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I. Introduction 
Working on a project of repeated field-measured samples of events reducible to the time 

evolution of spectral profiles, we have developed novel methods for clustering and developing 

training sets of such 2D-image data. Our methods are generic rather than geared toward specific 

applications such as face recognition1,2 or video summarization3 or pattern recognition4,5,6 and 

should be useful in numerous applications which involve unsupervised classification7,8,9. 

Specifically, we are addressing the following scenario. One acquires a substantial data set of 

samples of several types of “image data” of the same generic kind. The x and y axis coordinates 

of each sample could be positional coordinates, other physical entities such as time or 

wavelength, or a numerically-indicated feature value. The third (z) coordinate designates the 

image sample. The x, y data values are arranged in a long vector with the corresponding 

alignment along z maintained: we have not used a reduced “feature vector” but rather the 

original gray scale values. 

 

We use a simple and pictorial method of generating 2D scatter plots from the eigenvectors of an 

SVD of the data. Similar samples can be clustered to check the veracity of the “ground truth” 

designations. Alternately, unsupervised classification/clustering in the absence of ground truth as 

well as the development of classifiers viewing the sample set as laboratory signatures is 

demonstrated. 

 

Our paper is organized as follows. In Section II, we use a simple real-data example and 

additional simulation based on the example to illustrate the basic methodology, show the need 

for data normalization, and introduce a novel technique for assessing cluster stability. 

Introducing a second real-world example with a larger data base, we discuss the issues of data 

compression and alignment in Section III and development and use of a classifier in Section IV.  

In Section V, we offer final comments and suggestions for further extensions. 



 

 2

II.  Generation and clustering of scatter plots 
To implement our approach, an SVD is performed on the M by N matrix formed by N column 

vectors (N samples) of the x, y data values of each sample arranged as an M-length column 

vector as described by Lee and Hayes10. A scatter plot (SP) point for each sample is formed from 

the first two eigenvectors of the N by N right singular matrix VT  of the SVD decomposition10. 

To realize the significance of our data alignment, imagine an alignment along the z-axis of two 

distinct images: 10 identical samples of one image type and 10 of another. Note that the z-

profiles for each data point D(x,y,) are step functions, in effect ‘identity’ profiles. The 

corresponding eigenvectors would reflect this in having identical values for the same image type. 

This tendency persists for real data, especially for the first two eigenvectors, and hence scatter 

plots of the first versus second eigenvector (one data point per sample) tend to cluster like 

sample types. The significance and enhancement of such scatter plots form the chief focus of this 

paper. Note that the present work, along with Reference 10, are the rare exceptions in using the 

N by N right singular matrix to cluster data. Typically, the M by M left singular U matrix , which 

are the principle components of a KLT transform, are used in pattern recognition 

applications.(ref. 9, p.417) 
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Figure 1. Two samples of one data type (top) and two of another (bottom). 
 

The first four figures are based on a real data set taken with laboratory camera instruments. 

Figure 1 shows two samples each of the two basic data types. For organization convenience, 

hereafter, the temporal spectral data will be re-arranged in (x,y), but the original z-alignment is 

retained. The data base consists of 10 samples of type 1 and 6 samples of type 2 (image sizes 80 

by 200) and the SVD of the 16,000 by 16 matrix is computed. A scatter plot of the first two 

eigenvectors, each component value scaled to an integer from 0 to 100, is shown in Fig. 2a. The 

anticipated groupings are a cluster of 10 samples of type 1 and 2 clusters of 3 samples each of 

type 2, the 3/3 split stems from a different angle of measurement direction. However, an 

anomalous magnitude of one type 2 image (upper right corner) perturbs the result and 

compresses the dynamic range of the rest of the scatter plot, which raises the need for 

normalization as described next. 

 

The issue of normalization is critical; otherwise the SP’s tend to be dominated by magnitude 
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effects. Of course, if one is dealing with an application where the key differentiations might be in 

the magnitudes, one would refrain from any normalization. Underlying our methods of 

normalization is the assumption that two data samples differing by an additive constant and/or a 

multiplicative constant represent the same data type. Our preferred normalization then consists of 

the following steps carried out independently on each data sample: 

 

1. Determine the average profile as averaged over one of the coordinates and fix the DC level by 

setting the minimum of this profile at zero. 

