

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

ALLOCATION OF UAV SEARCH EFFORTS USING
DYNAMIC PROGRAMMING AND

BAYESIAN UPDATING

by

Kevin K. McCadden
Christopher A. Nigus

June 2008

 Thesis Advisor: Johannes O. Royset
 Second Reader: Moshe Kress

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Allocation of UAV Search
Efforts using Dynamic Programming and Bayesian
Updating
6. AUTHOR(S) Kevin McCadden and Christopher Nigus

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and
do not reflect the official policy or position of the Department of Defense or the U.S.
Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

As unmanned aerial vehicle (UAV) technology and availability improves, it becomes

increasingly more important to operate UAVs efficiently. Utilizing one UAV at a time
is a relatively simple task, but when multiple UAVs need to be coordinated, optimal
search plans can be difficult to create in a timely manner. In this thesis, we create
a decision aid that generates efficient routes for multiple UAVs using dynamic
programming and a limited-look-ahead heuristic. The goal is to give the user the best
knowledge of the locations of an arbitrary number of targets operating on a specified
graph of nodes and arcs. The decision aid incorporates information about detections
and nondetections and determines the probabilities of target locations using Bayesian
updating. Target movement is modeled by a Markov process. The decision aid has been
tested in two multi-hour field experiments involving actual UAVs and moving targets on
the ground.

15. NUMBER OF
PAGES

87

14. SUBJECT TERMS Unmanned Aerial Vehicle, Search Model, Dynamic
Programming, Bayesian Updating, Simulation, Multiple Searcher
Routing.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

ALLOCATION OF UAV SEARCH EFFORTS USING
DYNAMIC PROGRAMMING AND BAYESIAN UPDATING

Kevin K. McCadden

Ensign, United States Navy
B.S., United States Naval Academy, 2007

Christopher A. Nigus

Ensign, United States Navy
B.S., United States Naval Academy, 2007

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED SCIENCE
(OPERATIONS RESEARCH)

from the

NAVAL POSTGRADUATE SCHOOL
June 2008

Authors: Kevin K. McCadden

 Christopher A. Nigus

Approved by: Johannes O. Royset
Thesis Advisor

Moshe Kress
Second Reader

James N. Eagle
Chairman, Department of Operations Research

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

As unmanned aerial vehicle (UAV) technology and

availability improves, it becomes increasingly more

important to operate UAVs efficiently. Utilizing one UAV at

a time is a relatively simple task, but when multiple UAVs

need to be coordinated, optimal search plans can be

difficult to create in a timely manner. In this thesis, we

create a decision aid that generates efficient routes for

multiple UAVs using dynamic programming and a limited-look-

ahead heuristic. The goal is to give the user the best

knowledge of the locations of an arbitrary number of targets

operating on a specified graph of nodes and arcs. The

decision aid incorporates information about detections and

nondetections and determines the probabilities of target

locations using Bayesian updating. Target movement is

modeled by a Markov process. The decision aid has been

tested in two multi-hour field experiments involving actual

UAVs and moving targets on the ground.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. MOTIVATION AND PROBLEM DEFINITION1
B. FUNDAMENTAL CONCEPTS3

1. Bayesian Updating3
2. Dynamic Programming5

C. PAST WORKS ...6
D. STRUCTURE OF THESIS AND CHAPTER OUTLINE9

II. MODEL ..11
A. MODEL DEVELOPMENT11
B. DYNAMIC PROGRAMMING FORMULATION OF STTLP15

III. IMPLEMENTATION ...25
A. MODEL IMPLEMENTATION25
B. HEURISTIC ACCURACY25
C. EXCEL INTERFACE27

IV. FIELD EXERCISES ..33
A. FEBRUARY EXPERIMENT33
B. MAY EXPERIMENT35

V. FINAL THOUGHTS ...43
A. CONCLUSIONS43
B. FUTURE WORK44

APPENDIX I: ADDITIONAL EXPRESSIONS FOR FORMULATION47
APPENDIX II: MATLAB FUNCTION DESCRIPTIONS55

A. STEP.M FUNCTION55
B. INITIALIZEMARGINALS.M FUNCTION55
C. AREASEARCH.M FUNCTION56
D. SEARCHERMOVE.M FUNCTION56
E. MULTISEARCHERMOVE.M FUNCTION57
F. POSITIVEBAYESIANPERM.M FUNCTION58
G. POSITIVEBAYESIANPERMUTATIONS.M FUNCTION60
H. NEGATIVEBAYESIAN.M FUNCTION61
I. MARGINALSMOVEMENT.M FUNCTION61
J. MOVEMENT.M FUNCTION62
K. TARGETMOVEMENT.M FUNCTION62

LIST OF REFERENCES ..65
INITIAL DISTRIBUTION LIST69

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Example of Graph.................................2
Figure 2. A Priori Target Distribution.....................4
Figure 3. Posterior Target Distribution....................5
Figure 4. Screenshot of Excel Interface...................27
Figure 5. Example Searcher Input..........................29
Figure 6. Example Target Input............................29
Figure 7. User steps in ASOM..............................30
Figure 8. Example Target Detections.......................31
Figure 9. February Experiment Final Probability Map.......34
Figure 10. May Experiment Detection Results................37
Figure 11. Mid-Scenario Probability Map....................39
Figure 12. May Experiment Final Probability Map............40

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Heuristic Accuracy Table........................26
Table 2. Heuristic Runtime Table.........................26

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

EXECUTIVE SUMMARY

Since its conception, the unmanned aerial vehicle (UAV)

has been a coveted battlefield asset. The ability of these

vehicles to perform reconnaissance and attack missions while

keeping the operators directly out of harm’s way creates an

advantage in the domains of information gathering and force

protection. UAVs have only recently been introduced on the

battlefield in significant numbers, and the ability to

operate multiple UAVs efficiently and effectively can be

improved further.

This thesis creates a decision aid that provides

efficient search routes for multiple UAVs searching for

multiple targets operating on a known graph of nodes and

arcs. The decision aid dynamically provides estimates of

target locations during its use.

The decision aid consists of a dynamic program that is

solved approximately using a two-timestep look-ahead

heuristic. Target location probabilities are computed using

Bayesian updating based on the detections and nondetections

from the previous timestep. The decision aid includes the

possibility for UAVs to go on and offline due to mechanical

difficulties or limited endurance.

The decision aid was tested in two field experiments at

Camp Roberts, California, as part of the USSOCOM-NPS Field

Experimentation Program. The field experiments included up

to three UAVs and five target vehicles. For the second

experiment, a prototype of the decision aid running through

a Microsoft Excel user-interface was used. The interface

proved to be highly effective in communicating to the user

 xiv

the current knowledge of target locations and provided

timely recommendations for the UAV operators.

 xv

ACKNOWLEDGMENTS

We would like to especially thank professors Royset,

Kress, and Chung for all of their help in the design and

experimentation of our model. We would also like to thank

Anton Rowe for his work on the Excel interface. Completing

this thesis is an important step in furthering our education

and a milestone in our young careers and we could not have

done it without all of your help and guidance. We would

also like to thank all of our other professors from NPS as

well as our family and friends who helped us through this

difficult process.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION AND PROBLEM DEFINITION

 Search for moving targets arises in many different

contexts. For example, searching is necessary when the goal

is to find drug smugglers or shot-down pilots during search

and rescue missions. The sensors used for these searches

are often mounted on unmanned aerial vehicles (UAVs), thus

UAVs become search assets. When multiple UAVs interact

during a search, there becomes a need to effectively operate

and manage them within the search environment.

We consider a finite number of searchers and targets

that move on a graph of nodes and arcs. We assume the

searchers have a close estimate of the number of targets.

The targets remain within the graph and move according to a

known Markov process. The overall goal is to route the

searchers during a finite time horizon so that the search

coordinator gains the maximum situational awareness of all

targets, as quantified by probability distributions of

target locations. There are many possible objective

functions for problems of this kind. We specifically aim to

maximize the expected number of detected targets until the

finite time horizon while ignoring targets that are known to

be located at a given location with a probability larger

than a specified threshold. Target thresholds are discussed

in detail in section A of Chapter II. We refer to this

problem as the search optimization problem (SOP). In this

thesis, we develop a model for SOP and a heuristic algorithm

for obtaining efficient search plans in real-time within a

rolling time horizon framework.

 2

 The graph in SOP could represent a road network where

nodes are intersections and arcs are roads. Alternatively,

the graph could represent a grid of area cells on the open

ocean. Figure 1 shows an example of nodes and arcs in a

road network at Camp Roberts, California.

Figure 1. Example of Graph.

 Currently, no tractable model of SOP exists that

incorporates all major aspects of real-world operations.

SOP is difficult to solve optimally because the optimal move

for the searchers at a timestep is dependent on the future

searcher locations and actions as well as target location

probabilities. We refer to such locations, actions, and

 3

probabilities at a particular point in time as the “state”

at that time. This dependence on future states requires the

use of dynamic programming. This situation tends to result

in intractable model formulations of SOP that cannot be

solved quickly enough for use in a real-time decision aid.

Dynamic programming is discussed in subsection B2.

In this thesis, we develop a new version of a decision

aid called Aerial Search Optimization Model (ASOM), see,

e.g., [12]. It consists of a tractable model for SOP, an

associated heuristic algorithm for generating search

policies, and a user interface. ASOM is specifically

tailored for use by UAV operators, provides effective UAV

routes quickly, and is relevant to many different search

applications.

B. FUNDAMENTAL CONCEPTS

1. Bayesian Updating

Bayesian updating in the context of search is a process

that begins with prior knowledge of target location

probabilities, commonly referred to as the a priori map.

