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GREGORY BEYLKIN ∗ (PI), LUCAS A. MONZÓN, AND FERNANDO PÉREZ

1. Abstract

Our goal (within the time-frame of the grant) was to finish the development of
algorithms and software for applying Green’s functions (and other operators) and
to develop and test algorithms for computing multiparticle wave functions, both
based based on representing operators and functions of many variables as short
sums of separable functions, the so-called separated representations. Our approach
is different from the Fast Multipole Method and allows us to develop and use fast
algorithms in high dimensions.

We have accomplished these tasks with the results described in two papers at-
tached to this report. We started the process of comparing our approach to solving
multiparticle Schrodinger equation to that currently used in Quantum Chemistry.

2. Tasks

Our work addresses two tasks in using separated representations [5, 4]:

(1) The first class of algorithms addresses problems that currently require either
the Fast Multipole Method (FMM) and/or Particle in cell methods and/or
Ewald summation techniques. Our approach is simpler, more flexible and
is as effective as FMM. It is based on separated representations and its
main advantage is that it works for operators in higher dimensions (much
greater than three) provided that the functions are maintained in separated
representation as well.

(2) The second class of algorithms addresses multiparticle computations and
confronts the problem of dimensionality directly, by providing a represen-
tation of operators and functions that, on one hand, achieves a finite but
arbitrary accuracy and, on the other, limits the growth of the computational
cost to a linear function of the number of particles (at least asymptotically).
With this type of algorithms, we compete with the Configuration Interac-
tion (CI) and of Coupled Cluster (CC) methods. Our approach is different
from both CI and CC, and holds the promise of a breakthrough.

Department of Applied Mathematics, University of Colorado at Boulder; 526 UCB, Boulder,
CO 80309-0526; beylkin@colorado.edu; phone 303-492-6935, fax 303-492-4066.
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3. Results for Task 1: Multiresolution separated representations

and fast algorithms

Our goal has been to obtain multiresolution representations of Green’s functions
in a form that facilitates solving integral equations. We note that computations
involving multidimensional free space Green’s functions are greatly simplified by
using separated representations [5, 4, 18, 19, 29, 30, 13, 3]. Our approach is based
on representing spherically symmetric functions by sums of products of Gaussians.

3.1. Separated representations for Poisson-type kernels. We construct a
separated approximation of the function 1/rα, where r = ||x||, x ∈ R

3 using a
collection of Gaussians. The approximation is obtained by discretizing the integral

(1)
1

rα
=

2

Γ(α/2)

∫ ∞

−∞

e−r2e2s+αs ds .

For α = 1 it is the same integral as used in the Ewald summation (up to a change
of variables, see e.g., [16]). We have

Proposition 3.1. For any α > 0, 0 < δ ≤ 1, and 0 < ǫ ≤ min
{

1
2 ,

8
α

}

, there exist

positive numbers pm and wm such that

(2)
∣

∣

∣

1

rα
−

M
∑

m=1

wme
−pmr2

∣

∣

∣
≤

ǫ

rα
,

where

(3) M = log ǫ−1[c0 + c1 log ǫ−1 + c2 log δ−1],

where c1, c2 and c3 are constants that only depend on α. For fixed power α and

accuracy ǫ, we have M = O(log δ−1).

A proof of Proposition 3.1 can be found in [7].
Using r = ||x||, where x = (x1, x2, x3), and α = 1 in (2), we arrive at a separated

representation for the Poisson kernel. Although in this paper we compute the
lattice sums corresponding to the Poisson kernel, the same approach will work for
any α > 0 as well as other spherically symmetric potentials, e.g. Yukawa potential
e−µr/r.

As in [18, 19], the approximation in (2) is obtained using trapezoidal rule. First,
we discretize the integral (1), namely, set pm = e2sm and wm = 2∆s eαsm/Γ(α/2),
where sm = s0 + (m − 1)∆s, m = 1 . . . ,M . For a given accuracy ǫ and range
0 < δ ≤ r ≤ 1, we select s0 and sM = s0 + (M − 1)∆s, the end points of the
interval of integration replacing the real line in (1), so that at these points the

function f(s) = e−r2e2s+αs and a sufficient number of its derivatives are close to
zero to within the desired accuracy. We also select M , the number of points in the
quadrature, so that the accuracy requirement is satisfied.

Based on these representations, we have implemented a fast, adaptive multires-
olution algorithm for applying integral operators with a wide class of radially sym-
metric kernels in dimensions one, two and three. In particular, we consider operators
of the class (−∆+µ2I)−α, where µ ≥ 0 and 0 < α < 3/2, and illustrate performance
of the algorithm for the Poisson and Schrödinger equations in dimension three. The
same algorithm may be used for all operators with radially symmetric kernels ap-
proximated as a weighted sum of Gaussians, making it applicable across multiple
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fields by reusing a single implementation. This fast algorithm provides controllable
accuracy at a reasonable cost, comparable to that of the Fast Multipole Method
(FMM). It differs from the FMM by the type of approximation used to represent
kernels and has the advantage of being easily extendable to higher dimensions.

The details of the algorithm are described in the paper by Gregory Beylkin,
Vani Cheruvu and Fernando Pérez“Fast Adaptive Algorithms in the Non-Standard
Form for Multidimensional Problems” [2] accepted for publication in Applied and
Computational Harmonic Analysis. The paper is attached to this report.

4. Results for Task 2: Multiparticle Schrödinger Equation

This part of the project is the beginning of the program to develop accurate
methods for solving equations of multiparticle quantum mechanics. We have verified
correctness of our approach by computing electron structure of a few elements. We
started the process of comparing performance of our algorithm with other methods
in Quantum Chemistry.

4.1. Approximating the Wavefunction with an unconstrained sum of Slater

Determinants. The multiparticle Schrödinger equation is the basic governing
equation in quantum mechanics. We consider the time-independent case, and fix
the nuclei according to the Born-Oppenheimer approximation, so the equation de-
scribes the steady state of an interacting system of electrons. For each of the N
electrons in the system there are three spatial variables r = (x, y, z), and a discrete
spin variable σ taking the values {− 1

2 ,
1
2}, which we combine and denote (r, σ)

by γ. The Hamiltonian operator H is a sum of a kinetic energy operator T , a nu-
clear potential operator V , and an electron-electron interaction operatorW , defined
by

(4) H = T + V +W = −
1

2

N
∑

i=1

∆i +
N

∑

i=1

v(ri) +
−1

2

N
∑

i=1

N
∑

j 6=i

1

‖ri − rj‖
,

where ∆i is the three-dimensional Laplacian acting in the variable ri and v(r) is a
sum of terms of the form za/‖r−Ra‖ from a nucleus at position Ra with charge
za. The antisymmetric eigenfunctions of H represent electronic states of the system
and are called wavefunctions. Antisymmetric means that under the exchange of any
two coordinates, the wavefunction is odd, e.g. ψ(γ2, γ1, . . .) = −ψ(γ1, γ2, . . .). The
bound-state wavefunctions have negative eigenvalues, and are of greatest interest, so
we will focus on the wavefunction with the most negative eigenvalue. In summary,
our goal is to find the most negative (discrete) eigenvalue

(5) Hψ = λψ ,

subject to the antisymmetry condition on ψ.
Analytic methods can give qualitative results about its solutions, and determine

limiting cases, but most quantitative results must be obtained numerically. Al-
though the equation is a ‘simple’ eigenvalue problem, its numerical solution presents
several serious difficulties, among them the large number of variables and the an-
tisymmetry condition on the solution. The simplest method that addresses these
two difficulties is Hartree-Fock (HF), which uses the anti-symmetrization of a single
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product to approximate the N -particle wavefunction, i.e.,

(6) ψHF = A

N
∏

i=1

φi(γi) .

Any approximation ψ̃ to the wavefunction ψ can be substituted into

(7)
〈Hψ̃, ψ̃〉

‖ψ̃‖

to obtain an upper bound on the lowest value of λ that solves (5). Substituting (6)
into (7), one can derive a system of equations for φi to minimize (7). The resulting
ψHF will best approximate ψ, in the sense of providing the best estimate (7).

To improve upon HF, it is natural to consider a sum of products

(8) ψ(r) = A
r

∑

l=1

sl

N
∏

i=1

φl
i(γi) .

The coefficients sl are not strictly necessary, but they allow us to assume ‖φl
i‖ = 1.

Many methods are based on this form, and the distinction is in how they use it.
The Configuration Interaction (CI) method (see e.g. [27]) chooses the functions φl

i

from a preselected master set of orthogonal functions and decides on a large number
r of combinations to consider, based on excitation level. Substituting (8) into (7)
leads to a matrix eigenvalue problem that can be solved for the scalar coefficients
sl. The Multi-Configuration Self-Consistent Field (MCSCF) method (e.g. [15, 9]),
chooses a pattern of excitations similar to CI, but then solves for the master set
of orthogonal functions as well as the scalar coefficients. Many variations and
combinations of these methods have been developed, and indeed there is a whole
industry in producing them.

We demonstrate a method that also uses a wavefunction of the form (8) but
without constraints such as orthogonality on the φl

i. By removing these constraints
we produce much better approximations at much smaller r than existing methods
allow. In another context [5] we have given examples where removing constraints
produces expansions that are exponentially more efficient, i.e. r = N instead of 2N

or r = logN instead of N . For example, in our approach we can have a two-term
representation

φ1(γ1)φ2(γ2) · · ·φN (γN )

+c [φ1(γ1) + φN+1(γ1)][φ2(γ2) + φN+2(γ2)] · · · [φN (γN ) + φ2N (γN )] ,(9)

where {φj}
2N
j=1 form an orthonormal set. To represent (9) while requiring all factors

to come from a master orthogonal set would force one to multiply out the second
term and thus obtain a representation with 2N terms. It is common sense that
removal of constraints could produce better results, and steps in that direction
have been taken (e.g.[26, 1, 14, 11, 12, 31, 25]). These works, however, were only
able to partially remove the constraints, and so, we claim, did not achieve the full
potential.

We will use a Green’s function iteration to move a trial wavefunction toward the
minimum of (7) without using (7) directly. This iteration was introduced in [22, 21]
and used in e.g.[19]. Define the Green’s function

(10) Gµ = (T − µI)−1 ,
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for µ < 0. The Green’s function iteration is

gn = −Gµn
[(V +W)fn]

µn+1 = µn − 〈(V +W)fn, fn − gn〉/‖gn‖
2(11)

fn+1 = gn/‖gn‖.

The Green’s function iteration is essentially an inverse power method. The conver-
gence rate is only linear, but if the initial µ can be chosen near to but less than
the lowest eigenvalue, then the error will decrease by a substantial fraction at each
iteration, and not many iterations will be needed. We use I to denote the number
of Green’s function iterations needed.

We use approximate wavefunctions of the form (8), with r fixed. The iteration
(11) does not directly produce an approximation of the same form, so we modify it
by defining gn to be the function of the form (8) that minimizes

(12) ‖gn − (−Gµn
[(V +W)fn])‖.

In order to assure convergence to an antisymmetric solution, we use the pseudo-
norm induced by the pseudo inner product 〈·, ·〉A = 〈A(·),A(·)〉, as we did in [5].
Constructing gn is the most challenging part of the method, and requires the bulk
of our effort. To simplify notation, we now suppress the iteration index n and set
ψ = fn and ψ̃ = gn.

We begin with some approximation ψ̃ (such as ψ itself) and will iteratively
improve it. The outermost loop of our iteration is simply to repeat our refinement
until it appears that ψ̃ has converged. For the computational cost estimates we
denote the number of repetitions byK. To refine our representation we loop through
the variables (electrons). The functions in variables other than the current variable
are fixed, and the functions in the current variable will be modified to minimize the
overall error ‖ψ̃ − ψ‖A. This Alternating Least-Squares (ALS) approach is well-
known (see e.g. [20, 23, 24, 8, 10, 28]). We will alternate through the directions,

but for ease of exposition we describe the k = 1 case. So, φ̃l
k is fixed for k > 1, and

we will solve for the values of φ̃l
1 for all l.

To refine in the current variable, we set up and solve a linear least-squares
problem. The normal equations for a least-squares problem are derived by taking a
gradient with respect to the free parameters and setting this equal to zero. As long
as ψ̃ is linear and not degenerate in these parameters, the resulting equations are
linear and have a unique solution. Usually these free parameters are coefficients of
the representation in some basis. We instead take the parameters to be the point
values of our functions φl

1, or, formally, as the coefficients of the point evaluation
functional 〈γ〉. The formulas that we derive can be used with a fixed basis, but are
stated independent of the basis. We still obtain linear normal equations

(13) Ax = b ,

but now b(l) is a function of γ, x(l′) is a function of γ′, and A(l, l′) is an integral
operator mapping functions of γ′ to functions of γ. The kernel of A is defined by

(14) A(l, l′)(γ, γ′) =

〈

〈γ′〉
N
∏

i=2

φ̃l′

i , 〈γ〉
N
∏

i=2

φ̃l
i

〉

A

,
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where the point evaluation functionals are acting in the i = 1 direction. The
functions in b are defined by

(15) b(l)(γ) =

r
∑

m

sm

〈

−Gµ[V +W ]

N
∏

i=1

φm
i , 〈γ〉

N
∏

i=2

φ̃l
i

〉

A

.

Once A and b have been constructed, we will apply the Conjugate Gradient iterative
method (see e.g. [17]) to solve (13). We initialize with r = b − Ax, v = r, and
c = 〈r, r〉, and then the core of the method is the sequence of assignments z← Av,
t← c/〈v, z〉, x← x+ tv, r← r− tz, d← 〈r, r〉, v← r+(d/c)v, and c← d, applied
iteratively. We use S to denote the number of conjugate gradient iterations needed.
Thus x is constructed using only matrix-vector products and vector additions, all
which are compatible with our formulation with integral operators. The conjugate
gradient method applies only to positive-definite operators. Our operator A is only
semi-definite due to the null-space in the antisymmetric pseudo-norm. Fortunately,
b was computed with the same pseudo-norm and has no component in the null-
space of A.

One advantage of using this iterative method with integral operators is that our
algorithm is “basis-free”. The representation of x can naturally be adaptive in γ,
for example refining near the nuclei as indicated by the refinement in b. For the
estimates of computational cost, we useM to denote the cost to represent a function
of γ, or integrate such a function. The antisymmetry constraint requires N ≤ M ,
and in general we expect M to be much larger than N . For our numerical results,
we use adaptive polynomial multiwavelets, following [18, 19]. In those works it was
shown that this basis effectively eliminates basis-set error within HF.

We are left with the problem of how to construct A in (14) and b in (15). We
have develop the machinery and algorithms for computing these antisymmetric
inner products. Our formulation uses low-rank perturbations of matrices, thus
avoiding co-factor expansions.

The computational cost for the whole method is acceptable. As noted above, the
cost depends on N , r, M , I, K, and S. Although S in theory could be as many as
rM , we have a very good starting point, and so expect only a very small constant
number to be needed. We use M logM to denote the cost to convolve a function
of γ with 1/‖r‖. Some Poisson solvers achieve this complexity, but this cost may
vary with the choice of basis. We use L to denote the number of terms used to
approximate the Green’s function with Gaussians. The final computational cost is
then

(16) O(KIr2N2[L(N +M logM) + S(N +M)]).

For comparison, the cost to evaluate a single instance of Löwdin’s rules is O(N2(N+
M)). The size r needed in practice, and how it depends on the various parameters
in the problem, is still an open question.

