

Iterative Solution to Second-Order Constraints 

Naturally formed roads tend to have more bends and turns 
of irregular shapes (high nonlinearity). Even highways 
have to follow terrain contours when crossing mountains. 
Locally, however, it suffices to represent a curved road 
segment by a second-order state constraint function as 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

1
1)(

0

x
mm
mM

xxf T
T

 00 =+++= mmxxmxMx TTT   (14) 

which can be viewed as a second-order approximation to 
an arbitrary nonlinearity in a digital terrain map. 

Similar to (4), we can formulate the projection of an 
unconstrained state estimation onto a nonlinear constraint 
surface as the constrained least-square optimization 
problem 

)()(minargˆ xHzxHzx T

x
−−=  (15a) 

subject to g(x) = 0 (15b) 

 

If we let W = HTH and z = H x̂ , the formulation in (15) 
becomes the same as in (4). In a sense, (15) is a more 
general formulation because it can also be interpreted as a 
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nonlinear constrained measurement update or a projection 
in the predicted measurement domain. 

The solution to the constrained optimization (15) can be 
obtained again using the Lagrangian multiplier technique 
as 

)()(ˆ 11 λλ eIVGx T −− ΣΣ+=  (16a) 

q(λ) = 
0222

22

1
)(

2
)1(

)(
m

tee
i i

ji

i i

ii +
+

+
+ ∑∑ λσ

λ
λσ

σλ = 0 (16b) 

where G is an upper right diagonal matrix resulting from 
the Cholesky factorization of W = HTH as 

W(= HTH) = GTG (16c) 

V, an orthonormal matrix, and Σ, a diagonal matrix with 
its diagonal elements denoted by σi, are obtained from the 
singular value decomposition (SVD) of the matrix LG-1 as 

LG-1 = UΣVT (16d) 

where U is the other orthonormal matrix of the SVD and 
L results from the factorization M = LTL, and 

e(λ) = […  ei(λ), …] T = VT(GT)–1(HTz - λm) (16e) 
t = [… ti …] T = VT(GT)–1m (16f) 

As a nonlinear equation in λ, it is difficult to find a 
closed-form solution in general for the nonlinear equation 
q(λ) = 0 in (16b). Numerical root-finding algorithms may 
be used instead. For example, the Newton’s method is 
used below. Denote the derivative of q(λ) with respect to 
λ as 

∑ +
−+

=
i i

iiiiii eee
q 32

4222

)1(
)()1()(

2)(
λσ

σλσλσλ
λ

&
&

 ∑ +
−+

+
i i

iiiiii tete
22

22

)1(
)()1(2

λσ
σλλσ&  (17a) 

where 

e&  = [… ie&  …] T = -VT(GT)–1m (17b) 

Then the iterative solution for λ is given by 

)(
)(

1
k

k
kk q

q
λ
λ

λλ
&

−=+
,      starting with λ0 = 0 (18) 

The iteration stops when |λk+1-λk| < τ, a given small value 
or the number of iterations reaches a pre-specified 
number. Then bringing the converged Lagrangian 
multiplier λ back to (16a) provides the constrained 
optimal solution. 

 

Now consider the special case where W = HTH, z = H x̂ , 
and m = 0, that is, a quadratic constraint on the state. 
Under these conditions, t = 0 and e is no longer a function 

of λ so its derivative relative to λ vanishes, 0=e& . The 
quadratic constrained solution is then given by 

x(  = (W+λM)-1W x̂  (19a) 

where the Lagrangian multiplier λ is obtained iteratively 
as in (18) with the corresponding q(λ) and )(λq&  given by 

0
)1(

)( 022

22

=+
+

= ∑ m
e

q
i i

ii

λσ
σ

λ  (19b) 

∑ +
−=

i i

iie
q 32

42

)1(
2)(

λσ
σ

λ&  (19c) 

The solution of (19) is also called the constrained least 
squares [Moon and Stirling, 2000: pp 765-766], which 
was previously applied for the joint estimation and 
calibration [Yang and Lin, 2004]. Similar techniques have 
been used for the design of filters for radar applications 
[Abromovich and Sverdlik, 1970] and in robust minimum 
variance beamforming [Lorenz and Boyd, 2006]. When M 
= 0, the constraint in (14) degenerates to a linear one. The 
constrained solution is still valid. However, the iterative 
solution for finding λ is no longer applicable but a closed-
form solution is available instead as given in (5).  