This map is based on previous information, if such info

exists, or it is assumed to be uniform, absent prior

information. Figure 2 gives an example of a 4 cell a priori

map where a single searcher is searching for a single

stationary target known to be present in the map. In this

thesis, we account for false negatives, but we assume that a

searcher will not report a target on a node or an arc if

there is no target at that node or arc (i.e., no false

positives). We refer to Chung and Burdick [3] for a

discussion of false positive reports. If the searcher looks

 4

in the top left cell and fails to find the target, then

Figure 3 shows the resulting posterior map given the

searcher has a .5 conditional probability of detection. The

posterior map is computed by the following equation:

(' |) ()(| ')
(' |) ()

i i
i

j j
j

P D A P AP A D i
P D A P A

= ∀
∑

where

i,j index of target cells

()iP A probability target is located in area i

(' |)iP D A probability of no detection in cell i given

 target is in cell i

(| ')iP A D probability target is located in cell i

 given no detection is made in that cell

For each cell, the updated probabilities are computed

by multiplying the probability of no detection given there

is a target in the cell by the prior probability there is a

target in the cell. This number must then be divided by the

sum of these numbers for all cells in order to normalize the

probabilities. See Wagner, Mylander, and Sanders [20] for a

more detailed mathematical explanation of Bayesian Updating.

Figure 2. A Priori Target Distribution.

.40 .30

.20 .10

 5

Figure 3. Posterior Target Distribution.

.25 .375

.25 .125

 The above discussion deals with “false negatives,”

which occur when a searcher fails to detect a target that is

actually there.

2. Dynamic Programming

 Dynamic programming is a framework for modeling

decisions made over time [14]. The state of a dynamic

program is a snapshot of the system being modeled at a

specific time. Given a finite time horizon, the backward

recursion algorithm generates optimal decisions at every

timestep starting from the end and working backwards

assuming there are a finite amount of states. However, this

involves examining all states at each time step and

determining the best decision at that state.

 The backward recursion algorithm breaks down if there

are an infinite number of states and/or the determination of

the best decision at a state is a difficult optimization

problem. In addition, it may be problematic to use this

algorithm if the time horizon is not known.

 Approximate dynamic programming algorithms seek to

overcome the shortcomings of the backward recursion

algorithm by introducing approximations. There exist a

large number of approximate dynamic programming algorithms,

see, e.g., [14]. Typically, these algorithms step forward

 6

in time. The main difficulty is to determine the “value” of

transitioning to a specific state. One technique is to use

a limited look-ahead. This is a process of enumerating all

possible moves for all timesteps of the designated look-

ahead period and making the moves that achieve the greatest

reward in terms of the objective function. Longer look-

ahead periods will better approximate the optimal dynamic

programming solution. We will use an approximate dynamic

programming algorithm because it provides an effective

solution that can be provided in real-time, a key

requirement for our implementation.

C. PAST WORKS

The goal of the constrained-path, moving-target search

problem [5, 6, 7, 13, 18, 19, 21] is to find the search

route that maximizes the probability of target detection

within a fixed time. The classic setup involves a single

searcher and a single target moving within a finite number

of cells in discrete time. Both the searcher and the target

are allowed to occupy a single cell each timestep, and

detections may only occur when the searcher and target

occupy the same cell. Detection probabilities can be based

on sensor data or derived from the random search formula

[22]. The target’s probability distribution is maintained

through Bayesian updates for nondetection each timestep if

the target is not found.

For the classic constrained-path, moving-target search

problem, Eagle and Yee [6] select a searcher route over a

given number of time periods that minimizes the probability

of nondetection. Their formulation is a non-linear program

with linear constraints, which allows one to apply

 7

Zangwill’s [24] Convex Simplex Method (CSM). Eagle and Yee

[6] create a myopic search, and while results of their

example show the CSM solution to always be optimal, the

myopic search may not provide a good approximation of the

optimal solution.

A partially observable Markov decision process [2] is

another concept that has been applied to the constrained-

path, moving-target search problem. The idea is that a

decision must be made based on partial information, and the

outcome of the decision is unknown until after it has been

made. The search application is well-suited for this setup

because the searcher will have incomplete knowledge of

target location after each timestep based on the updated

target probability distribution. The searcher will not know

whether or not the search will be successful until after the

new search route is chosen.

Eagle [5] provides an optimal solution technique using

dynamic programming and assuming a finite time horizon. He

uses a partially observable Markov decision process, which

is faster than standard linear programming methods because

total enumeration is limited to searching only the cells one

can reach from the searcher’s previous location. Stewart

[18, 19] creates an approximate solution procedure using

branch-and-bound techniques. Eagle and Yee [7] extend

Stewart’s work and create a branch-and-bound method that

produces optimal solutions and is faster than the dynamic

programming approach. Washburn [21] creates a branch-and-

bound approach as well. Both Eagle and Yee [7] and

Washburn [21] consider searchers that have continuous search

routes. Other than Washburn [21], who accounted for

 8

multiple searchers, these problems consider one searcher

against a single target and provide optimal solutions.

Dell, Eagle, Martins, and Santos [4] extend the problem

to include multiple searchers. They create a branch-and-

bound procedure to optimally solve the problem as well as

six heuristics that take four different approaches to the

problem: solve partial problems optimally, maximize the

expected number of detections, implement a genetic

algorithm, and use local searches with random restarts. The

partial problem technique involves a moving horizon where

each one is solved optimally using branch-and-bound.

Members of the autonomous systems and control community

have analyzed the multiple UAV search problem as well. Some

utilize recursive Bayesian filtering [1, 10] while others

focus on cooperative control [8, 11] and decentralized

search [1] techniques. Many of them have considered the

problem of multiple searchers looking for multiple targets

[1, 8, 9, 10, 11, 23], which is an extension to the works

mentioned above [5, 6, 7, 13, 18, 19, 21]. Fernandez,

Flint, and Polycarpou [9] as well as Chung and Burdick [3]

create a Bayesian method that helps take into account false

positives.

Another consideration is using discrete time to more

closely model continuous time. This situation occurs when

the travel time for targets and searchers between cells is

not a multiple of the discrete timestep. Lau, Huang, and

Dissanayake [13] enhance the branch-and-bound method to take

into consideration the non-uniformity of the search

environments. They develop a new bound that leads to faster

solution times as well as the possibility of better

solutions when the environment being modeled is spatial-

 9

temporal non-uniform in nature. Sato and Royset [17]

produce alternative bounds and even faster solutions.

In the near future, sufficient technology will exist to

allow the automatic detection of targets by computer

systems. When these automatic detections can be

incorporated within a search program, it will allow the

autonomous routing of UAVs. With current technology, human

operators are required to visually identify targets. The

issue of target detection can be handled with a decision aid

that has an input for the detections made each timestep.

While many solutions have been presented for the

constrained-path moving-target search problem and some

research tools have been developed for specific scenarios

(see, e.g., [15, 16]), a decision aid that can be used in

real-world scenarios has yet to be fully developed. The

goal of our research is to provide a user-friendly decision

aid that is capable of creating efficient UAV routes for

detecting multiple targets operating on a known graph. This

decision aid will be capable of providing real-time

effective decisions with computation times on the order of

seconds.

D. STRUCTURE OF THESIS AND CHAPTER OUTLINE

 This thesis is divided into five chapters, including

the Introduction. Chapter II discusses the development of

the model and the dynamic programming formulation. Chapter

III introduces the actual algorithm used to implement our

model. Next, it analyzes the accuracy and runtime of our

heuristic approach. Finally, it discusses the Excel user-

interface created for our decision aid. Chapter IV talks

about our field experiments in Camp Roberts, California and

 10

explains some of the updates our decision aid underwent in

the process. Chapter V gives several conclusions from our

work as well as recommendations for future work involving

ASOM.

 11

II. MODEL

A. MODEL DEVELOPMENT

We formulate a model of SOP using dynamic programming

with Bayesian updating. We assume that each target moves

according to a Markov process and that the targets move

independently of one another. The presentation below and

our implementation of the model assume that all the Markov

processes for the various targets have the same transition

matrices. However, it is trivial to extend this to the

general case where targets follow different movement

processes. Targets are differentiated by their velocity and

type characteristics (e.g., person versus vehicle).

The searchers are differentiated by a variety of

characteristics including name, velocity, sweepwidth of

their sensors, and whether or not they have a camera with a

moving eye which enables them to search nearby roads while

flying straight routes between nodes.

All dynamic programming models must have discrete

timesteps. In our model, timesteps are used as a discrete

representation of continuous time. One timestep is the

length of time between each discretized value of time with

smaller timesteps being a better approximation of continuous

time.

Our dynamic programming model contains several states

that change according to some process as the model advances

through time by the use of timesteps. The state of the

searcher includes the arc the searcher is currently on, the

amount of time until the searcher reaches the head node of

that arc, and the type of move that is currently being

 12

executed. There are three possible types of moves: “Road

Search,” “Transit,” and “Search at Location.” “Road Search”

means that the searcher examines the road corresponding to

the current arc while traversing it. It is possible to

detect targets on that road, and any time remaining of the

timestep after reaching the head node of the arc is spent

searching that head node. “Transit” means that the searcher

flies a direct route from the tail node to the head node.

It is not possible to detect a target when completing this

type of move, but rather offers the possibility to reach the

head node faster and allows more time for search at that

node. “Search at location” means that the searcher spends

the entire timestep searching its current location.

The other main states in the dynamic programming model

are the target probability maps. There is one probability

map for each target and the entire map is a matrix where the

entry in row i and column j represents the probability that

the target is on arc (i,j), if i = j, this represents the

probability at a node. These probability maps are

dynamically updated as the model transitions from one

timestep to another. The updates due to detections and

nondetections using Bayesian updating are first carried out.

