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ABSTRACT 

As unmanned aerial vehicle (UAV) technology and 

availability improves, it becomes increasingly more 

important to operate UAVs efficiently.  Utilizing one UAV at 

a time is a relatively simple task, but when multiple UAVs 

need to be coordinated, optimal search plans can be 

difficult to create in a timely manner.  In this thesis, we 

create a decision aid that generates efficient routes for 

multiple UAVs using dynamic programming and a limited-look-

ahead heuristic.  The goal is to give the user the best 

knowledge of the locations of an arbitrary number of targets 

operating on a specified graph of nodes and arcs.  The 

decision aid incorporates information about detections and 

nondetections and determines the probabilities of target 

locations using Bayesian updating.  Target movement is 

modeled by a Markov process. The decision aid has been 

tested in two multi-hour field experiments involving actual 

UAVs and moving targets on the ground.  
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EXECUTIVE SUMMARY 

Since its conception, the unmanned aerial vehicle (UAV) 

has been a coveted battlefield asset.  The ability of these 

vehicles to perform reconnaissance and attack missions while 

keeping the operators directly out of harm’s way creates an 

advantage in the domains of information gathering and force 

protection.  UAVs have only recently been introduced on the 

battlefield in significant numbers, and the ability to 

operate multiple UAVs efficiently and effectively can be 

improved further. 

This thesis creates a decision aid that provides 

efficient search routes for multiple UAVs searching for 

multiple targets operating on a known graph of nodes and 

arcs. The decision aid dynamically provides estimates of 

target locations during its use.   

The decision aid consists of a dynamic program that is 

solved approximately using a two-timestep look-ahead 

heuristic.  Target location probabilities are computed using 

Bayesian updating based on the detections and nondetections 

from the previous timestep. The decision aid includes the 

possibility for UAVs to go on and offline due to mechanical 

difficulties or limited endurance.   

The decision aid was tested in two field experiments at 

Camp Roberts, California, as part of the USSOCOM-NPS Field 

Experimentation Program.  The field experiments included up 

to three UAVs and five target vehicles. For the second 

experiment, a prototype of the decision aid running through 

a Microsoft Excel user-interface was used.  The interface 

proved to be highly effective in communicating to the user 
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the current knowledge of target locations and provided 

timely recommendations for the UAV operators.  
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I. INTRODUCTION  

A. MOTIVATION AND PROBLEM DEFINITION 

 Search for moving targets arises in many different 

contexts.  For example, searching is necessary when the goal 

is to find drug smugglers or shot-down pilots during search 

and rescue missions.  The sensors used for these searches 

are often mounted on unmanned aerial vehicles (UAVs), thus 

UAVs become search assets.  When multiple UAVs interact 

during a search, there becomes a need to effectively operate 

and manage them within the search environment.  

We consider a finite number of searchers and targets 

that move on a graph of nodes and arcs.  We assume the 

searchers have a close estimate of the number of targets.  

The targets remain within the graph and move according to a 

known Markov process.  The overall goal is to route the 

searchers during a finite time horizon so that the search 

coordinator gains the maximum situational awareness of all 

targets, as quantified by probability distributions of 

target locations.  There are many possible objective 

functions for problems of this kind.  We specifically aim to 

maximize the expected number of detected targets until the 

finite time horizon while ignoring targets that are known to 

be located at a given location with a probability larger 

than a specified threshold.  Target thresholds are discussed 

in detail in section A of Chapter II.  We refer to this 

problem as the search optimization problem (SOP). In this 

thesis, we develop a model for SOP and a heuristic algorithm 

for obtaining efficient search plans in real-time within a 

rolling time horizon framework. 
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 The graph in SOP could represent a road network where 

nodes are intersections and arcs are roads.  Alternatively, 

the graph could represent a grid of area cells on the open 

ocean.  Figure 1 shows an example of nodes and arcs in a 

road network at Camp Roberts, California. 

Figure 1.   Example of Graph. 

 
 

 Currently, no tractable model of SOP exists that 

incorporates all major aspects of real-world operations.  

SOP is difficult to solve optimally because the optimal move 

for the searchers at a timestep is dependent on the future 

searcher locations and actions as well as target location 

probabilities. We refer to such locations, actions, and 
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probabilities at a particular point in time as the “state” 

at that time. This dependence on future states requires the 

use of dynamic programming.  This situation tends to result 

in intractable model formulations of SOP that cannot be 

solved quickly enough for use in a real-time decision aid.  

Dynamic programming is discussed in subsection B2.  

In this thesis, we develop a new version of a decision 

aid called Aerial Search Optimization Model (ASOM), see, 

e.g., [12].  It consists of a tractable model for SOP, an 

associated heuristic algorithm for generating search 

policies, and a user interface. ASOM is specifically 

tailored for use by UAV operators, provides effective UAV 

routes quickly, and is relevant to many different search 

applications.   

B. FUNDAMENTAL CONCEPTS 

1. Bayesian Updating 

Bayesian updating in the context of search is a process 

that begins with prior knowledge of target location 

probabilities, commonly referred to as the a priori map.  

This map is based on previous information, if such info 

exists, or it is assumed to be uniform, absent prior 

information.  Figure 2 gives an example of a 4 cell a priori 

map where a single searcher is searching for a single 

stationary target known to be present in the map.  In this 

thesis, we account for false negatives, but we assume that a 

searcher will not report a target on a node or an arc if 

there is no target at that node or arc (i.e., no false 

positives). We refer to Chung and Burdick [3] for a 

discussion of false positive reports.  If the searcher looks 
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in the top left cell and fails to find the target, then 

Figure 3 shows the resulting posterior map given the 

searcher has a .5 conditional probability of detection.  The 

posterior map is computed by the following equation: 

 
( ' | ) ( )( | ')
( ' | ) ( )

i i
i

j j
j

P D A P AP A D i
P D A P A

= ∀
∑

 

where 

i,j  index of target cells 

( )iP A   probability target is located in area i 

( ' | )iP D A   probability of no detection in cell i given  

   target is in cell i 

( | ')iP A D   probability target is located in cell i  

   given no detection is made in that cell 

 

For each cell, the updated probabilities are computed 

by multiplying the probability of no detection given there 

is a target in the cell by the prior probability there is a 

target in the cell.  This number must then be divided by the 

sum of these numbers for all cells in order to normalize the 

probabilities.  See Wagner, Mylander, and Sanders [20] for a 

more detailed mathematical explanation of Bayesian Updating. 

Figure 2.   A Priori Target Distribution. 

.40 .30 

.20 .10 
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Figure 3.   Posterior Target Distribution. 

.25 .375

.25 .125
 

 The above discussion deals with “false negatives,” 

which occur when a searcher fails to detect a target that is 

actually there. 

2. Dynamic Programming 

 Dynamic programming is a framework for modeling 

decisions made over time [14].  The state of a dynamic 

program is a snapshot of the system being modeled at a 

specific time.  Given a finite time horizon, the backward 

recursion algorithm generates optimal decisions at every 

timestep starting from the end and working backwards 

assuming there are a finite amount of states. However, this 

involves examining all states at each time step and 

determining the best decision at that state. 

 The backward recursion algorithm breaks down if there 

are an infinite number of states and/or the determination of 

the best decision at a state is a difficult optimization 

problem. In addition, it may be problematic to use this 

algorithm if the time horizon is not known.     

 Approximate dynamic programming algorithms seek to 

overcome the shortcomings of the backward recursion 

algorithm by introducing approximations.  There exist a 

large number of approximate dynamic programming algorithms, 

see, e.g., [14].  Typically, these algorithms step forward 
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in time. The main difficulty is to determine the “value” of 

transitioning to a specific state.  One technique is to use 

a limited look-ahead.  This is a process of enumerating all 

possible moves for all timesteps of the designated look-

ahead period and making the moves that achieve the greatest 

reward in terms of the objective function.  Longer look-

ahead periods will better approximate the optimal dynamic 

programming solution.  We will use an approximate dynamic 

programming algorithm because it provides an effective 

solution that can be provided in real-time, a key 

requirement for our implementation. 

C. PAST WORKS 

The goal of the constrained-path, moving-target search 

problem [5, 6, 7, 13, 18, 19, 21] is to find the search 

route that maximizes the probability of target detection 

within a fixed time.  The classic setup involves a single 

searcher and a single target moving within a finite number 

of cells in discrete time.  Both the searcher and the target 

are allowed to occupy a single cell each timestep, and 

detections may only occur when the searcher and target 

occupy the same cell.  Detection probabilities can be based 

on sensor data or derived from the random search formula 

[22].   The target’s probability distribution is maintained 

through Bayesian updates for nondetection each timestep if 

the target is not found. 

For the classic constrained-path, moving-target search 

problem, Eagle and Yee [6] select a searcher route over a 

given number of time periods that minimizes the probability 

of nondetection.  Their formulation is a non-linear program 

with linear constraints, which allows one to apply 
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Zangwill’s [24] Convex Simplex Method (CSM).  Eagle and Yee 

[6] create a myopic search, and while results of their 

example show the CSM solution to always be optimal, the 

myopic search may not provide a good approximation of the 

optimal solution. 