We have verified our approach by computing electron structure of a few elements
and are in the process of accelerating the algorithm and verifying its performance
against methods currently used in quantum chemistry. Further details may be
found in the paper by Gregory Beylkin, Martin J. Mohlenkamp and Fernando Pérez
“Approximating a Wavefunction as an Unconstrained Sum of Slater Determinants”
[6] submitted for publication to Journal of Mathematical Physics. The paper is
attached to this report.
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Abstract

We present a fast, adaptive multiresolution algorithm for applying integral operators
with a wide class of radially symmetric kernels in dimensions one, two and three.
This algorithm is made efficient by the use of separated representations of the kernel.
We discuss operators of the class (−∆ + µ2I)−α, where µ ≥ 0 and 0 < α < 3/2,
and illustrate the algorithm for the Poisson and Schrödinger equations in dimension
three. The same algorithm may be used for all operators with radially symmetric
kernels approximated as a weighted sum of Gaussians, making it applicable across
multiple fields by reusing a single implementation.

This fast algorithm provides controllable accuracy at a reasonable cost, compa-
rable to that of the Fast Multipole Method (FMM). It differs from the FMM by
the type of approximation used to represent kernels and has an advantage of being
easily extendable to higher dimensions.

Key words: Separated representation; multiwavelets; adaptive algorithms; integral
operators.

1 Introduction

For a number of years, the Fast Multipole Method (FMM) [1,2,3] has been
the method of choice for applying integral operators to functions in dimen-
sions d ≤ 3. On the other hand, multiresolution algorithms in wavelet and
multiwavelet bases introduced in [4] for the same purpose were not efficient
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enough to be practical in more than one dimension. Recently, with the in-
troduction of separated representations [5,6,7], practical multiresolution algo-
rithms in higher dimensions [8,9,10,11] became available as well. In this paper
we present a new fast, adaptive algorithm for applying a class of integral op-
erators with radial kernels in dimensions d = 1, 2, 3, and we briefly discuss its
extension to higher dimensions.

In physics, chemistry and other applied fields, many important problems may
be formulated using integral equations, typically involving Green’s functions
as their kernels. Often such formulations are preferable to those via partial
differential equations (PDEs). For example, evaluating the integral expressing
the solution of the Poisson equation in free space (the convolution of the
Green’s function with the mass or charge density) avoids issues associated with
the high condition number of a PDE formulation. Integral operators appear
in fields as diverse as electrostatics, quantum chemistry, fluid dynamics and
geodesy; in all such applications fast and accurate methods for evaluating
operators on functions are needed.

The FMM and our approach both employ approximate representations of
operators to yield fast algorithms. The main difference lies in the type of
approximations that are used. For example, for the Poisson kernel 1/r in
dimension d = 3, the FMM [3] uses a plane wave approximation starting from
the integral

1

r
=

1

2π

∫

∞

0
e−λ(z−z0)

∫ 2π

0
eiλ((x−x0) cos α+(y−y0) sin α)dαdλ, (1)

where r =
√

(x− x0)2 + (y − y0)2 + (z − z0)2. The elegant approximation de-

rived from this integral in [3] is valid within a solid angle, and thus requires
splitting the application of an operator into directional regions; the number
of such regions grows exponentially with dimension. For the same kernel, our
approach starts with the integral

1

r
=

2
√
π

∫

∞

−∞

e−r2e2s+sds, (2)

and its discretization with finite accuracy ǫ yields a spherically symmetric
approximation as a weighted sum of gaussians. Other radial kernels can be
similarly treated by a suitable choice of integrals. The result is a separated
representation of kernels and, therefore, an immediate reduction in the cost
of their application. This difference in the choice of approximation dictates
the differences in the corresponding algorithms. In dimension d ≤ 3 both ap-
proaches are practical and yield comparable performance. The key advantage
of our approach is its straightforward extensibility to higher dimensions [6,7].

Given an arbitrary accuracy ǫ, we effectively represent kernels by a set of ex-
ponents and weights describing the terms of the gaussian approximation of
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integrals like in (2). The number of terms in such sum is roughly proportional
to log(ǫ−1), or a low power of log(ǫ−1), depending on the operator. Since op-
erators are fully described up to an accuracy ǫ by the exponents and weights
of the sum of gaussians, a single algorithm applies all such operators. These
include operators such as (−∆ + µ2I)−α, where µ ≥ 0 and 0 < α < 3/2,
and certain singular operators such as the projector on divergence-free func-
tions. Since many physically significant operators depend only on the distance
between interacting objects, our approach is directly applicable to problems
involving a wide class of operators with radial kernels.

We combine separated and multiresolution representations of kernels and use
multiwavelet bases [12] that provide inter alia a method for discretizing inte-
gral equations, as is the case in quantum chemistry [8,9,11,10]. This choice of
multiresolution bases accommodates integral and differential operators as well
as a wide variety of boundary conditions, without degrading the order of the
method [13,14]. Multiwavelet bases retain the key desired properties of wavelet
bases, such as vanishing moments, orthogonality, and compact support. Due to
the vanishing moments, wide classes of integro-differential operators have an
effectively sparse matrix representation, i.e., they differ from a sparse matrix
by an operator with small norm. Some of the basis functions of multiwavelet
bases are discontinuous, similar to those of the Haar basis and in contrast to
wavelets with regularity (see e.g. [15,16]). The usual choices of scaling func-
tions for multiwavelet bases are either the scaled Legendre or interpolating
polynomials. Since these are also used in the discontinuous Galerkin and dis-
continuous spectral elements methods, our approach may also be seen as an
adaptive extension of these methods.

The algorithm for applying an operator to a function starts with computing
its adaptive representation in a multiwavelet basis, resulting in a 2d-tree with
blocks of coefficients at the leaves. Then the algorithm adaptively applies the
(modified) separated non-standard form [4] of the operator to the function by
using only the necessary blocks as dictated by the function’s tree represen-
tation. We note that in higher dimensions, d ≫ 3, functions need to be in
a separated representation as well, since the usual constructions via bases or
grids are prohibitive (see [6,7]).

We start in Section 2 by recalling the basic notions of multiresolution analy-
sis, non-standard operator form and adaptive representation of functions un-
derlying our development. We then consider the separated representation for
radially symmetric kernels in Section 3, and use it to efficiently extend the
modified ns-form to multiple spatial dimensions in Section 4. We pay partic-
ular attention to computing the band structure of the operator based on one
dimensional information. We use this construction in Section 5 to introduce
the adaptive algorithm for application of multidimensional operators in the
modified ns-form, and illustrate its performance in Section 6. We consider
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two examples: the Poisson equation in free space and the ground state of the
Hydrogen atom. We conclude with a brief discussion in Section 7.

2 Preliminary considerations

This section and Appendix are provided for the convenience of the reader in
order to keep this paper reasonably self-contained. We provide background
material and introduce necessary notation.

The essence of our approach is to decompose the operator using projectors
on a Multiresolution Analysis (MRA), and to efficiently apply its projections
using a separated representation. We use the decomposition of the operator
into the ns-form [4], but we organize it differently (thus, modified ns-form) to
achieve greater efficiency. This modification becomes important as we extend
this algorithm to higher dimensions.

In this section we introduce notation for MRA, describe the adaptive repre-
sentation of functions and associated data structures, introduce the modified
ns-form and an algorithm for its adaptive application in dimension d = 1 as
background material for the multidimensional case.

2.1 Multiresolution analysis

Let us consider the multiresolution analysis as a decomposition of L2([0, 1]d)
into a chain of subspaces

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ . . . ,

so that L2([0, 1]d) = ∪∞

j=0Vj. We note that our indexing of subspaces (increas-
ing towards finer scales) follows that in [13], and is the reverse of that in [4,15].
On each subspace Vj, we use the tensor product basis of scaling functions ob-
tained using the functions φj

kl(x) (k = 0, . . . , p− 1) which we briefly describe
in Appendix.

The wavelet subspaces Wj are defined as the orthogonal complements of Vj

in Vj−1, thus
Vn = V0 ⊕

n
j=0 Wj .

Introducing the orthogonal projector on Vj, Pj : L2([0, 1]d) → Vj and con-
sidering an operator T : L2([0, 1]d) → L2([0, 1]d), we define its projection
Tj : Vj → Vj as Tj = PjTPj. We also consider the orthogonal projector
Qj : L2([0, 1]d) → Wj, defined as Qj = Pj+1 − Pj .
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2.2 Adaptive representation of functions

Let us describe an adaptive refinement strategy for construction multiresolu-
tion representations of functions f : B → B, where B = [0, 1]d. We proceed
by recursive binary subdivision of the box B, so the basic structure represent-
ing our functions is a 2d−tree with arrays of coefficients stored at the leaves
(terminal nodes) and no data stored on internal nodes. On each box obtained
via this subdivision, our basis is a tensor product of orthogonal polynomials of
degree k = 0, . . . , p−1 in each variable, as described in Appendix 8. Therefore,
the leaves carry d-dimensional arrays of pd coefficients which may be used to
approximate function values anywhere in the box corresponding to the spatial
region covered by it, via (30) or its equivalent for higher values of d. For con-
ciseness, we will often refer to these d-dimensional arrays of coefficients stored
at tree nodes as function blocks.

This adaptive function decomposition algorithm is similar to that used in [17].
Such construction formally works in any dimension d. However, since its com-
plexity scales exponentially with d, its practical use is restricted to fairly low
dimension, e.g. d . 4. In higher dimensions, alternate representation strate-
gies for functions such as [6,7] should be considered. In high dimensions, these
strategies deal with the exponential growth of complexity by using controlled
approximations that have linear cost in d.

For simplicity, we will describe the procedure for the one-dimensional case
since the extension to dimensions d = 2, 3 is straightforward. Since we can
not afford to construct our representation by starting from a fine scale (es-
pecially in d = 3), we proceed by successive refinements of an initial coarse
sampling. This approach may result in a situation where the initial sampling
is insufficient to resolve a rapid change in a small volume; however, in practical
applications such situations are rare and may be avoided by an appropriate
choice of the initial sampling scale.

Let Bj
l = [2−jl, 2−j(l+ 1)], l = 0, . . . , 2j − 1, represent a binary subinterval on

scale j. We denote by f j
l =

{

f j
l (xk)

}p−1

k=0
the vector of values of the function

f on the Gaussian nodes in Bj
l . From these values we compute the coeffi-

cients
{

sj
kl

}p−1

k=0
(see (32) in Appendix) and interpolate f(x) for any x ∈ Bj

l

by using (30). We then subdivide Bj
l into two child intervals, Bj+1

2l and Bj+1
2l+1,

and evaluate the function f on the Gaussian nodes in Bj+1
2l and Bj+1

2l+1. We

then interpolate f by using the coefficients
{

sj
kl

}p−1

k=0
from their parent inter-

val and denote by ˜f j+1
2l and ˜f j+1

2l+1 the vectors of interpolated values on the

two subintervals. Now, if for a given tolerance ǫ either
∥

∥

∥f j+1
2l − ˜f j+1

2l

∥

∥

∥ > ǫ or
∥

∥

∥f j+1
2l+1 −

˜f j+1
2l+1

∥

∥

∥ > ǫ, we repeat the process recursively for both subintervals,
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Bj+1
2l and Bj+1

2l+1; otherwise, we keep the coefficients
{

sj
kl

}p−1

k=0
to represent the

function on the entire interval Bj
l . This interval then becomes a leaf in our

tree.

At this stage we use the ℓ∞ norm, thus constructing an approximation f̃ to
the original function f such that

∥

∥

∥f − ˜f
∥

∥

∥

∞

< ǫ, which immediately implies

that
∥

∥

∥f − ˜f
∥

∥

∥

2
< ǫ. This estimate clearly extends to any dimension. Once

the approximation with ℓ∞ norm is constructed, the corresponding tree may
be pruned if an application only requires the approximation to be valid in
the ℓ2 norm. We start this process on the finest scale and simply remove all
blocks whose cumulative contribution is below ǫ. Other norms, such as H1,
can be accommodated by appropriately weighing the error tolerance with a
scale-dependent factor in the initial (coarse to fine) decomposition process.

The complete decomposition algorithm proceeds by following the above recipe,
starting with an initial coarse scale (typically j = 0) and continuing recursively
until the stopping criterion is met for all subintervals. In practice, we choose a
stopping scale jmax, beyond which the algorithm will not attempt to subdivide
any further. Reaching jmax means that the function has significant variations
which are not accurately resolved over an interval of width 2−jmax using a basis
of order p. A pseudo-code listing of this process is presented as Algorithm 1.

Algorithm 1 Adaptive Function Decomposition.
Start at a coarse scale, typically j = 0.
Recursively, for all boxes bj on scale j, proceed as follows:
Construct the list C of 2d child boxes bj+1 on scale j + 1.
Compute the values of the function f(bj) at the pd Gauss-Legendre quadra-
ture nodes in bj.
for all boxes bj+1 ∈ C do

From f(bj), interpolate to the Gauss-Legendre quadrature nodes in bj+1,
producing values f̃(bj+1).
Compute the values of f(bj+1) at the Gauss-Legendre nodes of bj+1, by
direct evaluation.
if
∥

∥

∥f(bj+1) − f̃(bj+1)
∥

∥

∥

∞

> ǫ then

Recursively repeat the entire process for all boxes bj+1 ∈ C.
end if

end for

# Geting here means that the interpolation from the parent was successful
for all child boxes. We store the parent’s coefficients from bj in the function
tree.
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(b) Pointwise error.
Nnod = 8, ǫ = 1.0e − 04, Nblocks = 17

(c) Adaptive tree
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(d) Redundant tree

Figure 1. The function f(x) = sin(16πx6) shown in (a), is decomposed with p = 8
and ǫ = 10−4; (b) shows the pointwise approximation error. (c) is the resulting adap-
tive tree, where smaller subdivisions are required in regions with higher frequency
content. (d) is the redundant tree associated with this adaptive decomposition, where
all internal nodes have been filled with data.

2.2.1 Tree structures for representing functions

The decomposition Algorithm 1 naturally leads to a tree data structure to
represent functions, with the leaves of the tree corresponding to the spatial
intervals over which the multiwavelet basis provides a sufficiently accurate
local approximation. By using (30) or its higher-dimensional extensions, the
only data needed to approximate f(x) anywhere in B is the array of basis
coefficients on these leaves. Thus we use a tree structure where the leaves
store these coefficients and the internal nodes do not contain any data (and
are effectively removed since we use hash tables for storage). We will refer
to this structure as an adaptive tree. Each level in the tree corresponds to a
scale in the MRA, with the root node corresponding to the coarsest projection
f0 ∈ V0.

Now, in order to apply the modified non-standard form of an operator to a
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function, we will show in the next section that we also need the basis coeffi-
cients corresponding to internal nodes of the tree. Hence, from the adaptive
tree data structure we will compute a similar tree but where we do keep the
coefficients of scaling functions on all nodes (leaves and internal).

The coefficients on the internal nodes are redundant since they are computed
from the function blocks stored in the leaves. We will thus refer to the tree
containing coefficients on all nodes as a redundant tree. It is constructed re-
cursively starting from the leaves, by projecting the scaling coefficients from
all sibling nodes onto their parent node, using the decomposition (41).

Figure 1 shows both the adaptive and the redundant trees for a sample func-
tion. This figure displays the coarsest scales at the bottom and progressively
finer ones further up, with filled boxes representing nodes where scaling co-
efficients are stored and empty boxes indicating nodes with no data in them
(these do not need to be actually stored in the implementation).