Then, the updates due to movement of targets by the Markov

process are computed.

More specifically, when detections are made, the

location and type of detection are inputted into the model.

The model updates the target probability maps for the

detections based on the probabilities of seeing different

targets at the input detection locations. It looks at all

the different “detection scenarios” and determines the

probability of each happening and decides which scenario

 13

occurred based on a random draw with the associated

probabilities. Here, a “detection scenario” is an element

of the set of all the different permutations of possible

target detections at each detection location. For example,

if there are two detections at time t and three available

targets, the model creates all possible permutations of

target detection scenarios. In this situation, there are

six possible scenarios, three choices (possible targets) for

the first detection and then two remaining choices (one of

the two not found in the first detection) for the second

detection. The model then computes the probability of each

of the six different scenarios occurring based on the target

marginal probabilities and decides which one actually

occurred using a random draw with the corresponding

probabilities.

We also use the concept of search thresholds. This

threshold is a user input between 0 and 1 used to determine

what level of target knowledge will constitute “knowing”

where a target is located. This is an attempt to gain

better total situational awareness by ignoring targets that

we “know” are at certain locations. A threshold value of 1

creates a greedy policy where searchers will circle targets

unless a higher probability mass presents itself at a nearby

location. On the contrary, if the threshold value is less

than 1, then targets whose maximum probability mass is above

that threshold will not be searched for, resulting in a less

greedy policy.

We also calculate an aggregate probability map to

represent the normalized probability of all targets that are

unknown (i.e., do not reach the threshold) by summing the

 14

probability mass of all unknown targets at each location and

dividing it by the number of these targets.

SOP is defined in terms of some finite time horizon.

This may be related to the endurance of the searchers (e.g.,

UAV flight time) or operational considerations. In practice,

the time horizon may not be completely known. Looking

further into the future with a dynamic program will give

better decisions in the current timestep than a shorter

look-ahead. To limit computing time and allow for a real-

time decision aid, we only consider a two time-step look

ahead, i.e., we set the time horizon in SOP to two. We call

this the two timestep look-ahead problem (TTLP). The

objective function in TTLP, which we maximize, is the

expected number of target detections at all arcs and nodes

visited during a given sequence of two moves for all

searchers. In determining the aggregate probability mass

for the second time period, the objective function assumes

that there are no detections during the first timestep. The

TTLP can be solved optimally by total enumeration, but as

the number of searchers increases, the computational effort

increases exponentially. As a result, we constructed a

heuristic algorithm for solving TTLP. The heuristic

algorithm amounts to total enumeration of all solutions of a

simplified two timestep look-ahead problem (STTLP) which we

describe next. The mathematical formulation of STTLP follows

in Section B.

STTLP is identical to the TTLP except that it involves

a simplified objective function. The STTLP objective

function, as in TTLP, is the expected number of detections,

but now the expected number of detections is computed

slightly differently in the second timestep. The

 15

probability mass present in the second timestep is

calculated for each searcher independently (with no

conflictions of moves), only taking into account probability

updates for that particular searcher’s previous move (not

all previous moves as in the TTLP). As with the TTLP, it is

assumed that there are no detections during the first

timestep. All states and arrays that are relevant to this

update are labeled with the superscript “ND” (no detection).

The following is an example of the flow of ASOM. After

the initial states are established, the searchers are given

starting locations. If there are no initial detections,

ASOM recommends searcher moves based on the STTLP. For each

timestep, detections are entered and ASOM reoptimizes the

recommended searcher moves for the next timestep given there

are no more detections. At this point, the operator can

either accept the recommendations or enter in alternate

searcher moves. This process is repeated for each timestep

until the search is completed.

B. DYNAMIC PROGRAMMING FORMULATION OF STTLP

 For notational convenience, we use • to denote the use

of an array of all the available values for that index, thus

for some values ,i jX , then (), 1, 2, ,, ,...,
T

j j j I jX X X X• = .

Indices

i, j, k Nodes

m Searcher

t Timestep

u Target

b Types of targets

 16

Sets

M Set of all available searchers, m M∈ .

I Set of all available nodes, , ,i j k I∈ .

T Set of timesteps, t T∈ .

U Set of targets, u U∈ .

B Set of target types, b B∈ .

R I I⊂ × Subset of pairs of nodes (i, j) representing

arcs for which there is a road connecting i

to j, (,)i j R∈ . Also, (,)i i R∈ , i I∀ ∈ .

Q I I⊂ × Subset of pairs of nodes (i, j) representing

possible transit arcs between i and j, ,i j I∈ .

Data

,i jDISTANCE Distance along road corresponding to arc

(i,j) (mi), (,)i j R∈ .

,i jTRANSIT Straight-line distance between nodes i and j

(mi), (,)i j Q∈ .

mSEARCHARC 1 if searcher m searches a road while on

transit arcs, 0 otherwise, m M∈ .

mSPEED Constant speed of searcher m (mph), m M∈ .

mSW Sweep width of searcher m (mi), m M∈ .

uSPEEDT Speed of target u, u U∈ .

STEP Duration of timestep (minutes).

mSTART Starting node of searcher m, m M∈ .

 17

, ,i j mPD Probability of detecting a target on the road

corresponding to (,)i j for searcher m given

that a target is on the road, (,)i j R∈ ,

m M∈ . If i j= , then , , 0i j mPD = since

detections at a node is determined by

function , ()i mPDET τ , defined later.

,i jMATRIX Probability of a target moving onto arc from

node i to node j, ,i j I∈ .

, ,i j uTTS Target timesteps calculation, the amount of

timesteps target u takes to travel arc

 (,)i j , ,(60 / (()()))i j uDISTANCE STEP SPEEDT= , (,)i j R∈ ,

u U∈ .

THRESHOLD An input threshold between 0 and 1 to

determine what level of target knowledge will

constitute “knowing” where a target is.

TURN Constant probability that a target travelling

along an arc (,)i j , (,)i j R∈ will turn around

and go the other way.

uTYPE The type of target u, u U∈ , uTYPE B∈ .

The following decision variables are computed at every time

t T∈ .

Decision Variables at Timestep t

, , ,i j m tx 1 if searcher m is traveling from i to j, 0

otherwise.

,m ty Time until searcher m completes the

recommended move (hrs).

 18

,m tz 1 if searcher m is searching, 0 otherwise.

, , , , , ,(, ,)T
m t m t m t m tV x y z• •=

 Variable Array for searcher m.

(), , , , ,(, ,)T
t t t t tX x y z V• • • • • •= =

 Variable Array for all searchers.

States at time t

,m tSEARCHER = , 1 , 1(, ,)T
m t m ti z y− − m∀ , where

i Current Location/Destination;

, 1m tz − 1 if searching, 0 if transiting from previous

 timestep (Assume 1 if 1t =);

, 1m ty − Time to completion of the move from the

previous timestep for searcher m. (hrs)

(Assume 0 if 1t =).

, , ,i j u tMARG

Probability of target u being on arc (i, j).

(,)i j R∈ , u U∈ , t T∈ .

, , ,

, , ,

, , ,
|max()

, ,

|max()

,
1

u t

u t

i j u t
u U MARG THRESHOLD

i j t

u U MARG THRESHOLD

MARG
AGG i j• •

• •

∈ <

∈ <

= ∀
∑

∑

Aggregate probability of all targets being on

arc (i, j), (,)i j R∈ , t T∈ .

 , , , ,(,)T
t t tS SEARCHER MARG• • • •=

 State Vector.

 19

, , , ,
ND
i j u m tMARG

Probability of target u being on arc (i, j)

according to the viewpoint of searcher m.

(,)i j R∈ , u U∈ , m M∈ , { }\ 1t T∈ .

, , , ,

, , , ,

, , , ,
|max()

, , ,

|max()

, ,
1

ND
u m t

ND
u m t

ND
i j u m t

u U MARG THRESHOLDND
i j m t

u U MARG THRESHOLD

MARG
AGG i j m• •

• •

∈ <

∈ <

= ∀
∑

∑

Aggregate probability of all unknown targets

being on arc (i, j), (,)i j R∈ from the

viewpoint of searcher m, m M∈ , { }\ 1t T∈ .

, , , , ,(,)ND T
m t t tS SEARCHER MARG• • • •=

 The current state according to searcher m.

This is only used in the future look-ahead,

{ }\ 1t T∈ .

In the next two sections on functions and random inputs,

parts of the formulation are not included for notational

convenience. For a complete list, see Appendix I.

Random variables and sets during time t

 , , ,i j b tD Number of detections of type b on arc (,)i j

during time t, (,)i j R∈ , t T∈ .

Functions

(,)t t tR S X

Reward for all searchers traveling between

node i and j, m M∈ , ,i j I∈ .

 20

, , ,(,)ND ND
m t m t m tR S V

 Reward for searcher m traveling between node

i and j, m M∈ , ,i j I∈ . This function is

only used in calculating the future reward

when there is only knowledge of the searcher

m.

, ()i mPDET τ

Probability of detection at node i by

searcher m, dependent on amount of time

searched,τ , i I∈ , m M∈ .

, , , (,)i j u t t tNEGATIVE S X

Function to update probability maps for

failed detection via Bayesian updating.

, , , , ,(,)
i j u m t

ND
t m tNEGATIVE S V

Function to update probability maps for

failed detection via Bayesian updating for

look-ahead. Heuristic approach only takes

into account the move of searcher m.

, , , ()i j u t tMARKOV S

Function to update probability maps for

target movement based on Markov matrix.