A partially observable Markov decision process [2] is 

another concept that has been applied to the constrained-

path, moving-target search problem.  The idea is that a 

decision must be made based on partial information, and the 

outcome of the decision is unknown until after it has been 

made.  The search application is well-suited for this setup 

because the searcher will have incomplete knowledge of 

target location after each timestep based on the updated 

target probability distribution.  The searcher will not know 

whether or not the search will be successful until after the 

new search route is chosen. 

Eagle [5] provides an optimal solution technique using 

dynamic programming and assuming a finite time horizon.  He 

uses a partially observable Markov decision process, which 

is faster than standard linear programming methods because 

total enumeration is limited to searching only the cells one 

can reach from the searcher’s previous location.  Stewart 

[18, 19] creates an approximate solution procedure using 

branch-and-bound techniques.  Eagle and Yee [7] extend 

Stewart’s work and create a branch-and-bound method that 

produces optimal solutions and is faster than the dynamic 

programming approach.  Washburn [21] creates a branch-and-

bound approach as well.   Both Eagle and Yee [7] and 

Washburn [21] consider searchers that have continuous search 

routes.  Other than Washburn [21], who accounted for 
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multiple searchers, these problems consider one searcher 

against a single target and provide optimal solutions. 

Dell, Eagle, Martins, and Santos [4] extend the problem 

to include multiple searchers.  They create a branch-and-

bound procedure to optimally solve the problem as well as 

six heuristics that take four different approaches to the 

problem: solve partial problems optimally, maximize the 

expected number of detections, implement a genetic 

algorithm, and use local searches with random restarts.  The 

partial problem technique involves a moving horizon where 

each one is solved optimally using branch-and-bound. 

Members of the autonomous systems and control community 

have analyzed the multiple UAV search problem as well.  Some 

utilize recursive Bayesian filtering [1, 10] while others 

focus on cooperative control [8, 11] and decentralized 

search [1] techniques.  Many of them have considered the 

problem of multiple searchers looking for multiple targets 

[1, 8, 9, 10, 11, 23], which is an extension to the works 

mentioned above [5, 6, 7, 13, 18, 19, 21].  Fernandez, 

Flint, and Polycarpou [9] as well as Chung and Burdick [3] 

create a Bayesian method that helps take into account false 

positives. 

Another consideration is using discrete time to more 

closely model continuous time.  This situation occurs when 

the travel time for targets and searchers between cells is 

not a multiple of the discrete timestep.  Lau, Huang, and 

Dissanayake [13] enhance the branch-and-bound method to take 

into consideration the non-uniformity of the search 

environments.  They develop a new bound that leads to faster 

solution times as well as the possibility of better 

solutions when the environment being modeled is spatial-
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temporal non-uniform in nature.  Sato and Royset [17] 

produce alternative bounds and even faster solutions. 

In the near future, sufficient technology will exist to 

allow the automatic detection of targets by computer 

systems.  When these automatic detections can be 

incorporated within a search program, it will allow the 

autonomous routing of UAVs.  With current technology, human 

operators are required to visually identify targets.  The 

issue of target detection can be handled with a decision aid 

that has an input for the detections made each timestep. 

While many solutions have been presented for the 

constrained-path moving-target search problem and some 

research tools have been developed for specific scenarios 

(see, e.g., [15, 16]), a decision aid that can be used in 

real-world scenarios has yet to be fully developed.  The 

goal of our research is to provide a user-friendly decision 

aid that is capable of creating efficient UAV routes for 

detecting multiple targets operating on a known graph.  This 

decision aid will be capable of providing real-time 

effective decisions with computation times on the order of 

seconds. 

D. STRUCTURE OF THESIS AND CHAPTER OUTLINE 

 This thesis is divided into five chapters, including 

the Introduction.  Chapter II discusses the development of 

the model and the dynamic programming formulation.  Chapter 

III introduces the actual algorithm used to implement our 

model.  Next, it analyzes the accuracy and runtime of our 

heuristic approach.  Finally, it discusses the Excel user-

interface created for our decision aid.  Chapter IV talks 

about our field experiments in Camp Roberts, California and 
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explains some of the updates our decision aid underwent in 

the process.  Chapter V gives several conclusions from our 

work as well as recommendations for future work involving 

ASOM. 
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II. MODEL 

A. MODEL DEVELOPMENT 

We formulate a model of SOP using dynamic programming 

with Bayesian updating.  We assume that each target moves 

according to a Markov process and that the targets move 

independently of one another.  The presentation below and 

our implementation of the model assume that all the Markov 

processes for the various targets have the same transition 

matrices.  However, it is trivial to extend this to the 

general case where targets follow different movement 

processes.  Targets are differentiated by their velocity and 

type characteristics (e.g., person versus vehicle).  

The searchers are differentiated by a variety of 

characteristics including name, velocity, sweepwidth of 

their sensors, and whether or not they have a camera with a 

moving eye which enables them to search nearby roads while 

flying straight routes between nodes.  

All dynamic programming models must have discrete 

timesteps.  In our model, timesteps are used as a discrete 

representation of continuous time.  One timestep is the 

length of time between each discretized value of time with 

smaller timesteps being a better approximation of continuous 

time.   

Our dynamic programming model contains several states 

that change according to some process as the model advances 

through time by the use of timesteps.  The state of the 

searcher includes the arc the searcher is currently on, the 

amount of time until the searcher reaches the head node of 

that arc, and the type of move that is currently being 
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executed.  There are three possible types of moves: “Road 

Search,” “Transit,” and “Search at Location.”  “Road Search” 

means that the searcher examines the road corresponding to 

the current arc while traversing it.  It is possible to 

detect targets on that road, and any time remaining of the 

timestep after reaching the head node of the arc is spent 

searching that head node.  “Transit” means that the searcher 

flies a direct route from the tail node to the head node.  

It is not possible to detect a target when completing this 

type of move, but rather offers the possibility to reach the 

head node faster and allows more time for search at that 

node.  “Search at location” means that the searcher spends 

the entire timestep searching its current location.  

The other main states in the dynamic programming model 

are the target probability maps.  There is one probability 

map for each target and the entire map is a matrix where the 

entry in row i and column j represents the probability that 

the target is on arc (i,j), if i = j, this represents the 

probability at a node.  These probability maps are 

dynamically updated as the model transitions from one 

timestep to another. The updates due to detections and 

nondetections using Bayesian updating are first carried out. 

Then, the updates due to movement of targets by the Markov 

process are computed.   

More specifically, when detections are made, the 

location and type of detection are inputted into the model.  

The model updates the target probability maps for the 

detections based on the probabilities of seeing different 

targets at the input detection locations.  It looks at all 

the different “detection scenarios” and determines the 

probability of each happening and decides which scenario 
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occurred based on a random draw with the associated 

probabilities.  Here, a “detection scenario” is an element 

of the set of all the different permutations of possible 

target detections at each detection location.  For example, 

if there are two detections at time t and three available 

targets, the model creates all possible permutations of 

target detection scenarios.  In this situation, there are 

six possible scenarios, three choices (possible targets) for 

the first detection and then two remaining choices (one of 

the two not found in the first detection) for the second 

detection.  The model then computes the probability of each 

of the six different scenarios occurring based on the target 

marginal probabilities and decides which one actually 

occurred using a random draw with the corresponding 

probabilities.   

We also use the concept of search thresholds.  This 

threshold is a user input between 0 and 1 used to determine 

what level of target knowledge will constitute “knowing” 

where a target is located.  This is an attempt to gain 

better total situational awareness by ignoring targets that 

we “know” are at certain locations.  A threshold value of 1 

creates a greedy policy where searchers will circle targets 

unless a higher probability mass presents itself at a nearby 

location. On the contrary, if the threshold value is less 

than 1, then targets whose maximum probability mass is above 

that threshold will not be searched for, resulting in a less 

greedy policy.    

We also calculate an aggregate probability map to 

represent the normalized probability of all targets that are 

unknown (i.e., do not reach the threshold) by summing the 
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probability mass of all unknown targets at each location and 

dividing it by the number of these targets. 

SOP is defined in terms of some finite time horizon. 

This may be related to the endurance of the searchers (e.g., 

UAV flight time) or operational considerations. In practice, 

the time horizon may not be completely known. Looking 

further into the future with a dynamic program will give 

better decisions in the current timestep than a shorter 

look-ahead.  To limit computing time and allow for a real-

time decision aid, we only consider a two time-step look 

ahead, i.e., we set the time horizon in SOP to two.  We call 

this the two timestep look-ahead problem (TTLP).  The 

objective function in TTLP, which we maximize, is the 

expected number of target detections at all arcs and nodes 

visited during a given sequence of two moves for all 

searchers.  In determining the aggregate probability mass 

for the second time period, the objective function assumes 

that there are no detections during the first timestep.  The 

TTLP can be solved optimally by total enumeration, but as 

the number of searchers increases, the computational effort 

increases exponentially.  As a result, we constructed a 

heuristic algorithm for solving TTLP. The heuristic 

algorithm amounts to total enumeration of all solutions of a 

simplified two timestep look-ahead problem (STTLP) which we 

describe next. The mathematical formulation of STTLP follows 

in Section B.  

