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Abstract 
 

             This research effort develops a program using ®MATLAB  to solve the equations 

of motion for the atmospheric reentry of the Crew Exploration Vehicle (CEV) which is 

assumed to be in the phase of a lunar return trajectory that could be initiated any time 

during the mission.  The essential reason for this research is to find a solution for the 

problem of an unplanned lunar return in addition to the normal procedures.  Unlike 

Apollo type missions, the CEV would still be able to land on any preplanned available 

landing sites without any additional delay.  In Apollo type missions, the return phase had 

to be initiated in a restricted time window so that the crew module could enter the 

atmosphere at the preplanned time and be able to land at the planned landing site.  Using 

skip entry procedures, landing location and time will be more accurate in addition to 

having the time flexibility for reentry.  This ®MATLAB  program is designed to find the 

reentry parameters for given landing location according to the current alignment of the 

moon using a lunar return speed including the atmospheric trajectory of the CEV.  
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CREW EXPLORATION VEHICLE (CEV) SKIP ENTRY TRAJECTORY 

 
 

I.  Introduction 

Background 

The renewed interest in human exploration beyond low orbit has led to many 

different viewpoints on which exploration architecture is appropriate for human missions 

to the Moon and Mars.  In 2004, the President of the United States fundamentally shifted 

the priorities of America’s civil space program with the Vision for Space Exploration 

(VSE), calling for long-term human exploration of the Moon, Mars and beyond. [1] This 

program focuses on returning astronauts to the Moon by 2020 with the eventual 

establishment of a permanent manned station there.  Experience gained from human 

exploration of the Moon is then to be used to prepare for a human mission to Mars.  To 

complete these tasks, a new human exploration vehicle, the Crew Exploration Vehicle 

(CEV) will be developed. [1] 

While numerous exploration architectures exist for a lunar mission,  the goal is to 

come up with a combined moon and possible mars exploration vehicle with a reliable and 

accurate reentry system.  Among these options, most reentry systems require high-speed, 

aero-assisted deceleration of a crewed vehicle at Earth entry.  Having many possible 

options for the entry system, the selection will have a significant effect on the overall 

exploration architecture.  The entry system is typically carried through an entire mission, 

and, its mass, size and complexity can have large impact on other architectural elements.  
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The NASA Exploration Systems Architecture Study (ESAS) selected a CEV 

similar to the Apollo Program’s Command and Service Module, with a crewed command 

module and an unmanned service module.  As seen in Figure 1, the CEV command 

module will be a scaled version of the Apollo Command Module (CM), maintaining the 

same outer mold line with a larger radius for more cargo and crew capacity.  In addition, 

the CEV will be required to return safely to land locations during normal operations, as 

opposed to the ocean landings performed in the Apollo program.  

 

Figure 1.  Schematic of CEV CM [10] 

 

Unlike Apollo missions, CEV missions are also required to be flexible for 

unscheduled mission changes beside the normal operations.  In such an emergency, or 

after an early mission completion, the CEV and its crew will be capable of starting the 
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lunar return procedures and still be able to land at one of the preplanned available landing 

sites.  

Although this mission is carried out by the entry guidance system integrated in the 

flight computer of the CEV, early selection of the reentry coordinates and parameters is 

still needed to save propellant that can be used for the attitude control and adjustment.  

The third body effect is minor in this near Earth operations; however, its perturbations 

will still need to be countered during the trajectory in order to be able to meet the right 

entry parameters.  Therefore, minimal propellant consumption also is important for 

successful mission accomplishment.    

The Apollo program entry guidance contained a long-range option to provide an 

abort mode in the event of poor weather conditions at the primary landing site.  Moderate 

L/D blunt body entry vehicles, such as the CEV, can easily achieve long-range entries by 

employing a skipping entry trajectory.  When performing a skipping entry, the vehicle 

enters the atmosphere and begins to decelerate.  The vehicle then uses aerodynamic 

forces to execute a pull-up maneuver, lofting the vehicle to higher altitudes, possibly 

exiting the atmosphere.[2]  However, enough energy is dissipated during the first 

atmospheric flight segment to ensure that the vehicle will enter the atmosphere a second 

time, at a point significantly farther downrange than the initial entry point.  After the 

second entry, the vehicle proceeds to the surface.  A longer-range trajectory is achieved 

in this manner, as shown in Figure 2. 
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Figure 2.  Skip and Non-skip Entry Trajectories (Altitude vs. Time) 

 

In addition, the Apollo CM guidance was designed to allow a maximum 

deceleration of 12g during nominal entry.  Typical Apollo missions reached peak 

decelerations over 6.5g during entry with the help of “double dip reentry.”  [13]  

Compared to non-skip entry conditions, lower g load values are reached in the skip entry 

trajectory due to the large energy dissipation during the first atmospheric flight segment.  

In a double dip entry, the vehicle does not complete a skip entry but loses its excess 

energy by accomplishing the first part of the skip but never leaving the atmosphere as 

seen in Figure 3.  To do this, the vehicle rolls over after the first skip and the lift vector 
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points down.  The vehicle stays in the atmosphere and completes its deceleration.  

Therefore, it has lower maximum deceleration values but also decreased flight range. 

 

 

Figure 3.  Double-Dip Entry [13] 

 

Although the CEV will be capable of surviving more than 15g, which is 

considered the worst-case scenario during the reentry phase, CEV mission durations will 

be significantly longer than Apollo Program.  This will subject astronauts to micro and 

low gravity for long periods and may require more constraining limits on deceleration to 

ensure the safety of physiologically deconditioned astronauts.    
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Figure 4.  Skip and Non-skip Entry Trajectories (Altitude vs. Deceleration) 

 

Performing a complete skip entry trajectory instead of Apollo’s double dip entry 

trajectory will be more beneficial for the mission safety by giving the flexibility to choose 

the lunar return time.  Astronauts will be exposed to lower deceleration rates and vehicle 

will be able land precisely on the predetermined landing sites. 

Problem Statement 

The CEV will be able to have both ground and water landing capability; however, 

it is considerably safer to land at the predetermined landing sites for the immediate 

ground support and recovery of the vehicle and astronauts.  Having a flexible take off 



 

7 

time from the moon requires the calculations of spontaneous entry parameters that will be 

done by the CEV flight computer.  Early determination of the reentry parameters will 

have significant effect on a successful lunar return and, it will help save the propellant 

that could be used for maneuvering and attitude control if any unpredicted error occurs in 

the trajectory and during reentry.  

In order to solve the landing site determination problem successfully, a time-

based solution must be applied under some assumptions.  Since the landing sites will be 

constantly changing their location according to the inertial frame with the rotation of the 

Earth, reentry flight distance will be constantly increasing or decreasing while on the 

lunar return trajectory and also during the reentry phase.  

Early determination of the reentry location in geodetic coordinates also appears to 

be a problem since the Moon does not have an equatorial orbit around the earth and its 

orbit is tilted between 18.28-28.58 degrees [20], depending on its current position.  

Figure 5 is a non-scaled simulation of the tilt angle of the moon with respect to the 

Earth’s equator.  To be able to overcome this problem, a coordinate rotation has to be 

made for the calculation, expressing the tilt angles in Earth-Centered Earth-Fixed (ECEF) 

coordinates, as well as a reverse rotation for the results. 
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Figure 5.  Illustration of the Moon around the Earth [18] 

 

Like most manned and unmanned aerospace vehicles, deceleration effects are also 

significantly important for the CEV because of both structural and the human g 

tolerances.  Structural limits are usually much higher than crew g limits, so that the 

reentry problem could be solved for two different entry options depending on the g limits 

of the current configuration, but increasing deceleration also means increasing energy 

dissipation and drag force on the structure.  More drag on the structure also creates more 

heat on the heat shield.  The heating rates are a concern because they impact the 

maximum instantaneous heat rejection rates.  Tradeoffs between these two are often 

necessary.  For example, long flights at high altitude reduce the heating rates but last 

longer so the total heating increases.[3]  In a skipping reentry trajectory, flying out of the 

atmosphere has a large effect on cooling the vehicle down and getting it ready for the 
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next dip with lower kinetic energy.  Therefore, a skipping reentry can be considered as 

the best option in a tradeoff decision for reentry with its beneficial effects and not very 

complicated nature.  The animation in Figure 6 represents a good visual expression of the 

skip entry trajectory. 

 

 

Figure 6.  Skip Entry Trajectory  [21] 

Research Objectives 

The main objective of this research effort is to establish that the lunar return can 

be initiated any time during a mission for emergency or mission completion purposes, 

and an accurate reentry can be accomplished at any landing site by adjusting the skip 

parameters.  This procedure will be done by using an onboard reentry guidance computer 

than will process the reentry parameters for skip entry solution.  Thus, the concept of 

entry time window will not be needed for accurate landing purposes.  
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On the other hand, the reentry guidance still relies on precise navigation 

information.  This information can be a result of GPS data or any type of inertial 

navigation system located onboard.  Any error in reentry coordinates or parameters will 

result a significant error in the landing location.  Especially the results of entry coordinate 

errors will be hard predict due to the non-linear nature of the coordinate system. 
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II. Literature Review 

Chapter Overview 

The purpose of this chapter is to describe and analyze the previous research 

efforts in atmospheric reentry.  It is well known that reentry is the most critical part of the 

overall return mission, and the reentry guidance algorithm plays an important role in 

steering the vehicle safely through the dispersed reentry flight environment, while 

meeting the mission requirements.  There have been many research efforts on this topic 

and all tried to find the best feasible solution for the reentry problem of various vehicles 

including the space shuttle, Kistler K-l Orbital Vehicle, and Crew Exploration Vehicle 

(CEV), recently named Orion.  

The academic papers and journals presented here are the different approaches to 

the reentry problem.  Some different types of reentry techniques are considered for the 

CEV, including space shuttle type entry.  The main idea of space shuttle type reentry 

from a lunar return trajectory is, firing the CEV engines to put the vehicle in a Low Earth 

Orbit (LEO).  After that, the problem becomes a space shuttle type entry problem and 

will have about 16 entry windows in a 24 hour day period.  

Other research examples are the references to this thesis work and act as guidance 

through the problem solution.  Reading and studying previous works help to understand 

the topic better as well as showing different aspects to approach the problem.   
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Relevant Research 

Space Shuttle Reentry Guidance 

The Space Shuttle entry guidance provides steering commands to control the 

entry trajectory from initial penetration of the Earth's atmosphere (altitude of 122 km and 

range of approximately 7600 km from runway) until activation of the terminal area 

guidance.  The terminal area guidance occurs at an Earth-relative speed of 762 m/s and at 

the that point, the shuttle is approximately 92 km from the runway threshold at an altitude 

of about 24 km.  The primary objective of the entry guidance is to guide the shuttle along 

a path that minimizes the demands on the shuttle systems design and to deliver the 

vehicle to the best possible energy state and attitude at the initiation of the terminal area 

guidance system.  The Space Shuttle entry guidance is designed to be able to analytically 

define a desired drag acceleration profile and command the vehicle to be at the right 

altitudes  to achieve the desired reentry profile.  This drag acceleration profile fits best to 

minimize the accumulated aerodynamic heat load throughout the entry corridor. [4] 

The commanded Lift-to-Drag (L/D) value of the shuttle can be achieved by angle-

of-attack modulation, by bank angle modulation, or by a combination of the two.  The 

entry guidance of the shuttle uses a combination of bank angle and angle-of-attack 

modulation for trajectory control.  Bank angle is the primary trajectory control parameter 

because the angle of attack can then be selected to minimize the aerodynamic heating 

environment while achieving the required cross range.  In Figure 7, the bank angle profile 

of the shuttle throughout the trajectory can be seen in 50 cases simulated by the entry 

guidance system. 
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Figure 7.  Bank Angle Profile of Space Shuttle [4] 

 

Figure 8.  Angle of Attack Profile of Space Shuttle [4] 
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Figure 8 shows the changes in the angle of attack of the shuttle during reentry.  These 

changes are made by the guidance system to achieve the best possible trajectory while 

keeping the vehicle under the maximum allowable g loads.  This also minimizes changes 

in the aerodynamic heating distribution over the shuttle because of changes in the angle 

of attack.  Therefore, bank angle is used to control both the total entry range and the cross 

range component of entry range.[4]  The g load vs. speed graphic is shown in Figure 9. 