, , , , ,()ND ND
i j u m t m tMARKOV S

 Function to update probability maps for only

the movement of target m. It is used in the

calculation of the “no detection” marginals

according to searcher m.

, , , , , ,(,)i j u t t tPOSITIVE S D• • •

Function to update probability maps for

positive detection via Bayesian updating.

 21

Policy: Set *
t tX X= , where * *

1(,)t tX X + is the optimal solution

of the simplified two timestep look-ahead problem (STTLP):

1
, , 1 , 1,

max (,) (,)
t t

ND ND
t t t m t m t m tX X m

R S X R S V
+

+ ++∑

Subject to:

, , , , , ', 1
, ' \

1i j m t i j m t
m i m M m

x x j+
∈

⎛ ⎞+ ≤ ∀⎜ ⎟
⎝ ⎠

∑ ∑

 (Do not allow overlapping of moves)

, , , 1 ,i j m t
m

x i j≤ ∀∑

 (Max one searcher per arc at time t)

, , , 1 1 ,i j m t
m

x i j+ ≤ ∀∑

 (Max one searcher per arc at time t + 1)

, , ,
,

1i j m t
i j

x m≤ ∀∑

 (One move per searcher at time t)

, , , 1
,

1i j m t
i j

x m+ ≤ ∀∑

 (One move per searcher at time t + 1)

If searcher m is at node i at time t, then:

 , , , 1i j m t
j

x m= ∀∑

 (Must start at the starting position)

End if

 , , , ,
(,)

i j m t m t
i j R

x z m
∈

≥ ∀∑

(Tracks transiting/searching at time t)

 , , , 1 , 1
(,)

i j m t m t
i j R

x z m+ +
∈

≥ ∀∑

(Tracks transiting/searching at time t + 1)

 22

m∀ , If ,m ty STEP≤ , then:

 , , , , , , 1i j m t j k m t
i k

x x j+= ∀∑ ∑

Else:

 , , , , , , 1i j m t j j m t
i

x x j+= ∀∑

End if

 (Continuity of route)

If 1t = , then:

()()(), , , , , , ,

,
,

1
60 i j m t i j m t i j m t

i j
m t

m

x DISTANCE z TRANSIT z
y m

STEP SPEED

+ −
= ∀

∑

Else If 2t ≥ , then:

()

, ,

, , ,
, , ,

, , 1

1
max ,

/ 60

i j m t

i j m t
i j i j m t

m t m t
m

DISTANCE z
x

TRANSIT z
y y STEP m

SPEED STEP−

⎛ ⎞⎛ ⎞⎛ ⎞+⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎜ ⎟⎜ ⎟= − ∀
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

 (Keeps track of timesteps until searcher m is

 available)

End If

{ }, , , 0,1 , ,i j m tx i j m∈ ∀

{ }, , , 1 0,1 , ,i j m tx i j m+ ∈ ∀

{ }, , , 0,1 , ,i j m tz i j m∈ ∀

{ }, , , 1 0,1 , ,i j m tz i j m+ ∈ ∀

, 0m ty m≥ ∀

, 1 0m ty m+ ≥ ∀

 23

Dynamics (Given tS and tX)

,j m∀ , if , , , 0i j m t
i

x >∑ , then:

 , 1m tSEARCHER + = , ,(, ,)T
m t m tj z y

Sets the searcher’s state to the decisions of

that searcher for this timestep.

End If

, , , 1 , , , , , , , , , , , ,(((,),)) , ,i j u t i j u t j u t u t t t tMARG MARKOV NEGATIVE POSITIVE S D X i j u+ • • • • • •= ∀

Updates the target marginals for the positive

detection updates, the negative detection

updates, and the movement of the targets

based on the Markov process.

, , , , , , , ,, , , , 1 , , , , , ,(((,),)) , , ,
i j u m t j u m t

ND ND ND
i j u m t u t t m tMARG MARKOV NEGATIVE POSITIVE S ZEROS V i j u m

•+ • • • • •= ∀

 ZEROS denotes a matrix of zeros as input for

the detection matrix, or “no detections

found” in human input terms. The update only

has knowledge of one searcher at a time, thus

it calculates marginals

1 , 1 , , , 1(,)T
t t tS SEARCHER MARG+ • + • • • +=

, 1 , 1 , , , , 1(,)ND ND T
m t m t m tS SEARCHER MARG+ + • • • +=

Sets the regular and no detections state

variable arrays.

 24

THIS PAGE INTENTIONALLY LEFT BLANK

 25

III. IMPLEMENTATION

A. MODEL IMPLEMENTATION

We implement the model in MATLAB version 7.0.1 and

carry out all computational tests on a NES computer with a

1.83 gigahertz AMD Athlon XP processor and 512 megabytes of

RAM. As described earlier, we implemented a heuristic

solution to the TTLP, called STTLP. The code is written in

many sub-functions so that a single aspect of ASOM can be

changed without having to go through the entire code. The

descriptions of our MATLAB functions are given in Appendix

II.

B. HEURISTIC ACCURACY

The only straightforward method for ensuring that

optimal searcher moves are chosen is total enumeration. The

difficulty with total enumeration is that for every searcher

added to the TTLP, the total number of searcher move

combinations increases exponentially. Thus, we need the

heuristic algorithm, STTLP (see section B in Chapter II).

We compare our heuristic with the total enumeration approach

in terms of runtime and accuracy to ensure it provides

effective recommendations and that its speed improvements

are worth sacrificing optimality. For one, two, and three

searchers we create random target marginals, randomly place

the searchers, and compare the moves recommended by our

heuristic and total enumeration functions. We allow

searchers to be “initially blocked” with a probability of

.25. Here, “initially blocked,” means that the searchers

 26

are constrained in their movements from the previous

timestep (i.e., still in transit). This .25 probability

represents the fact that during a normal run of our decision

aid, the searchers make direct transits that require two

timesteps and are blocked from making a new move for one

timestep.

Table 1 shows the accuracy results of the heuristic for

1000 simulation runs. The accuracy is a ratio of the

probability mass collected by the heuristic versus that

collected by the total enumeration approach. It also

displays the fraction of time the heuristic returns the

optimal move. The “Within One Move of Optimal” column gives

the fraction of time that the heuristic moves did not match

up with the total enumeration moves for at most one

searcher. Table 2 displays the runtimes of the heuristic

and total enumeration approaches for one, two, and three

searchers along with their 95% confidence intervals.

Table 1. Heuristic Accuracy Table.

Number of Searchers Accuracy Returns Optimal (TTLP) Move
Within One Move of

Optimal (TTLP)
1 1 1 1
2 0.9914 0.944 0.985
3 0.9813 0.843 0.934

Table 2. Heuristic Runtime Table.

Number of Searchers STTLP Runtime (sec)
Total Enumeration (TTLP)

 Runtime (sec)
1 .02165 +/- .00074 .01462 +/- .00074
2 .04219 +/- .00093 .8560 +/- .046
3 .07381 +/- .0076 64.21 +/- 4.45
4 .1046 +/- .00227 4186 (estimated)

 27

C. EXCEL INTERFACE

The Microsoft Excel Interface was developed by Mr.

Anton Rowe. Figure 4 is an example of the output display in

the user interface.

Figure 4. Screenshot of Excel Interface.

In Figure 4, the red circles represent all possible

nodes and the red triangles represent all possible roads.

The different sizes of the circles and triangles represent

the aggregate probability of finding targets there. The

solid blue boxes represent the different searchers at their

current locations in this scenario. The blue lines and

outlined boxes represent the recommended searcher moves for

the current timestep. If a triangle is encased in the

 28

outline of a blue box, this means the recommendation is to

search the road to the corresponding node. A dotted blue

line going straight to a node means transit directly to that

node. If there is an outline of a blue box in the middle of

a transit route, this means the searcher will not get to the

designated node in one timestep and thus it is a directed

move for the following timestep as well. If a searcher is

stationary (zero speed) then the recommended move will

always be to stay at the same location, shown by the blue

outline around its current position. In the example above,

Raven is transiting from node 3 to 6, but will take two

timesteps to reach node 6. Buster is searching the road

from node 2 to node 8 (one timestep) and Scan Eagle is

transiting from node 11 to node 9 (one timestep).

There are several required inputs for ASOM including

parameters for both searchers and targets. For each

available searcher, the name (as it will be displayed on the

interface) should be provided, as well as the speed,

sweepwidth, a binary entry for whether the UAV has a

moveable camera capable of searching roads while flying

straight line distances, and the starting position. An

example input is seen in Figure 5. Notice there is also a

stationary searcher in the scenario below, which is input by

a searcher with speed equal to zero. A starting position

must also be provided, but the “Sweep” and “Arc” categories

for a stationary searcher are not used.

 29

Figure 5. Example Searcher Input.

The available targets are simple inputs of the expected

number and type of each target that will be available in the

scenario. For each target, a speed and type must be

provided, as seen in Figure 6. If the number of targets is

not known, a reasonable estimate should be provided; the

better the estimate the more accurate the model will be.

Figure 6. Example Target Input.

Detections are input during the current timestep of a

model. The key feature here is the “Recommend” button.

When pushed, this button gives recommendations based on the

current state. If, however, detections are made between

then and the end of the timestep, they can be inputted to

update the state and a new set of moves will be outputted.

 30

An example timeline of entering detections and moving

targets can be seen in Figure 7.

Figure 7. User steps in ASOM.