STTLP is identical to the TTLP except that it involves 

a simplified objective function.  The STTLP objective 

function, as in TTLP, is the expected number of detections, 

but now the expected number of detections is computed 

slightly differently in the second timestep.  The 
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probability mass present in the second timestep is 

calculated for each searcher independently (with no 

conflictions of moves), only taking into account probability 

updates for that particular searcher’s previous move (not 

all previous moves as in the TTLP).  As with the TTLP, it is 

assumed that there are no detections during the first 

timestep.  All states and arrays that are relevant to this 

update are labeled with the superscript “ND” (no detection).  

The following is an example of the flow of ASOM.  After 

the initial states are established, the searchers are given 

starting locations.  If there are no initial detections, 

ASOM recommends searcher moves based on the STTLP.  For each 

timestep, detections are entered and ASOM reoptimizes the 

recommended searcher moves for the next timestep given there 

are no more detections.  At this point, the operator can 

either accept the recommendations or enter in alternate 

searcher moves.  This process is repeated for each timestep 

until the search is completed. 

B. DYNAMIC PROGRAMMING FORMULATION OF STTLP 

 For notational convenience, we use • to denote the use 

of an array of all the available values for that index, thus 

for some values ,i jX , then ( ), 1, 2, ,, ,...,
T

j j j I jX X X X• = . 

Indices 

i, j, k  Nodes 

m Searcher 

t Timestep 

u Target 

b Types of targets 
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Sets 

M  Set of all available searchers, m M∈ . 

I Set of all available nodes, , ,i j k I∈ . 

T Set of timesteps, t T∈ . 

U Set of targets, u U∈ . 

B Set of target types, b B∈ . 

R I I⊂ ×  Subset of pairs of nodes (i, j) representing 

arcs for which there is a road connecting i 

to j, ( , )i j R∈ . Also, ( , )i i R∈ , i I∀ ∈ . 

Q I I⊂ ×  Subset of pairs of nodes (i, j) representing 

possible transit arcs between i and j, ,i j I∈ . 

 

Data 

,i jDISTANCE  Distance along road corresponding to arc 

(i,j) (mi), ( , )i j R∈ . 

,i jTRANSIT  Straight-line distance between nodes i and j 

(mi), ( , )i j Q∈ . 

mSEARCHARC  1 if searcher m searches a road while on 

transit arcs, 0 otherwise, m M∈ . 

mSPEED  Constant speed of searcher m (mph), m M∈ . 

mSW  Sweep width of searcher m (mi), m M∈ . 

uSPEEDT  Speed of target u, u U∈ . 

STEP  Duration of timestep (minutes). 

mSTART  Starting node of searcher m, m M∈ . 
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, ,i j mPD  Probability of detecting a target on the road 

corresponding to ( , )i j  for searcher m given 

that a target is on the road, ( , )i j R∈ , 

m M∈ . If i j= , then , , 0i j mPD =  since 

detections at a node is determined by 

function , ( )i mPDET τ , defined later.   

,i jMATRIX  Probability of a target moving onto arc from 

node i to node j, ,i j I∈ .   

, ,i j uTTS  Target timesteps calculation, the amount of 

timesteps target u takes to travel arc  

 ( , )i j , ,( 60 / (( )( )))i j uDISTANCE STEP SPEEDT= , ( , )i j R∈ , 

u U∈ . 

THRESHOLD  An input threshold between 0 and 1 to 

determine what level of target knowledge will 

constitute “knowing” where a target is.  

TURN  Constant probability that a target travelling 

along an arc ( , )i j , ( , )i j R∈  will turn around 

and go the other way. 

uTYPE  The type of target u, u U∈ , uTYPE B∈ . 

 

The following decision variables are computed at every time 

t T∈ . 

 

Decision Variables at Timestep t 

, , ,i j m tx  1 if searcher m is traveling from i to j, 0 

otherwise. 

,m ty  Time until searcher m completes the 

recommended move (hrs). 
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,m tz  1 if searcher m is searching, 0 otherwise. 

, , , , , ,( , , )T
m t m t m t m tV x y z• •=  

 Variable Array for searcher m. 

( ), , , , ,( , , )T
t t t t tX x y z V• • • • • •= =   

 Variable Array for all searchers.  

 

States at time t 

,m tSEARCHER  = , 1 , 1( , , )T
m t m ti z y− −  m∀ , where  

i Current Location/Destination;  

, 1m tz −  1 if searching, 0 if transiting from previous 

 timestep (Assume 1 if 1t = ); 

, 1m ty −  Time to completion of the move from the 

previous timestep for searcher m. (hrs) 

(Assume 0 if 1t = ).  

, , ,i j u tMARG  

Probability of target u being on arc (i, j).  

( , )i j R∈ , u U∈ , t T∈ . 

, , ,

, , ,

, , ,
|max( )

, ,

|max( )

,
1

u t

u t

i j u t
u U MARG THRESHOLD

i j t

u U MARG THRESHOLD

MARG
AGG i j• •

• •

∈ <

∈ <

= ∀
∑

∑  

Aggregate probability of all targets being on 

arc (i, j), ( , )i j R∈ , t T∈ . 

 , , , ,( , )T
t t tS SEARCHER MARG• • • •=    

  State Vector. 
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, , , ,
ND
i j u m tMARG  

Probability of target u being on arc (i, j) 

according to the viewpoint of searcher m.  

( , )i j R∈ , u U∈ , m M∈ , { }\ 1t T∈ . 

, , , ,

, , , ,

, , , ,
|max( )

, , ,

|max( )

, ,
1

ND
u m t

ND
u m t

ND
i j u m t

u U MARG THRESHOLDND
i j m t

u U MARG THRESHOLD

MARG
AGG i j m• •

• •

∈ <

∈ <

= ∀
∑

∑  

Aggregate probability of all unknown targets 

being on arc (i, j), ( , )i j R∈  from the 

viewpoint of searcher m, m M∈ , { }\ 1t T∈ . 

, , , , ,( , )ND T
m t t tS SEARCHER MARG• • • •=  

 The current state according to searcher m.  

This is only used in the future look-ahead, 

{ }\ 1t T∈ . 

In the next two sections on functions and random inputs, 

parts of the formulation are not included for notational 

convenience.  For a complete list, see Appendix I. 

 

Random variables and sets during time t 

 , , ,i j b tD   Number of detections of type b on arc ( , )i j  

during time t, ( , )i j R∈ , t T∈ .  

 

Functions 

( , )t t tR S X   

Reward for all searchers traveling between 

node i and j, m M∈ , ,i j I∈ . 
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, , ,( , )ND ND
m t m t m tR S V  

  Reward for searcher m traveling between node 

i and j, m M∈ , ,i j I∈ .  This function is 

only used in calculating the future reward 

when there is only knowledge of the searcher 

m. 

, ( )i mPDET τ  

Probability of detection at node i by 

searcher m, dependent on amount of time 

searched,τ , i I∈ , m M∈ .   

, , , ( , )i j u t t tNEGATIVE S X  

Function to update probability maps for 

failed detection via Bayesian updating.   

, , , , ,( , )
i j u m t

ND
t m tNEGATIVE S V  

Function to update probability maps for 

failed detection via Bayesian updating for 

look-ahead.  Heuristic approach only takes 

into account the move of searcher m.  

, , , ( )i j u t tMARKOV S  

Function to update probability maps for 

target movement based on Markov matrix. 

, , , , ,( )ND ND
i j u m t m tMARKOV S  

  Function to update probability maps for only 

the movement of target m.  It is used in the 

calculation of the “no detection” marginals 

according to searcher m. 