 

Figure 9.  Normal Load Factor Profile of Space Shuttle [4] 

 

GESARED Reentry Simulation  

General Simulator for Atmospheric Reentry Dynamics (GESARED) is a 

simulation tool that was implemented in ®MATLAB / SIMULINK.  It was developed by 

the Delft University of Technology to provide an environment to design control laws for 

reentry vehicles.  The simulation tool was meant to work on a personal computer. 
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GESARED was initially developed to design and test the guidance, navigation, and 

control (GN&C) systems for representative reentry vehicles.  Its primary goal was to be 

the open-loop plant for reentry simulation where it can get the feedback from the GN&C 

algorithm at the latter point. Currently GESARED is the simulation environment used in 

the design of GN&C systems for the lifting body reentry vehicle (LBRV) and the 

atmospheric reentry capsule (ARC).  The LBRV is a conceptual small reentry vehicle 

creating lift by flying high angles of attack.  The vehicle has both side elevons and both 

side flaps as control surfaces.  The ARC is an Apollo type guided and unmanned space 

capsule.  It has successfully completed its first flight in 1998 including launch, suborbital 

ballistic flight, reentry and, descent.  Because of the similarity in shape to the CEV, the 

ARC reentry experiment was an improved version of the original Apollo reentry 

algorithm, giving better results in terms of accuracy at landing.  [5]  

As seen in Figure 10, the ARC reentry trajectory is very close to the simulation 

data.  It has an Apollo type reentry without using the double dip; however, it has a major 

difference at the reentry since it was not following a lunar return trajectory but a 

suborbital ballistic flight.  Therefore, it has an entry velocity of 7.5 km/s as seen in Figure 

11.  
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 Figure 10.  ARC Reentry Trajectory Altitude vs. Time [5] 

 

 

Figure 11.  ARC Reentry Trajectory Velocity vs. Time [5] 

 

….. ARC Reentry Trajectory 
----- Flight Data 
—— Simulation Data 

….. ARC Reentry Trajectory 
----- Flight Data 
—— Simulation Data 
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Predictor-Corrector Reentry Guidance Algorithm 

The main purpose of the Predictor-Corrector Reentry Guidance Algorithm is to 

focus on the evolution of the guidance strategy in order to satisfy both terminal and path 

constraints.  During the each guidance cycle throughout the reentry trajectory, the 

program generates a feasible trajectory for the current conditions and compares it with 

the trajectory generated at the previous cycle.  During this comparison, it also uses the 

measured flight data to make necessary changes on the current trajectory estimation. The 

predictor steering program uses the bank reversal philosophy as necessary to dissipate the 

vehicle’s energy and reach the landing site.  The path constraints include heat rate, 

aerodynamic load, and, dynamic pressure.  These constraints are implemented as part of 

the algorithm to control the trajectory and adjust the control parameters within the 

allowable drag, and drag rate profiles.  [6] 

 

Figure 12.  Schematic for Path Constraint Strategy [6] 
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In Figure 12, the bank angle modulation logic for trajectory control is shown.  This logic 

is activated when the bank angle exceeds 10 degrees during the reentry.  In each predictor 

step, it is ensured that the predicted trajectory satisfies the path constraints as seen in 

Figure 13.  

 

 

Figure 13.  Path Constraint Activation at the Predictor-Corrector Output [6] 

 

Figure 14 shows the results of the simulations for a typical reentry trajectory with the 

logic for heat rate constraint.  The angle of attack ( ) and bank angle ( ) are modulated 

to satisfy the path constraints in all guidance cycles, while the path constraint remains 

active.  This process is repeated until the heat rate falls below the allowable limit.  

However, this changes the actual trajectory, which is then had to be adjusted by changing 

both   and   during the later guidance cycles to meet the terminal constraints.  



 

19 

 

Figure 14.  Predictor-Corrector Guidance Results with Path Constraint Control Strategy 

at the Algorithm Output Level [6] 

 

Orion Reentry Guidance with Extended Range Capability 

In this study, performance of the baseline Apollo algorithm was tested using a 

four degree-of freedom (4-DOF) simulation of the vehicle during reentry.  Monte Carlo 

analyses were performed on this simulation in order to determine the results of the 

guidance algorithm in the presence of uncertainties.  Then, two versions of the enhanced 

algorithm were developed and tested and the results were compared for consistency. 
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The vehicle used in the numerical simulation was assumed to have a constant 

mass throughout the trajectory, neglecting the loss of used fuel mass during reentry.  A 

numerical simulation was implemented in ®MATLAB version 7.0.4 in conjunction with 

Simulink version 6.2.  

The atmospheric density model used in the simulation was the Standard U.S. 

Atmosphere, 1962.  The lift and drag coefficients were taken as a function of altitude and 

Mach number, and the vehicle was assumed to be statically trimmed at all times.  The 

fourth degree of freedom was the rotational motion of the vehicle described by the bank 

angle ( ) but the rotational torques which can affect the bank rate dynamics were not 

modeled.  Instead, the bank angle of the vehicle was assumed to follow the closed-loop 

guidance bank angle commands.  These commands were  received at 2 second intervals 

and restricted by a 20 deg/sec rate limit. [7] 

This enhanced guidance algorithm is based on the Apollo type reentry for the 

initial direct reentry part.  However, the PredGuid program upgraded the phases relating 

to skip entry.  These upgrades were sufficient to allow precise landing after skip entry for 

target ranges of up to 10,000 km. ground track.  In Figure 15, it is seen that the CEP 

value in a 2400 km range test is 2.06 km. where this is under the required value of 3.5 

km. [10].  The algorithm was quite robust even after giving some flight uncertainties and 

was successfully tested against certain stress cases.  In addition, it was understood that 

the steepness of the skip can be controlled by modulating the time that the PredGuid 

takes over; starting earlier results in a steeper and higher altitude skip whereas starting  
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 Figure 15.  Typical Landing Error Distribution [7] 

 

Figure 16.  Enhanced PredGuid Algorithm [7] 

 



 

22 

later results in a shallower and lower altitude skip.  Each of these options has its 

advantages and disadvantages.  The change in the trajectory to achieve the target in 8400 

km. range is seen after the PedGuid algorithm takes over the control in Figure 16.  [7] 

 

Trajectory Optimization for a Fixed-Trim Reentry Vehicle Using Direct 

Collocation and Nonlinear Programming  

A fixed-trim reentry vehicle has negligible control over its angle-of-attack or 

sideslip angle and can only change its flight path by using its bank angle.  Thus, the 

control variable is the vehicle bank angle for the rest of the reentry problem.  There are 

also some other constraints that affect the solution such as the vehicle dynamics, initial 

and final conditions, and structural and thermal loading constraints.  The specific vehicle 

in this work is the Kistler K-l Orbital Vehicle (OV).  The OV is the second stage in a 

two-stage reusable launch system.  The first stage Launch Assist Platform (LAP) lifts the 

vehicle to an altitude from which the OV can reach its orbit.  After deploying a payload, 

the OV reenters the atmosphere and returns to the desired landing site.  

In this study, the vehicle angle of attack and sideslip angle were assumed to 

remain at their trim values.  In this case, reentry trajectory has two goals:  minimizing the 

fuel used in attitude control system (ACS) and minimizing the deviation from the desired 

landing site.  The collocation software is used to calculate the trajectory that results when 

the OV is held at a constant zero degree bank angle.  The reentry simulation program 

starts working by receiving a desired bank angle command from the reentry guidance 

software.  The control code estimates the current bank angle from the current vehicle 
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position, attitude, and velocity.  Then, the software issues rotation commands in the 

vehicle roll and yaw axes.  By doing this, the desired bank angle is maintained by the 

ACS jets.  However, the controller has to constantly command  to the jets to hold the 

bank angle inside the predetermined width.  

In conclusion, the results showed that the final position error stayed below 1 

nautical mile and the collocation software offered a significant savings in fuel.  In 

addition to that, the g loads stayed under the constraints for all cases showing the 

collocation method is a feasible approach to solving the re-entry vehicle problem. [8] 

.  

A Comparison of Two Orion Skip Entry Guidance Algorithms 

The two skip entry guidance algorithms that have been developed for the CEV 

are:  the Numerical Skip Entry Guidance (NSEG) developed at NASA/JSC and 

PredGuid, developed at the Charles Stark Draper Laboratory. 

Six degree-of-freedom analysis has been conducted with these two skip entry 

guidance algorithms.  This analysis shows the feasibility of using a skip entry guidance 

algorithm to reach long-range targets up to 5,300 n.mi. from Entry Interface (EI) without 

using a correction maneuver out of the atmosphere.  This skip entry range capability is 

thought to be able to access to the predetermined and alternate landing sites throughout 

the lunar month.  There has been a performance comparison made by a senior selection 

board  in order to select the primary and the alternate skip entry guidance algorithm after 

conducting several tests.  The PredGuid algorithm was recommended as primary.  The 

PredGuid algorithm demonstrated a better performance in Phase II in which a blended 
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bank angle command is used for the transition between the numerical solutions and the 

Apollo final phase solution.  As a result, the NSEG algorithm will be kept as the backup 

algorithm and comparisons will be periodically performed to ensure that the optimum 

characteristics of both algorithms are identified and used the skip entry guidance 

algorithm.  In Figure 17, it is seen that the PredGuid algorithm demonstrates a better 

trajectory solution in terms of accuracy until the drogue deployement compared to the 

NSEG algorithm.  Since the flight path after the drogue deployment is not precisely 

controllable, the accuracy is evaluated until that time. [9]  

 

 
Figure 17.  Guidance Algorithms Accuracy at Drag-Chute Deployment [9] 
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Summary 

All of the researches presented in this section are the different perspectives to the 

same problem.  The methods used in each are fairly close and most tried to find a solution 

using the post entry maneuvering of the CEV in the atmosphere by changing the bank 

angle and getting rid of their excess energy while staying on the predetermined trajectory.  

That also changed the ground track and became the one of the main sources of the errors.  

The research effort presented in this thesis will be a different approach to the reentry 

problem.  The main purpose is to be able find the reentry conditions and parameters in 

order to have a steady state reentry trajectory unlike the ones presented here.  There will 

be no major maneuvering within the atmosphere but the navigation system will still have 

to maneuver the vehicle slightly to take out the errors.  This method of solution will 

provide the flexibility to initiate reentry whenever needed and having enough energy to 

land on the predetermined landing sites. 
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III. Methodology 

Chapter Overview 

The purpose of this chapter is to develop and explain the solution method for the 

CEV reentry problem.  The approach to the problem and the solution will be described 

and the techniques and used formulas will be presented.  

Problem Setup 

As indicated previously, the reentry trajectory problem starts with the initiation of 

the lunar return procedures.  The concentration of this research is to solve for the reentry 

parameters so that the reentry vehicle can keep a stable reentry throughout the trajectory.  

Therefore, as the return procedures start, the parameters have to be calculated depending 

on the time and position of the earth according to the moon.  After solving for the 

parameters, the CEV will start its return trajectory to reach the calculated values and keep 

its attitude constant through the reentry phase.  Calculated entry coordinates and flight 

path angle are going to be the key elements that are defining the whole trajectory within 

the atmosphere and during the skipping maneuver.  

The skip-entry trajectory approach is not a new concept.  The original Apollo 

guidance was developed with skip trajectory capability, which was never used because of 

navigation and control concerns during the skip maneuver.  If the vehicle was skipped the 

atmosphere, it could have flown out above escape velocity, and could have never come 

back resulting a total catastrophe.  In place of a total skip entry, Apollo used a double dip 

entry.  The Soviet Union also used skip trajectories to return Zond robotic vehicles to a 
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Russian landing site.  Considerable analysis was completed in the 1990s to investigate the 

long-range capability of vehicles in the 0.5 lift to drag ratio ( /l dC C ) class, which was 

considered the minimum L/D required to enable accurate skip trajectory entry capability 

at that time. [10] 

The return trajectory begins with the targeting for the Trans-Earth Injection (TEI) 

maneuver while on the moon.  The TEI maneuver is the propulsion maneuver used to set 

the CEV on a trajectory, which will intersect the Earth.  The vehicle is placed on a 

trajectory that intercepts Entry Interface (EI) at 122 km. or 400,000 ft. at Earth at the 

correct flight path angle, latitude, longitude, and range to intercept the desired landing 

site.  The flight path angle, reentry longitude, and latitude are controlled via the TEI 

maneuver during the departure of the moon.  It establishes the required geometry to 

accomplish the return entry flight.  The moon has a declination of maximum  28.6 deg.  

The entry vehicle enters the atmosphere at around 10.5 km/s.  During the first dip, the 

flight path angle gradually increases.  When the flight path angle is zero, the vehicle skips 

the first entry and its altitude starts increasing.  During the coast to apogee, the navigation 

system is updated via GPS communication.  Just before apogee of the skip orbit, a 

correction burn is executed using small engines on the capsule to correct for dispersions 

(if required) accumulated during the skip phase of the flight.  This maneuver then helps 

the vehicle maintain the optimal set of reentry conditions at the second entry point. After 

executing the second entry with the right parameters, the vehicle targets for the landing 

site with no required bank angle change.  A reference shape and basic dimensions of the 

CEV are shown in Figure 18.  
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Assumptions 

The assumptions made in this research depend on the conceptual design of CEV 

model.  Any type of change will also directly affect the results; however, the solution 

method remains valid.  

The problem set up starts from the Moon for beginning of the solution.  The Earth 

looks like a perfect giant ball from the moon.  Although the moon is declined according 

to the Earth’s equator, the perspective from the Moon’s surface is a tilted, rotating sphere.  

Thus, the solution method presented here takes the Moon as a reference and the 

declination of the Moon orbit as Earth’s tilt angle according to the reference.  This tilt 

angle happened to be the first challenge during this research and solved by a coordinate 

rotation, which will be mentioned later.  

 

Figure 18.  Apollo Derivative Crew Module [10] 
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The location of the landing sites are the other problem that has to be overcome.  

The rotation of the Earth causes the change of the locations according to the reference 

Moon surface.  The rotation of the Earth is assumed constant.  The time used in the 

solution method is based on the arrival time of the vehicle to the Earth’s atmosphere.  

Since the return trajectory and duration between the Moon and Earth can be easily 

calculated after the departure, the atmosphere entry time can also be calculated.  

The time calculation assumes the landing location is perfectly aligned with the 

moon departure location at time zero and the atmosphere entry time is expressed as the 

travel time of the landing location from time zero.  For example; if the landing location is 

in the middle longitude of the other side of the Earth as viewed from the moon at the time 

of entry, then the entry time is assumed to be 12:00 since it was aligned with the 

departure location when the return began and now it is at the other side of the Earth, 

meaning 12 hours of rotation away.  Sidereal time is not used in this study since the time 

is only a conceptual measure for the calculations; however, it could also be used with 

minor changes.  