2.3 Modified ns-form

The non-standard form [4] (see also [13] for the version specialized for multi-
wavelets) of the operator T is the collection of components of the telescopic
expansion

Tn = (Tn−Tn−1)+(Tn−1−Tn−2)+ · · ·+T0 = T0 +
n−1
∑

j=0

(Aj +Bj +Cj), (3)

where Aj = QjTQj , Bj = QjTPj, and Cj = PjTQj . The main property
of this expansion is that the rate of decay of the matrix elements of the op-
erators Aj , Bj and Cj away from the diagonal is controlled by the number
of vanishing moments of the basis and, for a finite but arbitrary accuracy ǫ,
the matrix elements outside a certain band can be set to zero resulting in an
error of the norm less than ǫ. Such behavior of the matrix elements becomes
clear if we observe that the derivatives of kernels of Calderón-Zygmund and
pseudo-differential operators decay faster than the kernel itself. If we use the
Taylor expansion of the kernel to estimate the matrix elements away from the
diagonal, then the size of these elements is controlled by a high derivative of
the kernel since the vanishing moments eliminate the lower order terms [4].
We note that for periodic kernels the band is measured as a periodic distance
from the diagonal, resulting in filled-in ‘corners’ of a matrix representation.

Let us introduce notation to show how the telescopic expansion (3) is used
when applying an operator to a function. If we apply the projection of the
operator Tj−1 not on its “natural scale” j − 1, but on the finer scale j, we
denote its upsampled version as ↑ (Tj−1). In the matrix representation of
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Tj−1, this operation results in the doubling of the matrix size in each direction.
This upsampling ↑ (·) and downsampling ↓ (·) notation will also be used for
projections of functions.

With this notation, computing g = Tf via (3) splits across scales,

ĝ0 = T0f0

ĝ1 = [T1− ↑ (T0)]f1

ĝ2 = [T2− ↑ (T1)]f2 (4)

. . . . . . . . .

ĝj = [Tj− ↑ (Tj−1)]fj

. . . . . . . . .

where fj = Pjf .

As in the application of the usual ns-form in [4], to obtain gn after building
the set {ĝ0, ĝ1, . . . , ĝn}, we have to compute

gn = ĝn+ ↑ (ĝn−1+ ↑ (ĝn−2+ ↑ (ĝn−3 + . . .+ (↑ ĝ0) . . .))) . (5)

The order of the parentheses in this expression is essential, as it indicates the
order of the actual operations which are performed starting on the coarsest
subspace V0. For example, if the number of scales n = 4, then (5) yields
g4 = ĝ4+ ↑ (ĝ3+ ↑ (ĝ2+ ↑ (ĝ1 + (↑ ĝ0)))), describing the sequence of necessary
operations.

Unfortunately, the sparsity of the non-standard form induced by the vanishing
moments of bases is not sufficient for fast practical algorithms in dimensions
other than d = 1. For algorithms in higher dimensions, we need an additional
structure for the remaining non-zero coefficients of the representation. We will
use separated representations (see Section 3) introduced in [6,18] and first
applied in a multiresolution setting in [8,9,10,11]. Within the retained bands,
the components of the non-standard form are stored and applied in a separated
representation and, as a result, the numerical application of operators becomes
efficient in higher dimensions.

2.4 Modified ns-form in 1D

Let us describe a one-dimensional construction for operators on L2([0, 1]) to
introduce all the features necessary for a multidimensional algorithm. Since
we use banded versions of operators, we need to introduce the necessary book-
keeping.
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The “template” for the band structure on scale j comes from the band on the
previous scale j − 1. For each block on scale j − 1, the upsampling operation
↑ (Tj−1) creates four blocks (all combinations of even/odd row and column
indices). We insist on maintaining the strict correspondence between these four
blocks and those of Tj. For this reason the description of the retained blocks
of Tj involves the parity of their row and column indices. Let us denote the
blocks in the matrix representing Tj by tj;ll

′

, where l, l′ = 0 . . . 2j−1. Individual

elements within these blocks are indexed as tj;ll
′

ii′ , where i, i′ = 0, . . . , p−1, and
p is the order of the multiwavelet basis. For a given width of the band bj, we
keep the operator blocks tj;ll

′

with indices satisfying

l − bj + 1 ≤ l′ ≤ l + bj, for even l,

l − bj ≤ l′ ≤ l + bj − 1, for odd l.
(6)

We denote the banded operators where we keep only blocks satisfying (6) as

T
bj

j and ↑ (Tj−1)
bj . If we downsample the operator ↑ (Tj−1)

bj back to its
original scale j − 1, then (6) leads to the band described by the condition

l − ⌊bj/2⌋ ≤ l′ ≤ l + ⌊bj/2⌋ , (7)

where ⌊bj/2⌋ denotes the integer part of bj/2. We denote the banded operator

on scale j − 1 as T
⌊bj/2⌋
j−1 , where we retain blocks satisfying (7).

If we now rewrite (4) keeping only blocks within the bands on each scale, we
obtain

ĝ0 = T0f0

ĝ1 = [Tb1
1 − ↑ (T0)

b1]f1 = Tb1
1 f1− ↑ (T0)

b1f1

ĝ2 = [Tb2
2 − ↑ (T1)

b2]f2 = Tb2
2 f2− ↑ (T1)

b2f2 (8)

. . . . . . . . .

ĝj = [T
bj

j − ↑ (Tj−1)
bj ]fj = T

bj

j fj− ↑ (Tj−1)
bjfj

. . . . . . . . .

For any arbitrary but finite accuracy, instead of applying the full [Tj− ↑
(Tj−1)], we will only apply its banded approximation.

A simple but important observation is that

↓ ([↑ (Tj−1)]fj) = Tj−1fj−1 , (9)

which follows from the fact that QjPj = PjQj = 0, since these are orthogonal

projections. Thus, we observe that ↓ (↑ (Tj−1)
bj ) = T

⌊bj/2⌋
j−1 ; so instead of ap-

plying ↑ (Tj−1)
bjfj on scale j, we can obtain the same result using (9), so that
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Figure 2. Modified non-standard form of the convolution operator in (11) in a mul-
tiwavelet basis, with white representing 0 and black representing large values. The
top matrix is the projection of this operator on V5, resulting in a dense matrix. The
lower half depicts the multiresolution representation in (10) with only the blocks
that are actually retained for a given accuracy. We will call the leftmost matrix in
this series a whole band matrix and all others outer band matrices. The two empty
outer band matrices on scales j = 0, 1 are explained in the main text.

↑
(

T
⌊bj/2⌋
j−1 fj−1

)

=↑ (Tj−1)
bjfj. Therefore, we will compute only T

⌊bj/2⌋
j−1 fj−1 on

scale j − 1 and combine it with computing T
bj−1

j−1 fj−1. Incorporating this into
(5), we arrive at

gn =Tbn

n fn+ ↑
[(

T
bn−1

n−1 − T
⌊bn/2⌋
n−1

)

fn−1+ (10)

↑
[(

T
bn−2

n−2 − T
⌊bn−1/2⌋
n−2

)

fn−2 + . . .+
[

↑
[(

T0 − T
⌊b1/2⌋
0

)

f0

]]

. . .
]]

.

Using this expression yields an efficient algorithm for applying an operator,

as on each scale j, T
bj

j − T
[bj+1/2]
j is a sparse object, due to the cancellation

which occurs for most of the blocks. In particular, T
bj

j − T
[bj+1/2]
j is missing

the blocks near the diagonal, and we will refer to it as an outer band matrix.
We will call T

bj

j a whole band matrix as it contains both the inner and outer
bands.
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The structure of these matrices is illustrated in Figure 2. The two empty
scales j = 0, 1 arise due to the complete cancellation of blocks on these scales.
We note that the modified non-standard form is constructed adaptively in
the number of scales necessary for a given function. For just two scales, this
construction will have the scale j = 1 non-empty. Given an adaptive decom-
position of a function on n scales, we precompute the modified non-standard
form (depicted in Figure 2 for five scales) on all scales n, n − 1, . . . , 1. For
matrices requiring 2n · 2n blocks on the finest scale n, we need to keep and
apply only O(2n) blocks, as with the original non-standard form in [4].

2.4.1 Adaptive application

Let us show how to use the multiscale representation in (10) to apply the
operator T to a function f with controlled accuracy ǫ. We describe an adaptive
application of the operator to a function, where we assume (as is often the
case) that the tree structure of the input is sufficient to adequately describe
the output with accuracy ǫ. This assumption will be removed later.

Our algorithm uses the structure shown in Figure 2 in an adaptive fashion.
We copy the structure of the redundant tree for the input function, and use
that as a template to be filled for the output g. For each node of the output
tree we determine whether it is a leaf or an internal node: for leaves, we must
apply a whole band matrix on the scale of that node, such as the leftmost
matrix for j = 5 in the example shown in Figure 2. For internal nodes, we
apply an outer band matrix (for that scale). We note that our construction
of the operator produces both whole and outer band matrices for all scales,
and we simply choose the appropriate kind for each node of output as needed.
Upon completion of this process, we apply the projection (5) to construct the
final adaptive tree representing the output.

Algorithm 2 returns an adaptive tree representing the function g. This tree
contains sufficient information to evaluate g at arbitrary points by interpola-
tion and may be used as an input in further computations.

We note that Step 2 in Algorithm 2 naturally resolves the problem that is
usually addressed by mortar methods, see e.g. [19,20,21,22]. Since adaptive
representations have neighboring blocks of different sizes, they encounter dif-
ficulties when applying non-diagonal operators, as they require blocks which
do not exist on that scale. Our approach simply constructs these as needed
and caches them for reuse, without requiring any additional consideration on
the part of the user.
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Algorithm 2 Adaptive non-standard form operator application in d = 1,
g = Tf

Initialization: Construct the redundant tree for f and copy it as skeleton
tree for g (see Section 2.2.1).
for all scales j = 0, . . . , n− 1 do

for all function blocks gj
l in the tree for g at scale j do

# Step 1. Determine the list of all contributing blocks of the modified
ns-form T

j

ll′ (see Section 2.3):
if gj

l belongs to a leaf then

Read operator blocks T
j

ll′ from row l of whole band matrix T
bj

j .
else

Read operator blocks T
j
ll′ from row l of outer band matrix T

bj

j −

T
[bj+1/2]
j .

end if

# Step 2. Find the required blocks f j

l′ of the input function f :
if function block f j

l′ exists in the redundant tree for f then

Retrieve it.
else

Create it by interpolating from a coarser scale and cache for reuse.
end if

# Step 3. Output function block computation:
Compute the resulting output function block according to ĝj

l =
∑

l′ T
j

ll′f
j

l′ , where the operation T
j

ll′f
j

l′ indicates a regular matrix-vector
multiplication.

end for

end for

# Step 4. Adaptive projection:
Project resulting output function blocks ĝj

l on all scales into a proper adap-
tive tree by using Eq. (5).
Discard from the resulting tree unnecessary function blocks at the requested
accuracy.
Return: the function g represented by its adaptive tree.

2.4.2 Numerical example

Let us briefly illustrate the application of the modified ns-form with an exam-
ple of a singular convolution on the unit circle, the operator with the kernel
K(x) = cot(πx),

(Cf)(y) = p.v.
∫ 1

0
cot(π(y − x)) f(x) dx, (11)

a periodic analogue of the Hilbert transform. In order to find its representation
in multiwavelet bases, we compute
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rj; l
ii′ = 2−j

∫ 1

−1
K(2−j(x+ l)) Φii′(x) dx = 2−j

∫ 1

−1
cot(π 2−j(x+ l)) Φii′(x) dx ,

(12)
where Φii′(x), i, i

′ = 0, . . . , k − 1 are cross-correlation functions described
in Appendix 8.4 and l = 0,±1,±2, . . . 2j − 1. We compute rj; l

ii′ using the
convergent integrals

rj; l
ii′ = 2−j

i′+i
∑

k=i′−i

ckii′
∫ 1

0
Φ+

k,0(x)
(

cot(π 2−j(x+ l)) + (−1)i+i′ cot(π 2−j(−x+ l))
)

dx,

where Φ+
k,0 is a polynomial described in Appendix 8.4. In our numerical ex-

periment, we apply (11) to the periodic function on [0, 1],

f(x) =
∑

k∈Z

e−a(x+k−1/2)2,

which yields

(Cf)(y) = −
∑

k∈Z

e−a(y+k−1/2)2Erfi[
√
a(y+k−1/2)] = i

√

π

a

∑

n∈Z

sign(n)e−n2π2/ae2πiny,

(13)
where e−y2

Erfi(y) = 2
√

π

∫ y
0 e

s2
−y2

ds. Expression (13) is obtained by first observ-

ing that the Hilbert transform of e−ax2

is −e−ay2

Erfi(
√
ay), and then evaluating

the lattice sum, noting that (see [23, formula 4.3.91])

cot(πx) =
1

π
(
1

x
+

∞
∑

k=1

2x

x2 − k2
).

Table 1 summarizes the numerical construction of this solution for a = 300,
at various requested precisions. Optimal performance is obtained by adjusting
the order of the basis p as a function of the requested precision, to ensure that
the operator remains a banded matrix with small band, and that the adaptive
representation of the input function requires a moderate number of scales.
The resulting numerical error (as compared to the exact analytical solution),
measured in the ℓ2 norm, is shown in the last column. Figure 3 shows the
input and results for this example, as well as the point-wise error for the case
where ǫreq = 10−12 and p = 14 (the last row in the table).

3 Separated representations of integral kernels

The approach we’ve discussed so far does not efficiently generalize to the
application of non-separable multidimensional integral kernels. Since several
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p Scales Nblocks ǫ E2

5 [2,3,4] 8 10−3 1.5 · 10−4

8 [2,4,5] 12 10−6 1.3 · 10−7

11 [2,4,5] 14 10−9 1.1 · 10−10

14 [3,4,5] 16 10−12 4.4 · 10−13

Table 1
Results from evaluating (13) with our algorithm. The order of the basis p is adjusted
as a function of the requested precision ǫ. The second column indicates scales present
in the adaptive tree for the input. The third column shows the total number of
blocks of coefficients in this tree. The last column (E2) shows the actual error of the
computed solution in the ℓ2 norm.

0.0 0.2 0.4 0.6 0.8 1.0

−0.5

0.0
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1.0

f(x) = e(−a(x− 1

2
)2)

[cot(f )](x)
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10−18

10−17
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10−14

10−13

10−12

10−11

Figure 3. Results of applying the cotangent kernel to a periodized Gaussian using
basis of order p = 14 (the last row in Table 1). The pointwise error is shown on the
right for a requested accuracy of ǫ = 10−12.

physically important kernels belong to this category (e.g. the Poisson kernels
in d = 2 and d=3), additional tools are needed. We now describe the key idea
that allows us to perform this generalization to d > 1.