, , , , , ,( , )i j u t t tPOSITIVE S D• • •  

Function to update probability maps for 

positive detection via Bayesian updating. 
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Policy:  Set *
t tX X= , where * *

1( , )t tX X +  is the optimal solution 

of the simplified two timestep look-ahead problem (STTLP):  

 

1
, , 1 , 1,

max ( , ) ( , )
t t

ND ND
t t t m t m t m tX X m

R S X R S V
+

+ ++∑  

Subject to: 

, , , , , ', 1
, ' \

1i j m t i j m t
m i m M m

x x j+
∈

⎛ ⎞+ ≤ ∀⎜ ⎟
⎝ ⎠

∑ ∑   

  (Do not allow overlapping of moves) 

, , , 1 ,i j m t
m

x i j≤ ∀∑      

  (Max one searcher per arc at time t) 

, , , 1 1 ,i j m t
m

x i j+ ≤ ∀∑      

  (Max one searcher per arc at time t + 1) 

, , ,
,

1i j m t
i j

x m≤ ∀∑   

  (One move per searcher at time t) 

, , , 1
,

1i j m t
i j

x m+ ≤ ∀∑   

  (One move per searcher at time t + 1) 

 

If searcher m is at node i at time t, then: 

 , , , 1i j m t
j

x m= ∀∑   

 (Must start at the starting position) 

End if 

  , , , ,
( , )

i j m t m t
i j R

x z m
∈

≥ ∀∑   

(Tracks transiting/searching at time t) 

  , , , 1 , 1
( , )

i j m t m t
i j R

x z m+ +
∈

≥ ∀∑   

(Tracks transiting/searching at time t + 1) 
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m∀ , If ,m ty STEP≤ , then: 

 , , , , , , 1i j m t j k m t
i k

x x j+= ∀∑ ∑  

Else: 

 , , , , , , 1i j m t j j m t
i

x x j+= ∀∑  

End if 

  (Continuity of route) 

If 1t = , then: 

  
( )( )( ), , , , , , ,

,
,

1
60 i j m t i j m t i j m t

i j
m t

m

x DISTANCE z TRANSIT z
y m

STEP SPEED

+ −
= ∀

∑
 

 

Else If 2t ≥ , then: 

  
( )

, ,

, , ,
, , ,

, , 1

1
max ,

/ 60

i j m t

i j m t
i j i j m t

m t m t
m

DISTANCE z
x

TRANSIT z
y y STEP m

SPEED STEP−

⎛ ⎞⎛ ⎞⎛ ⎞+⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎜ ⎟⎜ ⎟= − ∀
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑
   

   (Keeps track of timesteps until searcher m is  

   available) 

End If 

{ }, , , 0,1 , ,i j m tx i j m∈ ∀   

{ }, , , 1 0,1 , ,i j m tx i j m+ ∈ ∀  

{ }, , , 0,1 , ,i j m tz i j m∈ ∀   

{ }, , , 1 0,1 , ,i j m tz i j m+ ∈ ∀   

, 0m ty m≥ ∀    

, 1 0m ty m+ ≥ ∀    
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Dynamics (Given tS  and tX ) 

,j m∀ , if , , , 0i j m t
i

x >∑ , then: 

   , 1m tSEARCHER +  = , ,( , , )T
m t m tj z y  

Sets the searcher’s state to the decisions of 

that searcher for this timestep. 

End If  

, , , 1 , , , , , , , , , , , ,( ( ( , ), )) , ,i j u t i j u t j u t u t t t tMARG MARKOV NEGATIVE POSITIVE S D X i j u+ • • • • • •= ∀

Updates the target marginals for the positive 

detection updates, the negative detection 

updates, and the movement of the targets 

based on the Markov process. 

, , , , , , , ,, , , , 1 , , , , , ,( ( ( , ), )) , , ,
i j u m t j u m t

ND ND ND
i j u m t u t t m tMARG MARKOV NEGATIVE POSITIVE S ZEROS V i j u m

•+ • • • • •= ∀  

 ZEROS denotes a matrix of zeros as input for 

the detection matrix, or “no detections 

found” in human input terms.  The update only 

has knowledge of one searcher at a time, thus 

it calculates marginals  

1 , 1 , , , 1( , )T
t t tS SEARCHER MARG+ • + • • • +=   

, 1 , 1 , , , , 1( , )ND ND T
m t m t m tS SEARCHER MARG+ + • • • +=  

Sets the regular and no detections state 

variable arrays. 
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III. IMPLEMENTATION 

A. MODEL IMPLEMENTATION 

We implement the model in MATLAB version 7.0.1 and 

carry out all computational tests on a NES computer with a 

1.83 gigahertz AMD Athlon XP processor and 512 megabytes of 

RAM.  As described earlier, we implemented a heuristic 

solution to the TTLP, called STTLP.  The code is written in 

many sub-functions so that a single aspect of ASOM can be 

changed without having to go through the entire code.  The 

descriptions of our MATLAB functions are given in Appendix 

II.   

B. HEURISTIC ACCURACY 

The only straightforward method for ensuring that 

optimal searcher moves are chosen is total enumeration.  The 

difficulty with total enumeration is that for every searcher 

added to the TTLP, the total number of searcher move 

combinations increases exponentially. Thus, we need the 

heuristic algorithm, STTLP (see section B in Chapter II).  

We compare our heuristic with the total enumeration approach 

in terms of runtime and accuracy to ensure it provides 

effective recommendations and that its speed improvements 

are worth sacrificing optimality.  For one, two, and three 

searchers we create random target marginals, randomly place 

the searchers, and compare the moves recommended by our 

heuristic and total enumeration functions.  We allow 

searchers to be “initially blocked” with a probability of 

.25.  Here, “initially blocked,” means that the searchers 
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are constrained in their movements from the previous 

timestep (i.e., still in transit).  This .25 probability 

represents the fact that during a normal run of our decision 

aid, the searchers make direct transits that require two 

timesteps and are blocked from making a new move for one 

timestep. 

Table 1 shows the accuracy results of the heuristic for 

1000 simulation runs.  The accuracy is a ratio of the 

probability mass collected by the heuristic versus that 

collected by the total enumeration approach.  It also 

displays the fraction of time the heuristic returns the 

optimal move.  The “Within One Move of Optimal” column gives 

the fraction of time that the heuristic moves did not match 

up with the total enumeration moves for at most one 

searcher.  Table 2 displays the runtimes of the heuristic 

and total enumeration approaches for one, two, and three 

searchers along with their 95% confidence intervals. 

Table 1.  Heuristic Accuracy Table. 

Number of Searchers Accuracy Returns Optimal (TTLP) Move 
Within One Move of 

Optimal (TTLP) 
1 1 1 1 
2 0.9914 0.944 0.985 
3 0.9813 0.843 0.934 

 

Table 2.  Heuristic Runtime Table. 

Number of Searchers STTLP Runtime (sec) 
Total Enumeration (TTLP) 

 Runtime (sec) 
1 .02165 +/- .00074  .01462 +/- .00074  
2 .04219 +/- .00093 .8560 +/- .046 
3 .07381 +/- .0076  64.21 +/- 4.45 
4 .1046 +/- .00227  4186 (estimated) 
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C. EXCEL INTERFACE 

The Microsoft Excel Interface was developed by Mr. 

Anton Rowe. Figure 4 is an example of the output display in 

the user interface. 

Figure 4.   Screenshot of Excel Interface. 

 
 

In Figure 4, the red circles represent all possible 

nodes and the red triangles represent all possible roads.  

The different sizes of the circles and triangles represent 

the aggregate probability of finding targets there.  The 

solid blue boxes represent the different searchers at their 

current locations in this scenario.  The blue lines and 

outlined boxes represent the recommended searcher moves for 

the current timestep.  If a triangle is encased in the 
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outline of a blue box, this means the recommendation is to 

search the road to the corresponding node.  A dotted blue 

line going straight to a node means transit directly to that 

node.  If there is an outline of a blue box in the middle of 

a transit route, this means the searcher will not get to the 

designated node in one timestep and thus it is a directed 

move for the following timestep as well.  If a searcher is 

stationary (zero speed) then the recommended move will 

always be to stay at the same location, shown by the blue 

outline around its current position.  In the example above, 

Raven is transiting from node 3 to 6, but will take two 

timesteps to reach node 6.  Buster is searching the road 

from node 2 to node 8 (one timestep) and Scan Eagle is 

transiting from node 11 to node 9 (one timestep). 

There are several required inputs for ASOM including 

parameters for both searchers and targets.  For each 

available searcher, the name (as it will be displayed on the 

interface) should be provided, as well as the speed, 

sweepwidth, a binary entry for whether the UAV has a 

moveable camera capable of searching roads while flying 

straight line distances, and the starting position.  An 

example input is seen in Figure 5.  Notice there is also a 

stationary searcher in the scenario below, which is input by 

a searcher with speed equal to zero.  A starting position 

must also be provided, but the “Sweep” and “Arc” categories 

for a stationary searcher are not used.   
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Figure 5.   Example Searcher Input. 

  
 

The available targets are simple inputs of the expected 

number and type of each target that will be available in the 

scenario.  For each target, a speed and type must be 

provided, as seen in Figure 6.  If the number of targets is 

not known, a reasonable estimate should be provided; the 

better the estimate the more accurate the model will be. 

Figure 6.   Example Target Input. 

 
 

Detections are input during the current timestep of a 

model.  The key feature here is the “Recommend” button.  

When pushed, this button gives recommendations based on the 

current state.  If, however, detections are made between 

then and the end of the timestep, they can be inputted to 

update the state and a new set of moves will be outputted.  
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An example timeline of entering detections and moving 

targets can be seen in Figure 7.   

Figure 7.   User steps in ASOM. 