Detections are inputted with four parameters: (i)

timestep of the detection, (ii and iii) perceived starting

node and ending node location of the target, and (iv)

detection type. The starting and ending node location

together represent the arc (,)i j (location) in which the

target was detected, where if i j= , the target was detected

stationary at node i ; and if i j≠ , the target was detected

on the road going from node i to node j . An example of

what the target detection sheet might look like at timestep

5 can be seen in Figure 8. In this example, the first line

says there was a detection of type 1 on the road from node 2

to node 8 at time 1. Similarly, the second line says there

was a detection of type 2 stationary at node 5 at time 3.

 31

Figure 8. Example Target Detections.

Additional data for ASOM include the latitude/longitude

of the nodes, data for the roads (start/finishing nodes,

length of the road, and latitude/longitude position to

display the red triangle representing probability), direct

distances between nodes (as a UAV can fly them), and the

Markov movement matrix for each target.

 32

THIS PAGE INTENTIONALLY LEFT BLANK

 33

IV. FIELD EXERCISES

We performed two field experiments in February and May

2008 at Camp Roberts, California using multiple Raven and

Buster UAVs.

 An important part of ASOM is the ability to take into

consideration the needs of the operator and the possibility

to react to unexpected situations. Several features of ASOM

would not exist if we did not field test the decision aid

and receive feedback from UAV operators. This allows ASOM

to handle realistic scenarios in multiple environments.

A. FEBRUARY EXPERIMENT

The purpose of the February experiment was to test a

preliminary version of ASOM and make sure the results passed

a reality check. A secondary purpose was to see what could

be improved in the underlying code and what changes were

necessary to make ASOM run smoother. There were several

weather restrictions that limited the experiment, but

overall the objective of the experiment was accomplished.

We ran our preliminary model with 5 moving targets

(cars) traveling at 25 miles per hour and three searchers:

one ground team, one Raven UAV, and one Buster UAV. ASOM

isolated the possible location of the targets to one side of

the map, as seen in Figure 9, and was correct in its

judgment of possible target locations. In this preliminary

version of the model, aggregate probability is given by a

color scale rather than a size, with green representing the

lowest probability, fading to yellow, then finally to red

representing the highest probability. The nodes are still

 34

represented by circles, but the roads are represented by

straight lines between the nodes.

Figure 9. February Experiment Final Probability Map.

There were several important lessons learned from this

experiment. The first stemmed from the fact that our

approach was greedy in its search patterns. At this point,

the searchers appeared to find a target and track it because

this resulted in the largest reward while sacrificing

knowledge of the other targets. This is not optimal if the

objective is to maximize total knowledge of the system. We

remedied this by creating the threshold input. As described

earlier, this is equivalent to saying you “know” where a

target is located if its maximum probability mass at any

location is greater than the threshold probability.

 35

Another change in ASOM was how to make the model more

user-friendly than the current MATLAB code and input

techniques. This was handled with a new Excel interface as

discussed in the previous chapter. The usefulness of the

interface is discussed in the May experiment section.

B. MAY EXPERIMENT

The goal of the May experiment was to test the updated

code, which included the target threshold constraints to

discourage a greedy policy which tracked detected targets.

We implemented the Excel interface for the first time and

evaluated its utility and functionality. The experiment was

run with four targets (again, cars traveling at 25 miles per

hour) and three searchers, one Buster UAV and two Raven

UAVs.

The first day’s trials led to the creation of the

disabled node. This node is an abstract location where

searchers are placed when they are refueling, damaged, or

unusable. This allows ASOM to function in a larger set of

scenarios as well as take into account unexpected events

where a UAV becomes disabled. For example, in the first

trial, the Buster UAV lost contact, deployed its parachute,

and was unable to continue its search. The Raven UAVs also

ran out of gas sooner than expected and had to land and

refuel, thus cutting the experiment runs short.

The second day’s trial utilized the disabled node

update. This trial was extended to a nearly three hour

scenario where UAVs were forced to refuel, thus testing the

capabilities of the disabled node.

 36

Figure 10 shows the locations of all of the targets and

searchers as well as the color of the vehicles detected.

The green and tangerine colored boxes represent actual

target detections by the searchers. Yellow boxes represent

possible failed detections, meaning the timing of the

searcher or target leaving and the other arriving on

location were close, but there could have been a failed

detection. A red box means a target and a searcher were

each at the same location, but there was no detection made

at that time. From this, we calculated an estimate of the

probability of detection with appropriate 95% confidence

interval (0.46 +/- 0.20). Since the data set is relatively

small, the confidence interval on the probability of

detection is very wide. In any case, this might give us a

better estimate on the actual probability of detection for

these UAVs. In ASOM, the probability of detection is

derived from the random search formula and is dependent on

time as well as searcher characteristics, but it is

generally higher than the above empirical estimate.

 37

Figure 10. May Experiment Detection Results.

Failed detections could stem from any combination of

three sources of error. The searchers were at incorrect

locations, the targets were at incorrect locations, or our

estimation of the probability of detection for searchers

finding targets was inaccurate. The problem of searchers

 38

being at wrong locations seems unlikely because they are

given GPS coordinates to fly to, and their locations are

displayed on a screen. It is possible the targets (who were

people driving around in cars) did not know the Camp Roberts

map as well as we had hoped and were actually driving to

wrong locations. The most likely source of error was that

the camera feeds on the UAVs were scrambled enough that the

operators had a hard time identifying targets, thus lowering

our probability of detecting a target given a searcher and

target were at the same location.

 One other interesting aspect of having a long trial

versus several short trials is a measurement of the

situational awareness of the searchers. Specifically, the

awareness of target location went in cycles. Examining

Figures 11 and 12, the first is a picture showing UAV

locations and target location probabilities half way through

our second day’s trial. The searchers appear to have locked

onto the locations of the four targets. The second figure

shows the end of the scenario where the searchers have some

idea, but not as good as the previous screenshot. This

shows that searcher knowledge of target location went in

cycles; the searchers had the targets pinned down, then the

probability mass spread out, and eventually the searchers

would pin down the targets again. This could also be

explained by a high estimate of the probability of detection

because it would eliminate too much mass from a location

that was just searched when there should still be a

significant probability mass at that location. If this

estimate were lowered, it would take longer for the

searchers to isolate the target location, but it would be

 39

more accurate and unlikely to go through the cycle of target

knowledge that was experienced in this trial.

Figure 11. Mid-Scenario Probability Map.

 40

Figure 12. May Experiment Final Probability Map.

The second day’s trial was markedly improved. The

small problems we experienced in day 1 were fixed for day 2

and the long trial ran smoothly. During the trial, the UAVs

operated without any mishaps. The disabled node was used

for refueling purposes and worked according to plan. The

results from day 2 were informative and the Excel interface

made ASOM easier to understand, even for the people

observing the experiment. After implementing the target

thresholds, the searchers were able to concentrate their

efforts on finding targets whose location probabilities were

 41

spread out. The behavior of the searchers when they did not

concentrate on searching nodes with recently found targets

resulted in a noticeable improvement of situational

awareness when compared to the greedier ASOM. Even after

these updates, there are still a few recommendations for

future work on ASOM.

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

V. FINAL THOUGHTS

A. CONCLUSIONS

We have created a decision aid that recommends

efficient search plans for multiple UAVs searching for

multiple moving targets, possibly of different types. This

decision aid demands few assumptions concerning the desired

search scenario. ASOM is general enough to support many

military or civilian search situations. It can be used to

search for terrorists moving between safe-houses and

friendly pilots who have been shot down in a wooded area.

On the civilian side, it could be used for search and rescue

missions after natural disasters or to search for lost

hikers in the mountains. ASOM can also incorporate

stationary searchers or targets and can even keep track of

different types of targets. The decision aid is capable of

being altered for a greedy search to keep track of targets

once they are found, or to go after other targets that have

not been found in a while, or at all.

Today, UAVs are increasingly used in combat situations.

Their importance in future warfare will continue to grow and

they are likely to become more important in many different

civilian applications. Creating efficient search plans for

these UAVs is the problem we chose to solve, but there are

many other topics involving efficient UAV routing. There is

a necessity for work such as that seen in this thesis and

the importance of such work guarantees many different

avenues for future research in this area.

 44

B. FUTURE WORK

Currently, there are several aspects of ASOM that could

be improved. Firstly, we did not take the wind speed and

direction into account when determining flight times for

UAVs to reach destination nodes. This update would involve

creating a dynamic set of distance matrices that vary with

wind speed and direction. This will make the calculations

of arrival and search times far more accurate than the

constant distances that we used in the calculations. While

the wind factor is a relatively simple change to the model,

it will dramatically increase the accuracy based on the

amount of work required.

The second change would be to do some more calculations

and experiments to get better estimates on the probability

of detection for different UAVs. The values we used were

estimated on past experience, but we believe them to be too

high of an estimate. If more research was completed and

better estimates found, again the accuracy of the model

would be increased with a relatively small amount of work

required, albeit somewhat time-consuming.

The third change would require a bit more programming

experience, but in the end, could create the most accurate

decision aid. This change would be to try and do more than

the two-step look-ahead problem. Not to look further into

the future, but to create an expected future reward based on

the current state after the two-step look-ahead. This would

be a way of estimating any further look-ahead based on the

state as there are diminishing returns on looking further

into the future and the computation time increases rapidly.

This expected reward on future searches based on the state

 45

is a good way to avoid the problem of computational

complexity, yet get a more accurate solution.

A fourth possible change would be to try and

incorporate target dependence into the model. Currently,

the model assumes independent movement of the targets. This

assumption makes computing the marginals based on movement

from the Markov process easier than if the targets’

movements were dependent on one another. Getting rid of

this assumption would be a somewhat difficult task as that

part of the updating phase would have to be reconstructed,

but it would be a great way to extend our work on ASOM.