We use the separated representation of operators introduced in [6,24] to re-
duce the computational cost of the straightforward generalization of the mul-
tiresolution approach in [4]. Such representations are particularly simple for
convolution operators and are based on approximating kernels by a sum of
Gaussians [24,8,9,11,10]. This approximation has a multiresolution character
by itself and requires a remarkably small number of terms. In fact, our algo-
rithm uses the coefficients and the exponents of the Gaussian terms as the only
input from which it selects the necessary terms, scale by scale, according the
desired accuracy threshold ǫ. Therefore, our algorithm works for all operators
with kernels that admit approximation by a sum of Gaussians. Examples of
such operators include the Poisson and the bound state Helmholtz Green’s
functions, the projector on divergence free functions, as well as regular and
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fractional derivative operators. Let us consider a particular family of operators
(−∆ + µ2I)−α, where µ ≥ 0 and 0 < α < 3/2. The kernel of this operator

Kµ,α(r) = 2−
3

2
+α · Cα · (

µ

r
)

3

2
−αK 3

2
−α(µr),

where K 3

2
−α is the modified Bessel function, r = ||x − y|| and Cα = 2 ·

2−2απ−
3

2/Γ(α), has an integral representation

Kµ,α(r) = Cα

∫

∞

−∞

e−r2e2s

e−
1

4
µ2e−2s+(3−2α)sds. (14)

Using the trapezoidal rule, we construct an approximation valid over a range
of values δ ≤ r ≤ R with accuracy ǫ, of the form

∣

∣

∣

∣

∣

Kµ,α(r) −
M
∑

m=1

wme
−τmr2

∣

∣

∣

∣

∣

≤ ǫK0,α(r) = ǫ
Γ(3/2 − α) · Cα

2r3−2α
, (15)

where τm = e2sm , wm = hCα e
−µ2e−2sm/4+(3−2α)sm, h = (B − A)/M and sm =

A + mh. The limits of integration, A, B and the step size h are selected as
indicated in [24], where it is shown that for a fixed accuracy ǫ the number of
terms M in (15) is proportional to log(Rδ−1). Although it is possible to select
δ and R following the estimates in [25] and optimize the number of terms for
a desired accuracy ǫ, in this paper we start with an approximation that has an
obviously excessive range of validity and thus, an excessive number of terms.

An example of such approximation is shown in Figure 4. For a requested toler-
ance of ǫ = 10−10, roughly 300 terms are enough to provide a valid approxima-
tion over a range of 15 decades. We then let the algorithm choose the necessary
terms, scale by scale, to satisfy the user-supplied accuracy requirement ǫ. This
approach may end up with a few extra terms on some scales in comparison
with that using a nearly optimal number of terms [8,10,11,9]. Whereas the
cost of applying a few extra terms is negligible, we gain significantly in having
a much more flexible and general algorithm.

We note that approximation in (15) clearly reduces the problem of applying
the operator to that of applying a sequence of Gauss transforms [26,27], one
by one. From this point of view, the algorithm that we present may be con-
sidered as a procedure for applying a linear combination of Gauss transforms
simultaneously.

In order to represent the kernel K of the operator in multiwavelet bases, we
need to compute the integrals,
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Figure 4. Relative error of the Gaussian approximation for the Poisson kernel in 3
dimensions. This unoptimized expansion uses 299 terms to cover a dynamic range
of roughly 15 decades with ǫ = 10−10 relative accuracy.

rj; ℓ
i
1
i′
1
,i

2
i′
2
,i

3
i′
3

=
M
∑

m=1

2−3j

∫

B
wm e

−τm‖2−j(x+ℓ)‖2

Φi
1
i′
1
(x1) Φi

2
i′
2
(x2) Φi

3
i′
3
(x3) dx ,

(16)
where Φii′(x) are the cross-correlations of the scaling functions (see Appendix).
We obtain

rj; ℓ
i
1
i′
1
,i

2
i′
2
,i

3
i′
3

=
M
∑

m=1

wm F
j; m,l1
i
1
i′
1

F j; m,l2
i
2
i′
2

F j; m,l3
i
3
i′
3

, (17)

where

F j; m,l
ii′ =

1

2j

∫ 1

−1
e−τm(x+l)2/4j

Φii′(x)dx. (18)

Since the Gaussian kernel is not homogeneous, we have to compute integrals
(18) for each scale. Although in principle l ∈ Z, in the next section we explain
how to restrict it to a limited range on each scale, for a given accuracy ǫ.

4 Modified ns-form of a multidimensional operator

In this section, we describe how the separated representation approximations
of Section 3 can be used to construct a multidimensional extension of the ns-
form representation from Section 2.3, using only one-dimensional quantities
and norm estimates. This makes our approach viable for d > 1. We use the
modified ns-form as in the one-dimensional case described in Section 2.3. We

17



find the ns-form essential for adaptive algorithms in more than one dimension,
since:

(1) Scales do not interact as the operator is applied. All interactions between
scales are accounted for by the (inexpensive) projection at the final step
of the algorithm.

(2) For the same reason, the subdivision of space at different scales natu-
rally maps into the supporting data structures. We note that one of the
main difficulties in developing adaptive algorithms is in organizing com-
putations with blocks of an adaptive decomposition of a function from
different scales but with a common boundary. The methods for such com-
putations are known as mortar elements methods. In our approach this
issue does not present any obstacle, as all relevant interactions are natu-
rally accounted for by the data structures.

The key feature that makes our approach efficient in dimensions d ≥ 2 is
the separated structure of the modified ns-form. Namely, the blocks of Tj− ↑
(Tj−1) are of the form (for d = 3)

Tℓ
j− ↑ (Tℓ

j−1) =
M
∑

m=1

wmF
j;ml1F j;ml2F j;ml3

− ↑

(

M
∑

m=1

wmF
j−1;ml1F j−1;ml2F j−1;ml3

)

=
M
∑

m=1

wmF
j;ml1F j;ml2F j;ml3 (19)

−
M
∑

m=1

wm ↑ (F j−1;ml1)· ↑ (F j−1;ml2)· ↑ (F j−1;ml3).

As in the case d = 1, the norm of the operator blocks of Tℓ
j− ↑ (Tℓ

j−1) decays
rapidly with ‖ℓ‖, ℓ = (l1, l2, l3), and the rate of decay depends on the number
of vanishing moments of the basis [4]. Moreover, we limit the range of shift
indices ‖ℓ‖ using only one-dimensional estimates of the differences

F j; m,2l

ii
′ − ↑ F j; m,l

ii
′ and F j; m,2l+1

ii
′ − ↑ F j; m,l

ii
′ (20)

of operator blocks computed via (18). The norms of individual blocks F j; m,l

ii
′

are illustrated in Figure 5 (a), for scale j = 1.

By selecting the number of vanishing moments for a given accuracy, it is suffi-
cient to use ‖ℓ‖

∞
≤ 2 in practical applications that we have encountered. Also,

not all terms in the Gaussian expansion of an operator need to be included
since, depending on the scale j, their contribution may be negligible for a
given accuracy, as shown in Figure 5 (b). Below we detail how we select terms
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of the Gaussian expansion on a given scale as well as the significant blocks of
Tℓ

j− ↑ (Tℓ
j−1). This procedure establishes the band structure of the operator.

We then project the banded operator ↑ (T
bj

j−1) back to the scale j − 1 and
then combine blocks on the natural scale for each projection in order to apply
the operator efficiently as was explained in Section 2.3 for the one-dimensional
case.

We note that in deciding which terms to keep in (19), we do not compute the
difference between the full three dimensional blocks as it would carry a high
computational cost; instead we use estimates based on the one dimensional
blocks of the separated representation. We note that since the resulting band
structure depends only on the operator and the desired accuracy of its ap-
proximation, one of the options is to store such band information as it is likely
to be reused.

In order to efficiently identify the significant blocks in Tℓ
j− ↑ (Tℓ

j−1) as a
function of ℓ, we develop norm estimates based only on the one-dimensional
blocks. The difference between two terms of the separated representation, say
F1F2F3 −G1G2G3, may be written as

F1F2F3 −G1G2G3 = (F1 −G1)F2F3 +G1(F2 −G2)F3 +G1G2(F3 −G3).

We average six different combinations of the three terms to include all direc-
tions in a symmetric manner, which results in the norm estimate

‖F1F2F3 −G1G2G3‖≤
1

6
sym [‖F1 −G1‖‖F2‖‖F3‖+ (21)

‖G1‖‖F2 −G2‖‖F3‖ + ‖G1‖‖G2‖‖F3 −G3‖] ,

where the symmetrization is over the three directions and generates 18 terms.
For the rotationally symmetric operators with Gaussian expansion as in (15)
computing the right hand side in this estimate involves just three types of one
dimensional blocks and their norms,

N j;m;l

dif =
∥

∥

∥F j;m;l− ↑ (F j−1;m;l)
∥

∥

∥ ,

N j;m;l
F =

∥

∥

∥F j;m;l
∥

∥

∥ , (22)

N j;m;l
↑F =

∥

∥

∥↑ (F j−1;m;l)
∥

∥

∥ ,

where index j indicates the scale, m the term in the Gaussian expansion (15),
and l the position of the block in a given direction.

These estimates allow us to discard blocks whose norm falls below a given
threshold of accuracy, namely, for each multi-index ℓ, we estimate
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(a) Norms of each one-dimensional
block computed via (18) for scale j = 1,
as a function of the index m in the sep-
arated representation.
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(b) Norm estimates (23) for scale j = 1
as a function of the index m in the sep-
arated representation. Based on these
estimates, only terms above the cutoff
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Figure 5. Comparison of norms of matrix blocks generated by the Gaussian ap-
proximation for the Poisson kernel in dimension d = 3. In each picture, the curves
correspond to the different offsets l for which blocks are generated. Figure (b) illus-
trates the estimate in (23) (see main text for details).

∥

∥

∥Tℓ
j− ↑ (Tℓ

j−1)
∥

∥

∥≤
1

6

M
∑

m=1

wm sym
[

N j;m;l1

dif N j;m;l2
F N j;m;l3

F + (23)

N j;m;l1
↑F N j;m;l2

dif N j;m;l3
F +N j;m;l1

↑F N j;m;l2
↑F N j;m;l3

dif

]

.

For each scale j and each block Tℓ
j− ↑ (Tℓ

j−1) labeled by the multi-index
ℓ = (l1, l2, l3), we compute all terms of the sum in (23) and identify the range
[m1,m2] which we need to keep for that block, by discarding from the sum
terms whose cumulative contribution is below ǫ. If the entire sum falls below ǫ,
this range may be empty and the entire Tℓ

j− ↑ (Tℓ
j−1) is discarded. The range

[m1,m2] differs significantly depending whether or not the block is affected
by the singularity of the kernel as is illustrated in Figure 5. In Figure 5 (a)
the rate of decay for the blocks with shift |l| = 2, 3 is significantly faster than
for the blocks with |l| ≤ 1 affected by the singularity. We note that all blocks
of the first 150 terms in the separated representation (17) have norm 1 (and
rank 1 as matrices) and are not shown in Figure 5 (a).

Since the difference in (23) involves blocks upsampled from a coarser scale, all
shifts |l| ≤ 3 are affected by the singularity. Figure 5 (b) shows the r.h.s. of
the estimate in (23) for different shifts along one of the directions, where the
blocks along the other two directions are estimated by the maximum norm
over all possible shifts.

After discarding blocks with norms less that ǫ using the estimate in (23), we
downsample the remaining blocks of ↑ (Tℓ

j−1) back to the original scale. This
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leaves only blocks of Tℓ
j on the scale j and we remove additional blocks of

Tℓ
j for the shifts |l| = 2, 3 where the decay is sufficiently fast to make their

contribution less than ǫ.

This leads us to arrange the blocks on each scale into several subsets by the
effect the singularity of the kernel has on them and find the appropriate range
[m1,m2] for each subset. There are three such sets in dimension d = 2 and
four sets in dimension d = 3. For each index l, we will say that the index
belongs to the core if l = −1, 0, 1 and to the boundary otherwise. The core
indices correspond to one-dimensional blocks whose defining integrals include
the singularity of the kernel. We then divide all possible values of the multi-
index ℓ = (l1, l2, l3), according to the number of core indices it has. In d = 3
this gives us four sets:

• Core: all indices (l1, l2, l3) belong to the core.
• Boundary-1: two of the indices belong to the core and one to the boundary
• Boundary-2: one of the indices belongs to the core, the other two to the

boundary
• Boundary-3: all indices (l1, l2, l3) belong to the boundary.

We then find the range [m1,m2] for each subset and apply blocks of each
subset separately, thus avoiding unnecessary computations with blocks whose
contribution is negligible. This range analysis only needs to be done once per
operator and the desired accuracy, and the results may be saved for repeated
use.

5 Multidimensional adaptive application of ns-form

In this section we present an algorithm for applying the modified non-standard
form which is an extension of (2) (based on (8) and (10)) to higher dimensions.
We are now seeking to compute

g(x) = [Tf ](x) =
∫

K(y − x)f(y)dy,

where x,y ∈ R
d for d = 2, 3. The separated approximation (19) reduces the

complexity of applying the operator by allowing partial factorization of the
nested loops in each scale indicated by the order of summation and illustrated
for d = 3,
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gj;l1l2l3 =
∑

m

wm







∑

l′
1

F j;m;l1−l′
1

∑

l′
2

F j;m,l2−l′
2

∑

l′
3

F j;m,l3−l′
3 −

↑





∑

l′
1

F j−1;m;l1−l′
1

∑

l′
2

F j−1;m,l2−l′
2

∑

l′
3

F j−1;m,l3−l′
3











f j;l′
1
l′
2
l′
3 .

As described in the previous section, this evaluation is done by regions of in-
dices. These regions of indices are organized so that (for a given accuracy) the
number of retained terms of the separated representation is roughly the same
for all blocks within each region. Thus, we perform the summation over the
terms of the separated representation last, applying only the terms that actu-
ally contribute to the result above the requested accuracy threshold, according
to estimate (23). Therefore, we avoid introducing checks per individual block
and the resulting loss of performance.

Just as in the one-dimensional case, we use (19) in a ‘natural scale’ manner.
That is, blocks belonging to scale j are only applied on that scale. As in one-
dimensional case, the interaction between scales is achieved by the projection
(10) that redistributes blocks accumulated in this manner properly between
the scales to obtain the adaptive tree for the resulting function. The overall
approach is the same as described in (2). We note that, as expected, the sep-
arated representation requires more detailed bookkeeping when constructing
the data structures for the operator.

Remark 1 Our multiresolution decomposition corresponds to the geometri-
cally varying refinement in finite element methods. In this case the adjoining
boxes do not necessarily share common vertices, forming what corresponds to
the so-called non-conforming grid. In finite element methods such situation
requires additional construction provided by the mortar element methods.
Mortar element methods were introduced by Patera and his associates, see
e.g. [19,20,21,22]. These methods permit coupling discretizations of different
types in non-overlapping domains. Such methods are fairly complicated and
involve, for example, the introduction of interface conditions through an L2

minimization. In our approach we do not face these issues at all and do not
have to introduce any additional interface conditions. The proper construc-
tion for adjoining boxes is taken care by the redundant tree data structure
and Step 2 of Algorithm 3 for applying the kernel, which generates the neces-
sary missing boxes on appropriate scales.