The vehicle properties such as the entry surface area, vehicle mass have different 

but similar values in different sources.  The values in this study are taken from the NASA 

Exploration Systems Architecture Study (ESAS) Report.  The vehicle mass is taken as 

11500 kg. and the reentry surface area is taken as 23.76 2m .  Although it is not clear yet, 

the CEV is projected as an Apollo type capsule, which has a 0.4 lift to drag ratio ( /l dC C ) 

as shown in Figure 19.   
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Table 1. CEV General Parameters [10] 

 

 

 

 

Figure 19.  General Properties of CEV  [10] 

 

The entry coordinates are the second important parameters that have to be found 

for the solution.  Since the landing location is described in the conceptual lunar departure 

time, then the reentry flight distance basically becomes the distance between entry point 

and landing location, which is the key parameter used in the solution method and will be 
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discussed later.  However, the atmosphere is not perfect as it is assumed in the solution, 

the atmospheric effects such as weather events and high altitude winds are neglected to 

simplify the solution and a simple approximation for atmospheric density is used to form 

the “strictly exponential atmosphere,” given by: 

 
( )r R

se
     (3.1) 

where s  atmospheric density at the surface, R  radius of Earth, 1   the scaling 

height that best matches the exponential atmospheric form.  In addition to that, the lower 

layers of the atmosphere rotate with the rotation of the Earth decreasing as the altitude 

increases.  Although this rotation rate is can be modeled and used in the solution, for 

simplification reasons, it is neglected in the solution method. 

In addition to the assumptions made for the solution, one of the most important 

assumptions is considering the Earth as a perfect sphere.  Although it doesn’t make most 

of the calculations harder, the “unified theory” that is used for the solution of the problem 

works for a perfect spherical geometry. [3]  On the other hand, the Earth can easily be 

considered as nearly perfect since its bulge is only about 0.33% of its radius.  

Solution Method 

Using the conceptual Moon departure time, as mentioned previously, the reentry 

time can be easily calculated and also the exact location of the landing locations can be 

found.   
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Entry Coordinates 

The second problem is finding the entry coordinates.  The entry coordinates are 

going to be the edges of the Earth.  As seen in Figure 20, the picture seen from the 

Moon’s perspective, where the return trajectory starts, the reentry points are shown in red 

and are unlimited.  The aim of the return trajectory will be one of these reentry points 

with a flight path angle ( ) of slightly lower than zero, meaning the velocity vector ( RV


) 

pointing lower than the local horizon line as seen in Figure 21. 

 

 

Figure 20.  Representation of Possible Reentry Points [19] 
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Figure 21. Two-Dimensional View of Planar Entry [3] 

 

To be able to find the entry coordinates, the conceptual arrival time must be used.  

Since it defines the exact location of the landing site coordinates, the coordinates on the 

red line in Figure 21 can be found from there.  For example, if the atmosphere arrival 

time is 2:00, that means the Earth rotated around 30 degrees.  Let’s say the landing site is  

at 280E – 28N coordinates (Kennedy Space Center).  Remembering the assumption, 

made for the alignment of the landing site with the Moon at the departure time, the 

middle longitude will be 30 degrees less than the landing longitude.  After finding the 
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mid longitude, the 2-longitude circle around the Earth can be found by adding and 

subtracting 90 degrees to the mid longitude.  Therefore, in this case, the red line around 

the Earth will be composed of 160N and 340N longitudes.  Either one of them can be 

selected for the reentry side but the selected side will define the entry type as either 

prograde or retrograde. Since the atmospheric activities and the motion of the lower 

layers of the atmosphere with the rotation of the Earth are neglected in this study, solving 

the problem for a prograde or a retrograde reentry type will only change the total reentry 

flight distance and therefore affecting the entry flight path angle ( ). 

Finding the entry latitude can be done in a similar way.  If the flight path of the 

vehicle is thought to be its orbit, the inclination of that orbit will give the entry latitude. 

In order to be able to find that inclination, the angle between the orbit plane and 

equatorial plane has to be found.  This is a simple solution using the spherical 

trigonometry.  As seen in Figure 22, the angle between a and c is equal to the angle 

between the OAC and BAC planes.  Thus, by converging the C point to the intersection 

of mid longitude and zero degrees latitude (equator), point  A to the location of the 

landing site and point  B to the pole, it is now easy to get the inclination angle from the 

spherical trigonometry formulas. 

 

 sin sin sina c    (3.2) 

 cos cos cosc a b   (3.3) 

 sin tan cotb a    (3.4) 

 cos tan cota c    (3.5) 



 

35 

 

 

Figure 22. General Right Spherical Triangle [3] 

 

Flight Distance 

The distance mentioned as flight distance is actually the angular distance of the 

ground track between the EI point and landing site.  Thus, the flight distance can also be 

calculated by using the spherical distance formulas. 

 e LL      (3.6) 

 cos sin sin cos cos cosL e L es L          (3.7) 

From these equations we can find the angular distance as:  

 cos(sin sin cos cos cos( ))L e L e e Ls a             (3.8) 

The angular distance (s) gives the ground track of the trajectory, which later can be used 

to solve the equations related to the reentry.  
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Figure 23. Relationship Between Landing Site and EI [15] 

 

Coordinate Rotations 

As previously mentioned, the declination of the Moon has a negative effect on 

projecting the entry coordinates.  However, this problem can be overcome by doing a 

simple coordinate rotation according to the tilt angle seen from the Moon’s perspective.  

Since the Earth is considered as a perfect sphere and the ground track of the flight 

distance is taken as a constant after the entry time calculations, the rotation made in the 

Geodetic coordinates will not affect the result.  If the landing and the entry coordinates 

are rotated according to the tilt angle of the Earth, the problem can be solved with the 
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newfound pseudo coordinates.  However, a reverse rotation of the coordinates has to be 

made at the end of the solution to present the entry and landing coordinates correctly. 

 

 

Figure 24. Coordinate Rotations [15] 

 

The coordinate rotations are made as the angles are measured in a counter-clockwise 

direction and the following rotation matrices are used.  

 

 1

1 0 0
0 cos sin
0 sin cos

R p p
p p

 
    
 

 (3.9) 

 2

cos 0 sin
0 1 0

sin 0 cos

q q
R

q q

 
   
  

 (3.10) 

 3

cos sin 0
sin cos 0

0 0 1

r r
R r r

 
    
 

 (3.11) 
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The rotation matrix is formed by: 1 2 3R R R   

To be able make the coordinate rotation, the geodetic coordinates must be 

converted in to ECEF coordinates in the vector format.  Next, the location vectors will be 

multiplied by the rotation matrix and the result will be converted back to the geodetic 

coordinate system.  The conversion is made using these formulas: [17] 

 ( )cos cosx N h     (3.12) 

 ( )cos siny N h     (3.13) 

 2[ (1 ) ]sinz N e h     (3.14) 

where: 

, ,h  geodetic latitude, longitude, and height above ellipsoid. 

, ,x y z = Earth Centered Earth Fixed Cartesian Coordinates, and; 

 2 2( ) / 1 sinN a e    (3.15) 

N= Radius of the curvature in prime vertical 

a= semi-major Earth axis (ellipsoid equatorial radius) 

b= semi-minor Earth axis (ellipsoid polar radius) 

 
2 22

a bf
a

e f f




 
 (3.16) 

f= flattening  

e= eccentricity 
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Reverse conversion from ECEF coordinates to geodetic coordinates are made by 

using these formulas: [17] 

 
2 3

2 3

' sin
tan( )

cos
z e ba
p e a










 (3.17) 

 tan 2( , )a y x   (3.18) 

 ( )
cos

ph N 


   (3.19) 

where; 

 

2 2

2 2
2

2

tan( )

'

p x y
z aa
p b

a be
b



 









 (3.20) 

Unified Theory 

In order to solve for the reentry problem the universal equations derived by Vinh 

and Brace are used.[11]  These equations are independent of mass, size, and vehicle 

shape.  

 tandZ rZ
ds

    (3.21) 

 
2 sin1 cos tan

cos 2
L

D

Zu rdu C
ds C Z r

 
 

 

 
    
 
 

 (3.22) 

 cos
cos

d
ds
 


  (3.23) 

 sind
ds


  (3.24) 
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2cos coscos 1

cos
L

D

Z rd C
ds C uZ r

  


 

  
    
   

 (3.25) 

 
2

2

cossin cos tan
cos

L

D

Z rd C
ds C Z r

 
  

 

 
  
 
 

 (3.26) 

In addition to these six equations, using the Vinh’s equation that is used to change the 

independent variable from time to “s,” the time solution for the reentry can be extracted. 

 
0

cos
t RVs dt

r
   (3.27) 

Using Eq.(3.18), if the time is extracted: 

 
cosR

dt r
ds V 

  (3.28) 

To be able to use this equation, the dependent variables has to be exchanged with the 

independent ones.  Using the Vinh’s dependent variable change equations: 

 
2 2cosRVu
gr


  (3.29) 

 
2

DC S rZ
m




  (3.30) 

and the gravity term: 

   2g g r
r


   (3.31) 

the time solution equation turns out to be: 

 dt r r
ds u

  (3.32) 
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After the variable changes are made, the ”non-dimensional altitude variable” [3] has to be 

found using: 

 
2

DSC
m




  (3.33) 

Then, the altitude variable becomes:  

 /Z r   (3.34) 

If the r  is assumed to stay almost constant throughout the trajectory then it can be 

replaced with a constant.  Now altitude can easily be found using .  This assumption is 

consistent with Unified theory since the equations in Unified Theory were found using 

the same assumption. 

For a ®MATLAB solution of these 7 equations, some variable changes has to be done: 

1

2

3

4

5

6

7

X Z
X u
X
X
X
X
X t
















 

Using the new variables, the unified theory equations can be rewritten with the time 

solution: 

 1 1 5tan( )X rX X


   (3.35) 

 1 2 5
2 5

5 1

2 sin( )
1 cos( ) tan( )

cos( ) 2
L

D

X X r XCX X
X C X r






      
 
 

 (3.36) 
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 6
3

4

cos( )
cos( )

XX
X



  (3.37) 

 4 6sin( )X X


  (3.38) 

 
2

1 5 5
5

5 21

cos( ) cos ( )cos( ) (1 )
cos( )

L

D

X r X XCX
X C XX r






  
   
 
 

 (3.39) 

 
2

1 5
6 6 42

5 1

cos ( )sin( ) cos( ) tan( )
cos ( )

L

D

X r XCX X X
X C X r






  
  
 
 

 (3.40) 

 7

2

r rX
X 



  (3.41) 

Since ®MATLAB ODE function works in the matrix form, the equations have to be 

turned into matrix form: 

 

5
1

2
5

2 5

3

4

1

5
5

6 1
2

57

tan( ) 0 0 0 0 0

2
1 cos( ) tan( ) 0 0 0 0 0
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0 0 0 0 0 0
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sin( ) 0 0 0 0 0cos ( )
0 0 0 0 00
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D
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D
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r X
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X r C X
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
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


















                                    
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r r
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                                     
   

 (3.42) 

where   X A X B
     
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Flight path angle ( ), heading ( ), latitude ( ), longitude ( ), and time (t) will be the 

direct results of these inputs.  However, the altitude (h) and velocity (v) have to be 

extracted using Vinh’s equations in reverse.  

 If r  is assumed to stay constant throughout the trajectory, then it becomes easy 

to calculate the altitude from .  Using Eqs. (3.1), (3.30), and (3.34), the altitude is 

becomes: 

 1
2ln

s D

h
m

S C





 

  
 

 (3.43) 

The scalar velocity of the vehicle can also be extracted using Eqs. (3.29) and 

(3.31), and becomes: 

 
cos

u
r R

v






  (3.44) 

 

 Deceleration and Heating Calculation 

Deceleration on the vehicle is a function of the drag force acting on it during 

reentry.  As it is seen on the Figure 25, most of the deceleration occurs at the altitude of 

around 40 km. altitude.  The main reason for this is the exponentially increasing 

atmospheric density function.  Some of the examples of atmospheric densities according 

to the altitude changes are presented in Table 2. 
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Table 2. Altitude Air Density Relationships 

Altitude ( km ): 50  45  40 35  30  

Density( 3/kg m ): 1.117e-003 2.249e-003 4.529e-003 9.122e-003 18.37e-003 

 

As it is seen in Table 2, the atmospheric density change in the lower altitudes are 

enormous, causing most of the drag on the reentry vehicle and dissipating its energy. 