An extension to include different scenarios is to

examine the possibility of tracking criminals after a

robbery along city streets. In this scenario, searchers

would first concentrate their search around the robbery

location, but as time increases the graph of nodes and arcs

would be forced to expand to represent the criminals getting

away. There could even be an “escape node” to represent the

criminals getting out of the area or exceeding the time the

police are willing to search.

 46

THIS PAGE INTENTIONALLY LEFT BLANK

 47

APPENDIX I: ADDITIONAL EXPRESSIONS FOR FORMULATION

Random Variables and Sets

 ζ Random variable with a (0,1)uniform

distribution.

The following random data sets, tDET , tC , and , ,d c tCOMBO are

used in the calculation of target detections. ASOM receives

all of the detections as inputs during time t. ASOM must

then determine the probability of each different possible

scenario of detections occurring as explained in the model

formulation. These calculations are handled by appropriate

functions below, these are the random sets required for

those calculations.

 ,b tDET Set of the number of detections of type b at

time t, b B∈ , t T∈ , , , , ,
,

{1, 2, ..., }b t i j b t
i j

DET D= ∑ ,

,b td DET∈ .

,b tC Set of the number of different permutations

of target detections of type b at time t,

b B∈ , t T∈ , (), ,{1, 2,..., !/ !}b t b tC U U DET= − , ,b tc C∈ .

, , ,d c b tCOMBO Matrix of the different permutations of

target detections of type b at time t.

Detection number d of permutation number c

during time t, ,b tc C∈ , ,b td DET∈ , b B∈ , t T∈ .

 48

Model Formulation Functions

(), , , , , , , , , , , , , , ,
, ,

(,) (max(0,))t t t i j t i j m t m t i j m j j t i j m t j m m t
i j m

R S X AGG x z PD AGG x PDET STEP y= + −∑

Reward for all searchers traveling between

node i and j, m M∈ , ,i j I∈ . The reward

function is an important part of the model

because it is what the model intends to

optimize by changing the possible decision

variables.

(), , , , , , , , , , , , , , , , , , , ,
,

(,) (max(0,))ND ND ND ND
m t m t m t i j m t i j m t m t i j m j j m t i j m t j m m t

i j

R S V AGG x z PD AGG x PDET STEP y= + −∑
Reward for searcher m traveling between node

i and j, m M∈ , ,i j I∈ . This is the function

used for the future reward where the state

will depend on the previous moves of just one

searcher.

.0625
, () 1

m mSPEED SW

i mPDET e
τ

πτ
−

= −

Probability of detection at node i by

searcher m, dependent on amount of time

searched,τ , i I∈ , m M∈ . This is the

function used to determine probability of

detection at a node, rather than on a road

(handled earlier in the data section).

 49

()
()

, , , , , , , , ,

, , ,
, , , , , , , , , ,

1
max() 1

(,) 1 (max(0,))

1

i j u t i j m t m t i j m

u t
i j mu t t j j u t i j m t j m m t

MARG x z PD
MARG

TOTAL S X uMARG x PDET STEP y

otherwise

• •

⎧ ⎛ ⎞− +
⎪ ⎜ ⎟ <⎪= ∀⎜ ⎟⎨ − −⎝ ⎠⎪
⎪⎩

∑

Sub-function of , , , (,)i j u t t tNEGATIVE S X and

, , , , ,(,)
i j u m t

ND
t m tNEGATIVE S V . It represents the

normalizing factor, meaning it is the sum of

all the posterior probabilities after a

Bayesian update. If the variable array input

is for a one searcher m (as with the input

,m tV), the summation over variable m is only

over the single input value m.

()

()

, , , , ,

, , ,

, , , , ,

1 1

(,)
(,) , ,

1 1 (max(0,))

(,)

i j u t i j m
m

u t t
i j u t t t

i j u t j m m t
m

u t t

MARG PD
i j

TOTAL S X
NEGATIVE S X i j u

MARG PDET STEP y
i j

TOTAL S X

⎧ ⎛ ⎞
− −⎪ ⎜ ⎟

⎝ ⎠⎪ ≠
⎪⎪= ∀⎨

⎛ ⎞⎪ − − −⎜ ⎟⎪ ⎝ ⎠ =⎪
⎪⎩

∏

∏

Function to update probability maps for

failed detection via Bayesian updating.

Takes the posterior probabilities and

normalizes by dividing by the sum of all

posterior probabilities.

()

()
, , , ,

, , , , ,

,
,

, , , , ,

,

1 1

(,)
(,) , ,

1 1 (max(0,))

(,)

i j u m t

i j u t i j m
m

u t m tND
t m t

i j u t j m m t
m

u t m t

MARG PD
i j

TOTAL S V
NEGATIVE S V i j u

MARG PDET STEP y
i j

TOTAL S V

⎧ ⎛ ⎞
− −⎪ ⎜ ⎟

⎝ ⎠⎪ ≠
⎪⎪= ∀⎨

⎛ ⎞⎪ − − −⎜ ⎟⎪ ⎝ ⎠ =⎪
⎪⎩

∏

∏

Function to update probability maps for

failed detection via Bayesian updating for

look-ahead. Heuristic approach only takes

into account the move of single searcher m.

 50

, , , , , , ,1 () , ,i j u t t i j u t i jTEMP S MARG MATRIX i j u= ∀

Sub-function of , , , ()i j u t tMARKOV S and

, , , , ,()ND ND
i j u m t m tMARKOV S . It represents the probability

that a target at node i will remain at node i

for the next timestep.

, , ,
, ,

| , ,

2 () ,
max(,1)

i j u t
j u t t

i i j i j u

MARG
TEMP a S j u

TTS≠

= ∀∑

Sub-function of , , ,2 ()i j u t tTEMP S . It represents

the additional probability each node will

accumulate for the next timestep by the mass

coming in from all adjacent roads.

, ,
, , ,

2 ()
2 () , ,

0
j u t t

i j u t t

TEMP a S i j
TEMP S i j u

i j
=⎧

= ∀⎨ ≠⎩

Sub-function of , , , ()i j u t tMARKOV S and

, , , , ,()ND ND
i j u m t m tMARKOV S . It extends the previous

function, , ,2 ()j u t tTEMP a S , to account for the

fact that only nodes, not arcs, have this

property.

, , , , ,
, , ,

, ,

(1) max(1,0)
3 () , ,

max(,0)
i j u i j u t

i j u t t
i j u

TURN TTS MARG
TEMP S i j u

TTS
− −

= ∀

Sub-function of , , , ()i j u t tMARKOV S and

, , , , ,()ND ND
i j u m t m tMARKOV S . It represents the probability

of target on arc (,)i j deciding to continue on

that arc with (1)TURN− probability.

 51

, , , , ,
, , ,

, ,

max(1,0)
4 () , ,

max(,0)
j i u j i u t

i j u t t
j i u

TURN TTS MARG
TEMP S i j u

TTS
−

= ∀

Sub-function of , , , ()i j u t tMARKOV S and

, , , , ,()ND ND
i j u m t m tMARKOV S . It represents the probability

of a target on arc (,)i j deciding to turn

around with TURN probability.

, , , , , ,
, , ,

, , , , , , , , ,

1 () 2 ()
() , ,

1 () 3 () 4 ()
i j u t t i j u t t

i j u t t
i j u t t i j u t t i j u t t

TEMP S TEMP S i j
MARKOV S i j u

TEMP S TEMP S TEMP S i j
+ =⎧

= ∀⎨ + + ≠⎩

Function to update probability maps for

target movement based on Markov matrix. It

incorporates all sub-functions to take into

account for all probability mass leaving and

coming into arc (,)i j .

, , , , , , , ,
, , , , ,

, , , , , , , , , , , ,

1 () 2 ()
() , , ,

1 () 3 () 4 ()

ND ND
i j u t m t i j u t m tND ND

i j u m t m t ND ND ND
i j u t m t i j u t m t i j u t m t

TEMP S TEMP S i j
MARKOV S i j u m

TEMP S TEMP S TEMP S i j
⎧ + =⎪= ∀⎨ + + ≠⎪⎩

Function to update probability maps for

target movement based on Markov matrix for

the second step look-ahead. It incorporates

all sub-functions to take into account for

all probability mass leaving and coming into

arc (,)i j . The only difference between this

function and the normal MARKOV function, is

that this one is performed for each searcher

m, and the current input of the state will

only be updated for the moves of searcher m.

 52

, , ,

1

, , , 1, 2, , 1, 2, ,
1 1 2 1 1 1 2 1, , , , , , ,1 (,) , , ,

1

d c b t

j ji i

i j COMBO t k k b t k k b t
k k k ki j d c t t b t

MARG D d D
PR S D i j d c

otherwise

−

= = = =• •

⎧
< ≤⎪= ∀⎨

⎪⎩

∑∑ ∑∑

Sub-function of , , , , , ,2 (,)i j c t t b tPR S D• • . It

calculates the probability of seeing a

particular target of a particular combination

c for detection d of that combination for

each arc (,)i j .

, , , , , , , , , , , , ,2 (,) 1 (,) , ,i j c t t b t i j d c t t b t
d

PR S D PR S D i j c• • • •= ∀∏

Sub-function of , , , ,3 (,)c t t b tPR S D• • . It determines

the total probability of seeing all

detections of a particular combination for

each arc (,)i j .

, , , , , , , , , , ,
,

3 (,) 2 (,)c t t b t i j c u t t b t
i j

PR S D PR S D c• • • •= ∀∏

Sub-function of , , , ,4 (,)c t t b tPR S D• • . It determines

the total probability (no normalization) of

seeing each combination of target detections

by multiplying over i and j.