Geometric Interpolation for Simple Cases 

Consider a simple example where a target travels along a 
circle. For this case, in fact, a closed-form solution can be 
derived. Assume that W = I2, M = I2, m = 0, and m0 = -r2. 
The nonlinear constraint can be equivalently written as 

xTx = r2 (20) 

The quadratic constrained estimate given in (19a) 
becomes 

xxWMWx ˆ)1(ˆ)( 11 −− +=+= λλ(  (21) 

where λ is the Lagrangian multiplier. 

Bringing (21) back to (20) gives 

2

1
ˆ

)
1

ˆ
( rxxxx TT =

++
=

λλ
((  (22) 

The solution for λ is 

1
ˆ

1
ˆ 2 −=−=

r
x

r
xxT

λ  (23) 

where 
2

⋅  stands for the 2-norm or length for the vector. 

Bringing the solution for λ in (23) back to (21) gives 

2
ˆ
ˆ

x
xrx =(  (24) 

This indicates that for this particular case with a circular 
constraint, the constraining results in normalization. 
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This further suggests a simple solution for some practical 
applications. When a vehicle is traveling along a circular 
path (or approximately so), one can first find the 
equivalent center of the circle around which to establish a 
new coordinate system, then express the unconstrained 
solution in the new coordinate and normalize it as the 
constrained solution. This solution can then be converted 
back to the original coordinates. For non-circular but 
second-order paths, eigenvalue-based scaling may be 
effected following coordinate translation and rotation in 
order to apply this circular normalization. Reverse 
operations are then used to transform back. For 
applications of high dimensionality, the scalar iterative 
solution of (17) may be more efficient. 

SIMULATION RESULTS 

The simulation presented in this section is adapted from 
[Yang and Blasch, 2006b]. More results can be found in 
[Yang and Blasch, 2006a; 2006b]. In this example, a 
ground vehicle is assumed to travel along a circular road 
segment as shown in Fig. 1. The turn center is chosen as 
the origin of the x-y coordinates and the turn radius is r = 
100 m. The vehicle maintains a constant turn rate of 5.7 
deg/s with an equivalent linear speed of 10 m/s. The 
initial state is 

[ ]T
k yyxxx &&==0

= [100 m, 0 m/s, 0 m 10 m/s]T (25) 

The GPS fixes of the vehicle are available at a sampling 
interval of T = 1 s, which can be modeled as position 
measurements of the vehicle as 

kkk
vxy +⎥

⎦

⎤
⎢
⎣

⎡
=

0100
0001  (26) 

where the measurement error v ~ N(0, R) is a zero-mean 
Gaussian noise, independent in the x- and y-axis. The 
covariance matrix R = diag([σrx

2  σry
2]) uses the particular 

values of σrx = σry = 7 m in the simulation. 

For a loosely coupled integration, a simple discrete-time 
second-order kinematic model is used by the integration 
Kalman filter   

kkk w
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 (27) 

where the process noise w ~ N(0, Q) is also a zero-mean 
Gaussian noise, independent of the measurement noise v. 
The covariance matrix Q = diag([ 2

x&&σ   2
y&&σ ]) uses the 

particular values of x&&σ  = 
y&&σ  = 0.32 m/s2 in the 

simulation. The GPS fixes in (40) are assumed to be 
obtained inside a GPS receiver either by a nonlinear least 
square method or by an extended Kalman filter. In the 

latter case, a cascaded two Kalman filters is implied, one 
for the GPS receiver and the other for the integration 
filter. 