Remark 2 Although Algorithm 3 applies convolution operators, only minor
changes are needed to use it for non-convolutions. Of course in such case, the
separated representation for the modified ns-form should be constructed by a
different approach.
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Algorithm 3 Adaptive non-standard form operator application in multiple
dimensions (illustrated for d = 2), g = Tf

Initialization: Construct the redundant tree for f and copy it as skeleton
tree for g (see Section 2.2.1).
for all scales j = 0, . . . , n− 1 do

for all function blocks gj
l1l2

in the tree for g at scale j do

# Step 1. Determine the list of all Core, Boundary-1 and Boundary-2
contributing operator blocks of the modified ns-form F j;m;l1−l′

1, F j;m;l2−l′
2

(see Section 4):
if gj

l1l2
belongs to a leaf then

Read operator blocks F j;m;l1−l′
1, F j;m;l2−l′

2 for Core, Boundary-1 and
Boundary-2, and their weights wm and corresponding ranges from
the separated representation.

else

Read operator blocks F j;m;l1−l′
1, F j;m;l2−l′

2 for Boundary-1 and
Boundary-2, and their weights wm and corresponding ranges from
the separated representation.

end if

# Step 2. Find the required blocks f j

l′
1
l′
2

of the input function f :

if function block f j

l′
1
l′
2

exists in the redundant tree for f then

Retrieve it.
else

Create it by interpolating from a coarser scale and cache for reuse.
end if

# Step 3. Output function block computation:
For each set S of indices determined in Step 1 (Core, Boundary-1,
Boundary-2) and the corresponding ranges of terms in the separated
representation, compute the sum

ĝj;S
l1l2

=
∑

m

wm

∑

l′
1

F j;m;l1−l′
1

∑

l′
2

F j;m;l2−l′
2f j

l′
1
l′
2

,

Add all computed sums to obtain ĝj
l1l2

.
end for

end for

# Step 4. Adaptive projection:
Project resulting output function blocks ĝj

l1l2
on all scales into a proper

adaptive tree by using Eq. (5).
Discard from the resulting tree unnecessary function blocks at the requested
accuracy.
Return: the function g represented by its adaptive tree.
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5.1 Operation count estimates

Adaptive decomposition of functions

The cost of adaptively decomposing a function in d dimensions is essentially
that of an adaptive wavelet transform. Specifically, it takes O(Nblocks · p

d+1)
operations to compute such representation, where Nblocks is the final number
of significant blocks in the representation and p is the order of multiwavelet
basis chosen. In comparison with the usual wavelet transform, it appears to
be significantly more expensive. However, these O(pd+1) operations process
O(pd) points, thus in counting significant coefficients as it is done in the usual
adaptive wavelet transform, we end up with O(p) operations per point.

Operator application

The cost of applying an operator in the modified ns-form is O(NblocksMpd+1),
where Nblocks is the number of blocks in the adaptive representation of the
input function, M is the separation rank of the kernel in (15) and p is the
order of the multiwavelet basis. For a given desired accuracy ǫ, we typically
select p ∝ log ǫ−1; M has been shown to be proportional to (log ǫ−1)ν , where ν
depends on the operator [24]. In our numerical experiments, M is essentially
proportional to log ǫ−1, since we never use the full separated representation,
as discussed in Section 4 and illustrated in Figure 5.

This operation count can be potentially reduced to O(NblocksMpd) by using
the structure of the matrices in 18, and we plan to address this in the future.

Final projection

After the operator has been applied to a function in a scale-independent fash-
ion, a final projection step is required as discussed in Section 2.3. This step
requires O(Nblocks ·p

d) operations, the same as in the original function decom-
position. In practice, this time is negligible compared to the actual operator
application.
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6 Numerical examples

6.1 The Poisson equation

We illustrate the performance of the algorithm by solving the Poisson equation
in d = 3

∇2φ(r) = −ρ(r) (24)

with free space boundary conditions, φ(r) → 0 and ∂φ/∂r → 0 as r → ∞. We
write the solution as

φ(r) =
1

4π

∫

R3

1

|r − r′|
ρ(r′)dr′

and adaptively evaluate this integral. We note that our method can equally
be used for d = 2, since the corresponding Green’s function can also be rep-
resented as a sum of Gaussians, and the operator application algorithm has
been implemented in for both d = 2 and d = 3.

For our test we select

φ(r) =
3
∑

i=1

e−α|r−r
′
|
2

,

so that we solve the Poisson equation with

ρ(r) = −∇2φ(r) = −
3
∑

i=1

(4α2 |r − ri|
2 − 6α)e−α|r−ri|

2

.

Our parameters are chosen as follows: α = 300, r1 = (0.5, 0.5, 0.5), r2 =
(0.6, 0.6, 0.5) and r3 = (0.35, 0.6, 0.5). These ensure that ρ(r) is well below
our requested thresholds on the boundary of the computational domain. All
numerical experiments were performed on a Pentium-4 running at 2.8 GHz,
with 2 GB of RAM. The results are summarized in Table 2.

In order to gauge the speed of algorithm in reasonably computer-independent
terms, we use a similar approach to that of [17] and also provide timings of
the Fast Fourier Transform (FFT). Specifically, we display timings for two
FFTs as an estimate of the time needed to solve the Poisson equation with
a smooth right hand side and periodic boundary conditions in a cube. As in
[17], we compute the rate that estimates the number of processed points per
second. We observe that for our adaptive algorithm such rate varies between
3.4 · 104 and 1.1 · 105 (see Table 2), whereas for the FFTs it is around 106 (see
Table 3). We note that our algorithm is not fully optimized, namely, we do not
use the structure of the matrices in (18) and the symmetries afforded by the
radial kernels. We expect a substantial impact on the speed by introducing
these improvements and will report them separately.
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Requested ǫ = 10−3

p E2 E
∞

Time (s) Rate (pts/s)

6 5.0 · 10−3 7.9 · 10−1 1.2 7.2 · 104

8 1.7 · 10−3 1.2 · 10−1 0.51 7.3 · 104

10 4.4 · 10−4 3.7 · 10−2 0.68 1.1 · 105

Requested ǫ = 10−6

p E2 E
∞

Time (s) Rate (pts/s)

10 4.7 · 10−6 3.6 · 10−4 10.3 5.7 · 104

12 8.5 · 10−6 4.3 · 10−5 13.5 7.5 · 104

14 6.9 · 10−8 5.2 · 10−6 20.0 8.0 · 104

Requested ǫ = 10−9

p E2 E
∞

Time (s) Rate (pts/s)

16 2.5 · 10−10 2.2 · 10−8 68.1 3.5 · 104

18 7.7 · 10−11 3.5 · 10−9 100.3 3.4 · 104

20 1.2 · 10−10 1.8 · 10−8 133.4 3.5 · 104

Table 2
Accuracy and timings for the adaptive solution of the Poisson equation in (24).

size Time (s) Rate (pts/s)

323 0.02 1.7 · 106

643 0.22 1.2 · 106

1283 2.21 9.5 · 105

2563 20.7 8.1 · 105

Table 3
Timings of two 3D FFTs to estimate the speed of a non-adaptive, periodic Poisson
solver on a cube for smooth functions.

We note that the multigrid method (see e.g. [28,29]) is frequently used as a
tool for solving the Poisson equation (and similar problems) in differential
form. The FFT-based gauge suggested in [17] is useful for comparisons with
these algorithms as well.
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Figure 6. A two-dimensional slice of the three-dimensional subdivision of space by
the scaling functions and an illustration of the source term for the Poisson equation
(24).

6.2 The ground state of the hydrogen atom

A simple example of computing the ground state of the hydrogen atom illus-
trates the numerical performance of the algorithms developed in this paper,
and their utility for constructing more complex codes. The eigenfunctions
ψ for the hydrogen atom satisfy the time-independent Schrödinger equation
(written in atomic units and spherical coordinates),

−
1

2
∆ψ −

1

r
ψ = Eψ, (25)

where E is the energy eigenvalue. For the ground state, E = −1/2 and the
(unnormalized) wave function is ψ = e−r. Following [30], we write

φ = −2GµV φ, (26)

where Gµ = (−∆ + µ2I)−1 is the Green’s function for some µ and V = −1/r
is the nuclear potential. For µ =

√
−2E the solution φ of (26) has ‖φ‖2 = 1

and coincides with that of (25). We solve (26) by a simple iteration starting
from some value µ0 and changing µ to obtain the solution with ‖φ‖2 = 1. The
algorithm proceeds as follows:

(1) Initialize with some value µ0 and function φ. The number of iterations of
the algorithm is only weakly sensitive to these choices.

(2) Compute the product of the potential V and the function φ.
(3) Apply the Green’s function Gµ to the product V φ via the algorithm of
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Figure 7. Convergence of the iteration to obtain the ground state of the hydrogen
atom computed via formulation in (26) for the non-relativistic Schrödinger equation.
The requested accuracy in applying the Green’s function is set to 10−6.

this paper to compute
φnew = −2GµV φ.

(4) Compute the energy for φnew,

Enew =
1
2
〈∇φnew,∇φnew〉 + 〈V φnew, φnew〉

〈φnew, φnew〉
.

(5) Set µ =
√
−2Enew, φ = φnew/‖φnew‖ and return to Step 2.

The iteration is terminated as the change in µ and ‖φ‖ − 1 falls below the
desired accuracy. The progress of the iteration is illustrated in Figure 7. The
computations in Steps 2 and 4 use the three dimensional extension of the
approach described in [13], to compute point-wise multiplications of adaptively
represented functions and weak differential operators of the same.

This example illustrates an application of our algorithm to problems in quan-
tum chemistry. Multiresolution quantum chemistry developed in [8,9,10,11]
also uses separated representations. The main technical difference with [8,9,10,11]
is that we use the modified non-standard form and apply operator blocks on
their “natural” scale, thus producing a fully adaptive algorithm. We are cur-
rently using this algorithm as part of a new method for solving the multipar-
ticle Schrödinger equation and will report the results elsewhere.

7 Discussion and conclusions

We have shown that a combination of separated and multiresolution repre-
sentations of operators yields a new multidimensional algorithm for applying
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a class of integral operators with radial kernels. We note that the same algo-
rithm is used for all such operators as they are approximated by a weighted
sum of Gaussians. This fact makes our approach applicable across multiple
fields, where a single implementation of the core algorithm can be reused for
different specific problems. The algorithm is fully adaptive and avoids issues
usually addressed by mortar methods.

The method of approximation underlying our approach is distinct from that of
the FMM, has similar efficiency and has the advantage of being more readily
extendable to higher dimensions. We also note that semi-analytic approxima-
tions via weighted sums of Gaussians provide additional advantages in some
applications. Although we described the application of kernels in free space,
there is a simple extension to problems with radial kernels subject to periodic,
Dirichlet or Neumann boundary conditions on a cube that we will describe
separately.

The algorithm may be extended to classes of non-convolution operators, e.g.,
the Calderon-Zygmund operators. For such extensions the separated represen-
tation may not be available in analytic form, as it is for the operators of this
paper, and may require a numerical construction. The separated representa-
tion of the kernel permits further generalization of our approach to dimensions
d≫ 3 for applying operators to functions in separated representation.

A notable remaining challenge is an efficient, high order extension of this tech-
nique to the application of operators on domains with complicated geometries
and surfaces.

8 Appendix

8.1 Scaling functions

We use either the Legendre polynomials P0, . . . , Pp−1 or the interpolating poly-
nomials on the Gauss-Legendre nodes in [−1, 1] to construct an orthonormal
basis for each subspace Vj [12,13].

Let us briefly describe some properties of the Legendre scaling functions φk,
k = 0, . . . , p− 1, defined as

φk(x) =











√
2k + 1Pk(2x− 1), x ∈ [0, 1]

0, x /∈ [0, 1]
, (27)

and forming a basis for V0. The subspace Vj is spanned by 2jp functions
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obtained from φ0, . . . , φp−1 by dilation and translation,

φj
kl(x) = 2j/2φk(2

jx− l), k = 0, . . . , p− 1, l = 0, . . . , 2j − 1. (28)

These functions have support on [2−jl, 2−j(l + 1)] and satisfy the orthonor-
mality condition

∫

∞

−∞

φj
kl(x)φ

j
k′l′(x)dx = δkk′δll′ . (29)

A function f , defined on [0, 1], is represented in the subspace Vj by its nor-
malized Legendre expansion

f(x) =
2j

−1
∑

l=0

p−1
∑

k=0

sj
klφ

j
kl(x), (30)

where the coefficients sj
kl are computed via

sj
kl =

∫ 2−j(l+1)

2−j l
f(x)φj

kl(x) dx. (31)

As long as f(x) is smooth enough and is well approximated on [2−jl, 2−j(l+1)]
by a polynomial of order up to 2p−1, we may use Gauss-Legendre quadratures
to calculate the sj

kl via

sj
kl = 2−j/2

p−1
∑

i=0

f(2−j(xi + l))φk(xi)wi, (32)

where x0, . . . , xp−1 are the roots of Pp(2x− 1) and w0, . . . , wp−1 are the corre-
sponding quadrature weights.

In more than one dimension, the above formulas are extended by using a tensor
product basis in each subspace. For example, in two dimensions equation (30)
becomes

f(x, x′) =
2j

−1
∑

l=0

p−1
∑

k=0

2j
−1
∑

l′=0

p−1
∑

k′=0

sj

kk′ll′φ
j
kl(x)φ

j

k′l′(x
′). (33)

8.2 Multiwavelets

We use piecewise polynomial functions ψ0, . . . , ψp−1 as an orthonormal basis
for W0 [12,13],

∫ 1

0
ψi(x)ψj(x)dx = δij . (34)

Since W0 ⊥ V0, the first p moments of all ψ0, . . . , ψp−1 vanish:

∫ 1

0
ψi(x)x

idx = 0, i, j = 0, 1, . . . , p− 1. (35)
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The space Wj is spanned by 2jp functions obtained from ψ0, . . . , ψp−1 by
dilation and translation,

ψj
kl(x) = 2j/2ψk(2

jx− l), k = 0, . . . , p− 1, l = 0, . . . , 2j − 1, (36)

and supported in the interval Ijl = [2−jl, 2−j(l + 1)]. A function f(x) defined
on [0, 1] is represented in the multiwavelet basis on n scales by

f(x) =
p−1
∑

k=0

s0
k,0φk(x) +

n−1
∑

j=0

2j
−1
∑

l=0

p−1
∑

k=0

dj
klψ

j
kl(x) (37)

with the coefficients dj
kl computed via

dj
kl =

∫ 2−j(l+1)

2−j l
f(x)ψj

kl(x) dx. (38)

8.3 Two-scale relations

The relation between subspaces, V0⊕W0 = V1, is expressed via the two-scale
difference equations,

φk(x) =
√

2
p−1
∑

k′=0

(

h
(0)
kk′φk′(2x) + h

(1)
kk′φk′(2x− 1)

)

, k = 0, . . . , p− 1, (39)

ψk(x) =
√

2
p−1
∑

k′=0

(

g
(0)
kk′φk′(2x) + g

(1)
kk′φk′(2x− 1)

)

, k = 0, . . . , p− 1, (40)

where the coefficients h
(0)
ij , h

(1)
ij and g

(0)
ij , g

(1)
ij depend on the type of polyno-

mial basis used (Legendre or interpolating) and its order p. The matrices of
coefficients

H(0) = {h
(0)
kk′}, H(1) = {h

(1)
kk′}, G(0) = {g

(0)
kk′}, G(1) = {g

(1)
kk′}

are the multiwavelet analogues of the quadrature mirror filters in the usual
wavelet construction, e.g., [15]. These matrices satisfy a number of important
orthogonality relations and we refer to [13] for complete details, including the
construction of the H, G matrices themselves. Let us only state how these
matrices are used to connect the scaling sj

kl and wavelet dj
kl coefficients on

neighboring scales j and j + 1. The decomposition procedure (j + 1 → j) is
based on
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sj
kl =

p−1
∑

k′=0

(

h
(0)
kk′s

j+1
k,2l + h

(1)
kk′s

j+1
k,2l+1

)

, (41)

dj
kl =

p−1
∑

k′=0

(

g
(0)
kk′s

j+1
k,2l + g

(1)
kk′s

j+1
k,2l+1

)

; (42)

the reconstruction (j → j + 1) is based on

sj+1
k,2l =

p−1
∑

k′=0

(

h
(0)
kk′s

j
kl + g

(0)
kk′d

j
kl

)

, (43)

sj+1
k,2l+1 =

p−1
∑

k′=0

(

h
(1)
kk′s

j
kl + g

(1)
kk′d

j
kl

)

. (44)

8.4 Cross-correlation of the scaling functions

For convolution operators we only need to compute integrals with the cross-
correlation functions of the scaling functions,

Φii′(x) =
∫

∞

−∞

φi(x+ y)φi′(y)dy. (45)

Since the support of the scaling functions is restricted to [0, 1], the functions
Φii′ are zero outside the interval [−1, 1] and are polynomials on [−1, 0] and
[0, 1] of degree i+ i′ + 1,

Φii′(x) =



























Φ+
ii′(x), 0 ≤ x ≤ 1,

Φ−

ii′(x), −1 ≤ x < 0,

0, 1 < |x|,

(46)

where i, i′ = 0, . . . , p− 1 and

Φ+
ii′(x) =

∫ 1−x

0
φi(x+ y)φi′(y)dy , Φ−

ii′(x) =
∫ 1

−x
φi(x+ y)φi′(y)dy . (47)

We summarize relevant properties of the cross-correlation functions Φii′ in

Proposition 3

(1) Transposition of indices: Φii′(x) = (−1)i+i′Φi′i(x),

(2) Relations between Φ+and Φ−: Φ−

i,i′(−x) = (−1)i+i′Φ+
i,i′(x) for 0 ≤ x ≤ 1,
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(3) Values at zero: Φii′(0) = 0 if i 6= i′, and Φii(0) = 1 for i = 0, . . . , p− 1,

(4) Upper bound: maxx∈[−1,1] |Φii′(x)| ≤ 1 for i, i′ = 0, . . . , p− 1,

(5) Connection with the Gegenbauer polynomials:

Φ+
00(x) = 1

2
C

(−1/2)
1 (2x − 1) + 1

2
and Φ+

l0(x) = 1
2

√
2l + 1C

(−1/2)
l+1 (2x − 1),

for l = 1, 2, . . . , where C
(−1/2)
l+1 is the Gegenbauer polynomial,

(6) Linear expansion: if i′ ≥ i then we have

Φ+
ii′(x) =

i′+i
∑

l=i′−i

clii′Φ
+
l0(x), (48)

where

clii′ =



























4l(l + 1)
∫ 1
0 Φ+

ii′(x)Φ
+
l0(x)(1 − (2x− 1)2)−1dx, i′ > i,

4l(l + 1)
∫ 1
0 (Φ+

ii(x) − Φ+
00(x)) Φ+

l0(x)(1 − (2x− 1)2)−1dx, i′ = i,

(49)
for l ≥ 1 and c0ii′ = δii′.