However, most of its energy is dissipated between the altitudes 40 and 45 km. and the 

deceleration rate decreases even though the atmospheric density is doubled in the lower 

 

Figure 25. Deceleration vs. Altitude 
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altitudes.  The deceleration on the vehicle is found using Loh’s second order solution for 

deceleration. [12]  

 
2

0
0

2 1decel L

D

a Cr T
g C

 
 

   
 

 (3.45) 

 

In order to solve the deceleration equation the kinetic energy of the vehicle must be 

found.  After redefining the kinetic energy in terms of universal equations, it becomes: 

[3]  

 22cos
uT


  (3.46) 

Using kinetic energy, now the stagnation and wall heat flux parameters can be 

found using: 

 3/ 2
wq T  (3.47) 

 1/ 2 3/ 2
sq T  (3.48) 

 

Unsurprisingly, the wall heat flux and stagnation heat flux versus altitude graphics look 

very similar to the deceleration graphic.  The main reason for this is the kinetic energy 

parameter in all three equations.  In this example, the kinetic energy of the vehicle 

decreases very fast around the altitudes 35-45 km. because of the increasing drag force 

with the increasing air density.  However, there is a unique difference between the 

deceleration and heat flux graphics.  The peak values on the heat flux are achieved at 33 

km. but the peak deceleration rate is achieved at 38 km. altitude, and the air density is the  
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 Figure 26. Wall Heat Flux vs. Altitude 

 

Figure 27. Stagnation Heat Flux vs. Altitude 
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same exponential increasing model in both subjects.  The reason for this event can be 

explained as the heating does not occur as quickly as the deceleration since the 

deceleration is a result of sudden increased drag force.  The heat flux also occurs because 

of the drag force but it has a cumulative nature.  Therefore, it starts building up with an 

increased rate at the same altitude with peak deceleration, but the peak heat flux is 

achieved when it comes to equilibrium with the surrounding air and then goes down as 

the kinetic energy and drag force decreases.  Thus, maximum the heat flux is expected to 

happen after the peak deceleration rate as experimented in the example.  

Summary 

In this section, the solution method for the reentry problem is presented.  The 

main idea for the solution method was to simplify the entry and achieve an accurate 

landing on the predetermined landing site.  It is considered that this solution has two 

different benefits for the overall mission.  The first and probably the most important 

benefit is being able to get rid of the reentry window concept in order to make accurate 

landings.  Since more than two pi radians of angular distance can be obtained by 

changing the entry flight path angle and completing a full skip entry trajectory, this 

concept gives the eligibility to access any landing site on Earth.  As it is mentioned in the 

literature review part, the reentry trajectories mostly deal with a constant or very little 

changing flight path angles and define their atmospheric trajectories and flight paths by 

changing the bank angle of the vehicle for energy dissipation and also navigation 

purposes.  Thus, these types of reentry models require an entry time window for the 

vehicle, which is normal for the normal procedures, but causing problems in case of an 
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emergency demanding an earlier or later return.  The other benefit is the simplicity of the 

trajectory.  The bank angle of the vehicle is kept constant through out the trajectory and 

the entry parameters are calculated at the very beginning of the lunar departure.  

Although the weather effects atmospheric movement are not considered and involved in 

the calculations, they can still be compensated in the skip part or in the atmosphere.  
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IV.  Analysis and Results 

Chapter Overview 

This chapter includes a brief description of the software that is developed in order 

to solve the reentry problem using ®MATLAB , and the analysis of the program structure 

and the results will be presented.  First, user operations on the program will be described 

and, next, the design of the algorithm and the processes will be outlined.  The program 

functions and the problem solution will be displayed with the resultant graphics.      

Program Operation 

To begin the program operation, the reentry.m file must be opened in the 

®MATLAB current directory.  The program will create some *.mat files in order to save 

the data and will delete them after the operation ends.  Typing “reentry” will initiate the 

program and display the graphical user interface (GUI) menu.  Figure 28 is the reentry 

GUI that will come up after starting the program operation.  On the left hand side, the 

latitude and longitude are the desired landing coordinates that are expressed in WGS84 

coordinate system.  The coordinates are in degrees and can be selected between either 0E 

to 360E or 180W to 180E.  However, west coordinates must be writes as negative 

numbers.  Under the coordinates, the atmospheric entry time is displayed.  As mentioned 

in previous chapter, the atmospheric entry time is based on the conceptual lunar departure 

time and it is created under the assumption of the beginning of  24 hour period is when 

the landing coordinate lines up with the lunar departure location.  The Earth’s tilt angles  
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 Figure 28. GUI display for reentry program 
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are defined according to the position of the Moon against Earth’s ECEF coordinates 

where the tilt angles are the calculated counter clockwise in ECEF coordinates which 

could make the Earth’s equator aligned with the orbit of the Moon.  After entering all of 

the data, the reentry option selection can be made.  The default option is adjusted to be 

the quickest entry type, however, the entry type can also be changed to prograde entry. 

The calculations will be made according to the selection.  Pushing on the “RUN” button 

will start the process.  

The result of the calculations will be displayed on the right hand side of the GUI 

display.  The solution parameters are entry latitude, longitude, and the flight path angle at 

the entry altitude of 122 km.  Other parameters displayed on the GUI are for information 

purposes.  Final speed and altitude are the final parameters that are calculated by the 

program.  The program ends its calculations when the CEV achieves the altitude 10 km. 

and gives the vehicle’s final speed at that altitude.  Uncorrected landing coordinates are 

to show the landing point with no coordinate rotation done when the tilt angles are 

ignored.  Therefore, if the tilt angles are chosen to be zero, it will be the same as landing 

coordinates.  At the end, if the “RESTART” button is pushed, the program will return to 

the beginning, closing all of the figures and deleting the inputs and outputs.  

Software System Process 

The ®MATLAB codes developed in this research works by iterating the entry 

flight path angle to be able to find the right landing location. A detailed schema of the 

program can be seen in Figures 29 and 30. 
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Figure 29. Software System Process Schema 1 of 2 

Find the angular distance between the entry point and 
landing location 

            User Inputs 
 Landing Coordinates 
 Entry Time 
 Earth’s Tilt Angle 

Find the location of the coordinates on 
the earth 

Is the 
earth 

tilted? 

Rotate the coordinates according to 
the given tilt angle 

Assign entry coordinates for the landing location 

Using the angular distance from entry points; 
solve for: 

 
 Entry flight path angle 
 Entry duration 

 

Solve for earth’s rotation for the computed 
entry duration  

NO YES 

To Page 2 of 2  
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Figure 30. Software System Process Schema 2 of 2 

 

Do a reverse coordinate rotation for the entry points and landing 
coordinates 

Plot the figures and give the outputs 

Using the angular distance from entry points; 
solve for: 

 Entry flight path angle 
 Landing coordinates 
 Altitude 
 Speed 
 Deceleration 
 Entry duration 
 Heating 

 

Find the angular distance between the entry point and 
new location of landing site 

Using the angular distance solve for: 
 

 New entry flight path angle 
 New entry duration 

 

Solve for earth’s rotation for the computed 
entry duration last time 

Find the angular distance between the entry point and 
new location of landing site 

From Page 1 of 2  
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After entering the desired landing coordinates, entry time and, tilt angles of the 

Earth, the program finds the exact location of the coordinates on the Earth.  If the Earth is 

tilted, the coordinates will be rotated and the landing location will be expressed in the 

new coordinate system.  Next, the entry coordinates are found to be used for the solution.  

After finding the entry coordinates, the flight distance could be found using the entry and 

landing location using spherical distance formulas as in Eqs.3.6, 3.7, and 3.8.  Then, the 

program finds the entry flight path angle for the flight distance.  Since it is very hard to 

reverse integrate the universal equations, the program uses a certain preassigned value for 

the beginning and starts iterating until the right flight path angle is found for the distance.  

Generally, the skip entry takes from 40 minutes up to 2 hours; therefore, the rotation of 

the Earth during the atmospheric entry should be calculated and added to the total 

rotation.  Thus, the program adds the entry duration to the total time and finds a new 

location and a new flight distance.  This iteration is done for three times to be able to 

reach the exact location of the landing coordinates and decrease the uncalculated rotation 

of the Earth during the entry flight.  All of the parameters are calculated integrating the 

universal equations and the results are then converted into the usable parameters for the 

user.  A reverse rotation of the coordinate system is done after the calculation is done for 

plotting the figures and giving the output coordinates.  Finally, the results are displayed 

on the right hand side of the GUI display.     

Results Analysis 

In this section, the outputs of the program will be presented and a sample entry 

profile will be analyzed.  The sample inputs and the outputs are seen in Figure 31.  
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 Figure 31. Total Skipped Longitude and Distance 
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The algorithm of the program is compatible with any coordinates on the Earth 

surface.  So that, the calculations can be made regardless of the current ground facilities 

or landing sites available.   

 

Figure 32. Total Skipped Longitude and Distance 

 

Figure 32 shows the skipped distance and longitude vs. altitude.  As seen in the 

graphs, the skipping altitude goes up to 300 km. and the flight distance reaches to a 

16000 km. range.  In both figures, the thin red line represents the atmosphere line, and it 

is also the entry altitude.  The graphs do not match exactly since the distance between the 
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longitudes changes with latitude; therefore, the polar type entry graph looks rectangular.  

At the first entry, the CEV flies down to 45 km altitude before gaining a positive flight 

path angle.  After the skip, the vehicle spends most of its trajectory out of the atmosphere.  

As far as the heating constraints, this is very helpful for cooling down the vehicle out of 

the atmosphere and beginning a second entry with less energy.  

   Figure 33.  Velocity- Altitude Projection 

 

In Figure 33, the change in velocity according to the time is projected on the 

altitude to be able to see how the speed changes in the atmosphere.  As it is expected, the 
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speed of the vehicle tends to increase at the entry, and then it gradually starts decreasing.  

However, as seen on the line, the velocity of the vehicle is essentially the same as entry 

speed (10.5 km/s) even at 50 km. altitude.  The deceleration on the vehicle increases 

because of the increased air density and drag afterwards and the vehicle loses most of its 

energy under that altitude during first and the second entry. 

 

Figure 34.  Flight Path Angle vs. Altitude 

 

In Figure 34, the change in flight path angle shows the characteristics of the 

trajectory during the entry and the skip part.  Since there is no perturbing force affecting 

the vehicle during the time between the base of the first skip and the base of the second 

entry point the flight path angle displays a symmetrical behavior.  
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Figure 35.  Deceleration, Stagnation, and Wall Heat Flux 

 

In Figure 35, the deceleration, stagnation, and wall heat flux vs. altitude diagrams are 

presented.  As it can be seen in the figures, the stagnation heat flux starts increasing in 

higher altitudes where the vehicle first meets the drag force but the wall heat flux 

increases with a higher rate and peaks right before maximum deceleration rate is 

achieved.  The stagnation heat flux is the local “hot spot” on the vehicle where the wall 

heat flux is an average value on the vehicle.  Therefore, it is expected that the stagnation 

heat flux peaks before wall heat flux.  
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Figure 36.  Deceleration vs. Time 

 

 Figure 37.  Maximum Deceleration vs. Time 
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In Figure 36 and 37 the deceleration and the maximum deceleration times can be 

seen.  The maximum deceleration in this sample is 7.42 g., and the time above 7 g is 10 

seconds.  Depending on the crew seating positions, the maximum deceleration that a crew 

member can handle varies.  However, 10 seconds over 7 g. and a maximum of 7.42 g. is 

lower than the NASA allowable deceleration limits which is 10 g. for up to 40 seconds.  

[16] 

 

Figure 38.  Ground Track of the Trajectory 

 

In Figure 38, the ground track of the trajectory can be seen on a prograde reentry 

for the same example.  The green circle represents the entry point, and black dot, the 

landing point.  The program also calculates the possible entry coordinate errors according 

to the entry point.   
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Figure 39.  Reentry Coordinate Errors 

 

Figure 40.  Landing Errors  
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Figure 39 and 40 presents the coordinate errors and the results.  Eight different 

entry coordinate errors are given to the program to see how they affect the landing 

coordinates.  The corresponding marks and colors are the results of the entry coordinate 

errors.  Table 3 shows the entry and the landing coordinates solution.  

 

Table 3. Entry / Landing Coordinate Errors (Lat/Long) 

 Entry Coordinates (deg ) Landing Coordinates (deg ) 

Normal Entry -34.3379 / 257.4295 37.0000/  32.0000 

One Long. West Entry -34.3379 / 256.4295 37.3136 /  31.0627 

Two Long. West Entry -34.3379 / 255.4295 37.6274 / 30.1216 

One Lat. South Entry -35.3379 / 257.4295 37.7897 / 31.8218 

Two Lat. South Entry -36.3379 / 257.4295 38.5775 / 31.6292 

One Long. East Entry -34.3379 / 258.4295 36.6867 / 32.9336 

Two Long. East Entry -34.3379 / 259.4295 36.3738 / 33.8637 

One Lat. North Entry -33.3379 / 257.4295 36.2087 / 32.1644 

Two Lat. North Entry -32.3379 / 257.4295 35.4158 / 32.3153 

 

Summary 

In this chapter, the process executing the program and its results are presented.  

The results and the graphics can be changed and displayed as the needs for the outputs 

change.  Although the program does not put any restrictions on the process to keep the 
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deceleration loads under certain values, the design of the algorithm naturally avoids high 

deceleration rates occurring during the reentry.  For heat and deceleration concerns, the 

highest values are reached during the short distance trajectories, since the vehicle has to 

dissipate more of its energy in less time.  Thus, the algorithm selects a trajectory, which 

has a minimum of 45 degrees skipping distance to avoid high deceleration and heating 

values. 

The program operation takes a few minutes because of the iteration of the ODE 

function in ®MATLAB environment but it is completely dependent on the selected 

coordinates.  If the flight distance is close to 360 degrees, the limits on the integration 

used in ODE function goes higher linearly and the solution takes more time.  However, 

this is also strictly dependent on the processor speed of the computer.  