 

2. Adjust the multiplicative constant by dividing by the area under this adjusted average profile. 

In some cases, step 3 below improves the result. 

 

3. Adjust the degree of variance about this average profile to a preset variance. 

 

All three steps are similar to Duda and Hart’s normalization method (ref. 9, p.215) of subtracting 

the mean and dividing by the standard deviation. Figure 2b shows the normalized scatter plot 

with the anticipated division of 10, 3, 3. All remaining SP’s in the paper will be shown in the 

normalization just described. Other types of data might require different normalization. 

 

  
Figure 2a 1. Scatter plot of example 1 based on first 
two eigenvectors (horizontal axis is first component). 

Figure 2b 1. Corresponding scatter plot after 
normalizing each data sample as described in text. 

 

A key feature of the present method resides in assessing cluster pattern stability. Suppose our 

ground truth information on the 16 data samples of Figures 1 and 2 were not available, i.e. we 
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were faced with unsupervised classification. Can we extract from the data itself a stable and 

justified clustering? In our answer to this question, we use a variation of the standard clustering 

algorithm: “Agglomerative Single-linkage Algorithm”7,8. This is a conservative approach that 

avoids excessively fine clusters and leaves high confidence in the remaining differentiations. 

Either from other available sources or from the process described below, one establishes 

maximum distances Dmax1 and Dmax2 for each component at a given SP integer scale. Pairs of 

points separated by Dmax or less in each component are assigned to the same cluster. Each point 

in a final cluster has at least one link within the values of Dmax to another point in the cluster, 

often referred to as a “friend-of-a-friend approach”, which allows for chain-like clusters. 

 

We use a Monte-Carlo technique of random sub-sampling to estimate appropriate values of 

Dmax11,12. A random address in x and y is chosen and the corresponding data point from the full 

data set is used until some sub-sample size is reached (we use 50% and find that allowing or 

precluding repeated selections makes little difference). The SP of this sub-sample is generated 

and the random process is repeated to generate N scatter plots—typically 50 to 100. Figures 3a 

and 3b show two of the random SP’s for the present example and Fig. 3c shows the superposition 

of 100 such SP’s. The latter suggests that the 10, 3, 3 cluster configuration is the finest supported 

by the data precision. We can demonstrate the stability of this clustering in more quantitative 

fashion. From the scatter in the 100 SP’s, one can estimate an average sigma (over all 16 sample 

points) in each component. The values of Dmax is set to 3 times this estimated sigma in each 

component. We examine the constancy of the clustering pattern over the 100 SP’s. Fig.3d 

displays the result of applying our clustering algorithm to each of the 100 SP’s with these Dmax. 

The vertical co-ordinate is SP run number and the horizontal co-ordinate designates one of the 16 

data samples; an integer value is assigned to each distinct cluster. The color display indicates that 

over the 100 runs the 6,3,3 cluster configuration persists. 
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Figure 3a 1. A scatter plot of a random 50% sub-
sample. 

Figure 3b 1. A second random result. 

  

Figure 3c 1. Superposition of all 100 SP’s. Figure 3d 1. The (10,3,3) cluster pattern of all 100 
SP’s displayed as described in text. 

 

A simulation further supports this technique of assessment and its build-in immunity against over 

fine clustering. Using one sample of each of the two image types in our example, we add random 

Gaussian noise to create 16 noisy variations of each type (data set of 32 samples). The noise 

sigma is roughly 50 times the spatial sigma of the images and, as the two examples in Fig. 4a and 

4b indicate, the observer can no longer distinguish the two patterns (compare Figure 1). The full-

data SP is given in Fig. 4c and the superposition of 50 random sub-samples shown in Fig. 4d. 

