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ABSTRACT 
 
Modeling and Simulation is an important tool in the development of the highly effective weapons systems built by 
the United States and its allies.  However, recent initiatives to reduce the cost of weapon systems through expanded 
use of modeling and simulation during the development process have not always lived up to expectations.  Current 
practice in the construction of models and simulations primarily uses a manual implementation of equations to 
describe the entity being modeled.  After verifying correct operation, these models are then validated by comparing 
them to data from real world tests to insure accuracy.  These equation-based models require extensive time and 
money in order to construct high fidelity models that accurately represent the real world.  Our research explores an 
alternate method of creating accurate models and simulations that can be done rapidly and at much lower cost.  This 
approach uses hybrid artificial intelligence to create the models and simulations directly from validation data sets.  
Test results using this method of modeling militarily representative systems such as wing lift, radar, and Forward 
Looking Infrared (FLIR)  demonstrated a reduction of over 90% in human labor required to create the models while 
simultaneously achieving approximately 70% better accuracy as compared to equation-based models prior to 
validation.  Because this method builds the models from a data set, the method can be used to construct models of 
activities such as human decision-making that cannot be described using an equation-based approach.  Additionally, 
the research demonstrated that models created using this method could be fully integrated with existing equation-
based models.  This research has the potential to dramatically improve the war-fighting capability of the United 
States and its allies by providing a fast, inexpensive method to model any entity for which data are available. 
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INTRODUCTION 
 
Modeling and Simulation (M&S) is an important tool 
for performing trade studies in systems engineering.  
M&S provides designers with the ability to examine a 
large number of virtual designs before constructing a 
prototype or system.   This provides a variety of 
benefits, including balancing requirements with 
available funding and schedule, determining risk areas, 
building efficient test plans and reducing test 
requirements.  The aggressive use of modeling and 
simulation is one of the few tools that have 
demonstrated the simultaneous achievement of a better 
product brought to market in less time at a lower cost 
[DTSE&E, 1996].   
 
Attaining these benefits currently requires an extensive 
up-front investment.  In many cases, small programs do 
not have the resources to make this investment 
[DTSE&E, 1996].  Reducing the cost of modeling and 
simulation so that it becomes affordable for use in 
smaller programs and product developments would 
represent a substantial benefit to product and system 
development.  Our research investigates reducing the 
high cost and length of time required to build models 
by introducing an alternative hybrid artificial 
intelligence method that creates models from data sets. 
These models are then compared in both time of 
construction and accuracy to the current equation-
based modeling technique. 
 
Benefits and Costs of Modeling and Simulation 
 
As computer power continues to increase, model 
builders are able to build increasingly more complex 
and accurate virtual representations of real-world 
entities [Zittel, 1998].  These have provided impressive 
improvements in product quality, reductions in time to 
develop products and lower product costs.  Table 1 
provides a summary of some documented 
improvements from a study of the use of modeling and 
simulation in both the public and private sectors. 
 

Table 11. Measured Benefits of Modeling and 
Simulation 
 

Who What Traditional 
Method 

New Method with 
M&S 

TRW Radar 
Warning 
System 
Design 

96 man-
months 

46 man-months 

TARDEC BFV 
Engineering 
and Analysis 

4-6 man-
months 

0.5 man-months 

TARDEC Low 
Silhouette 

Tank Design 

55 
engineers – 

3 years 

14 engineers – 16 
months 

General 
Electric 

Engine Fan 
Blade 

4 weeks A few hours 

Lockheed 
Martin 

Engineering 
Mock-ups 

2100 hours 900 hours 

Lockheed 
Martin 

Changes per 
Final 

drawing 

4 2 

Lockheed 
Martin 

Physical 
Mock-ups 

$30M each None 

Lockheed 
Martin 

Design 
Verification 

Baseline 30% - 50% 
reduction 

from baseline 
IBM Computers 10,000 parts 

4 years 
4000 parts 

2 years 
Motorola Cellular 

devices 
Baseline 50% reduction in 

product cycle time 
Sikorsky 
Aircraft 

Helicopter 
External  
Working 
Drawings 

38 
draftsmen 
6 months 

1 engineer 
1 month 

NAVSEA Ship 
Seakeeping 

Analysis 

27 days 3.5 days 

NAVSEA Radar Cross 
Section 
Analysis 

57 days 17 days 

Comanche 
Helicopter 
Program 

Source 
Selection 

Prototype 
Fly-off 
$500M 

Simulator/Surrogate 
Aircraft Fly-off 

$20M 
 

As can be seen from these examples, most of the 
success stories found during this study involved large 
government programs and/or products developed by 