, , , , , , ,
, , , ,

, , 1, , , , ,
1

3 (,)
4 (,)

3 (,)
t

i j c u t t b t
c t t b t

i j c u t t b t
c C

PR S D
PR S D c

PR S D
• •

• •
• •

∈

= ∀
∑

Sub-function of , , , , ,(,)d c t t b tCHOICE S D• • . It

normalizes the calculation of , , , ,3 (,)c t t b tPR S D• • .

 53

1

, , , , , , , 1, , , , ,
1 1 1 1, , , , ,

3 (,) 3 (,)
(,) ,

0

c c

d c t c u t t b t c u t t b t
c cd c t t b t

COMBO PR S D PR S D
CHOICE S D d c

otherwise

ζ
−

• • • •
= =• •

⎧ < <⎪= ∀⎨
⎪⎩

∑ ∑

Sub-function of , , , ,2 (,)d t t b tCHOICE S D• • , ζ denotes

a random number drawn from a uniform(0,1)

distribution. It determines the actual

scenario of target detections that occurred

according to the model based on this random

draw and the probabilities of each scenario

occurring by setting all other combination

values to 0.

, , , , , , , , ,2 (,) (,)d t t b t d c t t b t
c

CHOICE S D CHOICE S D d• • • •= ∀∑

Sub-function of , , , , , , ,1 (,)i j d u t t b tPOS S D• • . It gets rid

of all other combinations except the values

of the one that actually occurred.

()

1

1, 2, , 1, 2, ,
1 1 2 1 1 1 2 1

, , , , , , ,
, , , ,

& &
1

1 (,) , , ,
2 (,)

0

j ji i

k k b t k k b t
k k k k

i j d u t t b t
d t t b t

D d D

POS S D i j d u
u CHOICE S D

otherwise

−

= = = =

• •
• •

⎧ ⎛ ⎞
< ≤⎪ ⎜ ⎟

⎝ ⎠⎪= ∀⎨
=⎪

⎪
⎩

∑∑ ∑∑

Sub-function of , , , , , ,2 (,)i j u t t b tPOS S D• • . It stores

the value 1 for all locations that a

detection occurred at arc (,)i j for target u

and detection d and zero otherwise.

, , , , , , , , , , , , ,2 (,) 1 (,) , ,i j u t t b t i j d u t t b t
d

POS S D POS S D i j u• • • •= ∀∑

Sub-function of , , , , , , ,1 (,)i j u b t t tPOSTYPE S D• • • . It sums

over the detection number variable so we have

a 1 if a detection occurred on arc (,)i j for

target u.

 54

, , , 1, 1, , , , ,
1, 1

, , , , , , ,

, , , , , ,

2 (,) 1
1 (,) , , ,

2 (,)

i j u t i j u t t b t
i j I

i j u b t t t

i j u t t b t

MARG POS S D
POSTYPE S D i j u b

POS S D otherwise

• •
∈

• • •

• •

⎧ <⎪= ∀⎨
⎪⎩

∑

Sub-function of , , , , , , ,2 (,)i j u b t t tPOSTYPE S D• • • . It

sets the value equal to the marginal value if

no detection occurred and 1 if a detection

did occur (to spike the probability) for each

target type b.

, , , , , , ,
, , , , , , ,

1 (,)
2 (,) , , ,

0
i j u b t t t u

i j u b t t t

POSTYPE S D TYPE b
POSTYPE S D i j u b

otherwise
• • •

• • •

=⎧
= ∀⎨
⎩

 Sub-function of , , , , , ,(,)i j u t t tPOSITIVE S D• • • . It sets

the target marginals to the correct values

only if the current target being looked at,

u, matches the current type, b.

, , , , , , , , , , , , ,(,) 2 (,) , ,i j u t t t i j u b t t t
b

POSITIVE S D POSTYPE S D i j u• • • • • •= ∀∑

Function to update probability maps for

positive detection via Bayesian updating. It

sums over the probabilities for different

types of targets.

 55

APPENDIX II: MATLAB FUNCTION DESCRIPTIONS

A. STEP.M FUNCTION

This function is the main workhorse that runs the

algorithm. It does all calculations, either inside the

function, or calling other functions to do the work for it.

It first updates the target marginals by running the

positive Bayesian updates (detections) for different target

types (PositiveBayesianPermutations.m). The function then

makes all essential updates to the probability of detection

at each arc (,)i j , including the nodes and connecting arcs

for any stationary searchers using the locations of each

searcher. After these steps, the function updates the

target marginals for negative Bayesian updates

(NegativeBayesian.m), the traditional application of Bayes’

theorem. Next, the function updates for target movement

from the Markov process (MarginalsMovement.m) to account for

the fact that targets could have moved during the current

timestep. Finally, the function determines which moves to

recommend for the next timestep with the current state and

detection matrix (MultiSearcherMove.m).

B. INITIALIZEMARGINALS.M FUNCTION

This function only serves a purpose for the actual

experiment. It is a way to initialize the target marginals

before an experiment begins. It takes as an input, the

number of targets that are going to be involved in the

experiment and returns the resulting initial target

marginals. For our experiments, we assumed a target was ten

 56

times more likely to start at a node than on a road, but

this value is completely dependent on the conditions of the

scenario.

The function calculates these initial conditions by

creating an integer count on each arc (,)i j to represent how

likely it is to start there. Giving a value of 10 to each

node, 1 to each road, and zero at every other (,)i j . It then

divides by the sum total of the entire matrix to convert

these counts into probabilities. Finally, it sets these

probabilities for all targets.

C. AREASEARCH.M FUNCTION

This is a simple function that determines the

probability of detection at a node given the time spent

searching at the node as well as the speed and sweepwidth of

the searcher. It does this by using the random search

formula assuming a circular search area of radius one-

quarter mile around the node. We assumed a random search to

calculate a lower bound on the actual probability of

detection. This function is used in the SearcherMove.m

function to help determine how much probability mass would

be collected by a certain move.

D. SEARCHERMOVE.M FUNCTION

This function takes in the state and characteristics of

one particular searcher as well as a list of nodes not

available for this searcher at this time. It returns the

searchers best first and second moves (second move refers to

the move in the next timestep, which will be reoptimized

based on the actual state during the next timestep), as well

 57

as how much probability mass these moves collect and whether

this sequence of moves takes both timesteps, thus

constraining the options for the next timestep’s move.

The function works by looping through all nodes and

checks which ones the searchers are able to transit or

conduct a road search to during the next timestep. It

accomplishes this by using two nested “for” loops. It then

updates the target marginals with a negative Bayesian update

function, thus inherently assuming no detections were made

in this timestep in order to get a more accurate estimate of

the state for the next timestep (this assumption is not made

during the reoptimization of the future move, it is merely

made now for a more accurate representation of the future

state). The function then uses two more nested “for” loops

inside of the other two to calculate every sequence of two

moves (still including the option of either transiting or

searching the road) and determines the reward of doing such

a sequence of moves. If the sequence of moves the function

is currently examining is better than any previous sequence,

it stores these moves as the current best. It then repeats

this process until all moves have been checked.

E. MULTISEARCHERMOVE.M FUNCTION

This function takes in the number of searchers and

their characteristics as well as the state at the current

time. It returns the recommended move for the current

timestep for each searcher and whether or not that searcher

will be blocked (constrained to continue along that search)

for the next timestep.

 58

The function accomplishes this by repeatedly calling

the SearcherMove.m function with different restrictions for

each unconstrained searcher (searchers can be constrained if

their previous move limits their next move, i.e., they are

still en route to their previous destination, or if they are

currently inactive, i.e., out of fuel or down). The

function first limits constrained searchers to their

appropriate moves and then updates the restricted movement

list to incorporate these moves. It will get the optimal

move for each searcher by running the SearcherMove.m

function and storing these optimal moves. If there are no

conflictions, these are the optimal moves for the searchers;

if there are conflictions, the function will then update the

list of unavailable moves for each searcher and determine

the best scenario possible using these conflicting

searchers. It will repeat this process until there are no

conflictions among the searchers and this will be the

recommended movements for the next timestep. This iterative

process of eliminating possible moves and recalculating

optimal moves for each searcher can save orders of magnitude

in runtime over the total enumeration method for all

searchers combined which tries many moves that are nowhere

near optimal strategies. Even in the TTLP, total

enumeration for a real-time experiment can take too long,

thus this iterative optimal move process is an extremely

important process of the ASOM algorithm.

F. POSITIVEBAYESIANPERM.M FUNCTION

This function takes in the current target marginals and

a matrix of all the detections. It returns the resulting

target marginals after updating for the positive detections

 59

in the current timestep. It is only appropriate to use this

function when all targets are of the same type, the more

general type of this function and the one that is used in

practice is PositiveBayesianPermutations.m.

This function works by creating a matrix of all

different (unordered) combinations of targets that could

have been seen during the timestep using the nchoosek.m

MATLAB library function. Next, for each different

combination (each row of the previously created matrix) it

creates all different permutations (ordered) of that

combination using the perms.m MATLAB library function. It

combines all of these different permutations into one big

matrix of all possible permutations for the target

detections of the current timestep. It is important to

notice that these permutations represent all of the

different possible scenarios of target detections. The

function then determines the probability of each of these

scenarios occurring by multiplying together the target

marginals of each detected target at the location it was

supposedly detected then normalizing by dividing each

probability by the sum total of all probabilities. After

determining and normalizing the probabilities, the function

decides which scenario actually occurred (according to the

model/algorithm’s viewpoint) based on a random number draw.

Now that the algorithm has the scenario that occurred picked

out, it updates the target marginals for all targets that

were detected to be one at the arc they were detected and

zero everywhere else, thus spiking the probability of those

targets.