The scatter from the 50 sub-sample SP’s yields estimated sigmas of 3 and 16 (on the 100 integer 

scale of the SP) for each component, respectively. The difference in the sigma values is not 

unexpected since there is a larger variability in one component direction as compared to the 

other, even between samples as displayed in the SP shown in Fig. 4c. The cluster patterns for the 

50 runs are displayed for values of Dmax of one sigma in Fig. 4e and three sigma in Fig. 4f. The 

latter shows the expected group of two clusters of 16 each over all runs; while the former shows 

too fine sub-clusters within the same type which vary from run to run. The still more 
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fundamental simulation of samples, which are Gaussian noise variants of one sample type, has 

also been done and results (not shown) are as expected: a stable single cluster at values of Dmax 

of three times the scatter-estimated sigmas. Hence, one has some confidence that a valid 

clustering can be extracted from the data itself. While in the remainder of the paper we will only 

show SP’s based on the full data, our conclusions about cluster configurations will have been 

supported by examining the set of sub-sampled variations and clustering stability through the 

sub-sampled ensemble. 
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Figure 4a 1. Type one sample image with Gaussian 
noise. 

Figure 4b 1. Type two sample image with Gaussian 
noise. 

  
Figure 4c 1. Scatter plot of 16 noise variants of each 
type. 

Figure 4d 1. Superposition of all 50 random sub-
sampled SP’s. 

  

Figure 4e.1Display of cluster patterns at Dmax 

of one sigma. 

Figure 4f.1Display of cluster patterns at 

Dmax of three sigma 
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III. Alignment and compression of data samples 
To address some subsidiary issues in this and the following section, we turn to a much larger 

data base of three sample types: 90 samples of type 1, 17 samples of type 2, and 32 samples of 

type 3. (These are also from real field measurements of time evolution of spectral profiles which 

have been re-arranged in (x-y).) In Figures 5a, 5b and 5c, we show a representative sample of 

each type. The inherent contrast spatial standard deviation is about 12 for the noise-free samples. 

For purposes of the discussion in this and the next section, we use as well a noisier version of our 

data base as shown in 5d, 5e and 5f. We have added Gaussian noise with a standard deviation of 

80 to each sample to a point of non-recognition by an observer. 

 

   
Figure 5a 1. Sample of type 1. Figure 5b 1. Sample of type 2. Figure 5c 1. Sample of type 3.

   

Figure 5d 1. Noise-added sample 
of type 1. 

Figure 5e 1. Noise-added sample 
of type 2. 

Figure 5f 1. Noise-added sample of 
type 3. 

 
In Figure 6a we show the SP of the original data; a sharp distinction of the three sample types is 

evident. The remarkable noise-immunity of the technique is manifest in the SP of the noise-

added samples, Fig. 6b, where the distinction is retained.  We introduce a simple metric to 

characterize the quality of a given cluster pattern and to track changes in the SP quality. A metric 

value ratio, independent of the integer scale of the SP, is computed for each cluster pair (A and 

B) in which the numerator is the Euclidian distance of the cluster centroids, ED(A,B), and the 

denominator is the geometric mean of the average distance among the elements of cluster A, ID 

(A), and the corresponding value ID(B) for cluster B. A cluster pair which largely overlaps will 

have a metric close to 1.0. Note that in contrast to metrics designed to evaluate the validity of a 

cluster pattern7 versus another pattern within the same SP (using a criterion of optimality), this 

metric is designed to track the changing quality of a particular clustering pattern as the SP 

changes due to noise, compression, or jitter as treated below. 
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M(A,B) =  ED(A,B)  /  sqrt ( ID(A) x ID(B) )       (1) 

  
Figure 6a 1. Original scatter plot of a data base of 
three types plotted as faint, (type 1), medium (2) and 
bright (3). Metrics of three pairs are 5.8, 12.6, 7.2 for 
pairs 1-2, 1-3,2-3 respectively. 

Figure 6b 1. Noise- added version with metrics of 3.7, 
6.9, 3.8. 

  
Figure 6c 1. Noise-added version compressed to top 
25% of data; metrics now are 3.4, 6.3, 3.6. 

Figure 6d 1. Noise-added version compressed to top 
10% of data; metrics are 2.9, 5.2, 3.4. 

 

The present technique readily lends itself to data compression, which is of particular interest for 

large data size. Recall that the data arrangement which the eigenvectors are “summarizing” are 

profiles along the z-axis. Even D(x,y) data points with strong intensity are important only to the 
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extent that they vary among the aligned images. Hence, our data point selection/compression 

process is based on the variance of each data point along the sample direction (z) . Specifically, 

we compute with respect to z: 

 

V(xo,yo)  =  E{ D2 (xo,yo,z) }   -    (E{   D (xo,yo,z) })2      (2) 

 

and if we wish to compress on the basis of x-coordinate (or y), we can add up the variances to 

give a final score: 

 

S(xo) = ∑
iy

 V(xo,yi)           (3) 

 

The SP’s based on the top 25 and 10% (Figs. 6c and d) from Eq. (2) show only slight 

degradation at the 1-2 boundary as perceived by an observer and reflected in the metrics. This 

result is typical of many data sets we’ve reviewed.  