                                                           
1 DTSE&E study (1996) “Study on the Effectiveness 
of Modeling and Simulation in the Weapon System 
Acquisition Process”, Final Report. 
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large corporations.  Across complex Department of 
Defense (DoD) programs a conservative average cost 
benefit of operating costs for virtual/constructive 
training over live training has been at least 20:1.  A 
simulated joint exercise led by NAVAIR Orlando at 
I/ITSEC 2003 again validated this ratio.  The cost 
advantage would have been at least 30:1 if the cost of 
precision munitions and environmental costs were also 
included.2   
 
Although the benefits of Modeling and Simulation are 
significant, these benefits come at a steep price.  An 
aggressive M&S effort requires an extensive up front 
investment.  For the virtual exercise at I/ITSEC 2003 
costs ran between $300-400K for the two-day event, 
and had the advantage of millions of dollars of R&D 
supporting the products.  Development of the Boeing 
777, a recognized business success case in which M&S 
played a significant role, required an up front 
investment of roughly one hundred million dollars 
[Garcia, et. al., 1994].  The M&S core body of 
knowledge states under limitations that “M&S tools are 
not generally inexpensive and require an up-front 
investment cost” [Acquisition Functional Working 
Group, 1999].  This statement is backed up by results 
of a study looking at the cost of the M&S effort on 
Department of Defense programs summarized in table 
2. 
 
Table 23. Department of Defense M&S Cost Data 
 

Program Approximate 
Total Program 

Cost 

M&S 
Expenditures  

LPD-17 (ship) $10B $38M 

ATACMS/BAT 
(munition) 

$5B $25.2M 

Javelin (missile) $4B $48M 

AN/BSY-2 (sonar) $3B $58.3M 

 
This same study found that program managers do not 
consider DoD-wide M&S investments as either cost or 
schedule effective [Hicks & Associates, Inc., 2001].   
 
 

                                                           
2 Data provided courtesy of Northrop Grumman 
Corporation 
3 Hicks & Associates, Inc., (2001) “Modeling and 
Simulation Survey Briefing”. 

Why is M&S so Expensive? 
 
Looking at the modeling of a simple system 
demonstrates the high cost and time associated with 
building equation-based models, even for systems that 
have well understood equations.  One particular case 
evaluated the building of a model for simulating the 
performance of a spring-powered car [Brown, 1999].  
The model was constructed for use by students taking a 
course in systems engineering at the Defense Systems 
Management College and was designed to demonstrate 
the value of modeling and simulation in cost-
performance trades.  The exercise involved conducting 
a series of trades to find a combination of variables that 
provided good performance for only two performance 
requirements at the lowest cost.  The final equation of 
motion for this simple vehicle had 34 variables and 8 
coefficients.  Modeling and simulation of complex 
systems may require an extremely large number of 
variables and coefficients as well as the equations that 
relate them together. It is highly unlikely that a 
company making spring-powered cars could afford 
even a tiny fraction of the costs in table 2.  The study 
compared a group of students who used the model with 
a control group that did not have access to the model.  
The use of M&S in the design phase resulted in better 
performance at lower cost for the same amount of time 
spent on the project [Brown, 1999].  The benefits of 
using M&S in the design phase of any project, 
regardless of size, are significant. 
   
Once any model is built, it must be verified and 
validated before use [Acquisition Functional Working 
Group, 1999].  Verification tests that the model has 
been implemented correctly, while validation checks 
that the model or simulation accurately represents the 
real world system.  To correctly validate a model, the 
actual system is tested over the range of values that the 
model or simulation is intended for use.  The model 
predictions are checked against the test data.  If the 
model does not agree within specified limits in any 
area with the test data, further tests are conducted to 
determine the cause of the difference.  These causes 
are then mathematically incorporated into the model 
and the results checked again.  This process continues 
until an acceptable agreement between the test data and 
the model is obtained.  This explains the finding in the 
M&S Core Body of Knowledge which states that 
attempts to create high-fidelity models rapidly drive up 
the cost of a modeling effort [Acquisition Functional 
Working Group, 1999].  The key to wider use of M&S 
in product development is to significantly reduce the 
time and expense of current modeling methods. 
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Quantifying Predictive Accuracy 
 
Another issue with current methods of modeling and 
simulation is quantifying the predictive accuracy.  
Models and simulations only approximate the real 
world.  Most models provide a single predictive output 
for a single set of inputs.  Instead of a single 
prediction, a better solution would be to provide the 
range of values over which the true answer would lie 
and identify which values are more likely than others.   
 