(7) Vanishing moments: we have
∫ 1
−1 Φ00(x) dx = 1 and

∫ 1
−1 x

kΦii′(x) dx = 0
for i+ i′ ≥ 1 and 0 ≤ k ≤ i+ i′ − 1.

Proof of these properties can be found in [25].

8.5 Separated representations of radial functions

As an example, consider approximating the function 1/rα by a collection of
Gaussians. The number of terms needed for this purpose is mercifully small.
We have [24]

Proposition 4 For any α > 0, 0 < δ ≤ 1, and 0 < ǫ ≤ min
{

1
2
, 8

α

}

, there
exist positive numbers τm and wm such that

∣

∣

∣

∣

r−α −
M
∑

m=1

wme
−τmr2

∣

∣

∣

∣

≤ r−αǫ, for all δ ≤ r ≤ 1 (50)

with
M = log ǫ−1[c0 + c1 log ǫ−1 + c2 log δ−1], (51)

where ck are constants that only depend on α. For fixed power α and accuracy
ǫ, we have M = O(log δ−1).
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The proof of Proposition 4 in [24] is based on using the trapezoidal rule to dis-
cretize an integral representation of 1/rα. Similar estimates may be obtained
for more general radial kernels using their integral representations as in (14).

We note that approximations of the function 1/r via sums of Gaussians have
been also considered in [31,32,33].

8.6 Estimates

By selecting appropriate ǫ and δ in the separated representations of a radial
kernel K (as in Proposition 4), we obtain a separated approximation for the
coefficients

tj; ℓii′,jj′,kk′ = 2−3j

∫

[−1,1]3
K(2−j(x + ℓ)) Φii′(x1) Φjj′(x2) Φkk′(x3) dx . (52)

Since the number of terms, M , depends logarithmically on ǫ and δ, we achieve
any finite accuracy with a very reasonable number of terms. For example, for
the Poisson kernel K(r) = 1/4πr, we have the following estimate [25],

Proposition 5 For any ǫ > 0 and 0 < δ ≤ 1 the coefficients tj; ℓii′,jj′,kk′ in (52)
have an approximation with a low separation rank,

rj; ℓ
ii′,jj′,kk′ =

M
∑

m=1

wm F
m,l1
ii′ Fm,l2

jj′ Fm,l3
kk′ , (53)

such that if maxi |li| ≥ 2, then

|tj; ℓii′,jj′,kk′ − rj; ℓ
ii′,jj′,kk′| ≤ c02

−2jǫ, (54)

and if maxi |li| ≤ 1, then

|tj; ℓii′,jj′,kk′ − rj; ℓ
ii′,jj′,kk′ | ≤ 2−2j(c1δ

2 + c0ǫ) (55)

where ǫ, δ, M , τm, wm, m = 1, . . . ,M are described in Proposition 4 for α = 1
and c0 and c1 are (small) constants.

As described in Section 4, our adaptive algorithm selects only some of the
terms, as needed on a given scale for the desired accuracy ǫ.
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8.7 Evaluation of integrals with the cross-correlation functions

We need to compute integrals in (18), where the cross-correlation functions
Φii′ are given in (45). We note that using (48), it is sufficient to compute

F j;m,l
i0 =

1

2j

∫ 1

−1
e−τm(x+l)2/4j

Φi0(x)dx

for 0 ≤ i ≤ 2p− 1 rather than p2 integrals in (18). Using the relation between
Φ− and Φ+ in Proposition 3, we have

∫ 0

−1
Φ−

i0(x)e
−τm(x+l)2dx =

∫ 1

0
Φ−

i0(−x)e
−τm(−x+l)2dx = (−1)i

∫ 1

0
Φ+

i0(x)e
−τm(x−l)2dx,

so that

F j;m,l
i0 =

∫ 1

0
[e−τm(x+l)2 + (−1)ie−τm(x−l)2]Φ+

i0(x)dx.
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I Introduction

Given the difficulties of solving the multiparticle Schrödinger equation, current numerical
methods in quantum chemistry/physics are remarkably successful. Part of their success
comes from efficiencies gained by imposing structural constraints on the wavefunction to
match physical intuition. However, such methods scale poorly to high accuracy, and are
biased to only reveal structures that were part of their own construction. Our goal is to
develop a method that scales well to high accuracy and allows an unbiased exploration of the
structure of the wavefunction. In this paper we take a step toward this goal by developing a
method to approximate the wavefunction as an unconstrained sum of Slater determinants.

Since the multiparticle fermionic wavefunction is an antisymmetric function of many
variables, it is natural to approximate it as a sum of Slater determinants, at least as a first
step. Motivated by the physical intuition that electrons may be excited into higher energy
states, the Configuration Interaction (CI) family of methods choose a set of determinants
with predetermined orbitals, and then optimize the coefficients used to combine them. When
it is found insufficient, methods to optimize the orbitals, work with multiple reference states,
etc., are introduced (along with an alphabet of acronyms). A common feature of all these
methods is that they impose some structural constraints on the Slater determinants, such
as orthogonality of orbitals or an excitation pattern. As the requested accuracy increases,
these structural constraints trigger an explosion in the number of determinants used, making
the computation intractable for high accuracy.

The a priori structural constraints present in CI-like methods also force the wavefunction
to comply with such structure, whether or not it really is the case. For example, if you use a
method that approximates the wavefunction as a linear combination of a reference state and
excited states, you could not learn that the wavefunction is better approximated as a linear
combination of several non-orthogonal, near-reference states. Thus the choice of numerical
method is not just a computational issue; it can help or hinder our understanding of the
wavefunction.

For these reasons, our goal is to construct an adaptive numerical method without im-
posing a priori structural constraints besides that of antisymmetry. In this paper we derive
and present an algorithm for approximating a wavefunction with an unconstrained sum of
Slater determinants, with fully-adaptive single-electron functions. In particular we discard
the notions of reference state and excitation of orbitals. The functions comprising the Slater
determinants need not come from a particular basis set, be orthogonal, or follow some ex-
citation pattern. They are computed so as to optimize the overall representation. In this
respect we follow the philosophy of separated representations [4, 5], which allow surprisingly
accurate expansions with remarkably few terms.

Our construction generates a solution using an iterative procedure based on nonlinear
approximations via separated representations. To accomplish this nonlinear approximation,
we derive a system of integral equations that describe the fully-correlated many-particle
problem. The computational core of the method is the repeated construction and solution
of a matrix-integral system of equations.

Specifically, our approach has the following distinctive features:

• We use an adaptive representation for single-electron functions, but our method does
not depend on its details.

• We use an integral formulation of the multiparticle Schrödinger equation and a Green’s
function iteration to converge to the ground-state wavefunction. The Green’s function
is decomposed and applied using separated approximations obtained by expanding the
kernel into Gaussians.
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• We use a variant of the so-called alternating least squares algorithm to reduce the
error of our approximation using a sum of a given number of Slater determinants.

• We compute antisymmetric inner products involving portions of the Hamiltonian oper-
ator by reducing them to formulas involving only combinations of standard integrals.
In particular, we avoid the direct application of the electron-electron potential and
instead compute convolutions with the Poisson kernel.

By doing this, we hope to represent the effects of correlations in the most natural and
concise way possible, thus providing both computational efficiency and physical insight. We
believe that this algorithm and the system of integral equations underlying it provide the
foundation for a new approach to solving the multiparticle Schrödinger equation. We defer
to the sequels several important issues, such as algorithmic size-consistency/extensivity and
the treatment of the inter-electron cusp.

In Section II we formulate the problem more carefully, make precise some of the state-
ments that we made in this introduction, and give a high-level description of the method.
We then present the derivations and proofs in the following sections.

II Problem Formulation and Description of the Method

II.1 Formulation of the Problem

We consider the time-independent, nonrelativistic, multiparticle Schrödinger equation, and
fix the nuclei according to the Born-Oppenheimer approximation, so the equation describes
the steady state of an interacting system of electrons. For each of the N electrons in the
system there are three spatial variables r = (x, y, z) and a discrete spin variable σ taking the
values {− 1

2 ,
1
2}, which we combine and denote (r, σ) by γ. The Hamiltonian operator H is a

sum of a kinetic energy operator T , a nuclear potential operator V , and an electron-electron
interaction operator W , defined in atomic units by

H = T + V +W = −
1

2

N
∑

i=1

∆i +

N
∑

i=1

v(ri) +
1

2

N
∑

i=1

N
∑

j 6=i

1

‖ri − rj‖
, (1)

where ∆i is the three-dimensional Laplacian acting in the variable ri and v(r) is a sum
of terms of the form −Za/‖r−Ra‖ from a nucleus at position Ra with charge Za. The
antisymmetric eigenfunctions of H represent electronic states of the system and are called
wavefunctions. Antisymmetric means that under the exchange of any two coordinates, the
wavefunction is odd, e.g. ψ(γ2, γ1, . . .) = −ψ(γ1, γ2, . . .). The bound-state wavefunctions
have negative eigenvalues, and are of greatest interest. We will focus on the ground-state
wavefunction, which has the most negative eigenvalue, although the techniques can be used
for other states. In summary, our goal is to find E and ψ, with E the most negative
eigenvalue in

Hψ = Eψ , (2)

subject to the antisymmetry condition on ψ. Analytic methods can give qualitative results
about the solutions, and determine limiting cases, but most quantitative results must be
obtained numerically. Although the equation is ‘just’ an eigenvalue problem, its numerical
solution presents several serious difficulties, among them the large number of variables and
the antisymmetry condition on the solution. The simplest method that addresses these two
difficulties is Hartree-Fock (HF) (see e.g. [28]), which uses the antisymmetrization of a single



an Unconstrained Sum of Slater Determinants 4

product, called a Slater determinant, to approximate the N -particle wavefunction, i.e.

ψHF = A

N
∏

i=1

φi(γi) =
1

N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(γ1) φ1(γ2) · · · φ1(γN )
φ2(γ1) φ2(γ2) · · · φ2(γN )

...
...

...
φN (γ1) φN (γ2) · · · φN (γN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (3)

Any antisymmetric approximation ψ̃ to the wavefunction ψ can be substituted into

〈Hψ̃, ψ̃〉

〈ψ̃, ψ̃〉
, (4)

where 〈·, ·〉 is the usual inner product, to obtain an estimate for E. This estimate gives an
upper bound on the lowest value of E that solves (2). Substituting (3) into (4), one can
iteratively solve for φi to minimize (4). The resulting ψHF will best approximate ψ, in the
sense of providing the best estimate (4).

To improve upon HF, it is natural to consider the antisymmetrization of a sum of prod-
ucts

ψ(r) = A

r
∑

l=1

sl

N
∏

i=1

φl
i(γi) , (5)

which could also be written as a sum of Slater determinants. The coefficients sl are in-
troduced in order to have ‖φl

i‖ = 1. Many methods are based on this form, but they use
it in different ways. The Configuration Interaction (CI) method (see e.g. [57]) chooses the
functions φl

i from a preselected master set of orthogonal functions and decides on a large
number r of combinations to consider, based on excitation level. Substituting (5) into (4)
leads to a matrix eigenvalue problem that can be solved for the scalar coefficients sl. The
Multi-Configuration Self-Consistent Field (MCSCF) method (e.g. [20, 11]) solves for the
master set of orthogonal functions as well as the scalar coefficients. There are numerous
variations and combinations of these methods, too many to describe here.

II.1.1 What is New Here

In this work we construct and demonstrate a method that also uses a wavefunction of the
form (5) but without constraints on the φl

i. We remove both structural constraints, such as
an excitation pattern or orthogonality between single-electron functions, and representation
constraints, such as those imposed by using a predetermined basis set.

Many methods (e.g. [55, 47, 39, 1, 19, 15, 18, 2, 16, 60, 41]) have loosened the constraints
on the Slater determinants in one way or another, often with encouraging results. These
works, however, only partially removed the constraints, and so, we claim, did not achieve
the full potential of an unconstrained approximation. By removing these constraints we
hope to produce much better approximations at much smaller separation rank r than ex-
isting methods allow. We also hope to provide new perspective from which to analyze and
understand the wavefunction, free from the biases that physical intuition imposes.

Our hopes are based on our work in [4, 5, 43], where we developed general methods to
represent and compute with functions and operators in many dimensions. We used sums
of separable functions, dubbed separated representations, similar to (5). We found rather
natural examples where removing constraints produces expansions that are exponentially

more efficient, i.e. r = N instead of 2N or r = logN instead of N . For example, in our
approach we can have a two-term representation

ψ = A

N
∏

i=1

φi(γi) +A

N
∏

i=1

(φi(γi) + φi+N (γi)) (6)
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where {φj}
2N
j=1 form an orthogonal set. To represent the same function as (6) while imposing

the constraint that factors come from a master orthogonal set would force one to multiply
out the second term, and thus use a representation with 2N terms.

At present we have no proof that the wavefunction is well-approximated by a structure
that would benefit from the removal of constraints. The size r needed in practice, and
how it depends on the various parameters in the problem, is thus still an open question.
In [4, 5, 43], the most interesting examples came from “reverse-engineering” the numerical
results to obtain formulas and proofs. We therefore expect that the tools we provide here
will allow an exploration of the wavefunction, perhaps revealing unexpected structure, and
a strategy for a proof.