 

We next consider the effect of data mis-alignment, i.e., registration error of our image set. This is 

important as the methodology depends on z-profiles of consistent identity.  The effect is strongly 

dependent on the x,y spatial frequency of the data types i.e., image samples with high spatial 

frequency place much more severer demands on the alignment accuracy. 

 

The data of the two examples used here are reasonably well-aligned (1-2 pixels) due to the nature 

of the data and control over laboratory measurements.  However, we can simulate the effect of 

mis-registration by imposing a random jitter independently on each image. For a selected random 

jitter of N, each image is randomly and independently assigned a shift of 0, 1, 2,...up to N pixels 

in x and in y. For our initial example data set, a random shift of one pixel retains the 10, 3, 3 

separation although the 10 samples of type 1 are much less compact (Fig. 7a, compare Fig. 2b); 

while, a shift of two pixels (Fig. 7b) loses the 3, 3 cluster division of the type 2 samples. 

The effect of jitter of two and three pixels applied to the noise-free version of our second data set 

(Figs. 7c and 7d) is similar to the effect of noise (compare to Fig. 6a,b). For high spatial 

frequency imagery or very noisy imagery, the effects of mis-alignment are expected to be far 

more severe.  
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Figure 7a 1. Scatter plot of example 1 with one pixel 
random jitter. Compare Fig. 3b 

Figure 7b 1. Scatter plot of example 1 with two pixel 
random jitter. 

  
Figure 7c 1. Scatter plot of example 2 with two pixel 
random jitter. Compare Fig. 6a. Metrics are 4.7, 12.6, 
4.2. 

Figure 7d 1. Scatter plot of example 2 with three pixel 
random jitter. Metrics are 3.6, 8.9, 3.1. 
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IV. Training sets and classifiers 
An important goal in our original application is the generic one of using extensive field or 

laboratory measurements as a training set in order to identify an unknown. Towards that goal and 

as one possible approach, we present some preliminary work on using SP’s as training sets to 

form classifiers. 

 

As representative of several simulations and real data sets we have tested, we will employ our 

second example with noise added (as in Fig. 6b) as the training set. Figures 8a, b, and c show 

three possible classifiers with the underlying training set SP. Fig 8a is a nearest (Euclidian) 

neighbor (NN); Fig. 8b are axial-oriented ellipses (AE) and 8c are ellipses rotated to match the 

data correlation (RE). The ellipses are sized in axial radii at 3σ1 and 3σ2 where the sigmas refer 

to scatter of the SP data points about the ensemble means in the requisite directions.  
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Figure 8a 1. Nearest neighbor classifier with 
underlying training set. Dark blue segment in upper 
right corner is region which is further from each 
center than any of the inter-center distances and is a 
region of non-decision. 

Figure 8b 1. Axial-oriented ellipses classifier based on 
same training set. Dark blue region outside any 3 
σ ellipse is taken non-decision as is the overlap region 
of types 1 and 2. 

 
Figure 8c 1. Rotated ellipses classifier version of 8b.

 

We have carried out some Monte-Carlo simulations as a preliminary assessment of trends with 

these classifiers. Rather than generating the SP anew from the training set and the unknown(s), 

as a more practical real-time operation, one can use the SVD of the training set to predict the 

position of the unknown(s) without generating an expanded new SP,  

 
VT  ~  W-1 UT D,          (4) 

 

where W-1 and UT are from the SVD of the training set and D are the data values of the 

unknown(s). One can readily show that that the first two rows of VT, i.e. the two components 

which generate the SP position, depend only on the data of the unknown D, the first two singular 
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values of W, and the first two principle components of U. The approximation requires that the 

values of the first two components of U and W from the SVD based on the original training set 

will be little changed by the addition of any one unknown.  Over the surveyed examples from our 

in-house acquired data, we find we can predict positions to within one pixel on the integer scale 

of 100, i.e. 1%. However, for the Gaussian-noise dominated case of the present example, the 

SP’s are more volatile and a new unknown with another sample noise-pattern can only be 

predicted to about 10%. Hence in our Monte-Carlo assessment of the three classifiers, we 

regenerate the full SP’s.  