Many current M&S software packages provide a 
sensitivity analysis feature. A sensitivity analysis 
varies the independent variables over their expected 
range of values in the anticipated operational 
environment to determine the sensitivities (or 
gradients) with respect to the dependent variables of 
interest [Arsham, 2002].  The model or simulation is 
run multiple times with the variable on which the 
analysis is being performed incremented by a fixed 
amount on each run.  The analysis begins at either the 
highest or the lowest value of the sensitivity range and 
continues until the opposite end of the range is 
reached.  A sensitivity analysis provides a more 
complete answer by specifying a range over which the 
answer may lie.  However, this answer is incomplete in 
that it provides no information about where within the 
range the answer is most likely to fall.  This analysis is 
sufficient in estimating model sensitivities only if the 
effects of the parameters on the model are independent 
and monotonic [Bankes, 1993].  No probability or 
confidence can be attached to the range of even the 
most sensitive variable.  Furthermore, variables that 
show little sensitivity when varied independently may 
exhibit strong sensitivity when varied in combination 
with other variables.  Thus, running a sensitivity 
analysis may not capture the true range of the solution 
space of the dependent variables. 
 
The most complete method found was the modeling of 
all variables that exhibit variation as random variables 
[Bankes, 1993].  Each random variable is set to a 
distribution function that describes how the variable 
behaves.  A Monte Carlo method is then employed 
which samples from each distribution over multiple 
computer runs to obtain a probability distribution of 
the dependent variables.  This provides a complete 
probabilistic solution to the problem in that all 
correlations and synergistic effects are captured, the 
complete range of possible outputs is captured, and the 
likelihood of each answer within the range is specified.  
The accuracy of the output distribution is dependent 
only on the number of samples generated and is not 
dependent on the number of inputs.  The Monte Carlo 
method also allows use of standard statistical 

techniques to estimate the precision of the output 
distribution.  Although this method provides a more 
complete answer to predictive accuracy, its primary 
drawback is that it can take vast amounts of computer 
run time in order to generate the distribution if the 
model is large and complex. 
 

TECHNICAL APPROACH 
 
To reduce the cost of constructing models and 
simulations, the research approach focused on reducing 
the amount of human labor in the model building 
process.  This was accomplished by using artificial 
intelligence agents to learn the relationships between 
variables directly from data sets creating computer-
generated models.  Although this approach is not new, 
the exact technical approach is unique in that a hybrid 
software package using both Bayesian and neural 
networks was created to conduct the research.  This 
approach overcomes many limitations associated with 
curve fitting, which can not easily handle non-linear or 
discontinuous data sets. 
 
Bayesian Networks 
 
 Bayesian networks are directed graphs for 
representing probabilistic dependencies among 
variables [Jensen, 1996].  Bayesian networks encode a 
complete and coherent probability distribution over 
many variables and can be used to evaluate both causal 
and evidential influences.  A Bayesian network 
consists of a directed acyclic graph that represents 
dependencies among variables, together with local 
probability distributions defined for small clusters of 
directly related variables. Directed acyclic graphs 
consisting of nodes, which represent the variables, and 
arcs (or directed edges) that describe cause and effect 
relationships or statistical associations between the 
variables [Jensen, 1996].  Each variable has a finite set 
of mutually exclusive states.  The graph may contain 
no directed cycles, or paths that lead from a node to 
itself and follow the direction of the arcs.  Each node is 
conditionally independent of its non-descendents given 
its parents. 
 
Probability information in a Bayesian network is 
specified via a local distribution for each node. The 
local distribution for a root node is simply an 
assignment of a probability to each state such that the 
probabilities sum to 1.  A conditional probability table 
gives the local distribution for a child node.  This table 
shows the probability of each possible state of the child 
conditional on each possible state of all of its parents.  
The joint distribution for all variables in the network is 
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given by the product of the local distributions for all 
the nodes: 

 

)|(,....,( )(
1

1 ipai

n

i
n XXPXXP ∏

=

=   
(1) 

 

where Xpa(i) denotes the parents of variable Xi. 