II.2 Description of the Algorithm

The removal of constraints in (5), and, thus, the basis sets, coefficients, and other structure
that went along with them, also eliminates the conventional strategies for constructing (5) to
minimize (4). It leads one to consider how one would compute the ground-state wavefunction
if its numerical representation were not an issue. We choose to use an integral iteration,
which we sketch in Section II.2.1. In Appendix A we sketch an alternative iteration based
on gradient descent.

To use the form (5) we must choose some value of r, which determines the quality of
the approximation. In Section II.2.2 we show how to incorporate a nonlinear fitting step
within the integral iteration in order to maintain fixed r. Accomplishing this fitting requires
a significant amount of machinery, which makes up the body of the paper. Eventually one
would want to adaptively determine r, but we do not address that issue here.

II.2.1 A Green’s Function Iteration

The eigenvalue equation (2) contains the differential operator H, which has both the dis-
crete negative eigenvalue(s) that we are interested in and unbounded, continuous, positive
spectrum. In [31, 32] this differential equation was reformulated as an integral equation,
producing an operator with only discrete, bounded spectrum. Such integral formulations
are in general far superior to differential formulations, since, e.g. numerical noise is sup-
pressed rather than amplified. An iteration based on the integral formulation with Green’s
functions was introduced in [31, 32] and used in e.g. [12, 26]. A rigorous analysis of this
iteration is given in [44] based on classical theorems from [30, 33, 52, 53, 54]. In this section
we review this iteration, and then modify it in Section II.2.2 to preserve our wavefunction
representation (5).

Define the Green’s function
Gµ = (T − µI)−1 , (7)

for µ < 0, and consider the Lippmann-Schwinger integral equation

λµψµ = −Gµ[(V +W)ψµ] . (8)

The subscript µ on λµ and ψµ are to emphasize the dependence of the eigenvalues and
eigenfunctions on µ. The operator Gµ[(V+W)] is compact, so (8) has only discrete spectrum.
If µ = E, then there is an eigenvalue λµ = 1 and the corresponding eigenfunction ψµ of (8)
is the desired ground-state eigenfunction of (2), as one can see by rearranging (8) into (2).
We note that other eigenfunctions may be obtained by deflation.

When µ = E, λµ = 1 is the largest eigenvalue, so a simple iteration like the power method
yields the desired ground-state eigenfunction. The eigenvalues λµ depend analytically on µ,
so when µ is sufficiently close to E the power method will still yield an eigenfunction of (8)
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with energy near the minimum of (4). From ψµ and λµ one can construct an update rule
for µ, based for example on applying Newton’s method to solve λµ = 1.

The convergence rate of the power method to produce ψµ and λµ is linear, and depends,
as usual, on the gap between the eigenvalues in (8). The convergence rate of Newton’s
method to solve λµ = 1 is quadratic, so µ will converge to E quadratically, provided that
λµ and ψµ have been found at each step. In the practical use of this approach, one does
not wait for the power method to converge at each step, but instead intertwines it with the
update of µ. Beginning with an approximation to the energy µ0 ≈ E and an approximate
wavefunction ψ0, one converts (8) to an iteration

ψ̃n = −Gµn
[(V +W)ψn] . (9)

After each iteration one normalizes by setting

ψn+1 = ψ̃n/‖ψ̃n‖ . (10)

Following the approach of [26], we can use the update rule

µn+1 = µn − 〈(V +W)ψn, ψn − ψ̃n〉/‖ψ̃n‖
2 , (11)

which is equivalent to using Newton’s method.

II.2.2 Approximating with Fixed Separation Rank r

We restrict the method to approximate wavefunctions of the form (5), with r fixed, by
replacing the definition of ψ̃n in (9). We define ψ̃n to be the function of the form (5) that
minimizes the (least-squares) error

‖ψ̃n − (−Gµn
[(V +W)ψn])‖. (12)

Since using (12) instead of (9) introduces an error, the update rule (11) may no longer give
quadratic convergence, and in any case is not expected to converge to the true energy. One
may choose to replace the update rule (11) with the more robust but slower converging rule

µn+1 =
〈Hψn+1, ψn+1〉

‖ψn+1‖2
, (13)

which is based on (4). Other rules may be possible as well. At present we do not have
enough numerical experience to decide which rule to prefer.

The Green’s function iteration itself does not enforce the antisymmetry condition. In
order to assure convergence to an antisymmetric solution, we use the pseudo-norm induced
by the pseudo inner product 〈·, ·〉A = 〈A(·),A(·)〉, as we did in [5].

The least-squares problem (12) is non-linear, and so very difficult in general. To simplify
notation in the description of our method, we now suppress the index n in (12) and consider
a single problem of that form. We begin by setting ψ̃ = ψ, and then iteratively improve ψ̃ to
reduce (12). Although we can see several strategies for improving ψ̃, for concreteness we will
restrict our description to the strategy most similar to [5]. To improve the approximation ψ̃
we loop through the variables (electrons). The functions in variables other than the current
variable are fixed, and the functions in the current variable are modified to minimize the
overall error (12). The error (12) depends linearly on the functions in a single variable,
so the minimization becomes much easier. This general Alternating Least-Squares (ALS)
approach is well-known (see e.g. [27, 36, 38, 10, 14, 58]). Although to minimize (12) one
may need to loop through the variables multiple times, it appears to be more cost effective
to loop only once and then do the next Green’s function iteration. We alternate through the
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directions, but for ease of exposition we describe the k = 1 case. So, φ̃l
k is fixed for k > 1,

and we will solve for the values of φ̃l
1 for all l.

To refine in the current variable, we set up and solve a linear least-squares problem. The
normal equations for a least-squares problem are derived by taking a gradient with respect
to the free parameters and setting the result equal to zero. As long as the approximating
function is linear and not degenerate in these parameters, the resulting equations are linear
and have a unique solution, which minimizes the error with respect to these parameters.
Usually these free parameters are coefficients of the representation in some fixed basis. For
example, to find the coefficients {ci} to minimize

∥

∥

∥

∥

∥

f −
∑

i

cigi

∥

∥

∥

∥

∥

2

=

〈

f −
∑

i

cigi, f −
∑

i

cigi

〉

, (14)

construct the normal equations
Ax = b , (15)

with
A(k, i) = 〈gk, gi〉 and b(k) = 〈gk, f〉 , (16)

solve them, and set ci = x(i). Instead of using coefficients in some basis as our parameters,
we take the parameters to be the point values of our functions φ̃l

1, so that the gradient
becomes a variational derivative. Formally, we consider a basis of delta functions δ(γ − ·)
and let their coefficients be our parameters. We still obtain linear normal equations (15), but
now b and x are vectors of functions, and A is a matrix of integral operators. Specifically,
b(l) is a function of γ, x(l′) is a function of γ′, and A(l, l′) is an integral operator mapping
functions of γ′ to functions of γ. The kernels in A are formally defined by

A(l, l′)(γ, γ′) = s̃ls̃l′

〈

δ(γ − γ1)
N
∏

i=2

φ̃l
i(γi), δ(γ

′ − γ1)
N
∏

i=2

φ̃l′

i (γi)

〉

A

, (17)

and the functions in b are defined by

b(l)(γ) = s̃l

r
∑

m

sm

〈

δ(γ − γ1)

N
∏

i=2

φ̃l
i(γi),−Gµ[V +W ]

N
∏

i=1

φm
i (γi)

〉

A

. (18)

Once we solve (15), we set φ̃l
1 = x(l). To enforce the normalization convention ‖φ̃l

1‖ = 1 we
can divide φ̃l

1 by its norm and incorporate the norm into s̃l.
To solve the matrix-integral system (15), we need an iterative method for solving linear

systems that uses only operations compatible with integral operators, such as matrix-vector
products, vector scales and additions, and vector inner products. Typically the matrix A

in normal equations is positive-definite. Our operator A is only semidefinite due to the
nullspace in the antisymmetric pseudonorm. Fortunately, b was computed with the same
pseudonorm and has no component in the nullspace of A, so we can still use methods for
positive-definite matrices. Based on these considerations, we choose to use the Conjugate
Gradient iterative method (see e.g. [21]) to solve (15). One initializes with r = b − Ax,
v = r, and c = 〈r, r〉, and then the core of the method is the sequence of assignments
z ← Av, t ← c/〈v, z〉, x ← x + tv, r ← r − tz, d ← 〈r, r〉, v ← r + (d/c)v, and c ← d,
applied iteratively.

One advantage of using this iterative method with integral operators is that our algorithm
does not rely on any particular basis. The representation of x can naturally be adaptive in
γ, for example refining near the nuclei as indicated by the refinement in b. We assume the
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availability of some adaptive, high-accuracy representation for single-electron functions, such
as the polynomial multiwavelet representation demonstrated in [25, 26], which effectively
eliminates the basis-set error. For the estimates of computational cost, we use M to denote
the cost to represent a function of γ, or integrate such a function. The antisymmetry
constraint requires N ≤M , and in general we expect M to be much larger than N .

II.2.3 Summary of the Remainder of the Paper

The core of the paper is the development of the methods needed to construct A in (17) and
b in (18). First, in Section III, we develop the machinery and algorithms for computing
antisymmetric inner products involving the operators T , V , and W . Our formulation uses
low-rank perturbations of matrices, thus avoiding cofactor expansions. We also avoid explicit
construction ofW by incorporating its effect via spatial convolutions with the Poisson kernel
in three dimensions. Second, in Section IV, we show how to compute antisymmetric inner
products involving these operators and the delta function δ(γ − γ1). Again the key is to use
low-rank perturbations of matrices.

In Section V we assemble all our tools to demonstrate how to perform our main algorithm,
and in particular how to construct A in (17) and b in (18). We also gather the computational
cost for the whole method. The cost depends on the number of electrons N , the separation
rank r, the one-particle representation cost M , the number of Green’s function iterations I
(see Section II.2.1), and the number of conjugate gradient iterations S (see Section II.2.2).
Although S in theory could be as many as the number of degrees of freedom rM , we have a
very good starting point, and so expect only a very small constant number to be needed. We
use M logM to denote the generic cost to convolve a function of γ with the Poisson kernel
1/‖r‖. A Fourier-based Poisson solver on a uniform grid would achieve this complexity; for
adaptive methods such as we use it is very difficult to state the cost (see [7, 17]). We use L
to denote the number of terms used to approximate the Green’s function to relative error ǫ
with Gaussians, and prove in Section V.1 that L = O((ln ǫ)2) independent of µ and N . The
final computational cost is then

O(Ir2N2[L(N +M logM) + S(N +M)]). (19)

For comparison, the cost to evaluate a single antisymmetric inner product via Löwdin’s rules
is O(N2(N +M)).

II.3 Further Considerations

We have implemented the method developed here and tested it sufficiently to verify the
correctness of the algorithm as presented. The numerical results are too preliminary to allow
us to make any particular claims at this point, however, so we will present them separately.
The linear algebra accelerations based on Appendix B have not yet been implemented.

We develop the method in terms of the total variable γ without specifying the spin
states. If a specific spin state is imposed on our initial trial wavefunction ψ0, the iteration
will preserve this state.

The representation (5) does not account for the inter-electron cusp (see e.g. [56, 46,
35, 49, 50, 34, 37]), and thus we cannot hope to achieve small error ǫ in the wavefunction
with small r. As with Configuration Interaction methods, we may still be able to achieve
small error in the energy difference of two systems, which is often the quantity of interest
in Chemistry. For the current work, we fix r and adapt φl

i(γi) and sl to minimize the error
ǫ, rather than fixing ǫ and adaptively determining r. We are developing an extension to (5)
that incorporates the cusp, and hope to achieve small error ǫ through it.
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Similarly, (5) is not size-consistent/extensive, and thus is not suitable for large systems.
We are also developing an extension to (5) suitable for large systems, and hope to achieve
linear scaling through it.

Although we have focused on the multiparticle Schrödinger equation, the tools that we
have developed are another step towards general-purpose, automatically adaptive methods
for solving high-dimensional problems.

III Antisymmetric Inner Products

In this section we develop methods for computing antisymmetric inner products involving
W , V , and T . For this purpose, after setting notation, we develop methods for computing
with low rank perturbations of matrices, review the antisymmetry constraint and define a
notion of maximum coincidence. With these tools we then derive the main formulas.

III.1 Notation

We denote a column vector with suppressed indices by F and with explicit indices by F (i).
We denote its conjugate transpose by F∗. We use ei to denote the column vector that
is one in coordinate i and zero otherwise. A linear operator is written L. We denote a
matrix with suppressed indices by L and with explicit indices by L(i, j). Recalling that
r = (x, y, z) ∈ R3, we combine spatial integration with summation over spins and define the
integral

∫

f(γ)dγ =
∑

σ∈{−1/2,1/2}

∫

f(r, σ)dr. (20)

We define the action of the single-electron kinetic and nuclear potential operators by

(T∗ + V∗) [f ](γ) =

(

−
1

2
∆ + v(r)

)

f(γ) =

(

−
1

2
∆ + v(r)

)

f(r, σ). (21)

In what follows we will reduce the action of the inter-electron potential operator W to
convolutions with the Poisson kernel, so we define

W
P

[f ](r) =

∫

1

‖r− r′‖
f(γ′)dγ′ =

∑

σ′∈{−1/2,1/2}

∫

1

‖r− r′‖
f(r′, σ′)dr′ . (22)

We allow these operators to be applied componentwise to vectors and matrices of functions.
Next, we define Φ =

∏N

i=1 φi(γi), so for example we can write 〈Φ̃,Φ〉A instead of
〈

∏N

i=1 φ̃i(γi),
∏N

i=1 φi(γi)
〉

A
. We also associate with the product Φ a vector of N func-

tions of a single variable,

Φ =











φ1

φ2

...
φN











. (23)

We can then, for example, construct a new vector of functions Θ by applying a matrix to
an old one, as in Θ = L

−1Φ̃. Although we do linear algebra operations on these vectors,
we note that Φ + Φ̃ does not correspond to Φ + Φ̃, so there is not a true vector-space
structure. Our formulas contain fairly complicated expressions with such vectors, such as
∫

Φ∗W
P

[ΘΦ∗]Θdγ. To parse this expression, we note that Θ is a column vector of functions
and Φ∗ is a row vector of functions, so ΘΦ∗ is a matrix of functions. Then W

P
[ΘΦ∗] is
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still a matrix of functions, but applying Φ∗ on the left and Θ on the right yields a single
function, which is integrated in the implied variable γ to yield a number. When explicit
specification of the variable involved is needed, the notation Φ(γ) indicates that the single
variable γ is used in all the functions.

III.2 Determinants of Low-Rank Perturbations of Matrices

Since the antisymmetric inner product involves determinants, we will use some linear algebra
relations for them. Proposition 2 in this section is used heavily, and is the key to avoiding
rather unpleasant cofactor expansions.

Proposition 1 (Determinant via Schur Complement) Let A be a nonsingular square

matrix, D a square matrix, and B and C matrices of appropriate size. Then

∣

∣

∣

∣

A B

C D

∣

∣

∣

∣

= |A|
∣

∣D− CA
−1

B
∣

∣ . (24)

Proof: (see e.g. [51]) It is easy to verify directly that

[

A B

C D

]

=

[

I 0
CA

−1
I

] [

A 0
0 D− CA

−1
B

] [

I A
−1

B

0 I

]

. (25)

Since the determinants of the first and third matrices are equal to one, the determinant of
the middle matrix gives the desired result. �

Proposition 2 (Determinant of a Perturbation of the Identity) Let {uq}
Q
q=1 and {vq}

Q
q=1

be two sets of vectors of the same length, and uqv
∗
q denote the outer product of uq, and vq.