 
 

Detections are inputted with four parameters: (i) 

timestep of the detection, (ii and iii) perceived starting 

node and ending node location of the target, and (iv) 

detection type.  The starting and ending node location 

together represent the arc ( , )i j  (location) in which the 

target was detected, where if i j= , the target was detected 

stationary at node i ; and if i j≠ , the target was detected 

on the road going from node i  to node j .  An example of 

what the target detection sheet might look like at timestep 

5 can be seen in Figure 8.  In this example, the first line 

says there was a detection of type 1 on the road from node 2 

to node 8 at time 1.  Similarly, the second line says there 

was a detection of type 2 stationary at node 5 at time 3. 
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Figure 8.   Example Target Detections. 

 
 

Additional data for ASOM include the latitude/longitude 

of the nodes, data for the roads (start/finishing nodes, 

length of the road, and latitude/longitude position to 

display the red triangle representing probability), direct 

distances between nodes (as a UAV can fly them), and the 

Markov movement matrix for each target.   
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IV. FIELD EXERCISES 

We performed two field experiments in February and May 

2008 at Camp Roberts, California using multiple Raven and 

Buster UAVs.   

 An important part of ASOM is the ability to take into 

consideration the needs of the operator and the possibility 

to react to unexpected situations.  Several features of ASOM 

would not exist if we did not field test the decision aid 

and receive feedback from UAV operators.  This allows ASOM 

to handle realistic scenarios in multiple environments. 

A. FEBRUARY EXPERIMENT 

The purpose of the February experiment was to test a 

preliminary version of ASOM and make sure the results passed 

a reality check.  A secondary purpose was to see what could 

be improved in the underlying code and what changes were 

necessary to make ASOM run smoother.  There were several 

weather restrictions that limited the experiment, but 

overall the objective of the experiment was accomplished.   

We ran our preliminary model with 5 moving targets 

(cars) traveling at 25 miles per hour and three searchers: 

one ground team, one Raven UAV, and one Buster UAV.  ASOM 

isolated the possible location of the targets to one side of 

the map, as seen in Figure 9, and was correct in its 

judgment of possible target locations.  In this preliminary 

version of the model, aggregate probability is given by a 

color scale rather than a size, with green representing the 

lowest probability, fading to yellow, then finally to red 

representing the highest probability.  The nodes are still 
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represented by circles, but the roads are represented by 

straight lines between the nodes. 

Figure 9.   February Experiment Final Probability Map. 

 
 

There were several important lessons learned from this 

experiment.  The first stemmed from the fact that our 

approach was greedy in its search patterns.  At this point, 

the searchers appeared to find a target and track it because 

this resulted in the largest reward while sacrificing 

knowledge of the other targets.  This is not optimal if the 

objective is to maximize total knowledge of the system.  We 

remedied this by creating the threshold input.  As described 

earlier, this is equivalent to saying you “know” where a 

target is located if its maximum probability mass at any 

location is greater than the threshold probability.   
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Another change in ASOM was how to make the model more 

user-friendly than the current MATLAB code and input 

techniques.  This was handled with a new Excel interface as 

discussed in the previous chapter.  The usefulness of the 

interface is discussed in the May experiment section.   

B. MAY EXPERIMENT 

The goal of the May experiment was to test the updated 

code, which included the target threshold constraints to 

discourage a greedy policy which tracked detected targets.  

We implemented the Excel interface for the first time and 

evaluated its utility and functionality.  The experiment was 

run with four targets (again, cars traveling at 25 miles per 

hour) and three searchers, one Buster UAV and two Raven 

UAVs. 

The first day’s trials led to the creation of the 

disabled node.  This node is an abstract location where 

searchers are placed when they are refueling, damaged, or 

unusable.  This allows ASOM to function in a larger set of 

scenarios as well as take into account unexpected events 

where a UAV becomes disabled.  For example, in the first 

trial, the Buster UAV lost contact, deployed its parachute, 

and was unable to continue its search.  The Raven UAVs also 

ran out of gas sooner than expected and had to land and 

refuel, thus cutting the experiment runs short. 

The second day’s trial utilized the disabled node 

update.  This trial was extended to a nearly three hour 

scenario where UAVs were forced to refuel, thus testing the 

capabilities of the disabled node.   
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Figure 10 shows the locations of all of the targets and 

searchers as well as the color of the vehicles detected.  

The green and tangerine colored boxes represent actual 

target detections by the searchers.  Yellow boxes represent 

possible failed detections, meaning the timing of the 

searcher or target leaving and the other arriving on 

location were close, but there could have been a failed 

detection.  A red box means a target and a searcher were 

each at the same location, but there was no detection made 

at that time.  From this, we calculated an estimate of the 

probability of detection with appropriate 95% confidence 

interval (0.46 +/- 0.20).  Since the data set is relatively 

small, the confidence interval on the probability of 

detection is very wide.  In any case, this might give us a 

better estimate on the actual probability of detection for 

these UAVs.  In ASOM, the probability of detection is 

derived from the random search formula and is dependent on 

time as well as searcher characteristics, but it is 

generally higher than the above empirical estimate.   
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Figure 10.   May Experiment Detection Results. 

 
  

Failed detections could stem from any combination of 

three sources of error.  The searchers were at incorrect 

locations, the targets were at incorrect locations, or our 

estimation of the probability of detection for searchers 

finding targets was inaccurate.  The problem of searchers 
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being at wrong locations seems unlikely because they are 

given GPS coordinates to fly to, and their locations are 

displayed on a screen.  It is possible the targets (who were 

people driving around in cars) did not know the Camp Roberts 

map as well as we had hoped and were actually driving to 

wrong locations.  The most likely source of error was that 

the camera feeds on the UAVs were scrambled enough that the 

operators had a hard time identifying targets, thus lowering 

our probability of detecting a target given a searcher and 

target were at the same location.  

 One other interesting aspect of having a long trial 

versus several short trials is a measurement of the 

situational awareness of the searchers.  Specifically, the 

awareness of target location went in cycles.  Examining 

Figures 11 and 12, the first is a picture showing UAV 

locations and target location probabilities half way through 

our second day’s trial.  The searchers appear to have locked 

onto the locations of the four targets.  The second figure 

shows the end of the scenario where the searchers have some 

idea, but not as good as the previous screenshot.  This 

shows that searcher knowledge of target location went in 

cycles; the searchers had the targets pinned down, then the 

probability mass spread out, and eventually the searchers 

would pin down the targets again.  This could also be 

explained by a high estimate of the probability of detection 

because it would eliminate too much mass from a location 

that was just searched when there should still be a 

significant probability mass at that location.  If this 

estimate were lowered, it would take longer for the 

searchers to isolate the target location, but it would be 
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more accurate and unlikely to go through the cycle of target 

knowledge that was experienced in this trial. 

Figure 11.   Mid-Scenario Probability Map. 
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Figure 12.   May Experiment Final Probability Map. 

 
 

The second day’s trial was markedly improved.  The 

small problems we experienced in day 1 were fixed for day 2 

and the long trial ran smoothly.  During the trial, the UAVs 

operated without any mishaps.  The disabled node was used 

for refueling purposes and worked according to plan.  The 

results from day 2 were informative and the Excel interface 

made ASOM easier to understand, even for the people 

observing the experiment.  After implementing the target 

thresholds, the searchers were able to concentrate their 

efforts on finding targets whose location probabilities were 
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spread out.  The behavior of the searchers when they did not 

concentrate on searching nodes with recently found targets 

resulted in a noticeable improvement of situational 

awareness when compared to the greedier ASOM.  Even after 

these updates, there are still a few recommendations for 

future work on ASOM. 
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V. FINAL THOUGHTS 

A. CONCLUSIONS 

We have created a decision aid that recommends 

efficient search plans for multiple UAVs searching for 

multiple moving targets, possibly of different types.  This 

decision aid demands few assumptions concerning the desired 

search scenario. ASOM is general enough to support many 

military or civilian search situations.  It can be used to 

search for terrorists moving between safe-houses and 

friendly pilots who have been shot down in a wooded area.  

On the civilian side, it could be used for search and rescue 

missions after natural disasters or to search for lost 

hikers in the mountains. ASOM can also incorporate 

stationary searchers or targets and can even keep track of 

different types of targets.  The decision aid is capable of 

being altered for a greedy search to keep track of targets 

once they are found, or to go after other targets that have 

not been found in a while, or at all. 

Today, UAVs are increasingly used in combat situations.  

Their importance in future warfare will continue to grow and 

they are likely to become more important in many different 

civilian applications.  Creating efficient search plans for 

these UAVs is the problem we chose to solve, but there are 

many other topics involving efficient UAV routing.  There is 

a necessity for work such as that seen in this thesis and 

the importance of such work guarantees many different 

avenues for future research in this area.   
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B. FUTURE WORK 

Currently, there are several aspects of ASOM that could 

be improved.  Firstly, we did not take the wind speed and 

direction into account when determining flight times for 

UAVs to reach destination nodes.  This update would involve 

creating a dynamic set of distance matrices that vary with 

wind speed and direction.  This will make the calculations 

of arrival and search times far more accurate than the 

constant distances that we used in the calculations.  While 

the wind factor is a relatively simple change to the model, 

it will dramatically increase the accuracy based on the 

amount of work required.   