The conditional probability that variable E takes on 
value e given that H takes on value h is defined by the 
equation: 

)()|( hHandeEPhHeEP =====  (2) 
 

A straightforward consequence of this definition is 
Bayes Rule, a powerful mathematical relationship by 
which probabilities can be modified to incorporate new 
evidence: 

)(/)|(*)()|( EPHEPHPEHP =  (3) 

 

The first term, P(H|E) is referred to as the “posterior 
probability” or the probability of H given evidence E.  
The term P(H) is the prior probability of H.  The term 
P(E|H) is the “likelihood” and gives the probability of 
the evidence assuming hypothesis H is true.  The last 
term is the probability of E that acts as a normalizing 
or scaling factor [Niedermayer, 1998]. 

To demonstrate a Bayesian network, an example for 
diagnosing problems with the air conditioning of any 
car using R-134a refrigerant is shown in figure 1. 

 
Figure 1. A/C Bayesian Network Model 

 
In this example, diagnosing the system involves taking 
pressure readings from the high pressure output line 
from the compressor and the low pressure return line to 
the compressor.  The readings are then evaluated as to 

whether they are high, normal, or low based on the 
outside air temperature.  This information then 
determines the most likely status of the system.  In 
figure 1, if the low side pressure is 32 psi, the high side 
pressure is 198 psi and the outside temperature is 84 
degrees F, then the system is not operating normally 
and the most likely problem is that the refrigerant level 
is low.   

The advantages of Bayesian networks include the 
capability to learn both the structure of the networks 
and the probabilistic relationships between the nodes 
from data sets.  Through the use of Bayes Rule in 
calculating the distributions, networks respond nearly 
instantaneously to node state inputs.  The output is a 
probability distribution that provides not only the range 
of values over which the answer may lie, but also the 
probability of each answer within the range.  Bayesian 
networks can also provide these distributions with an 
incomplete set of input parameters.  The principle 
disadvantage of these networks is that they cannot 
always provide predictions to inputs that were not in 
the learning data set. 

Neural Networks 
 
Neural networks are computational systems that mimic 
the computational abilities of biological systems by 
using large numbers of simple, interconnected artificial 
neurons [Maren et al., 1990] There are different types 
of neural network applications available for 
consideration.  They fall into five basic categories: 
prediction, classification, data association, data 
conceptualization and data filtering.  The primary use 
of a neural network in this research is for prediction.  
Types of predictive neural networks include the back-
propagation, delta bar delta, extended delta bar delta, 
directed random search, higher order or functional link, 
and the self-organizing into back-propagation 
[Anderson and McNeil, 1992].  A feed-forward back-
propagation networks (usually referred to as the back-
propagation networks) was selected for use in this 
research.  A neural network of this type contains an 
input layer, one or more hidden layers and an output 
layer.  A typical back-propagation neural network is 
shown in figure 2.  The input layer nodes feed the input 
values into the rest of the network.  Connections 
between layers are bi-directional.  Data values move 
from inputs through the hidden layers to the outputs 
during feed forward operation.  During learning, error 
corrections are propagated back through the network 
starting from the output nodes and running upward 
through all hidden nodes from the bottom to the first 
hidden layer.   
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Figure 2. Example Neural Network 
 
All hidden and output nodes in the network have the 
structure shown in figure 3. 
 

 
Figure 3. Neural Network Node 

 
During feed forward operation, the node first calculates 
the sum of all inputs (I) times their weights (W).  A 
transfer function is then applied to the sum.  This 
function transforms the output into a number between 
zero and one (minus one and one in some software 
packages).  There are several transfer functions that 
can be used.  All functions have a ramp, bell or 
modified S-shaped curve that runs asymptotically 
along the X-axis approaching either the maximum or 
minimum value [Maren et al, 1990].  The type of 
transfer function is manually selected during network 
construction while the weights for each input 
connection is calculated during the learning process.  
All inputs must also be scaled to values between zero 
and one.  Outputs, which are all values between zero 
and one, must be scaled in the reverse direction from a 
decimal value to the actual value. 
 