 60

G. POSITIVEBAYESIANPERMUTATIONS.M FUNCTION

This function takes in the current target marginals and

an array containing the information of each target type, as

well as a list of all detection locations and the type of

detection made at each location. It returns the resulting

target marginals after all positive Bayesian updates have

been made.

The function works by creating new temporary target

marginal matrices with an extra index representing all

possible types of targets. This will create many blank (by

blank, we mean no nonzero entries) levels of the target

marginals of each type, as there will only be nonzero

entries if the target type of the marginals index matches

the actual type of the target. In a similar manner, the

function also creates a temporary detection matrix with an

extra index to indicate detections of a certain type of

target. Next, the function calls the PositiveBayesianPerm.m

function for each type separately, meaning where the

PositiveBayesianPerm.m function is expecting the input of

the target marginals and a matrix of detections, we only

give it one level of the temporary target marginals and

temporary detection matrix by holding the type index fixed

at its current value and looping through all possibilities.

This updates the temporary target marginals for each type

separately, but since all values were zero except for

targets whose type matched the current type index, we simply

have to sum over the type index to return the final value of

the actual target marginals updated for positive detections.

 61

H. NEGATIVEBAYESIAN.M FUNCTION

The NegativeBayesian.m function is the Bayesian update

for nondetection function. This is the traditional use of

Bayesian updating as described in the introduction. It

takes all values of target marginals where there was no

detection and updates them for the failed detection. The

function returns the updated values of the target marginals.

The function accomplishes this by looking at every

value of the target marginals that is less than 1, meaning

if there was a detection there (thus giving a probability

spike equal to 1), do not apply negative Bayesian updating.

If the value of the target marginal is less than 1, the

function updates this probability to its previous value

multiplied by the probability of failed detection (1 -

probability of detection). After updating the probability

of each target marginal, the function normalizes each value

by dividing it by the sum total of the new probabilities.

The result is the new target marginals updated for failed

detections.

I. MARGINALSMOVEMENT.M FUNCTION

The MarginalsMovement.m function takes in the current

target marginals as well as the speed of each of the targets

and returns the updated values of the target marginals after

incorporating possible movement for the current timestep

based on the Markov movement matrix.

The function accomplishes this by looping through each

target and another loop through each arc (,)i j for that

target. First, it updates every arc to the new value based

on movement out of it for the next timestep by multiplying

 62

by the movement matrix directly. Next, it updates the

values of nodes that have some probability moving into them

from adjacent roads. After that, it multiplies the values

on roads by (1)TURN− probability to lessen the values on

arcs where the target could possibly turn around. Finally,

on every arc where it lowered the probability to account for

targets turning around, it raises the probability on the

reverse arc by the corresponding amount.

J. MOVEMENT.M FUNCTION

The Movement.m is one of two functions to help model

the target movement for experimentation. It is not actually

used in the step function, nor during the actual experiment,

but rather to aid in the generation of random routes for

targets to travel during experimentation. It is called in

the TargetMovement.m function to return the next move of a

target that needs a new destination. It takes in the old

position of the target and the Markov movement matrix. It

returns the new destination node of that target.

This function works by looking at the Markov movement

matrix in the row of the starting position of the target

(which will sum to 1, by definition) and making a random

draw from a uniform(0,1) distribution. With this random

number, the function returns the column of the number whose

cumulative probability matches with the random number drawn.

K. TARGETMOVEMENT.M FUNCTION

The second of two functions made to model target

movement for experimentation. It takes in the amount of

time the targets will move around, the number of targets, a

 63

speed array containing the speed of each target, and the

starting positions of the targets. It returns the final

positions of the targets after it has moved for the amount

of time input. The output matrix has one row for each

target and three columns with the first two representing the

start and finish nodes of the current arc the target is on

(if start and finish nodes are equal, the target is

stationary at that node), and the third being how many

timesteps the target has remaining on that arc before

completing it. If the user would like to see every movement

in the sequence, just repeatedly run the function with end

time equal to one timestep and update the start positions

with the output positions from the previous step.

This function works by entering a “while” loop until

the simulation time reaches the end time input. It then

loops through each target to update their positions one at a

time. If the current target is stationary at a node, it

calls the movement function to get a new destination node

(which could be to remain at the same node for another

timestep), otherwise the target remains on the road it was

previously located. It then makes a draw from a

uniform(0,1) distribution, if this random draw is less than

the turn probability, the function reverses the arc and

number of moves remaining to complete that arc, otherwise

the function only updates the number of moves remaining

until completion of its current arc. Finally, the function

stores all of the new information in the output matrix and

increments time for the next timestep.

 64

THIS PAGE INTENTIONALLY LEFT BLANK

 65

LIST OF REFERENCES

 [1] F. Bourgault, T. Furukawa, and H.F. Durrant-Whyte.
 Coordinated decentralized search for a lost target

in a Bayesian world. Proceedings IEEE/RSJ
International Conference on Intelligent Robots and
Systems, 48-53, 2003.

 [2] X. Cao and X. Guo. Partially observable Markov

 decision processes with reward information.
 Proceedings IEEE Conference on Decision and Control,
 4393-4398, 2004.

 [3] T.H. Chung and J.W. Burdick. A decision-making

 framework for control strategies in probabilistic
 search. Proceedings IEEE International Conference on
 Robotics and Automation, 2007.

 [4] R.F. Dell, J.N. Eagle, G.H.A. Martins, and A.G.

 Santos. Using multiple searchers in constrained-
path, moving-target search problems. Naval Research

 Logistics, 43:463-480, 1996.

 [5] J.N. Eagle. The optimal search for a moving target

 when the search path is constrained. Operations
 Research, 32:1107-1115, 1984.

 [6] J.N. Eagle and J.R. Yee. An approximate solution

 technique for the constrained search path moving
 target search problem. Naval Postgraduate School
 Technical Report NPS-55-85-015, 1985.

 [7] J.N. Eagle and J.R. Yee. An optimal branch and bound

 procedure for the constrained path, moving target
 search problem. Operations Research, 38:110-114,

1990.

 [8] M. Flint, M. Polycarpou, and E. Fernandez-

Gaucherand. Cooperative control for multiple
autonomous UAV’s searching for targets. Proceedings
IEEE Conference on Decision and Control, 2823-2828,
2002.

 66

[9] M. Flint, E. Fernandez, and M. Polycarpou. Efficient
Bayesian methods for updating and storing uncertain
search information for UAV’s. Proceedings IEEE
Conference on Decision and Control, 1093-1098, 2004.

[10] T. Furukawa, F. Bourgault, B. Lavis, and H.F.

Durrant-Whyte. Recursive Bayesian search-and-
tracking using coordinated UAVs for lost targets.
Proceedings IEEE International Conference on
Robotics and Automation, 2521-2526, 2006.

[11] Y. Jin, A.A. Minai, M.M. Polycarpou. Cooperative

real-time search and task allocation in UAV teams.
Proceedings IEEE Conference on Decision and Control,
7-12, 2003.

[12] M. Kress and J.O. Royset. Aerial search optimization

model (ASOM) for UAVs in special operations.
Military Operations Research, 13(1):23-33, 2008.

[13] H. Lau, S. Huang, G. Dissanayake. Discounted MEAN

bound for the optimal searcher path problem with
non-uniform travel times. European Journal of
Operations Research, 190(2):383-397, 2008.

[14] W.B. Powell. Approximate Dynamic Programming:

Solving the Curses of Dimensionality, John Wiley &
Sons, Inc., Hoboken, NJ, 2007.

[15] J.R. Riehl, G.E. Collins, J.P. Hespanha. Cooperative

graph-based model predictive search. Proceedings
IEEE Conference on Decision and Control, 2298-3004,
2007.

[16] A. Ryan, J. Tisdale, M. Godwin, D. Coatta, D.

Nguyen, S. Spry, R. Sengupta, and J.K. Hedrick.
Decentralized control of unmanned aerial vehicle
collaborative sensing missions. Proceedings American
Control Conference, 4672-4677, 2007.

[17] H. Sato and J.O. Royset. Path optimization for the

 resource-constrained searcher. In review.

[18] T.J. Stewart. Search for a moving target when

searcher motion is restricted. Computational and
Operations Research, 6:129-140, 1979.

 67

[19] T.J. Stewart. Experience with a branch-and-bound
 algorithm for constrained searcher motion. In Search
 Theory and Applications, K.B. Haley and L.D. Stone
 (eds.). Plenum Press, New York, 1980.

[20] D.H. Wagner, W.M. Mylander, and T.J. Sanders. Naval
 Operations Analysis, Naval Institute Press,

Annapolis, MD, 187-212, 1999.

[21] A.R. Washburn. Branch and bound method for a search
problem. Naval Research Logistics, 45:243-257, 1998.

[22] A.R. Washburn. Search and Detection 2nd edition,

ORSA Books, Arlington, VA, 1982.

[23] E. Wong, F. Bourgault, and T. Furukawa. Multi-

vehicle Bayesian search for multiple lost targets.
Proceedings IEEE International Conference on
Robotics and Automation, 3169-3174, 2005.

[24] W.I. Zangwill. The convex simplex method. Management

Science, 14(3):221-238, 1967.

 68

THIS PAGE INTENTIONALLY LEFT BLANK

 69

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Assistant Professor Johannes O. Royset
Naval Postgraduate School
Monterey, California

4. Professor Moshe Kress
Naval Postgraduate School
Monterey, California

5. Assistant Research Professor Timothy H. Chung
Naval Postgraduate School
Monterey, California

6. Professor Emeritus David Netzer
Naval Postgraduate School
Monterey, California