 

This assessment consisted of runs as follows. The basic training set of 139 samples was extended 

by one “unknown” and a 140-sample SP was generated. The position in this SP of the unknown 

on one of the classifier templates of Fig. 8 registered either a detection, missed detection (dark 

blue region), or false alarm (wrong decision) for that unknown. The unknown was taken from a 

different standby Gaussian-noise version of the 139 data samples. Versions at standard 

deviations of 80, 100, and 120 were used. A run generated 139 SP’s as each of the samples of a 

standby version was used as the unknown. Hence each of the runs gives a rate of detections (D), 

missed detections (MD), and false alarms (FA) averaged over 90 samples of type 1, 17 of type 2, 

and 32 of type 3.   

 

While the absolute result values of our simulations are unlikely to reflect more realistic 

scenarios, such as newly measured samples at different times and conditions than those of the 

training set, we suggest that the relative performances of the classifiers are accurately conveyed 

by our simulations. Rather than burdening the reader with detailed tables we will summarize the 

overall trends.  

 

For this example, where the “unknown” is one of the three data types, the NN classifier is 

markedly superior. A typical run at σ=100 gives respectively for the NN, AE, and RE classifiers: 

99.3%,88.5%, 88.4% D; 0%, 10.1%, 10.8 MD; and 0.7%, 1.4%, 0.7% FA, respectively.  

An average of two runs at the σ =120 noise level (50% higher than the level of the training sets) 

gives: 98.2%,70.2%, 67.6% D; 0%, 28.0%, 32.0 MD; and 1.8%, 1.8%, 0.4% FA. The FA rate of 

all three is similar with the RE slightly better but both the elliptical classifiers retain their low FA 

at the expense of a high rate of missed detections. The expected tradeoff between FA and MD 
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using the NN classifier with its large scale regions of hard decision is seen in other simulations 

with classifiers and data sets introducing unknowns of different types to those in the training set. 

One should mention with regard to the 3 sigma boundaries of the AE and RE classifiers that the 

sigmas in a particular application could be chosen to upper bound false alarms or to adapt to a 

CFAR constraint. 
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V. Concluding remarks and future work 
We have presented a widely applicable and simple method of clustering a set of 2D-image data 

based on the scatter plots of the first two eigenvectors of an SVD of the data set. The data matrix 

transformed by an SVD is formed by arranging each data sample in a long vector with the 

correct alignment along z maintained: we have not used a reduced “feature vector” but the 

original gray scale values.  Using a chosen clustering algorithm and statistical sub-sampled 

versions of the scatter plot, one can assess the most stable clustering configuration. A second 

example data set indicates the noise immunity of the technique and how training sets can be used 

to generate classifiers. Issues of alignment, jitter, and compression were also addressed. 

 

Some natural extensions of our work are as follows. Corresponding features of a feature vector 

could be aligned along the z-axis rather than the gray scale values, which could make the 

alignment process less critical as in the video summarization case3 where histograms are used. 

All our techniques such as the generation of the SP, the use of sub-sampling to estimate cluster 

stability, and the design of classifiers are done on a component-independent basis and could 

readily be extended to three or more eigenvectors.  

 

Finally, other kinds of data should be tested. Our methods have been developed from and applied 

to an extensive set of field measurements, all of which involve wavelength versus time data sets. 

In principle, one can apply the methodology to data samples of any dimension since the sample 

data is re-arranged in column form for the SVD matrix. The critical point is that alignment of 

corresponding points from sample to sample in the data description is attainable. 
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List of Acronyms 
 

AE Axial-oriented Ellipse 
AFOSR Air Force Office of Scientific Research 
AFRL Air Force Research Laboratory 
CFAR Constant False Alarm Rate 
FA False Alarm 
MD Missed Detection 
NN Nearest Neighbor 
SP Scatter Plot 
SSSC Solid State Scientific Corporation 
SVD Singular Value Decomposition 
 

 