The second change would be to do some more calculations 

and experiments to get better estimates on the probability 

of detection for different UAVs.  The values we used were 

estimated on past experience, but we believe them to be too 

high of an estimate.  If more research was completed and 

better estimates found, again the accuracy of the model 

would be increased with a relatively small amount of work 

required, albeit somewhat time-consuming.   

The third change would require a bit more programming 

experience, but in the end, could create the most accurate 

decision aid.  This change would be to try and do more than 

the two-step look-ahead problem.  Not to look further into 

the future, but to create an expected future reward based on 

the current state after the two-step look-ahead.  This would 

be a way of estimating any further look-ahead based on the 

state as there are diminishing returns on looking further 

into the future and the computation time increases rapidly.  

This expected reward on future searches based on the state 
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is a good way to avoid the problem of computational 

complexity, yet get a more accurate solution. 

A fourth possible change would be to try and 

incorporate target dependence into the model.  Currently, 

the model assumes independent movement of the targets.  This 

assumption makes computing the marginals based on movement 

from the Markov process easier than if the targets’ 

movements were dependent on one another.  Getting rid of 

this assumption would be a somewhat difficult task as that 

part of the updating phase would have to be reconstructed, 

but it would be a great way to extend our work on ASOM. 

An extension to include different scenarios is to 

examine the possibility of tracking criminals after a 

robbery along city streets.  In this scenario, searchers 

would first concentrate their search around the robbery 

location, but as time increases the graph of nodes and arcs 

would be forced to expand to represent the criminals getting 

away.  There could even be an “escape node” to represent the 

criminals getting out of the area or exceeding the time the 

police are willing to search. 
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APPENDIX I: ADDITIONAL EXPRESSIONS FOR FORMULATION 

Random Variables and Sets 

 ζ   Random variable with a (0,1)uniform  

distribution. 

 

The following random data sets, tDET , tC , and , ,d c tCOMBO  are 

used in the calculation of target detections.  ASOM receives 

all of the detections as inputs during time t.  ASOM must 

then determine the probability of each different possible 

scenario of detections occurring as explained in the model 

formulation.  These calculations are handled by appropriate 

functions below, these are the random sets required for 

those calculations. 

 

 ,b tDET   Set of the number of detections of type b at 

time t, b B∈ , t T∈ , , , , ,
,

{1, 2, ..., }b t i j b t
i j

DET D= ∑ , 

,b td DET∈ . 

,b tC   Set of the number of different permutations 

of target detections of type b at time t, 

b B∈ , t T∈ , ( ), ,{1, 2,..., !/ !}b t b tC U U DET= − , ,b tc C∈ . 

, , ,d c b tCOMBO  Matrix of the different permutations of 

target detections of type b at time t.  

Detection number d of permutation number c 

during time t, ,b tc C∈ , ,b td DET∈ , b B∈ , t T∈ . 
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Model Formulation Functions 

 

( ), , , , , , , , , , , , , , ,
, ,

( , ) (max(0, ))t t t i j t i j m t m t i j m j j t i j m t j m m t
i j m

R S X AGG x z PD AGG x PDET STEP y= + −∑   

Reward for all searchers traveling between 

node i and j, m M∈ , ,i j I∈ .  The reward 

function is an important part of the model 

because it is what the model intends to 

optimize by changing the possible decision 

variables. 

( ), , , , , , , , , , , , , , , , , , , ,
,

( , ) (max(0, ))ND ND ND ND
m t m t m t i j m t i j m t m t i j m j j m t i j m t j m m t

i j

R S V AGG x z PD AGG x PDET STEP y= + −∑
Reward for searcher m traveling between node 

i and j, m M∈ , ,i j I∈ .  This is the function 

used for the future reward where the state 

will depend on the previous moves of just one 

searcher. 

.0625
, ( ) 1

m mSPEED SW

i mPDET e
τ

πτ
−

= −  

Probability of detection at node i by 

searcher m, dependent on amount of time 

searched,τ , i I∈ , m M∈ .  This is the 

function used to determine probability of 

detection at a node, rather than on a road 

(handled earlier in the data section). 
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( )
( )

, , , , , , , , ,

, , ,
, , , , , , , , , ,

1
max( ) 1

( , ) 1 (max(0, ))

1

i j u t i j m t m t i j m

u t
i j mu t t j j u t i j m t j m m t

MARG x z PD
MARG

TOTAL S X uMARG x PDET STEP y

otherwise

• •

⎧ ⎛ ⎞− +
⎪ ⎜ ⎟ <⎪= ∀⎜ ⎟⎨ − −⎝ ⎠⎪
⎪⎩

∑

Sub-function of , , , ( , )i j u t t tNEGATIVE S X  and 

, , , , ,( , )
i j u m t

ND
t m tNEGATIVE S V .  It represents the 

normalizing factor, meaning it is the sum of 

all the posterior probabilities after a 

Bayesian update.  If the variable array input 

is for a one searcher m (as with the input 

,m tV ), the summation over variable m is only 

over the single input value m. 

( )

( )

, , , , ,

, , ,

, , , , ,

1 1

( , )
( , ) , ,

1 1 (max(0, ))

( , )

i j u t i j m
m

u t t
i j u t t t

i j u t j m m t
m

u t t

MARG PD
i j

TOTAL S X
NEGATIVE S X i j u

MARG PDET STEP y
i j

TOTAL S X

⎧ ⎛ ⎞
− −⎪ ⎜ ⎟

⎝ ⎠⎪ ≠
⎪⎪= ∀⎨

⎛ ⎞⎪ − − −⎜ ⎟⎪ ⎝ ⎠ =⎪
⎪⎩

∏

∏

 

Function to update probability maps for 

failed detection via Bayesian updating.  

Takes the posterior probabilities and 

normalizes by dividing by the sum of all 

posterior probabilities. 

( )

( )
, , , ,

, , , , ,

,
,

, , , , ,

,

1 1

( , )
( , ) , ,

1 1 (max(0, ))

( , )

i j u m t

i j u t i j m
m

u t m tND
t m t

i j u t j m m t
m

u t m t

MARG PD
i j

TOTAL S V
NEGATIVE S V i j u

MARG PDET STEP y
i j

TOTAL S V

⎧ ⎛ ⎞
− −⎪ ⎜ ⎟

⎝ ⎠⎪ ≠
⎪⎪= ∀⎨

⎛ ⎞⎪ − − −⎜ ⎟⎪ ⎝ ⎠ =⎪
⎪⎩

∏

∏

 

Function to update probability maps for 

failed detection via Bayesian updating for 

look-ahead.  Heuristic approach only takes 

into account the move of single searcher m.  
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, , , , , , ,1 ( ) , ,i j u t t i j u t i jTEMP S MARG MATRIX i j u= ∀  

Sub-function of , , , ( )i j u t tMARKOV S  and 

, , , , ,( )ND ND
i j u m t m tMARKOV S .  It represents the probability 

that a target at node i will remain at node i 

for the next timestep. 

, , ,
, ,

| , ,

2 ( ) ,
max( ,1)

i j u t
j u t t

i i j i j u

MARG
TEMP a S j u

TTS≠

= ∀∑  

Sub-function of , , ,2 ( )i j u t tTEMP S .  It represents 

the additional probability each node will 

accumulate for the next timestep by the mass 

coming in from all adjacent roads. 

, ,
, , ,

2 ( )
2 ( ) , ,

0
j u t t

i j u t t

TEMP a S i j
TEMP S i j u

i j
=⎧

= ∀⎨ ≠⎩
 

Sub-function of , , , ( )i j u t tMARKOV S  and 

, , , , ,( )ND ND
i j u m t m tMARKOV S .  It extends the previous 

function, , ,2 ( )j u t tTEMP a S , to account for the 

fact that only nodes, not arcs, have this 

property. 

, , , , ,
, , ,

, ,

(1 ) max( 1,0)
3 ( ) , ,

max( ,0)
i j u i j u t

i j u t t
i j u

TURN TTS MARG
TEMP S i j u

TTS
− −

= ∀  

Sub-function of , , , ( )i j u t tMARKOV S  and 

, , , , ,( )ND ND
i j u m t m tMARKOV S .  It represents the probability 

of target on arc ( , )i j  deciding to continue on 

that arc with (1 )TURN−  probability. 
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, , , , ,
, , ,

, ,

max( 1,0)
4 ( ) , ,

max( ,0)
j i u j i u t

i j u t t
j i u

TURN TTS MARG
TEMP S i j u

TTS
−

= ∀  

Sub-function of , , , ( )i j u t tMARKOV S  and 

, , , , ,( )ND ND
i j u m t m tMARKOV S .  It represents the probability 

of a target on arc ( , )i j  deciding to turn 

around with TURN  probability. 