The primary advantage of a neural network is that it is 
capable of adaptive learning of very complex problems 

[Maren et al., 1990].  These networks can predict 
additional values within the range of the training data 
set.  Neural networks can also handle both non-linear 
and non-continuous functions.  The disadvantages of 
neural networks include a single output predictive 
answer with no information of how probable or 
accurate that answer may be and the requirement for a 
complete set of inputs. 
 
Hybrid Networks 
 
Use of multiple types of artificial intelligence networks 
at the same time is currently an area of high interest to 
researchers.  The Northrop Grumman Corporation 
(NGC) has used combinations of networks for data 
fusion and to handle uncertainty in highly complex 
data problems with high levels of uncertainty.  Hybrid 
networks are emerging from NGC work with Applied 
Minds under a program called Futures Lab. This 
approach uses Bayesian networks, along with other 
types of artificial intelligence networks, to fuse 
evidence at the hypotheses while using neural 
networks to reconcile the network outputs. 
 
Research Software Implementation 
 
To conduct the research, a software package capable of 
creating Bayesian network models from data sets was 
required.  A search of existing applications found no 
software package suitable for creating engineering 
models from data sets containing mixtures of discrete 
and continuous variables.  The primary deficiency was 
the absence in currently available packages of methods 
for intelligent, simultaneous discretization of multiple 
continuous variables.  This led to the development of 
the derivative method of discretization that is 
implemented in the research software package 
described below.  The software package, BN Builder, 
integrates new code to implement the discretization of 
continuous variables with four commercial software 
packages providing the rest of the functionality.  The 
software architecture and data flow are presented in 
figure 4.  The input to the software is an Microsoft® 
Excel data set.  A neural network is manually created 
using QNET 2000.  The weights are learned from the 
input data set.  Bayesian network structure learning is 
performed by BN PowerConstructor, one of the 
modules in the BN PowerSoft collection by Jie Cheng 
of the University of Alberta, Canada. 
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Figure 4. Research Software Architecture 
 

The neural network generates additional data for the 
learning data set based on user input.  The BN builder 
software creates a Bayesian network using the 
augmented data set.  Nodes with continuous data 
values are discretized using the derivative method.  
Additional uncertainty from the neural network 
predictions is captured during learning by comparing 
neural network predictions with the training data and 
adding the additional variance into the node probability 
distribution.  The output of the research software is a 
Bayesian network that is capable of making 
probabilistic predictions to incomplete input data and 
that can make predictions to inputs not contained 
within the learning data set. 
 

METHODOLOGY 
 
The methodology used to conduct the research 
consisted of comparing models and simulations 
constructed using a conventional, manual equation-
based implementation with computer-generated models 
and simulations created using the software described 
above.  Equation-based models were constructed using 
mathematical equations from published textbooks.  The 
same individual constructed all but one model with 
construction time recorded to the nearest minute.  A 
complete description of all models, tests and results 
can be viewed at https://acc.dau.mil/aicrms.  The 
models used in the research are listed in table 3.  
Models were evaluated at the first step of the validation 
process.  The computer-generated models were 
constructed by dividing the validation test data into a 
learning set and a test set of data points.  The test set 
always contained input conditions not contained within 
the learning set.   
 

 
Table 3. Research Model Matrix 

 
Model Name 

1 Amplifier 
2 LRC electrical circuit 
3 Elevator control 
4 Radar 
5 Forward Looking Infrared (FLIR) 
6 Commuter 
7 Wing Lift 

 
The computer-generated model was constructed from 
the learning data set, and then used to predict the 
outputs of the test data set.  The predictions were 
compared to the test data for accuracy using the 
percent difference between the prediction and 
measurement as the accuracy metric.  The equation-
based models were used to predict the same outputs of 
the test data set.   
 
Hypothesis #1 – Time of Construction 
 
Null hypothesis H 1

O : There is no difference in 
construction time between computer-generated models 
and equation-based models. 
 
Alternate hypothesis H 1

A : There is a difference in 
construction time between computer-generated models 
and equation-based models. 
 
Hypothesis #2 – Model Accuracy 
 
Null hypothesis H 2

O : There is no difference in 
predictive accuracy between computer-generated 
models and equation-based models. 
 