The program is designed to be as user friendly as possible, therefore the input 

parameters and the results are displayed in the same window.  Since the program is 

composed of many small functions, it is easy to change any part depending on the needs 

and future developments. 
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V.  Conclusions and Recommendations 

Conclusions of Research 

In this research, the effects, and benefits of a skip entry trajectory is inspected and 

for this reason, a ®MATLAB program is developed.  The main reason for the program is 

to be able to show that a skip entry trajectory from a lunar return mission in a manned 

space capsule is possible and has many benefits comparing to Apollo type trajectories.  

First and the most important benefit of this trajectory is its independence to the lunar 

departure time constraints.  This can be a result of an emergency during the mission or an 

early or late completion.  Therefore, in order to achieve a safe landing from the mission 

return, the skip entry trajectory provides a safe and time independent solution.  Another 

benefit is also its independence from the landing site.  However, this is not a complete 

independence.  Landing coordinates have to be decided as early as possible since the 

landing site selection makes the trajectory dependent upon entry coordinates and flight 

path angle.  These selections have to be made early in order to save fuel and reach the 

entry parameters.  This situation can be considered as a con, but it still gives more 

freedom than having to leave at a specific time to be able to land at the right spot.     

Another important reason for the program is to look at the trade-offs in the 

trajectory and the vehicle parameters.  It is easy to change the vehicle parameters or the 

entry conditions to try different reentry solutions for the changing needs.  New 

trajectories or vehicle types can be implemented depending on the mission 

characteristics.  



 

66 

Significance of Research 

In general, it is considered that the results of the research are quite successful.  

Although total skip entry guidance has been done before for the trajectories of unmanned 

vehicles, application of this concept is quite new for the manned space missions.  One 

very important risk of trying a skip entry is skipping out of the atmosphere above orbital 

escape speed at that altitude and this can have disastrous results.  Therefore, the accuracy 

in maintaining the parameters is very important as calculating the correct parameters. 

The skip entry guidance concept is going to be a part of the CEV reentry 

algorithm.  Since the vehicle and its guidance system is still under development and no 

public displays or announcements have been made so far, any kind of different 

perspective and approach to the problem will be helpful in terms of putting more insight 

for the solution of the problem. 

Recommendations for Future Research 

The ®MATLAB  program developed for this problem is quite adaptable for future 

developments.  Several areas can be improved in this research.  Some of those are 

neglected for the simplification purposes but some of them led the problem in different 

areas of expertise.  Therefore, the general solution method should be developed using 

interdisciplinary research methods.  

In this research, the atmosphere is modeled with a simple exponentially increasing 

atmosphere type.  Although it can be neglected and does not change the results 

significantly, the accuracy of the program can be improved by modeling the atmosphere 

layer by layer, each with a different scale height.   
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Atmospheric events are also neglected during this research for simplification 

purposes.  Although the events cannot be estimated beforehand, a major factor as an 

average can be used in future developments.  The rotation of the Earth is added to the 

calculation during the time spent in the atmospheric trajectory, but the atmosphere is 

assumed to be inertially fixed.  However, it is also known that the lower layers of the 

atmosphere are rotating with the Earth and exponentially decreasing as the altitude 

increases.  This concept is not hard to model and can be implemented in the calculations. 

The lift and drag coefficients are assumed to stay constant during the reentry.  

However, as the temperature and the aerodynamic pressure rise on the body of the 

vehicle, its aerodynamics tend to change the lift and drag coefficients of the vehicle 

slightly.  This is also neglected because of its insignificant effects on the total result.  

However, it can also be modeled and included to the calculations in terms of increasing 

the accuracy.    

 The angle of attack and the bank angle used in this solution are held constant 

throughout the trajectory.  Under perfect conditions, it does not cause any problems, 

however, the equations used in this research are developed for spherical entry and other 

equations, which include the obliqueness of the Earth, had to be simplified to the 

spherical versions. Therefore, if the same set of reentry equations are used, the drift 

caused by the obliqueness of the Earth has to be compensated by changing either the 

bank angle or the flight path angle, or both, considering all of the other conditions is 

perfect.  
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 Appendix  
 

reentry.m 
 
% ASSUMPTIONS 
% landing coordinates are assumed to be alligned with the lunar departure  
%at time 00:00:00, entry time will be defined according to this assumption 
% the earth is perfectly spherical  
% atmospheric density is decreasing exponentially  
% entry speed (V_e) is assumed to be 10.5 km/sec 
% the vehicle mass is assumed to be 11500 kg. 
% other constants regarding to the CEV are taken from NASA project documents 
% earth's tilt angle is measured counter-clockwise direction on each axis  
%in ECEF coordinates  
 
close all; 
clear all;  
clc; 
 
% initial conditions fot the gui display 
 
entrytimehr=0; 
save('entrytimehr'); 
entrytimemin=0; 
save('entrytimemin'); 
fparad=0; 
save('fparad'); 
fpadeg=0; 
save('fpadeg'); 
entrylat=0; 
save('entrylat'); 
entrylong=0; 
save('entrylong'); 
skippedrad=0; 
save('skippedrad'); 
skippeddeg=0; 
save('skippeddeg'); 
uncorrlat=0; 
save('uncorrlat'); 
uncorrlong=0; 
save('uncorrlong'); 
landlat=0; 
save('landlat'); 
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landlong=0; 
save('landlong'); 
finspeed=0; 
save('finspeed'); 
alt=0; 
save('alt'); 
timerr=0; 
save('timerr'); 
please='enter the values'; 
save('please'); 
pro='QUICKEST'; 
save('pro'); 
 
% running gui screen and data input 
inputdata; 
uiwait(inputdata);       % inputs wait until run button is pressed 
 
% taking input values from saved files 
load('lat'); 
load('long'); 
load('ho'); 
load('min'); 
load('sec'); 
load('x'); 
load('y'); 
load('z'); 
load('pro'); 
 
phi_l_deg= lat; 
theta_l_deg= long; 
hour= ho; 
minute= min; 
second= sec; 
x_deg= x; 
y_deg= y; 
z_deg= z; 
 
% Function tilthange changes the landing coordinates according to the tilt 
% angle between earth's equator and lunar orbit  
 
[theta_l,phi_l] = tiltchange(theta_l_deg, phi_l_deg, x_deg, y_deg, z_deg); 
 
 
day=86400;                                           % 1 day in seconds 
time=hour*3600+minute*60+second;               % current time in seconds 
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rot=time*(2*pi)/day;                                          % earth's rotation during given time  
center_theta=theta_l-rot;                                    % center longitude 
 
 
if rot>(pi/2) & rot<(3*pi/2);                     % if the rotation is greater than 90 degrees 
    center_theta=center_theta+pi;              % it is changing the center longitude to the other 
end;                                                           % side  
 
                                                                   
if rot>=(3*pi/2);   
   center_theta=center_theta+2*pi; 
end; 
 
C=pi/2;                                                    % angle between equator & landing longitude 
a=phi_l;                                                   % landing latitude angle 
b=abs(theta_l-center_theta);                   % difference between center and landing 
                                                                % longitude 
c=acos(cos(a)*cos(b));%+sin(a)*sin(b)*cos(C))  % angular distance between center and  
                                                                               % landing point 
A=asin((sin(a)*sin(C))/sin(c));                % inclination (angle between the orbit and 
                                                                 % equator) 
inc=A;                                                      % inclination (angle between the orbit and 
                                                                 % equator) 
 
 
% This function is for determination of the entry parameters  
 
[theta_e,phi_e,s_end] = entryoption(rot,center_theta,phi_l,theta_l,inc,pro); 
 
if hour<24;              % The program is defined in one day timezone 
     
   %initial conditions for the program 
   color=['g','k','m','b','c']; 
 
   %define constants: 
   m=11500;                   % mass 
   Beta=0.14;                  % scaling height 
   rho_s=1.225e9;           % atmospheric density at the surface 
   S=23.76e-6;                % entry surface area of the CEV  
   Cd =.11;                      % drag coefficient of CEV 
   mu=398600;                % erath's gravitational parameter 
   ltd=0.4 ;                       % lift to drag ratio 
   gamma_e= -0.1095;     % reentry flight path angle 
   s_end 
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   % Defining starting conditions for the flight path angle 
   if s_end>1.576 & s_end<3.152; 
       gamma_e=-0.125 
   elseif s_end>=3.152 & s_end<5.507; 
       gamma_e=-0.120 
   elseif s_end>=5.507 & s_end<6.521; 
       gamma_e=-0.114 
   elseif s_end>=6.521 & s_end<=7; 
       gamma_e=-0.110 
   end; 
    
   % All the computations are made until the vehicle flies below 10 km. 
   altitude=30; 
   while altitude(end,end)>10;  
       
   % Finding an increase rate for the iteration of gamma_e in order to  get it fast 
 
      if s_end>1.576 & s_end<5.507; 
          if altitude(end,end)<35; 
             gamma_e=gamma_e-0.000005 
             else gamma_e=gamma_e-0.0001 
          end; 
      end; 
      if s_end<=1.576; 
          if altitude(end,end)<30; 
          gamma_e=gamma_e-0.000005 
          else gamma_e=gamma_e-0.0001 
          end; 
      end; 
      if s_end>=5.507  & s_end<6.521;  
          if altitude(end,end)<30; 
          gamma_e=gamma_e-0.00001 
          else gamma_e=gamma_e-0.0001    
          end; 
      end; 
      if s_end>=6.521 & s_end<8; 
          if altitude(end,end)<30; 
          gamma_e=gamma_e-0.000005 
          else gamma_e=gamma_e-0.00005    
          end; 
      end; 
      if s_end >=8 & s_end<9.07; 
          if altitude(end,end)<40; 
          gamma_e=gamma_e-0.000005 
          else gamma_e=gamma_e-0.00002    
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          end; 
      end; 
      if s_end >=9.07; 
          if altitude(end,end)<35; 
          gamma_e=gamma_e-0.000003 
          else gamma_e=gamma_e-0.00001    
          end; 
      end; 
    
      %define initial conditions       
      Ve=10.5;                                              % reentry speed 
      re=6500;                                              % reentry radius 
      he=re-6378;                                         % reentry altitude        
      Ze=rho_s*exp(-Beta*he)*Cd*S/2/m*sqrt((he+6378)/Beta); % (eq 9.22) 
      ue=Ve^2*(cos(gamma_e))^2*re/mu;                       % (eq 9.21)                                                
      psi_e=0;                                              % initial heading angle 
                  
      s_i=0;                                                % initial s value for the integration 
      s_f=s_end;                                         % final s value for the integration 
      t0=0;                                                  % initial t value for the time solution 
      x0=[Ze ue theta_e phi_e gamma_e psi_e t0];            % entry conditions for the  
                                                                                         %  integration 
      Br=900;                                               % BetaR value is assumed to be constant with  
                                                                  % exponantially changing atmosphric properties 
      sigma= 0;                                             % bank angle is zero durin the trajectory 
      lift_to_drag=ltd;                                   % CEV constant lift to drag ratio 
 
      options = odeset('MaxStep',0.001);                    % setting step size of the ODE 
                                                                                  %  function 
  
      % solving differential equations with solver function  
      % (eq 9.29/9.30/9.31/9.32/9.33/9.34) 
      [s,x]=ode23(@solver,[s_i s_f],x0,options,Br,sigma,lift_to_drag,… 
                mu,m,Beta,rho_s,S,Cd); 
       
      % arrangement of the outputs 
      Z=x(:,1); 
      u=x(:,2); 
      theta=x(:,3); 
      phi=x(:,4); 
      gamma=x(:,5); 
      psi=x(:,6); 
      t_time=x(:,7); 
      
      eta=Z/sqrt(Br);            %with assumption of BetaR constant 
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      altitude=1/-Beta*log(eta*2*m*Beta/rho_s/S/Cd); 
          
   end;             
   
  timecorrection1(phi_l_deg,theta_l_deg,time,x_deg,y_deg,z_deg,t_time,hour,minute,… 
  second,gamma_e,pro);    
       
else  
    % if the input entry time is out of the 24 hour day period   
    clc; 
    disp(' '); 
    fprintf('Entry time: %2.0f:%2.0f:%2.0f is NOT acceptable!\n',hour,minute,second); 
    disp(' ');      
    fprintf('PLEASE RE-RUN THE PROGRAM AND ENTER A CORRECT TIME!\n '); 
    disp(' '); 
end 
 
function timecorrection1.m 
 
function timecorrection1(phi_l_deg,theta_l_deg,time,x_deg,y_deg,z_deg,t_time… 
,hour,minute,second,gamma_e,pro) 
clc; 
 
% Function tilthange changes the landing coordinates according to the tilt 
% angle between earth's equator and lunar orbit  
[theta_l,phi_l] = tiltchange(theta_l_deg, phi_l_deg, x_deg, y_deg, z_deg); 
 
timeold=t_time(end,end); 
day=86400;                                         % 1 day in seconds 
time=time+t_time(end,end);               % current time in seconds 
rot=time*(2*pi)/day;                           % earth's rotation during given time  
center_theta=theta_l-rot;                     % center longitude 
 
 
if rot>(pi/2) & rot<(3*pi/2);                     % if the rotation is greater than 90 degrees 
    center_theta=center_theta+pi;              % it is changing the center longitude to the other 
end;                                                           % side  
 
if rot>=(3*pi/2);   
   center_theta=center_theta+2*pi; 
end; 
 