, , , , , ,
, , ,

, , , , , , , , ,

1 ( ) 2 ( )
( ) , ,

1 ( ) 3 ( ) 4 ( )
i j u t t i j u t t

i j u t t
i j u t t i j u t t i j u t t

TEMP S TEMP S i j
MARKOV S i j u

TEMP S TEMP S TEMP S i j
+ =⎧

= ∀⎨ + + ≠⎩
 

Function to update probability maps for 

target movement based on Markov matrix.  It 

incorporates all sub-functions to take into 

account for all probability mass leaving and 

coming into arc ( , )i j . 

, , , , , , , ,
, , , , ,

, , , , , , , , , , , ,

1 ( ) 2 ( )
( ) , , ,

1 ( ) 3 ( ) 4 ( )

ND ND
i j u t m t i j u t m tND ND

i j u m t m t ND ND ND
i j u t m t i j u t m t i j u t m t

TEMP S TEMP S i j
MARKOV S i j u m

TEMP S TEMP S TEMP S i j
⎧ + =⎪= ∀⎨ + + ≠⎪⎩

 

Function to update probability maps for 

target movement based on Markov matrix for 

the second step look-ahead.  It incorporates 

all sub-functions to take into account for 

all probability mass leaving and coming into 

arc ( , )i j .  The only difference between this 

function and the normal MARKOV function, is 

that this one is performed for each searcher 

m, and the current input of the state will 

only be updated for the moves of searcher m. 
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, , ,

1

, , , 1, 2, , 1, 2, ,
1 1 2 1 1 1 2 1, , , , , , ,1 ( , ) , , ,

1

d c b t

j ji i

i j COMBO t k k b t k k b t
k k k ki j d c t t b t

MARG D d D
PR S D i j d c

otherwise

−

= = = =• •

⎧
< ≤⎪= ∀⎨

⎪⎩

∑∑ ∑∑

Sub-function of , , , , , ,2 ( , )i j c t t b tPR S D• • .  It 

calculates the probability of seeing a 

particular target of a particular combination 

c for detection d of that combination for 

each arc ( , )i j . 

, , , , , , , , , , , , ,2 ( , ) 1 ( , ) , ,i j c t t b t i j d c t t b t
d

PR S D PR S D i j c• • • •= ∀∏  

Sub-function of , , , ,3 ( , )c t t b tPR S D• • .  It determines 

the total probability of seeing all 

detections of a particular combination for 

each arc ( , )i j . 

, , , , , , , , , , ,
,

3 ( , ) 2 ( , )c t t b t i j c u t t b t
i j

PR S D PR S D c• • • •= ∀∏  

Sub-function of , , , ,4 ( , )c t t b tPR S D• • .  It determines 

the total probability (no normalization) of 

seeing each combination of target detections 

by multiplying over i and j. 

, , , , , , ,
, , , ,

, , 1, , , , ,
1

3 ( , )
4 ( , )

3 ( , )
t

i j c u t t b t
c t t b t

i j c u t t b t
c C

PR S D
PR S D c

PR S D
• •

• •
• •

∈

= ∀
∑

 

Sub-function of , , , , ,( , )d c t t b tCHOICE S D• • .  It 

normalizes the calculation of , , , ,3 ( , )c t t b tPR S D• • . 
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1

, , , , , , , 1, , , , ,
1 1 1 1, , , , ,

3 ( , )  3 ( , )
( , ) ,

0

c c

d c t c u t t b t c u t t b t
c cd c t t b t

COMBO PR S D PR S D
CHOICE S D d c

otherwise

ζ
−

• • • •
= =• •

⎧ < <⎪= ∀⎨
⎪⎩

∑ ∑

Sub-function of , , , ,2 ( , )d t t b tCHOICE S D• • , ζ  denotes 

a random number drawn from a uniform(0,1) 

distribution.  It determines the actual 

scenario of target detections that occurred 

according to the model based on this random 

draw and the probabilities of each scenario 

occurring by setting all other combination 

values to 0. 

, , , , , , , , ,2 ( , ) ( , )d t t b t d c t t b t
c

CHOICE S D CHOICE S D d• • • •= ∀∑  

Sub-function of , , , , , , ,1 ( , )i j d u t t b tPOS S D• • .  It gets rid 

of all other combinations except the values 

of the one that actually occurred. 

( )

1

1, 2, , 1, 2, ,
1 1 2 1 1 1 2 1

, , , , , , ,
, , , ,

& &
1

1 ( , ) , , ,
2 ( , )

0

j ji i

k k b t k k b t
k k k k

i j d u t t b t
d t t b t

D d D

POS S D i j d u
u CHOICE S D

otherwise

−

= = = =

• •
• •

⎧ ⎛ ⎞
< ≤⎪ ⎜ ⎟

⎝ ⎠⎪= ∀⎨
=⎪

⎪
⎩

∑∑ ∑∑
 

Sub-function of , , , , , ,2 ( , )i j u t t b tPOS S D• • .  It stores 

the value 1 for all locations that a 

detection occurred at arc ( , )i j  for target u 

and detection d and zero otherwise. 

, , , , , , , , , , , , ,2 ( , ) 1 ( , ) , ,i j u t t b t i j d u t t b t
d

POS S D POS S D i j u• • • •= ∀∑  

Sub-function of , , , , , , ,1 ( , )i j u b t t tPOSTYPE S D• • • .  It sums 

over the detection number variable so we have 

a 1 if a detection occurred on arc ( , )i j  for 

target u. 
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, , , 1, 1, , , , ,
1, 1

, , , , , , ,

, , , , , ,

2 ( , ) 1
1 ( , ) , , ,

2 ( , )

i j u t i j u t t b t
i j I

i j u b t t t

i j u t t b t

MARG POS S D
POSTYPE S D i j u b

POS S D otherwise

• •
∈

• • •

• •

⎧ <⎪= ∀⎨
⎪⎩

∑
 

Sub-function of , , , , , , ,2 ( , )i j u b t t tPOSTYPE S D• • • .  It 

sets the value equal to the marginal value if 

no detection occurred and 1 if a detection 

did occur (to spike the probability) for each 

target type b. 

, , , , , , ,
, , , , , , ,

1 ( , )
2 ( , ) , , ,

0
i j u b t t t u

i j u b t t t

POSTYPE S D TYPE b
POSTYPE S D i j u b

otherwise
• • •

• • •

=⎧
= ∀⎨
⎩

 

 Sub-function of , , , , , ,( , )i j u t t tPOSITIVE S D• • • .  It sets 

the target marginals to the correct values 

only if the current target being looked at, 

u, matches the current type, b. 

, , , , , , , , , , , , ,( , ) 2 ( , ) , ,i j u t t t i j u b t t t
b

POSITIVE S D POSTYPE S D i j u• • • • • •= ∀∑  

Function to update probability maps for 

positive detection via Bayesian updating.  It 

sums over the probabilities for different 

types of targets. 
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APPENDIX II: MATLAB FUNCTION DESCRIPTIONS 

A. STEP.M FUNCTION 

This function is the main workhorse that runs the 

algorithm.  It does all calculations, either inside the 

function, or calling other functions to do the work for it.    

It first updates the target marginals by running the 

positive Bayesian updates (detections) for different target 

types (PositiveBayesianPermutations.m).  The function then 

makes all essential updates to the probability of detection 

at each arc ( , )i j , including the nodes and connecting arcs 

for any stationary searchers using the locations of each 

searcher.  After these steps, the function updates the 

target marginals for negative Bayesian updates 

(NegativeBayesian.m), the traditional application of Bayes’ 

theorem.  Next, the function updates for target movement 

from the Markov process (MarginalsMovement.m) to account for 

the fact that targets could have moved during the current 

timestep.  Finally, the function determines which moves to 

recommend for the next timestep with the current state and 

detection matrix (MultiSearcherMove.m). 

B. INITIALIZEMARGINALS.M FUNCTION 

This function only serves a purpose for the actual 

experiment.  It is a way to initialize the target marginals 

before an experiment begins.  It takes as an input, the 

number of targets that are going to be involved in the 

experiment and returns the resulting initial target 

marginals.  For our experiments, we assumed a target was ten 
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times more likely to start at a node than on a road, but 

this value is completely dependent on the conditions of the 

scenario.   

The function calculates these initial conditions by 

creating an integer count on each arc ( , )i j  to represent how 

likely it is to start there.  Giving a value of 10 to each 

node, 1 to each road, and zero at every other ( , )i j .  It then 

divides by the sum total of the entire matrix to convert 

these counts into probabilities.  Finally, it sets these 

probabilities for all targets. 

C. AREASEARCH.M FUNCTION 

This is a simple function that determines the 

probability of detection at a node given the time spent 

searching at the node as well as the speed and sweepwidth of 

the searcher.  It does this by using the random search 

formula assuming a circular search area of radius one- 

quarter mile around the node.  We assumed a random search to 

calculate a lower bound on the actual probability of 

detection.  This function is used in the SearcherMove.m 

function to help determine how much probability mass would 

be collected by a certain move.  