Alternate hypothesis H 2

A : There is a difference in 
predictive accuracy between computer-generated 
models and equation-based models.  
  

RESULTS 
 
An equation-based model and a computer-generated 
model were constructed for each system listed in table 
3.  The wing model was not included in the time 
comparison as it was constructed by an outside source 
with no record of construction time.  A comparison of 
construction times is included in figure 5.  As can be 
seen in figure 5, the computer-generated models were 
constructed in less time than the manually constructed 
equation models in all cases except the amplifier.  This 
was due to a unique case where the modeling software 
package came with a pre-built amplifier element.   
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Figure 5. Model Construction Time 

 
Hypothesis H1 was tested with the data of figure 5 
resulting in a rejection of the null hypothesis.  The 
computer-generated models took less time to construct 
in five of six cases and overall took an average of one 
fifth the time to construct as compared to equation-
based models.  The difference is so great in these five 
cases that it supports a conclusion that construction 
time for computer-generated models is less than 
equation-based models at 95% confidence. 
 
The cost of modeling and simulation is driven mostly 
by the human labor involved in the process.  Although 
computer equipment and software require upfront 
investments, the cost of computer run time, once 
purchased, is negligible.  The average times to perform 
specific tasks while constructing the models are 
presented in figures 6 and 7. 
 

 
 

Figure 6: Equation-based Model Task Times 
 
As can be seen in figures 6 and 7, not only has the 
average time of construction been reduced from 136 to 
26 minutes, but the task loading requiring human work 
has been reduced from 100% in the equation-based 
models to 47% for the computer-generated Bayesian 
network models resulting in a total reduction in human 
labor of over 90%.   

 
 
Figure 7: Computer-generated Model Task Times 

 
Reviewing the breakdown of model task times, as 
model complexity increases, total construction time 
increases.  However, the human tasks associated with 
model construction remains nearly constant.  Learning 
the network structure and constructing the neural 
network both require human input, but are computer-
aided tasks.  The increase in construction time is 
almost completely attributable to increased computer 
run time of the BN Builder program.  This leads to a 
conclusion that models created using computer 
generated Bayesian networks would be much less 
expensive to build than equation-based models.  Not 
only is time of construction significantly less, but the 
human labor involved is also reduced.  Because there is 
no longer a strong relationship between complexity and 
human labor required, costs to construct computer-
generated Bayesian networks are not sensitive to 
problem complexity. 
   
Hypothesis H2 was tested using thirteen cases 
generated from six of the models.  The elevator control 
model was not included as it had a discrete output.  
The control system sent the elevator to the correct floor 
in all cases for both types of models.  A summary of 
model errors is presented in figure 8. 
 

0%

20%

40%

60%

80%

100%

120%

140%

160%

Ampli
fie

r C
yc

le

Ampli
fie

r S
tep

LR
C 1K

 22
0u

F 10
0u

H

LR
C 2.

8K
 22

0u
F 10

0u
H

LR
C 2.

8K
 22

0u
F 30

0u
H

W
ing

 N
ACA 14

12

W
ing

 N
ACA 44

21

Rad
ar 

A/C
#1

Rad
ar 

A/C
#2

Rad
ar 

A/C
#3

FLIR
 W

OV

FLIR
 N

OV

Com
mute

r

Meth
od

 A
ve

rag
e

A
ve

ra
ge

 %
 E

rr
or

Equation
Computer

 
 

Figure 8. Model Error Comparison 
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Hypothesis H2 is tested with the data of figure 8 
resulting in a rejection of the null hypothesis.  The 
error associated with computer constructed Bayesian 
network models is lower in all twelve cases and 
averaged over 70% less as compared with the 
equation-based models.  The magnitude of the 
difference in error is great enough to establish a 
statistical difference between these two methods at 
95% confidence. 
 