C=pi/2;                                                    % angle between equator & landing longitude 
a=phi_l;                                                   % landing latitude angle 
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b=abs(theta_l-center_theta);                   % difference between center and landing 
longitude 
c=acos(cos(a)*cos(b));%+sin(a)*sin(b)*cos(C))  % angular distance between center and 
                                                                               % landing point 
A=asin((sin(a)*sin(C))/sin(c));                % inclination (angle between the orbit and 
                                                                 % equator) 
inc=A;                                                      % inclination (angle between the orbit and  
                                                                 % equator) 
 
% This function is for determination of the entry parameters  
[theta_e,phi_e,s_end] = entryoption(rot,center_theta,phi_l,theta_l,inc,pro);           
     
   %initial conditions for the program 
   altitude=30; 
   color=['g','k','m','b','c']; 
 
   % define constants: 
   m=11500;                % mass 
   Beta=0.14;               % scaling height 
   rho_s=1.225e9;        % atmospheric density at the surface 
   S=23.76e-6;             % entry surface area of the CEV  
   Cd =.11;                   % drag coefficient of CEV 
   mu=398600;             % erath's gravitational parameter 
   ltd=0.4 ;                    % lift to drag ratio 
 
   % Defining starting conditions for the flight path angle 
   if pro=='QUICKEST' 
      if time>43200  
         gamma_e=gamma_e+0.001 
      else 
         gamma_e=gamma_e+0.0005 
      end;  
   else        
      if s_end>1.576 & s_end<3.152; 
         gamma_e=-0.125 
      elseif s_end>=3.152 & s_end<5.507; 
         gamma_e=-0.120 
      elseif s_end>=5.507 & s_end<6.521; 
         gamma_e=-0.114 
      elseif s_end>=6.521 & s_end<=7; 
         gamma_e=-0.110 
      end;  
   end   
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   % All the computations are made until the vehicle flies below 10 km. 
   while min(altitude)>10;  
       
       % Finding an increase rate for the iteration of gamma_e in order to 
       % get it fast 
       if s_end>1.576 & s_end<5.507; 
          if min(altitude)<35; 
          gamma_e=gamma_e-0.000005 
          else gamma_e=gamma_e-0.0001 
          end; 
      end; 
      if s_end<=1.576; 
          if min(altitude)<30; 
          gamma_e=gamma_e-0.000005 
          else gamma_e=gamma_e-0.0001 
          end; 
      end; 
      if s_end>=5.507  & s_end<6.521;  
          if min(altitude)<30; 
          gamma_e=gamma_e-0.00001 
          else gamma_e=gamma_e-0.0001    
          end; 
      end; 
      if s_end>=6.521 & s_end<8; 
          if min(altitude)<30; 
          gamma_e=gamma_e-0.000005 
          else gamma_e=gamma_e-0.00005   
          end; 
      end; 
      if s_end >=8 & s_end<9.07; 
          if min(altitude)<40; 
          gamma_e=gamma_e-0.000005 
          else gamma_e=gamma_e-0.00002    
          end; 
      end; 
      if s_end >=9.07; 
          if min(altitude)<35; 
          gamma_e=gamma_e-0.000003 
          else gamma_e=gamma_e-0.00001    
          end; 
      end; 
    
      %define initial conditions       
      Ve=10.5;                                              % reentry speed 
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      re=6500;                                              % reentry radius 
      he=re-6378;                                         % reentry altitude        
      Ze=rho_s*exp(-Beta*he)*Cd*S/2/m*sqrt((he+6378)/Beta);  % (eq 9.22) 
      ue=Ve^2*(cos(gamma_e))^2*re/mu;                                      % (eq 9.21)                                                
      psi_e=0;                                                                                   % initial heading angle 
                  
      s_i=0;                                                % initial s value for the integration 
      s_f=s_end;                                         % final s value for the integration 
      t0=0;                                                  % initial t value for the time solution 
      x0=[Ze ue theta_e phi_e gamma_e psi_e t0];            % entry conditions for the  
                                                                                          % integration 
      Br=900;                                               % BetaR value is assumed to be constant with 
                                                                   % exponentially changing atmospheric  
                                                                   % properties 
      sigma= 0;                                             % bank angle is zero during the trajectory 
      lift_to_drag=ltd;                                   % CEV constant lift to drag ratio 
 
      options = odeset('MaxStep',0.001);      % setting step size of the ODE function 
  
      % solving differential equations with solver function  
      % (eq 9.29/9.30/9.31/9.32/9.33/9.34) 
      [s,x]=ode23(@solver,[s_i s_f],x0,options,Br,sigma,lift_to_drag,… 
                mu,m,Beta,rho_s,S,Cd); 
       
      % arrangement of the outputs 
      Z=x(:,1); 
      u=x(:,2); 
      theta=x(:,3); 
      phi=x(:,4); 
      gamma=x(:,5); 
      psi=x(:,6); 
      t_time=x(:,7); 
     
      eta=Z/sqrt(Br);            %with assumption of BetaR constant 
      altitude=1/-Beta*log(eta*2*m*Beta/rho_s/S/Cd); 
          
   end;             
   timenew=t_time(end,end); 
 
   
timecorrection2(phi_l_deg,theta_l_deg,time,x_deg,y_deg,z_deg,timenew,timeold,hour,… 
    minute,second,gamma_e,pro); 
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function timecorrection2.m 
 
function timecorrection2(phi_l_deg,theta_l_deg,time,x_deg,y_deg,z_deg,timenew,… 
timeold,hour,minute,second,gamma_e,pro) 
clc; 
 
% Function tilt change changes the landing coordinates according to the tilt 
% angle between earth's equator and lunar orbit  
[theta_l,phi_l] = tiltchange(theta_l_deg, phi_l_deg, x_deg, y_deg, z_deg); 
 
 
day=86400;                                          % 1 day in seconds 
time=time+abs(timenew-timeold);      % current time in seconds 
rot=time*(2*pi)/day;                           % earth's rotation during given time  
center_theta=theta_l-rot;                     % center longitude 
 
 
if rot>(pi/2) & rot<(3*pi/2);                     % if the rotation is greater than 90 degrees 
    center_theta=center_theta+pi;              % it is changing the center longitude to the other 
 end;                                                          % side 
                                                                  
 
if rot>=(3*pi/2);   
   center_theta=center_theta+2*pi; 
end; 
 
C=pi/2;                                                    % angle between equator & landing longitude 
a=phi_l;                                                   % landing latitude angle 
b=abs(theta_l-center_theta);                   % difference between center and landing 
                                                                % longitude 
c=acos(cos(a)*cos(b));%+sin(a)*sin(b)*cos(C))  % angular distance between center and  
                                                                               %  landing point 
A=asin((sin(a)*sin(C))/sin(c));                % inclination (angle between the orbit and 
                                                                  % equator) 
inc=A;                                                       % inclination (angle between the orbit and  
                                                                  % equator) 
 
% This function is for determination of the entry parameters  
[theta_e,phi_e,s_end] = entryoption(rot,center_theta,phi_l,theta_l,inc,pro); 
     
   %initial conditions for the program 
   altitude=30; 
   color=['g','k','m','b','c']; 
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  %define constants: 
   m=11500;                 % mass 
   Beta=0.14;                % scaling height 
   rho_s=1.225e9;        % atmospheric density at the surface 
   S=23.76e-6;             % entry surface area of the CEV  
   Cd =.11;                   % drag coefficient of CEV 
   mu=398600;             % erath's gravitational parameter 
   ltd=0.4 ;                    % lift to drag ratio 
    
   % Defining starting conditions for the flight path angle 
   if time>21600 & time<64800 
      gamma_e=gamma_e+0.001 
   else 
      gamma_e=gamma_e+0.0005 
   end;  
    
    
   % All the computations are made until the vehicle flies below 10 km. 
   while min(altitude)>10;  
       
       % Finding an increase rate for the iteration of gamma_e in order to 
       % get it fast 
       if s_end>1.576 & s_end<5.507; 
          if min(altitude)<35; 
          gamma_e=gamma_e-0.000005 
          else gamma_e=gamma_e-0.0001 
          end; 
      end; 
      if s_end<=1.576; 
          if min(altitude)<30; 
          gamma_e=gamma_e-0.000005 
          else gamma_e=gamma_e-0.0001 
          end; 
      end; 
      if s_end>=5.507  & s_end<6.521;  
          if min(altitude)<30; 
          gamma_e=gamma_e-0.00001 
          else gamma_e=gamma_e-0.0001    
          end; 
      end; 
      if s_end>=6.521 & s_end<8; 
          if min(altitude)<30; 
          gamma_e=gamma_e-0.000005 
          else gamma_e=gamma_e-0.00005   
          end; 
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      end; 
      if s_end >=8 & s_end<9.07; 
          if min(altitude)<40; 
          gamma_e=gamma_e-0.000005 
          else gamma_e=gamma_e-0.00002    
          end; 
      end; 
      if s_end >=9.07; 
          if min(altitude)<35; 
          gamma_e=gamma_e-0.000003 
          else gamma_e=gamma_e-0.00001    
          end; 
      end; 
    
      %define initial conditions       
      Ve=10.5;                                              % reentry speed 
      re=6500;                                               % reentry radius 
      he=re-6378;                                          % reentry altitude        
      Ze=rho_s*exp(-Beta*he)*Cd*S/2/m*sqrt((he+6378)/Beta);    % (eq 9.22) 
      ue=Ve^2*(cos(gamma_e))^2*re/mu;                                        % (eq 9.21)                                                
      psi_e=0;                                                % initial heading angle 
                  
      s_i=0;                                                    % initial s value for the integration 
      s_f=s_end;                                            % final s value for the integration 
      t0=0;                                                      % initial t value for the time solution 
      x0=[Ze ue theta_e phi_e gamma_e psi_e t0];            % entry conditions for the  
                                                                                          % integration 
      Br=900;                                                 % BetaR value is assumed to be constant with  
                                                                     % exponantially changing atmosphric  
                                                                     % properties 
      sigma= 0;                                              % bank angle is zero durin the trajectory 
      lift_to_drag=ltd;                                    % CEV constant lift to drag ratio 
 
      options = odeset('MaxStep',0.001);                    % setting step size of the ODE  
                                                                                  % function 
  
      % solving differential equations with solver function  
      % (eq 9.29/9.30/9.31/9.32/9.33/9.34) 
      [s,x]=ode23(@solver,[s_i 
s_f],x0,options,Br,sigma,lift_to_drag,mu,m,Beta,rho_s,S,Cd); 
       
      % arrangement of the outputs 
      Z=x(:,1); 
      u=x(:,2); 
      theta=x(:,3); 
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      phi=x(:,4); 
      gamma=x(:,5); 
      psi=x(:,6); 
      t_time=x(:,7); 
       
      theta_deg=rad2deg(theta); 
      phi_deg=rad2deg(phi); 
      psi_deg=rad2deg(psi); 
 
      eta=Z/sqrt(Br);            %with assumption of BetaR constant 
      altitude=1/-Beta*log(eta*2*m*Beta/rho_s/S/Cd); 
          
   end;             
 
   %Finding kinetic energy (T) (eq 9.89) 
   T=(u/2)./((cos(gamma)).^2); 
 
   %Finding deceleration (dec:g) (eq 6.76) 
   dec=(2*Br*eta).*(T*sqrt(1+ltd^2)); 
 
   %Finding stagnation heat flux (eq 7.23) 
   qs=(eta.^0.5).*(T.^1.5); 
 
   %Finding wall heat flux (eq 7.20) 
   qw=(eta).*(T.^1.5); 
           
   % adjusting the graphic index numbers according to the tilt change with 
   % change_graph function 
   [theta_deg_nlg,phi_deg_nlg] = change_graph(phi_l,theta, phi, theta_e, x_deg, y_deg, 
z_deg, time,pro); 
    
   % Finding total atmospheric travel time and final velocity   
   V=sqrt(u*mu./(altitude+6378))./cos(gamma); 
   travelminute=t_time/60; 
   totalminute=travelminute(end,end); 
   totalhour=totalminute/60; 
    
 
   % plotting the figures with figures function 
   figures(theta_deg,theta_deg_nlg,altitude,color,phi_deg_nlg,psi_deg,gamma,dec,… 
   travelminute,V,qs,qw,s);   
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% landing lat-long correction due to the calculation change in 
   % retrograte orbit depending on the side of the re-entry 
    
   if pro=='QUICKEST' 
      if time<=43200 
          theta_deg(end,end)=(rad2deg(theta_e)-(theta_deg(end,end)-
rad2deg(theta_e)))+360; 
      end; 
      if time>43200   
         if theta_deg(end,end)>360 
           theta_deg(end,end)=theta_deg(end,end)-360; 
         end; 
      end;   
   else 
       if theta_deg(end,end)>360 
           theta_deg(end,end)=theta_deg(end,end)-360; 
       end; 
   end; 
    
   % landing lat-long assignment for the tilt change 
   phi_deg_end= phi_deg(end,end); 
   theta_deg_end= theta_deg(end,end); 
    
   % rotating landing and entry coodinates in order to express with  
   % non-tilted coordinates by rechange_entry and rechange_landing 
   % functions 
   [theta_deg_nll,phi_deg_nll] = rechange_landing(theta_deg_end, phi_deg_end,… 
    x_deg, y_deg, z_deg);   
   [theta_ne,phi_ne] = rechange_entry(theta_e, phi_e, x_deg, y_deg, z_deg); 
    