D. SEARCHERMOVE.M FUNCTION 

This function takes in the state and characteristics of 

one particular searcher as well as a list of nodes not 

available for this searcher at this time.  It returns the 

searchers best first and second moves (second move refers to 

the move in the next timestep, which will be reoptimized 

based on the actual state during the next timestep), as well 
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as how much probability mass these moves collect and whether 

this sequence of moves takes both timesteps, thus 

constraining the options for the next timestep’s move. 

The function works by looping through all nodes and 

checks which ones the searchers are able to transit or 

conduct a road search to during the next timestep.  It 

accomplishes this by using two nested “for” loops.  It then 

updates the target marginals with a negative Bayesian update 

function, thus inherently assuming no detections were made 

in this timestep in order to get a more accurate estimate of 

the state for the next timestep (this assumption is not made 

during the reoptimization of the future move, it is merely 

made now for a more accurate representation of the future 

state).  The function then uses two more nested “for” loops 

inside of the other two to calculate every sequence of two 

moves (still including the option of either transiting or 

searching the road) and determines the reward of doing such 

a sequence of moves.  If the sequence of moves the function 

is currently examining is better than any previous sequence, 

it stores these moves as the current best.  It then repeats 

this process until all moves have been checked.  

E. MULTISEARCHERMOVE.M FUNCTION 

This function takes in the number of searchers and 

their characteristics as well as the state at the current 

time.  It returns the recommended move for the current 

timestep for each searcher and whether or not that searcher 

will be blocked (constrained to continue along that search) 

for the next timestep.   
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The function accomplishes this by repeatedly calling 

the SearcherMove.m function with different restrictions for 

each unconstrained searcher (searchers can be constrained if 

their previous move limits their next move, i.e., they are 

still en route to their previous destination, or if they are 

currently inactive, i.e., out of fuel or down).  The 

function first limits constrained searchers to their 

appropriate moves and then updates the restricted movement 

list to incorporate these moves.  It will get the optimal 

move for each searcher by running the SearcherMove.m 

function and storing these optimal moves.  If there are no 

conflictions, these are the optimal moves for the searchers; 

if there are conflictions, the function will then update the 

list of unavailable moves for each searcher and determine 

the best scenario possible using these conflicting 

searchers.  It will repeat this process until there are no 

conflictions among the searchers and this will be the 

recommended movements for the next timestep.  This iterative 

process of eliminating possible moves and recalculating 

optimal moves for each searcher can save orders of magnitude 

in runtime over the total enumeration method for all 

searchers combined which tries many moves that are nowhere 

near optimal strategies.  Even in the TTLP, total 

enumeration for a real-time experiment can take too long, 

thus this iterative optimal move process is an extremely 

important process of the ASOM algorithm. 

F. POSITIVEBAYESIANPERM.M FUNCTION 

This function takes in the current target marginals and 

a matrix of all the detections.  It returns the resulting 

target marginals after updating for the positive detections 
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in the current timestep.  It is only appropriate to use this 

function when all targets are of the same type, the more 

general type of this function and the one that is used in 

practice is PositiveBayesianPermutations.m. 

This function works by creating a matrix of all 

different (unordered) combinations of targets that could 

have been seen during the timestep using the nchoosek.m 

MATLAB library function.  Next, for each different 

combination (each row of the previously created matrix) it 

creates all different permutations (ordered) of that 

combination using the perms.m MATLAB library function.  It 

combines all of these different permutations into one big 

matrix of all possible permutations for the target 

detections of the current timestep.  It is important to 

notice that these permutations represent all of the 

different possible scenarios of target detections.  The 

function then determines the probability of each of these 

scenarios occurring by multiplying together the target 

marginals of each detected target at the location it was 

supposedly detected then normalizing by dividing each 

probability by the sum total of all probabilities.  After 

determining and normalizing the probabilities, the function 

decides which scenario actually occurred (according to the 

model/algorithm’s viewpoint) based on a random number draw.  

Now that the algorithm has the scenario that occurred picked 

out, it updates the target marginals for all targets that 

were detected to be one at the arc they were detected and 

zero everywhere else, thus spiking the probability of those 

targets. 
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G. POSITIVEBAYESIANPERMUTATIONS.M FUNCTION 

This function takes in the current target marginals and 

an array containing the information of each target type, as 

well as a list of all detection locations and the type of 

detection made at each location.  It returns the resulting 

target marginals after all positive Bayesian updates have 

been made. 

The function works by creating new temporary target 

marginal matrices with an extra index representing all 

possible types of targets.  This will create many blank (by 

blank, we mean no nonzero entries) levels of the target 

marginals of each type, as there will only be nonzero 

entries if the target type of the marginals index matches 

the actual type of the target.  In a similar manner, the 

function also creates a temporary detection matrix with an 

extra index to indicate detections of a certain type of 

target.  Next, the function calls the PositiveBayesianPerm.m 

function for each type separately, meaning where the 

PositiveBayesianPerm.m function is expecting the input of 

the target marginals and a matrix of detections, we only 

give it one level of the temporary target marginals and 

temporary detection matrix by holding the type index fixed 

at its current value and looping through all possibilities.  

This updates the temporary target marginals for each type 

separately, but since all values were zero except for 

targets whose type matched the current type index, we simply 

have to sum over the type index to return the final value of 

the actual target marginals updated for positive detections. 
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H. NEGATIVEBAYESIAN.M FUNCTION 

The NegativeBayesian.m function is the Bayesian update 

for nondetection function.  This is the traditional use of 

Bayesian updating as described in the introduction.  It 

takes all values of target marginals where there was no 

detection and updates them for the failed detection.  The 

function returns the updated values of the target marginals. 

The function accomplishes this by looking at every 

value of the target marginals that is less than 1, meaning 

if there was a detection there (thus giving a probability 

spike equal to 1), do not apply negative Bayesian updating.  

If the value of the target marginal is less than 1, the 

function updates this probability to its previous value 

multiplied by the probability of failed detection (1 - 

probability of detection).  After updating the probability 

of each target marginal, the function normalizes each value 

by dividing it by the sum total of the new probabilities.  

The result is the new target marginals updated for failed 

detections. 

I. MARGINALSMOVEMENT.M FUNCTION 

The MarginalsMovement.m function takes in the current 

target marginals as well as the speed of each of the targets 

and returns the updated values of the target marginals after 

incorporating possible movement for the current timestep 

based on the Markov movement matrix.   

The function accomplishes this by looping through each 

target and another loop through each arc ( , )i j  for that 

target.  First, it updates every arc to the new value based 

on movement out of it for the next timestep by multiplying 
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by the movement matrix directly.  Next, it updates the 

values of nodes that have some probability moving into them 

from adjacent roads.  After that, it multiplies the values 

on roads by (1 )TURN−  probability to lessen the values on 

arcs where the target could possibly turn around.  Finally, 

on every arc where it lowered the probability to account for 

targets turning around, it raises the probability on the 

reverse arc by the corresponding amount. 

J. MOVEMENT.M FUNCTION 

The Movement.m is one of two functions to help model 

the target movement for experimentation.  It is not actually 

used in the step function, nor during the actual experiment, 

but rather to aid in the generation of random routes for 

targets to travel during experimentation.  It is called in 

the TargetMovement.m function to return the next move of a 

target that needs a new destination.  It takes in the old 

position of the target and the Markov movement matrix.  It 

returns the new destination node of that target. 

This function works by looking at the Markov movement 

matrix in the row of the starting position of the target 

(which will sum to 1, by definition) and making a random 

draw from a uniform(0,1) distribution.  With this random 

number, the function returns the column of the number whose 

cumulative probability matches with the random number drawn. 

K. TARGETMOVEMENT.M FUNCTION 

The second of two functions made to model target 

movement for experimentation.  It takes in the amount of 

time the targets will move around, the number of targets, a 
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speed array containing the speed of each target, and the 

starting positions of the targets.  It returns the final 

positions of the targets after it has moved for the amount 

of time input.  The output matrix has one row for each 

target and three columns with the first two representing the 

start and finish nodes of the current arc the target is on 

(if start and finish nodes are equal, the target is 

stationary at that node), and the third being how many 

timesteps the target has remaining on that arc before 

completing it.  If the user would like to see every movement 

in the sequence, just repeatedly run the function with end 

time equal to one timestep and update the start positions 

with the output positions from the previous step. 

This function works by entering a “while” loop until 

the simulation time reaches the end time input.  It then 

loops through each target to update their positions one at a 

time.  If the current target is stationary at a node, it 

calls the movement function to get a new destination node 

(which could be to remain at the same node for another 

timestep), otherwise the target remains on the road it was 

previously located.  It then makes a draw from a 

uniform(0,1) distribution, if this random draw is less than 

the turn probability, the function reverses the arc and 

number of moves remaining to complete that arc, otherwise 

the function only updates the number of moves remaining 

until completion of its current arc.  Finally, the function 

stores all of the new information in the output matrix and 

increments time for the next timestep.   
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