Two models that demonstrate the unique capabilities of 
computer-generated models are the wing aerodynamics 
and Forward Looking Infrared (FLIR) models.  The 
aerodynamics of an airfoil such as a wing are described 
by the Navier-Stokes equations.  Unfortunately, even 
with the vast power of today’s computers, for problems 
of interest the full Navier-Stokes equations are still too 
expensive to solve.  Instead, the equations must be 
solved through approximations using numerical 
methods referred to as Computational Fluid Dynamics 
(CFD).  One such method is a panel code model 
developed at the Naval Postgraduate School which 
assumes that the airflow is inviscid, incompressible and 
irrotational.  As can be seen in figure 8 for a thin wing 
such as the NACA 1412 airfoil, these assumptions are 
valid and the results are accurate.  However, for a 
thicker wing such as the NACA 4421, a loss of lift (CL) 
occurs at higher angles of attack (AOA) due to a 
breakdown of at least one assumption as can be seen in 
figure 9.  The computer-generated models, by 
comparison, are able to learn from the data set that 
there is a loss of lift at higher angles of attack for 
thicker wings and are therefore able to make a much 
more accurate prediction of CL. 
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Figure 9: Wing Model Comparison 

 
The second example of special interest is the FLIR 
models.  The test data for the FLIR in its Wide Field of 
View (WFOV) setting for the detection range versus 
temperature differential between a fixed size test target 
and the background is shown in figure 10. 

 

0

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10 12 14 16

Effective delta T (deg C)

R
an

ge
 (f

t)

WFOV

 
Figure 10: WFOV FLIR Test Data 

 
The data were measured by multiple students at the 
Naval Test Pilot School using both white and black hot 
polarity settings on a commercial FLIR.  The data set 
contains scatter due to random measurement errors 
from multiple students collecting the data.  This data  
provided a challenging learning problem for the 
computer-generated models due to the scatter.  In 
theory, there should be no difference between the 
white and black hot settings.  However, when the 
computer-generated model was created, a relationship 
was found between the polarity setting and the range.  
This resulted in separate predictions for the two 
settings in the computer-generated model as shown in 
figure 11.  As can be seen in figure 11, the system 
demonstrated less detection range capability in the 
white hot setting.  This was captured by the computer-
generated model resulting in polarity setting as an 
input and far greater accuracy when compared with the 
test data than the equation-based model prediction.   
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Figure 11: WFOV FLIR Model Comparison 

 
There is no mathematical explanation for this test 
result, but the fact that it exists is clearly shown in 
figure 11.  Because of this unusual result, electro optic 
experts from the Naval Air Test Center were asked to 
review the data.  They verified that there was in fact a 
difference between the polarity settings of this 
particular system, attributing the difference to either a 
display unit that provides a better display of dark on a 
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light background or the possibility that the human eye 
can detect black on white better than white on black 
backgrounds.   
 
Discussion 
 
The equation-based models presented in this paper 
demonstrate that real world systems rarely perform in 
accordance with theoretical physics-based equations.  
Equations are only approximations of the complexities 
of the real world.  During validation, corrections must 
be made to the model equations in order to get the 
predictions to match the real world data within the 
desired accuracy.  This may include additional testing 
to determine the source of the difference between the 
equations and the real world data.  By continuing to 
add corrections, the equation-based models can be 
made as accurate as the computer-generated models.  
However, this would require even greater human labor 
further increasing the time advantage and cost savings 
of the computer-generated models over the equation-
based models. 
 
By comparison, the computer-generated models are 
capable of learning the relationships between the 
variables including the many non-linearities and other 
factors that are not captured using an equation-based 
approach.  Additionally, the time required to create a 
model using this technique is relatively insensitive to 
model complexity.  Only the computer run time while 
the model is being constructed increases significantly 
with complexity, adding little to the cost of model 
construction.  
 
The authors do not claim that computer-generated 
models are the best choice in every case.  Each 
modeling method has certain advantages depending on 
specific circumstances of what is being modeled.  
Based on test results, the following circumstances 
favor the use of an equation-based approach: 

• Validated equation-based models already exist 
• Modeling function blocks already exist 
• There is a scarcity of available data on what is 

being modeled  
• The element being modeled does not require 

many function points 
The following circumstances favor a computer-
generated Bayesian network approach 

• Database of observed or test data already 
exists 

• Problem is not well understood and/or 
equations do not exist 

• Problem is complex 
• There may be unknown non-linearities 

• Hidden variable relationships may exist 
• Problem is a control application or decision 

problem 
The conditions most favorable to computer-generated 
models are those with the greatest potential to reduce 
the time of construction and expense of modeling and 
simulation.  
 