   % saving the outputs to be displayed on the gui 
   entrytimehr=totalhour; entrytimemin=totalminute; 
   save('entrytimehr'); save('entrytimemin'); 
    
   fparad=max(gamma_e); fpadeg=rad2deg(max(gamma_e)); 
   save('fparad'); save('fpadeg'); 
    
   entrylat= rad2deg(phi_ne); entrylong=rad2deg(theta_ne); 
   save('entrylat'); save('entrylong'); 
    
   skippedrad=s_end; skippeddeg=rad2deg(s_end); 
   save('skippedrad'); save('skippeddeg'); 
    
   uncorrlat= phi_deg(end,end); uncorrlong=theta_deg(end,end); 
   save('uncorrlat');    save('uncorrlong'); 
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   landlat=phi_deg_nll; landlong=theta_deg_nll; 
   save('landlat'); save('landlong'); 
    
   finspeed= V(end,end); alt=altitude(end,end); 
   save('finspeed'); save('alt'); 
    
   timerr=abs((timenew/60)-totalminute); please='READY...'; 
   save('timerr');  save('please'); 
     
   % analyzing possible entry errors 
   erroranalysis(phi_e,theta_e,fpadeg,Ve,s_end,pro,time,theta_deg_nlg,phi_deg_nlg,… 
    x_deg, y_deg, z_deg,phi_ne,theta_ne); 
    
   %opening gui screen to display outputs 
   inputdata; 
   delete('*.mat'); % to get rid of extra files 
 
function inputdata.m 
 
function varargout = inputdata(varargin) 
 
% INPUTDATA M-file for inputdata.fig 
%      INPUTDATA, by itself, creates a new INPUTDATA or raises the existing 
%      singleton*. 
% 
%      H = INPUTDATA returns the handle to a new INPUTDATA or the handle to 
%      the existing singleton*. 
% 
%      INPUTDATA('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in INPUTDATA.M with the given input arguments. 
% 
%      INPUTDATA('Property','Value',...) creates a new INPUTDATA or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before inputdata_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to inputdata_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
 
% Copyright 2002-2003 The MathWorks, Inc. 
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% Edit the above text to modify the response to help inputdata 
 
% Last Modified by GUIDE v2.5 16-Jan-2008 16:40:01 
 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @inputdata_OpeningFcn, ... 
                   'gui_OutputFcn',  @inputdata_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
 
 
% --- Executes just before inputdata is made visible. 
function inputdata_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to inputdata (see VARARGIN) 
 
% Choose default command line output for inputdata 
handles.output = hObject; 
 
% Update handles structure 
guidata(hObject, handles); 
 
% UIWAIT makes inputdata wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
 
 
% --- Outputs from this function are returned to the command line. 
function varargout = inputdata_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
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% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
 
load('entrytimehr'); 
set(handles.oentrytimehr,'string',num2str(entrytimehr)); 
 
load('entrytimemin'); 
set(handles.oentrytimemin,'string',num2str(entrytimemin)); 
 
load('fparad'); 
set(handles.ofparad,'string',num2str(fparad)); 
 
load('fpadeg'); 
set(handles.ofpadeg,'string',num2str(fpadeg)); 
 
load('entrylat'); 
set(handles.oentrylat,'string',num2str(entrylat)); 
 
load('entrylong'); 
set(handles.oentrylong,'string',num2str(entrylong)); 
 
load('skippedrad'); 
set(handles.oskippedrad,'string',num2str(skippedrad)); 
 
load('skippeddeg'); 
set(handles.oskippeddeg,'string',num2str(skippeddeg)); 
 
load('uncorrlat'); 
set(handles.ouncorrlat,'string',num2str(uncorrlat)); 
 
load('uncorrlong'); 
set(handles.uncorrlong,'string',num2str(uncorrlong)); 
 
load('landlat'); 
set(handles.olandlat,'string',num2str(landlat)); 
 
load('landlong'); 
set(handles.olandlong,'string',num2str(landlong)); 
 
load('finspeed'); 
set(handles.ofinspeed,'string',num2str(finspeed)); 
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load('alt'); 
set(handles.oalt,'string',num2str(alt)); 
 
load('timerr'); 
set(handles.otimerr,'string',num2str(timerr)); 
 
load('please'); 
set(handles.please,'string',please); 
 
 
function elat_Callback(hObject, eventdata, handles) 
% hObject    handle to elat (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of elat as text 
%        str2double(get(hObject,'String')) returns contents of elat as a double 
lat=str2num(get(hObject,'String')); 
save('lat'); 
 
% --- Executes during object creation, after setting all properties. 
function elat_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to elat (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function elong_Callback(hObject, eventdata, handles) 
% hObject    handle to elong (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of elong as text 
%        str2double(get(hObject,'String')) returns contents of elong as a double 
long=str2num(get(hObject,'String')); 
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save('long'); 
 
% --- Executes during object creation, after setting all properties. 
function elong_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to elong (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function ehour_Callback(hObject, eventdata, handles) 
% hObject    handle to ehour (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of ehour as text 
%        str2double(get(hObject,'String')) returns contents of ehour as a double 
ho=str2num(get(hObject,'String')); 
save('ho'); 
 
% --- Executes during object creation, after setting all properties. 
function ehour_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to ehour (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function emin_Callback(hObject, eventdata, handles) 
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% hObject    handle to emin (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of emin as text 
%        str2double(get(hObject,'String')) returns contents of emin as a double 
min=str2num(get(hObject,'String')); 
save('min'); 
 
% --- Executes during object creation, after setting all properties. 
function emin_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to emin (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function esec_Callback(hObject, eventdata, handles) 
% hObject    handle to esec (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of esec as text 
%        str2double(get(hObject,'String')) returns contents of esec as a double 
sec=str2num(get(hObject,'String')); 
save('sec'); 
 
% --- Executes during object creation, after setting all properties. 
function esec_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to esec (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
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else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function ex_Callback(hObject, eventdata, handles) 
% hObject    handle to ex (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of ex as text 
%        str2double(get(hObject,'String')) returns contents of ex as a double 
x=str2num(get(hObject,'String')); 
save('x'); 
 
% --- Executes during object creation, after setting all properties. 
function ex_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to ex (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function ey_Callback(hObject, eventdata, handles) 
% hObject    handle to ey (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of ey as text 
%        str2double(get(hObject,'String')) returns contents of ey as a double 
y=str2num(get(hObject,'String')); 
save('y'); 
 
% --- Executes during object creation, after setting all properties. 
function ey_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to ey (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
 
function ez_Callback(hObject, eventdata, handles) 
% hObject    handle to ez (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of ez as text 
%        str2double(get(hObject,'String')) returns contents of ez as a double 
z=str2num(get(hObject,'String')); 
save('z'); 
 
% --- Executes during object creation, after setting all properties. 
function ez_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to ez (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
% --- Executes on button press in run. 
function run_Callback(hObject, eventdata, handles) 
% hObject    handle to run (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
wait='please wait...'; 
set(handles.please,'string',wait); 
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uiresume(inputdata); 
 
% --- Executes on button press in restart. 
function restart_Callback(hObject, eventdata, handles) 
% hObject    handle to restart (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
reentry; 
 
 
% --- Executes on selection change in popupmenu1. 
function popupmenu1_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: contents = get(hObject,'String') returns popupmenu1 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from popupmenu1 
 
pro=get(hObject,'Value'); 
save('pro'); 
 
% --- Executes during object creation, after setting all properties. 
function popupmenu1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
function entryoption.m 
 
function [theta_e,phi_e,s_end] = entryoption(rot,center_theta,phi_l,theta_l,inc,pro) 
 
if pro=='QUICKEST'; 
     phi_e=-inc;                                    % inclination equals to entry latitude 
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% This part is determining the entry side depending on the landing place  
 
     if rot<pi/2;                                    
         theta_e=center_theta-pi/2;                          
     elseif rot>=pi/2 & rot<pi                        
         theta_e=center_theta+pi/2;  
     elseif rot>=pi & rot<3*pi/2 
         theta_e=center_theta-pi/2; 
     else 
         theta_e=center_theta+pi/2; 
     end;   
else 
     if rot<pi/2;                                    
         theta_e=center_theta+pi/2; 
         phi_e=inc;                                    % inclination equals to entry latitude 
     elseif rot>=pi/2 & rot<pi                        
         theta_e=center_theta-pi/2; 
         phi_e=inc;                                    % inclination equals to entry latitude 
     elseif rot>=pi & rot<3*pi/2 
         theta_e=center_theta-pi/2; 
         phi_e=-inc;                                    % inclination equals to entry latitude 
     else 
         theta_e=center_theta+pi/2; 
         phi_e=-inc;                                    % inclination equals to entry latitude 
     end;   
end  
        
% Finding total angular flight distance    
s_end=acos(sin(phi_l)*sin(phi_e)+cos(phi_l)*cos(phi_e)*cos(abs(theta_e-theta_l))); 
 
% angular distance adjustment 
if pro=='QUICKEST' 
   if rot>pi/2 & rot<3*pi/2; 
       s_end=s_end; 
   else  
       s_end=(2*pi)-s_end; 
   end; 
else 
   if rot<pi/2; 
       s_end=(2*pi)-s_end; 
   elseif rot>=pi/2 & rot<pi; 
       s_end=(2*pi)+s_end;     
   elseif rot>=pi & rot<3*pi/2; 
       s_end=s_end;     
   elseif  rot>=3*pi/2;  



 

92 

       s_end=(2*pi)-s_end; 
   end; 
end 
     
 
function tiltchange.m 
 
 
function [theta_l,phi_l] = tiltchange(theta_l_deg, phi_l_deg, x_deg, y_deg, z_deg); 
 
fi_l=deg2rad(phi_l_deg);                %landing latitude              
lambda_l=deg2rad(theta_l_deg);    %landing longitude 
       
h_l=0;                 % altitude 
a=6378.1;           % semi major earth axis (ellipsoid equatorial radius) 
b=6378.1;           % semi minor earth axis (ellipsoid polar radius) 
f=(a-b)/a;            % flattening 
e=sqrt(2*f-f^2);  % eccentricity 
 
% changing geodedic coordinates to ECEF coordinaates 
N=a/sqrt(1-((e^2)*(sin(fi_l))^2)); 
 
X_l=(N+h_l)*cos(fi_l)*cos(lambda_l); 
Y_l=(N+h_l)*cos(fi_l)*sin(lambda_l); 
Z_l=(N*(1-e^2)+h_l)*sin(fi_l); 
 
ECEF_l=[X_l Y_l Z_l]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
% finding rotation matrix 
x_r=deg2rad(x_deg); 
y_r=deg2rad(y_deg); 
z_r=deg2rad(z_deg); 
 
R1= [1      0           0       ; 
         0    cos(x_r)   -sin(x_r)  ; 
         0    sin(x_r)    cos(x_r)] ; 
 
 
 
R2= [cos(y_r)    0    sin(y_r)  ; 
               0         1      0       ; 
       -sin(y_r)    0    cos(y_r)] ; 
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R3= [cos(z_r)  -sin(z_r)    0   ; 
          sin(z_r)   cos(z_r)    0   ; 
                    0         0         1 ] ; 
 
R123=R1*R2*R3;           % rotation matrix 
 
ECEF_nl= R123*ECEF_l';   % rotating the ECEF coordinates 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% changing ECEF coordinates to geodedic coordinaates 
X_nl=ECEF_nl(1); 
Y_nl=ECEF_nl(2); 
Z_nl=ECEF_nl(3); 
 
p=sqrt((X_nl^2)+(Y_nl^2)); 
teta=atan((Z_nl*a)/(p*b)); 
e1=sqrt((a^2-b^2)/b^2); 
 
fi_nl=atan((Z_nl+e1^2*b*(sin(teta)^3))/(p-e^2*a*(cos(teta)^3))); 
lambda_nl=atan2(Y_nl,X_nl); 
h_nl=(p/cos(teta))-N; 
 
if lambda_nl<0 
    lambda_nl= lambda_nl+2*pi; 
end 
 
fi_nl_deg=rad2deg(fi_nl); 
lambda_nl_deg=rad2deg(lambda_nl); 
 
GEO=[fi_nl_deg lambda_nl_deg h_nl]; 
 
theta_l=lambda_nl; 
phi_l=fi_nl; 
 
function somver.m 
 
function dx = solver(s,x,Br,sigma,lift_to_drag,mu,m,Beta,rho_s,S,Cd); 
 
%this function is used to solve exact solution for reentry 
 
 eta=x(1)/sqrt(Br);            
 altitude=1/-Beta*log(eta*2*m*Beta/rho_s/S/Cd); 
 r=altitude+6378; 
          
A = [ -Br*tan(x(5))      zeros(1,6);... 
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         -2*x(2)*sqrt(Br)/cos(x(5))*(1+lift_to_drag*cos(sigma)*tan(x(5))) zeros(1,6);... 
          zeros(1,7);... 
          zeros(1,7);... 
          sqrt(Br)/cos(x(5))*lift_to_drag*cos(sigma) zeros(1,6);... 
          sqrt(Br)/((cos(x(5)))^2)*lift_to_drag*sin(sigma) zeros(1,6);... 
          zeros(1,7)]; 
   
 
B= [0 ;... 
        -x(2)*sin(x(5))/cos(x(5));... 
        cos(x(6))/cos(x(4));... 
        sin(x(6));... 
        1-(cos(x(5)))^2/x(2);... 
        -cos(x(6))*tan(x(4)); 
        r*sqrt(r)/sqrt(x(2)*mu)]; 
 
dx =A*x+B; 
 
return 
 
function changegraph.m 
 
function [theta_deg_nlg,phi_deg_nlg] = change_graph(phi_l,theta, phi, theta_e,… 
 x_deg, y_deg, z_deg, time,pro); 
 