When represented in a Cartesian coordinate system, a 
vehicle traveling along a curved road is certainly subject 
to acceleration in both the x- and y-axis. However, no 
effort was made in this simulation to optimize the 
integration filter for maneuver but merely selecting Q and 
the initial conditions so as to focus on constraining the 
estimates. The initial state is selected to be the same as the 
true state, i.e., 00ˆ xx =  and the initial estimation error 
covariance is selected to be 

P0 = diag([52  12  52  12]) (28) 

Fig. 2 shows sample trajectories of the linear constrained 
Kalman filter. There are 5 curves and 2 series of data 
points in the figure. The true state is represented by a 
series of dots (·) at consecutive sampling instants, which 
is plotted on the solid line being the road segment. The 
corresponding measurements are a series of circles (o). 

The estimates of the unconstrained Kalman filter are 
shown as the connected triangles (Δ) whereas those of 
linearly constrained Kalman filters are shown as the 
connected crosses (x), stars (*), and pluses (+) for three 
linear approximations of the nonlinear constraint of 
curved road, respectively. 

In the first approximation (the line with cross x labeled 
“linear constraint 1”), a single linearizing point at θ = 10o 
is chosen to cover the entire curved road, where θ is the 
angle made relative to the x-axis, positive in the counter-
clock direction. The linearized state constraint at θ can be 
written as 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
0sin

0
0

sin
cos

0
0

cos

1

1

1

1 r
x

θ
θ

θ
θ  (29) 

Although all estimates are faithfully projected by the 
constrained filter onto this linear constraint, tangential to 
the curve at the linearizing point, it runs away from the 
true trajectory and the resulting errors continue to grow. 
The apparent divergence is caused by the choice of 
linearization. 

In the second approximation (the line with star * labeled 
“linear constraint 2”), two linearizing points at θ = 15o 
and θ2 = 80o are chosen to cover the curved road with two 
linear segments. The switching point from one linear 
segment to the other in this case is at θ = 45o. As shown, 
the estimates are projected onto one of the two linear 
segments. Except near the corner where the two linear 
approximations intersect (which is far away from both 
linearizing points), the linear constrained estimates 
typically outperform the unconstrained estimates (closer 
to the true state). This is better illustrated in Fig. 3 where 
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Fig. 1. Errors in Linear Approximation of Nonlinear 

State Constraints 
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Fig. 2. Sample Trajectories for Linear Constrained 
Kalman Filter 
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Fig. 3. Linear Constrained Position Errors vs. Time 
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Kalman Filter 
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the upper plot is for the absolute position error in x while 
the lower plot is for the absolute position error in y, both 
plotted as a function of time. 

Still with two linearizing points and the same switching 
point at θ = 45o, the third approximation (the line with 
star + labeled “linear constraint 3”) adjusts linearizing 
points to θ = 20o and θ2 = 70o. A better overall 
performance is achieved as shown in Fig. 3. 

It is clear from Fig. 2 that a nonlinear constraint can be 
approximated with linear constraints in a piecewise 
fashion. By judicious selection of the number of linear 
segments and their placement (i.e., the point around 
which to linearize), a reasonably good performance can 
be expected. In the limit, a nonlinear function is 
represented by a piecewise function composed of an 
infinite number of linear segments. This naturally leads to 
the use of nonlinear constraints. 

Fig. 4 shows sample trajectories of the nonlinear 
constrained Kalman filter. There are 2 curves and 3 series 
of data points in the figure. The true state is still 
represented by a series of dots (·) at the sampling instants, 
which is plotted on the solid line of road segment. The 
corresponding measurements are again a series of circles 
(o). The unconstrained Kalman filter is shown as the 
connected crosses (x) whereas the estimates of 
nonlinearly constrained Kalman filters are shown as a 
series of connected pluses (+) and stars (*) for two 
implementations, respectively. 