Model Integration 
 
Equation-based models and computer-generated 
Bayesian network models are not mutually exclusive 
methods of modeling and simulation.  When modeling 
complex systems, the problem is usually broken down 
into smaller, simpler subsystems that are constructed, 
tested and then integrated into the final complex model 
or simulation.  This approach lends itself to creation of 
integrated models where each component to be 
modeled is individually evaluated to determine which 
modeling method would be best under the particular 
circumstances.  For the research, one integrated 
simulation was the detection of a target aircraft by the 
radar model.  In this example, the equation-based radar 
model previously described was corrected for the 
validation data resulting in a good match between 
predictions and real world tests.  An aircraft target 
model was created using the equations of motion to 
control target movement within the simulation.  The 
radar cross section of the target was modeled as a 
computer-generated Bayesian network from 
unclassified radar cross section measurements of a 
World War II aircraft.  Construction of a physics-based 
equation model for aircraft radar cross section would 
probably be impossible on a desktop computer.   
 
The radar was stationary for this simulation.  The 
target flies a closing track from right to left across the 
front of the radar.  The target tracking simulation 
results are shown in figure 12.  As can be seen in the 
target track, the simulation provides an extremely 
realistic target engagement.  As the target aircraft 
moves toward the radar, both the range and aspect of 
the aircraft change.  This causes scintillation, where the 
target fades in and out between different radar scans.  
Those with radar operating experience will recognize 
this real world phenomenon on the track of figure 12.  
In addition to this example, several other integrated 
equation/computer-generated models were constructed 
and tested.  These models offered extremely improved 
flexibility to the model builder based on the attributes 
of the particular sub element being created.   
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Figure 12. Radar Target Tracking Simulation 

 
Of particular note were models constructed using the 
computer-generated Bayesian network models to make 
human decisions or otherwise perform control 
functions within the simulations.  These integrated 
simulations were shown to be more effective than 
those using a rule-based approach to decision-making 
or control. 
 

SIGNIFICANT CONTRIBUTION 
 
The primary contribution produced by this research is 
the demonstration that highly complex model elements 
can be created directly from data sets in a small 
fraction of the time required to build the same model 
using a manual, equation-based method.  Since 
modeling costs are primarily driven by human labor, 
this research demonstrates that significant cost 
reductions are possible.  Not only were models created 
in far less time, but in every case the computer-
generated models were more accurate than the 
equation-based models prior to corrections for model 
validation.   The computer-generated models also 
quantify the accuracy of the prediction where as the 
equation-based models must be run many times to 
obtain the same distributions.  We also demonstrated 
that computer-generated models can be integrated with 
equation-based models providing never before seen 
flexibility in model element creation along with reuse 
of existing model assets.  Additionally, the research 
can improve training simulations through construction 
of computer-generated models of the actions of an 
adversary. By integrating the model into a training 
simulation, human trainees would be exposed to 
training scenarios that respond to their actions much 
more like the adversary would respond.  Not only 
would these models respond much more like humans 
than rule-based models, but could be rapidly and 
inexpensively updated as new information becomes 
available. 
 

 
 

CONCLUSIONS 
 
Modeling and Simulation is an important tool in the 
development of the highly effective weapons systems 
built by the United States and its allies.  It has been 
demonstrated that the benefits of M&S are applicable 
to programs of any size.  However, M&S generally 
requires a significant upfront investment; one that 
smaller programs cannot afford to make.  This research 
has demonstrated that it is possible to significantly 
reduce M&S costs making this tool affordable for 
small programs and more cost effective for large ones.  
Based on labor costs, the reduction demonstrated in 
this research is approximately 90% while 
simultaneously achieving a 70% increase in predictive 
accuracy.  The authors acknowledge that computer-
generated Bayesian network models are not the optimal 
choice for every situation.  We demonstrate that 
integrated models can be constructed using both 
equation-based and computer generated models.  
Together, these integrated models and simulations 
provide tremendous flexibility to the model developer. 
 
Work continues to further improve this process.  The 
method of discretization has currently been updated to 
handle any data set.  Future plans include automation 
of the neural network build process and integration of 
the structural learning program into the main software 
application.  These improvements are designed to 
further reduce human labor to only a few minutes, 
irregardless of the size or complexity of the model.  
Additionally, we are continuing to explore potential 
applications of creating more complex integrated 
models mixing model types.  The ability to mix 
predictive artificial intelligence decision making into 
physical simulations could have exciting applications 
in the areas of training and operations research. 
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