% this function is used to change the index numbers on the graph 
 
fi_lg=phi;               %landing latitude              
lambda_lg=theta;         %landing longitude 
 
if pro=='QUICKEST' 
   if time<=43200 
          lambda_lg=(theta_e-(lambda_lg-theta_e))+2*pi; 
   end; 
   if time>43200 
       for j=1:length(phi); 
          if lambda_lg(j,1)>2*pi; 
           lambda_lg(j,1)=lambda_lg(j,1)-2*pi; 
          end; 
       end; 
   end; 
else  
       for j=1:length(phi); 
          if lambda_lg(j,1)>2*pi; 
           lambda_lg(j,1)=lambda_lg(j,1)-2*pi; 
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          end; 
       end; 
    
end;  
     
% constants 
h_l=0;            % altitude 
a=6378.1;         % semi major earth axis (ellipsoid equatorial radius) 
b=6378.1;         % semi minor earth axis (ellipsoid polar radius) 
f=(a-b)/a;        % flattening 
e=sqrt(2*f-f^2);  % eccentricity 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% finding rotation matrix 
x_rg=deg2rad(-x_deg); 
y_rg=deg2rad(-y_deg); 
z_rg=deg2rad(-z_deg); 
 
R1g= [1      0           0         ; 
           0    cos(x_rg)   -sin(x_rg)  ; 
           0    sin(x_rg)    cos(x_rg)] ; 
 
R2g= [cos(y_rg)    0    sin(y_rg)  ; 
                 0           1     0         ; 
           -sin(y_rg)    0    cos(y_rg)] ; 
 
R3g= [cos(z_rg)  -sin(z_rg)    0   ; 
            sin(z_rg)   cos(z_rg)    0   ; 
                        0         0           1 ] ; 
 
R123g=R3g*R2g*R1g; % rotation matrix 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% changing geodedic coordinates to ECEF coordinaates 
for i=1:length(phi); 
 
N_lg(i,1)=a/sqrt(1-((e^2)*(sin(fi_lg(i)))^2)); 
 
X_lg(i,1)=(N_lg(i,1)+h_l)*cos(fi_lg(i))*cos(lambda_lg(i)); 
Y_lg(i,1)=(N_lg(i,1)+h_l)*cos(fi_lg(i))*sin(lambda_lg(i)); 
Z_lg(i,1)=(N_lg(i,1)*(1-e^2)+h_l)*sin(fi_lg(i)); 
 
ECEF_lg(i,:)=[X_lg(i,1) Y_lg(i,1) Z_lg(i,1)]; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% rotating the ECEF coordinates 
ECEF_nlg(:,i)= R123g*ECEF_lg(i,:)'; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% changing ECEF coordinates to geodedic coordinaates 
X_nlg(i,1)=ECEF_nlg(1,i); 
Y_nlg(i,1)=ECEF_nlg(2,i); 
Z_nlg(i,1)=ECEF_nlg(3,i); 
 
p=sqrt((X_nlg(i,1)^2)+(Y_nlg(i,1)^2)); 
teta=atan((Z_nlg(i,1)*a)/(p*b)); 
e1=sqrt((a^2-b^2)/b^2); 
 
fi_nlg(i,1)=atan((Z_nlg(i,1)+e1^2*b*(sin(teta)^3))/(p-e^2*a*(cos(teta)^3))); 
lambda_nlg(i,1)=atan2(Y_nlg(i,1),X_nlg(i,1)); 
h_nlg(i,1)=(p/cos(teta))-N_lg(i,1); 
 
end; 
 
fi_nlg_deg=rad2deg(fi_nlg); 
lambda_nlg_deg=rad2deg(lambda_nlg); 
 
theta_deg_nlg=lambda_nlg_deg; 
phi_deg_nlg=fi_nlg_deg; 
 
function figures.m 
 
function 
figures(theta_deg,theta_deg_nlg,altitude,color,phi_deg_nlg,psi_deg,gamma,dec,… 
travelminute,V,qs,qw,s) 
 
 % figures 
   figure(1); 
   subplot(2,1,1); 
   plot(theta_deg,122,'r-'); 
   hold on; 
   plot(theta_deg,altitude,color(1)); 
   grid on; 
   xlabel('Skipped Longitude(degrees)'); 
   ylabel('Altitude (km)'); 
    
   subplot(2,1,2); 
   plot(s*6378,122,'r-'); 
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   hold on; 
   plot(s*6378,altitude,color(2)); 
   grid on; 
   xlabel('Skipped Distance(km)'); 
   ylabel('Altitude (km)'); 
      
    
   figure(2); 
   subplot(2,1,1); 
   plot(travelminute,V, color(2)); 
   grid on; 
   xlabel('Time (min)'); 
   ylabel('Velocity (km/s)'); 
    
   subplot(2,1,2); 
   plot(travelminute,altitude,color(1)); 
   hold on; 
   plot(travelminute,122,'r-'); 
   grid on; 
   xlabel('Time(min)'); 
   ylabel('Altitude (km)'); 
    
       
   figure(3); 
   plot(linspace(min(rad2deg(gamma)),max(rad2deg(gamma)),1000),122,'r-'); 
   hold on; 
   plot(rad2deg(gamma),altitude,color(4)); 
   grid on; 
   xlabel('Flight Path Angle-gamma (deg)'); 
   ylabel('Altitude (km)'); 
    
           
   figure(4); 
   plot3(theta_deg,phi_deg_nlg,altitude,color(3)); 
   grid on; 
   title('3D reentry plot'); 
   xlabel('Longitude(degrees)'); 
   ylabel('Latitude(degrees)'); 
   zlabel('Altitude (km)'); 
    
        
   figure(5); 
   subplot(2,2,[1 3]); 
   plot(linspace(min(dec),max(dec),1000),122,'r-'); 
   hold on; 



 

98 

   plot(dec,altitude,color(1)); 
   grid on; 
   xlabel('Deceleration (g)'); 
   ylabel('Altitude (km)'); 
    
   subplot(2,2,2);   
   plot(linspace(min(qs),max(qs),1000),122,'r-'); 
   hold on; 
   plot(qs,altitude,color(3)); 
   grid on; 
   xlabel('qs, stagnation heat flux'); 
   ylabel('Altitude (km)'); 
    
   subplot(2,2,4); 
   plot(linspace(min(qw),max(qw),1000),122,'r-'); 
   hold on; 
   plot(qw,altitude,color(4)); 
   grid on; 
   xlabel('qw, wall heat flux'); 
   ylabel('Altitude (km)');  
    
      
   figure(6); 
   plot(travelminute,dec,'r'); 
   grid on; 
   xlabel('Time(min)'); 
   ylabel('Deceleration (g)');  
    
    
   figure(8); 
   load('topo.mat','topo','topomap1'); 
   topo2 = [topo(:,181:360) topo(:,1:180)]; 
   contour(-179:180,-89:90,topo2,[0 0],'b') 
   axis equal; 
   grid on; 
   set(gca,'XLim',[-180 180],'YLim',[-90 90], ... 
   'XTick',[ -180 :20: 180 ], ... 
   'Ytick',[ -90 :20: 90 ]); 
   hold on; 
   plot(theta_deg_nlg,phi_deg_nlg,'r','linewidth',2); 
   grid on; 
   hold on 
   plot(theta_deg_nlg(1,1),phi_deg_nlg(1,1),'go','linewidth',2); 
   hold on 
   plot(theta_deg_nlg(end,end),phi_deg_nlg(end,end),'k*','linewidth',2) 
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   title('Reentry Ground Track'); 
   xlabel('Longitude(degrees)'); 
   ylabel('Latitude(degrees)'); 
    
    
function rechange_landing.m 
 
function [theta_deg_nll,phi_deg_nll] = rechange_landing(theta_deg_end, … 
phi_deg_end, x_deg, y_deg, z_deg); 
 
fi_ll=deg2rad(phi_deg_end);                     %landing latitude              
lambda_ll=deg2rad(theta_deg_end);         %landing longitude 
       
h_ll=0;               % altitude 
a=6378.1;           % semi major earth axis (ellipsoid equatorial radius) 
b=6378.1;           % semi minor earth axis (ellipsoid polar radius) 
f=(a-b)/a;            % flattening 
e=sqrt(2*f-f^2);  % eccentricity 
 
% changing geodedic coordinates to ECEF coordinaates 
N=a/sqrt(1-((e^2)*(sin(fi_ll))^2)); 
 
X_ll=(N+h_ll)*cos(fi_ll)*cos(lambda_ll); 
Y_ll=(N+h_ll)*cos(fi_ll)*sin(lambda_ll); 
Z_ll=(N*(1-e^2)+h_ll)*sin(fi_ll); 
 
ECEF_ll=[X_ll Y_ll Z_ll]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% finding rotation matrix 
x_r=deg2rad(-x_deg); 
y_r=deg2rad(-y_deg); 
z_r=deg2rad(-z_deg); 
 
R1= [1      0           0       ; 
         0    cos(x_r)   -sin(x_r)  ; 
         0    sin(x_r)    cos(x_r)] ; 
 
R2= [cos(y_r)    0    sin(y_r)  ; 
               0         1      0       ; 
        -sin(y_r)    0    cos(y_r)] ; 
 
R3= [cos(z_r)  -sin(z_r)    0   ; 
          sin(z_r)   cos(z_r)    0   ; 
                    0         0         1 ] ; 
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R123=R3*R2*R1;            % rotation matrix 
 
ECEF_nll= R123*ECEF_ll';  % rotating the ECEF coordinates 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% changing ECEF coordinates to geodedic coordinaates 
X_nll=ECEF_nll(1); 
Y_nll=ECEF_nll(2); 
Z_nll=ECEF_nll(3); 
 
p=sqrt((X_nll^2)+(Y_nll^2)); 
teta=atan((Z_nll*a)/(p*b)); 
e1=sqrt((a^2-b^2)/b^2); 
 
fi_nll=atan((Z_nll+e1^2*b*(sin(teta)^3))/(p-e^2*a*(cos(teta)^3))); 
lambda_nll=atan2(Y_nll,X_nll); 
h_nll=(p/cos(teta))-N; 
 
if lambda_nll<0 
    lambda_nll= lambda_nll+2*pi; 
end 
 
fi_nll_deg=rad2deg(fi_nll); 
lambda_nll_deg=rad2deg(lambda_nll); 
 
GEO=[fi_nll_deg lambda_nll_deg h_nll]; 
 
theta_deg_nll=lambda_nll_deg; 
phi_deg_nll=fi_nll_deg; 
 
 
function rechange_entry.m 
 
function [theta_ne,phi_ne] = rechange_entry(theta_e, phi_e, x_deg, y_deg, z_deg); 
 
% this function is used to rotate the coordinates according to the tilt 
% angle of the earth 
fi_e=phi_e;               % entry latitude              
lambda_e=theta_e;         % entry longitude 
       
%constants 
h_l=0;                 % altitude 
a=6378.1;           % semi major earth axis (ellipsoid equatorial rdius) 
b=6378.1;           % semi minor earth axis (ellipsoid polar rdius) 
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f=(a-b)/a;            % flattening 
e=sqrt(2*f-f^2);  % eccentricity 
 
% changing geodedic coordinates to ECEF coordinaates 
N=a/sqrt(1-((e^2)*(sin(fi_e))^2)); 
 
X_e=(N+h_l)*cos(fi_e)*cos(lambda_e); 
Y_e=(N+h_l)*cos(fi_e)*sin(lambda_e); 
Z_e=(N*(1-e^2)+h_l)*sin(fi_e); 
 
ECEF_e=[X_e Y_e Z_e]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% finding the rotation matrix 
x_r=deg2rad(-x_deg); 
y_r=deg2rad(-y_deg); 
z_r=deg2rad(-z_deg); 
 
R1= [1      0           0       ; 
         0    cos(x_r)   -sin(x_r)  ; 
         0    sin(x_r)    cos(x_r)] ; 
 
R2= [cos(y_r)    0    sin(y_r)  ; 
               0         1      0       ; 
        -sin(y_r)    0    cos(y_r)] ; 
 
R3= [cos(z_r)  -sin(z_r)    0   ; 
          sin(z_r)   cos(z_r)    0   ; 
                    0         0         1 ] ; 
 
R123=R3*R2*R1;         % rotation matrix 
 
ECEF_ne= R123*ECEF_e'; % rotating ECEF coordinates 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% changing ECEF coordinates to geodedic coordinaates 
X_ne=ECEF_ne(1); 
Y_ne=ECEF_ne(2); 
Z_ne=ECEF_ne(3); 
 
p=sqrt((X_ne^2)+(Y_ne^2)); 
teta=atan((Z_ne*a)/(p*b)); 
e1=sqrt((a^2-b^2)/b^2); 
 
fi_ne=atan((Z_ne+e1^2*b*(sin(teta)^3))/(p-e^2*a*(cos(teta)^3))); 
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lambda_ne=atan2(Y_ne,X_ne); 
h_ne=(p/cos(teta))-N; 
 
if lambda_ne<0 
    lambda_ne= lambda_ne+2*pi; 
end 
 
fi_ne_deg=rad2deg(fi_ne); 
lambda_ne_deg=rad2deg(lambda_ne); 
 
GEO=[fi_ne_deg lambda_ne_deg h_ne]; 
 
theta_ne=lambda_ne; 
phi_ne=fi_ne; 
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