 The first implementation (the series of pluses +) only 
applies the nonlinear constraint to the position estimate 
whereas the second implementation (the series of stars *) 
applies constraints to both the position and velocity 
estimates. In fact, we encounter a hybrid (mixed) linear 
and nonlinear state constraint situation. The constrained 
position estimate is given by (19) for the quadratic case 
(equivalent to (24) for a circular road). Since the velocity 
direction is along the tangent of the road curve, the 
constrained velocity estimate is obtained by the following 
projection 

μμ)ˆ(ˆ T
nedunconstraidconstraine vv =  (30) 

where [ ]Tyxv ˆˆˆ &&=  is the estimated velocity vector and μ = 
[-sinθ  cosθ]T is the constrained unit direction vector 
associated with the constrained position at 

)ˆ/ˆ(tan 1 xy−=θ . 

For simplicity, the unconstrained estimation error 
covariance is not modified in the present simulation after 
the constrained estimate is obtained using the projection 
algorithms in (19) and (30). The implementation is 
therefore pessimistic (suboptimal) in the sense that it does 
not take into account the reduction in the estimation error 
covariance brought in by constraining. One consequence 

of this simplification is more volatile state estimates. To 
quantify this effect, one approach is to project the 
unconstrained probability density function (i.e., a normal 
distribution with support on the whole state space) onto 
the nonlinear constraint. Statistics can then be calculated 
from the constrained probability density function with the 
constraint as its support. Again, the resulting error ellipse 
represented by the covariance matrix is only an 
approximation to the second order. 

As shown in Fig. 4, both the nonlinear constrained 
estimates fall onto the road as expected. Overall the 
position and velocity constrained estimates are better 
(closer to the true state) than the position-only constrained 
estimates. This is illustrated in Fig. 5 where the upper plot 
is for the absolute position error in x while the lower plot 
is for the absolute position error in y. 

A Monte Carlo simulation is used to generate the RMS 
errors of state estimation. The results are based on a total 
of 100 runs across 16 updates and summarized in Table I. 
The performance improvement of the nonlinear 
constrained filter over the linearized constrained filter is 
demonstrated. 

Finally, we use Fig. 6 to show an example of the 
Lagrangian multiplier as it is calculated iteratively using 
(19). The runs for five unconstrained state estimates are 
plotted in the same figure and to make it fit, the 
normalized absolute values of λ are taken. As shown, 
starting from zero, it typically takes 4 iterations for the 
algorithm to converge in the example presented. 

Table I. RMS Estimation Errors 

 

CONCLUSIONS 

In this paper, we presented an approach to incorporating 
road information into navigation solution via GPS/map 
integration. In this approach, road segments were 
modeled with analytic functions and their fusion with a 
position fix was cast as a linearly or nonlinearly state 
constrained optimization procedure. With the Lagrangian 
multiplier, a closed-form solution was found for linear 
constraints and an iterative solution for nonlinear 
constraints. Geometric interpretations of the solutions 
were provided for simple cases. Computer simulation 
results demonstrate the performance of the algorithms.  

Future work includes both algorithms development and 
practical applications. It is of interest to extend the 

RMS Estimation Error 
Estimators Position (m) Velocity (m/s) 

Unconstrained 8.3663  4.2640  
Best Linear Constrained 5.5386 2.5466 
Nonlinear Constrained 1.8056 0.4252 
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iterative method presented in the paper for second-order 
nonlinear state constraints to other types of nonlinear 
constraints of practical significance and to search for 
more efficient root-finding algorithms to solve for the 
Lagrangian multiplier. Similarly, the simple fusion to a 
single road as presented in this paper is being extended to 
an urban environment with a vehicle moving along 
closely-spaced road networks with intersections and by-
passes. In this case, the fusion (or constraining) can take 
place in the measurement level as well as in the position 
level, involving road constrained data association 
(RCDA) and map-predictive model selection and 
updating. Results will be reported in future papers. 
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