Then

∣

∣

∣

∣

∣

I +

Q
∑

q=1

uqv
∗
q

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 + v∗
1u1 v∗

1u2 · · · v∗
1uQ

v∗
2u1 1 + v∗

2u2 · · · v∗
2uQ

...
...

. . .
...

v∗
Qu1 v∗

Qu2 · · · 1 + v∗
QuQ

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (26)

Proof: Let U be the matrix with the vectors {uq} as its columns, and V the matrix with
the vectors {vq} as its columns. Note that U and V are of the same size. By Proposition 1
we have

∣

∣

∣

∣

I U

−V
∗

I

∣

∣

∣

∣

= |I + V
∗
U| , (27)

which evaluates to the right side of (26). Exchanging the roles of A and D in Proposition 1
we have

∣

∣

∣

∣

I U

−V
∗

I

∣

∣

∣

∣

= |I + UV
∗| , (28)

which evaluates to the left side of (26). �
The Q = 1 case is well-known (see e.g. [51]) but we have not found the general case in the
literature.
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III.3 The Modified Pseudo-inverse

The singular value decomposition (SVD) (e.g. [21]) of a N ×N matrix is

A =
N
∑

i=1

siuiv
∗
i = USV

∗ , (29)

where the matrices U and V are unitary and the singular values {si} are non-neganive and
in descending order. The left singular vectors {ui} form an orthonormal set, as do the right
singular vectors {vi}. The pseudo-inverse is defined as

A
† =

N−Q
∑

i=1

s−1
i viu

∗
i , (30)

where Q is the dimension of the (numerical) nullspace. We also define a projection matrix
onto the nullspace

Definition 3

A
⊥ =

N
∑

i=N−Q+1

viu
∗
i (31)

and a modified pseudo-inverse

Definition 4 (Modified Pseudo-Inverse)

A
‡ = A

† + A
⊥ . (32)

Note that A
⊥ and thus A

‡ are not uniquely defined since the choice of basis for the nullspace
is not unique. For our purposes any consistent choice works. The modified pseudo-inverse
behaves much like the pseudo-inverse, but always has a non-zero determinant,

|A‡| =



|U||V∗|
∏

si 6=0

si





−1

6= 0 . (33)

III.4 The Antisymmetrizer and Löwdin’s Rule

Given a separable function, its antisymmetric projection can be found by applying the
antisymmetrizer A (see e.g. [48]), also called the skew-symmetrization or alternation (see
e.g. [45, 51]), resulting in a Slater determinant. In the vector notation (23), we have

AΦ =
1

N !

∣

∣

[

Φ(γ1) · · · Φ(γN )
]
∣

∣ =
1

N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(γ1) φ1(γ2) · · · φ1(γN )
φ2(γ1) φ2(γ2) · · · φ2(γN )

...
...

. . .
...

φN (γ1) φN (γ2) · · · φN (γN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (34)

One cannot explicitly form a Slater determinant AΦ for large N since it would have N !
terms. However, one can compute the antisymmetric pseudo inner product

〈Φ̃,Φ〉A
def
= 〈AΦ̃,AΦ〉 = 〈Φ̃,AΦ〉 = 〈AΦ̃,Φ〉, (35)
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where the first equality is a definition and the others follow since A is an orthogonal pro-
jector. It is not a true inner product because it has a nullspace. To compute (35), first
construct the matrix L with entries

L(i, j) = 〈φ̃i, φj〉 (36)

at cost O(N2M). Then use 〈Φ̃,Φ〉A = 〈AΦ̃,Φ〉 and move the integrals inside the determi-
nant to obtain

〈Φ̃,Φ〉A =
1

N !
|L| , (37)

which is the so-called Löwdin’s rule (e.g. [40, 48]). Since L is an ordinary matrix, its
determinant can be computed with cost O(N3) (or less). The denominator N ! need never
be computed, since it will occur in every term in our equations, and so cancels.

Our method for enforcing the antisymmetry constraint, as described in [5], is to use the
pseudo-norm based on the antisymmetric inner product 〈·, ·〉A for the least-squares fitting
(12).

III.5 Maximum Coincidence

Consider two products, Φ =
∏N

i=1 φi(γi) and Φ̃ =
∏N

i=1 φ̃i(γi), stored in the vector notation

of (23) as Φ and Φ̃. To specify which functions were used to compute L in (36), we use the
notation L(Φ̃,Φ). The matrix of inner products L = L(Φ̃,Φ) is in general full. Defining

Θ = L
−1Φ̃ , (38)

we have

AΘ =
1

N !

∣

∣

[

(L−1Φ̃)(γ1) · · · (L−1Φ̃)(γN )
]
∣

∣

= |L−1|
1

N !

∣

∣

[

Φ̃(γ1) · · · Φ̃(γN )
]
∣

∣ = |L−1|AΦ̃ . (39)

Thus the antisymmetrizations of Φ̃ and Θ are the same up to a constant, and we can use Θ
instead of Φ̃ in calculations. The advantage of using Θ is that the resulting matrix of inner
products L̂ = L(Θ,Φ) = I; in other words, we have the biorthogonality property 〈θi, φj〉 =

δij . To show this, write the matrix L̂ as
∫

ΘΦ∗dγ, where the integration is elementwise.

Substituting for Θ, we have
∫

(L−1Φ̃)Φ∗dγ. Since the integration is elementwise it commutes

with L
−1 and we have L

−1
∫

Φ̃Φ∗dγ = L
−1

L = I. The computational cost to construct Θ

is O(N2(N +M)).
When the matrix L in (36) is singular, we define Θ = L

‡Φ̃ using the modified pseudo-
inverse of Definition 4. By the same argument as before, we have |L‡|−1AΘ = AΦ̃. The

matrix
∫

ΘΦ∗dγ evaluates to L
‡
L = I −

∑N

i=N−Q+1 viv
∗
i . For notational convenience in

later sections, we will re-index our singular values and vectors so that the first Q generate
the nullspace, rather than the last Q.

Remark 5 Within Configuration Interaction methods, the functions in Φ and Φ̃ are taken

from a master set of orthonormal functions, and Θ is simply a signed permutation of Φ̃

so that φj = θj for as many j as possible. This is known as the ‘maximum coincidence’

ordering. The construction we use generalizes this notion.
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III.6 Antisymmetric Inner Product with the Electron-Electron Po-

tential W Present

In this section we derive formulas for computing antisymmetric inner products that include
the electron-electron interaction potential. Although the derivation is somewhat messy, the
resulting formulas are rather clean, and we use them verbatim in the computations. The
main ideas are given in this section, and then reused in later sections for other cases.

Proposition 6 When L from (36) is nonsingular,

〈

Φ̃,WΦ
〉

A

def
=

〈

A
N
∏

j=1

φ̃j(γj),





1

2

∑

i6=j

1

‖ri − rj‖





N
∏

j=1

φj(γj)

〉

(40)

is equal to
1

2

|L|

N !

∫

Φ∗ΘW
P

[Φ∗Θ]−Φ∗W
P

[ΘΦ∗]Θdγ , (41)

where Θ = L
−1Φ̃.

Proof: Using the maximum-coincidence procedure in Section III.5, (40) is equal to |L|〈Θ,WΦ〉A.
We reorganize and find that we must compute

1

2

|L|

N !

∫





∑

i6=j

1

‖ri − rj‖





N
∏

j=1

φj(γj)

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ1(γ1) θ1(γ2) · · · θ1(γN )
θ2(γ1) θ2(γ2) · · · θ2(γN )

...
...

. . .
...

θN (γ1) θN (γ2) · · · θN (γN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

dγ1 · · · dγN . (42)

By moving the sum outside of the integral, we can integrate in all directions except γi and
γj . Using 〈θm, φn〉 = δmn, we obtain

1

2

|L|

N !

∑

i6=j

∫

1

‖r− r′‖

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 · · · φi(γ)θ1(γ) · · · φj(γ
′)θ1(γ

′) · · · 0
...

. . .
...

...
...

0 · · · φi(γ)θi(γ) · · · φj(γ
′)θi(γ

′) · · · 0
...

...
. . .

...
...

0 · · · φi(γ)θj(γ) · · · φj(γ
′)θj(γ

′) · · · 0
...

...
...

. . .
...

0 · · · φi(γ)θN (γ) · · · φj(γ
′)θN (γ′) · · · 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

dγdγ′

=
1

2

|L|

N !

∑

i6=j

∫

1

‖r− r′‖

∣

∣

∣

∣

I +
(

φi(γ)Θ(γ)− ei

)

e∗i +
(

φj(γ
′)Θ(γ′)− ej

)

e∗j

∣

∣

∣

∣

dγdγ′ . (43)

Since the inner matrix is a low-rank perturbation of the identity, we reduce its determinant
using Proposition 2 and obtain

1

2

|L|

N !

∑

i6=j

∫

1

‖r− r′‖
φi(γ)φj(γ

′)

∣

∣

∣

∣

θi(γ) θi(γ
′)

θj(γ) θj(γ
′)

∣

∣

∣

∣

dγdγ′ . (44)

The determinant is zero if j = i, so we do not need to explicitly prohibit it as we needed
to in (43) and above. The antisymmetrization has caused a convenient cancellation of a
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fictitious self-interaction, and, thus, allowed us to decouple the two sums. Expanding out
the determinant and rearranging the terms, we obtain

1

2

|L|

N !

∫

(

∑

i

φi(γ)θi(γ)

)





∫

1

‖r− r′‖





∑

j

φj(γ
′)θj(γ

′)



 dγ′



 dγ

−
1

2

|L|

N !

∫

∑

i

∑

j

φi(γ)θj(γ)

[
∫

1

‖r− r′‖
φj(γ

′)θi(γ
′)dγ′

]

dγ . (45)

In our compact notation, this yields (41). �

We now consider the computational cost of (41). In the first term in (41), computing
Φ∗Θ costs O(NM), applying W

P
[·] to it costs O(M logM), and the integral in γ costs

O(M). In the second term, ΦΘ∗ costs O(N2M), applyingW
P

[·] to it costs O(N2M logM),
applying Θ∗ and then Φ costs O(N2M), and then the integral in γ costs O(M). Including
the cost to construct Θ, our total cost is O(N2(N +M logM)).

III.6.1 The Singular Case

In this section we investigate the case when the matrix L from (36) is singular. Inserting
the definition Θ = L

−1Φ̃ into our main formula (41), we have

1

2

|L|

N !

∫

Φ∗
L
−1Φ̃W

P

[

Φ∗
L
−1Φ̃

]

−Φ∗W
P

[

L
−1Φ̃Φ∗

]

L
−1Φ̃dγ . (46)

In terms of the SVD (29), we can express

L
−1 =

N
∑

j=1

s−1
j vju

∗
j and |L| = |U||V∗|

∏

i

si . (47)

Inserting these expressions into (46), we have

1

2

|U||V∗|
∏

i si

N !

∫

Φ∗

N
∑

j=1

s−1
j vju

∗
j Φ̃WP

[

Φ∗

N
∑

k=1

s−1
k vku

∗
kΦ̃

]

−Φ∗W
P





N
∑

j=1

s−1
j vju

∗
j Φ̃Φ∗





N
∑

k=1

s−1
k vku

∗
kΦ̃dγ

=
1

2

|U||V∗|

N !

N
∑

j=1

N
∑

k=1

∏

i6=j,k

si

∫

Φ∗vju
∗
j Φ̃WP

[

Φ∗vku
∗
kΦ̃
]

−Φ∗vjWP

[

u∗
j Φ̃Φ∗vk

]

u∗
kΦ̃dγ . (48)

If L is singular then at least one si is zero, and only terms that exclude those from the
product in (48) are nonzero. Since we exclude two indices in the product, if more than two
si are zero then the entire inner product is zero. If exactly two are zero then only one term
in the sum survives. If exactly one is zero then we can simplify from a double to a single
sum, using symmetry. Recalling the modified pseudo inverse from Definition 4 and sorting
the zero si to the beginning for notational convenience, we obtain the following propositions.

Proposition 7 When the rank-deficiency of L is more than two, the antisymmetric inner

product (40) evaluates to zero.
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Proposition 8 When the rank-deficiency of L is equal to two, the antisymmetric inner

product (40) is equal to

1

|L‡|N !

∫

Φ∗v1u
∗
1Φ̃WP

[

Φ∗v2u
∗
2Φ̃
]

−Φ∗v1WP

[

Φ∗v2u
∗
1Φ̃
]

u∗
2Φ̃dγ . (49)

Proposition 9 When the rank-deficiency of L is equal to one, defining Θ = L
†Φ̃ or Θ =

L
‡Φ̃, the antisymmetric inner product (40) is equal to

1

|L‡|N !

∫

Φ∗v1u
∗
1Φ̃WP

[Φ∗Θ]−Φ∗v1WP

[

u∗
1Φ̃Φ∗

]

Θdγ . (50)

In computing (49), constructing Φ∗v1, Φ∗v2, u∗
1Φ̃, and u∗

2Φ̃ costs O(NM), applying
W

P
[·] costs O(M logM) and, finally, the integral in γ costs O(M). In computing (50), the

first term costs O(NM) to form Φ∗Θ, O(M logM) to applyW
P

[·], and O(M) to integrate
in γ. The second term costs O(NM) to form u∗

1Φ̃Φ, O(NM logM) to applyW
P

[·], O(NM)
to apply Θ, and O(M) to integrate in γ. In total, the computational cost for the singular
cases are less than the cost of the nonsingular case.

Remark 10 In the Configuration Interaction context, rank-deficiency two corresponds to

a double excitation. The vectors ui and vi would be zero except for a single entry, and so

select the locations of the excited electrons out of Φ and Φ̃. Proposition 8 then reduces to

the Slater-Condon rules [13].

III.7 Antisymmetric Inner Product with T and/or V Present

Since T and V both have the structure of a sum of one-directional operators, we state the
formulas for their sum, although of course they can be treated individually.

Proposition 11 If L from (36) is nonsingular,

〈

Φ̃, (T + V)Φ
〉

A

def
=

〈

A
N
∏

j=1

φ̃j(γj),

(

∑

i

−
1

2
∆i + v(ri)

)

N
∏

j=1

φj(γj)

〉

(51)

is equal to
|L|

N !

∫

(T∗ + V∗) [Φ]
∗
Θdγ . (52)

Proof: We follow the same procedure as we used for the electron-electron operator W in
Section III.6. Instead of (43) we have the simpler expression

|L|

N !

∑

i

∫
∣

∣

∣

∣

I +
(

(T∗ + V∗)
[

φi

]

(γ)Θ(γ)− ei

)

e∗i

∣

∣

∣

∣

dγ . (53)

Applying Proposition 2 we obtain (52). �

To analyze the computational cost to compute (52), we note that it costs O(NM) to
apply (T∗ + V∗) [·]. Including the cost for the maximum coincidence transformation, our
total cost is thus O(N2(N +M)).
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III.7.1 The Singular Case

We now state the formula when L is singular. The analysis is similar to that for W in
Section III.6.1.

Proposition 12 If the rank-deficiency of L is greater than one, (51) evaluates to zero. If

it is equal to one we have

1

|L‡|N !

∫

(T∗ + V∗) [Φ∗v1]u
∗
1Φ̃dγ . (54)

To compute (54), it costs O(NM) to form Φ∗v1 and u∗
1Φ̃, and O(M) to apply (T∗ + V∗) [·].

IV Incorporating Delta Functions into the Antisym-

metric Inner Products

In this section we show how to compute antisymmetric inner products when one of the
component functions is replaced by a delta function. For concreteness, we will replace
φ̃1(γ1) by δ(γ − γ1).

IV.1 Löwdin’s Rule with δ(γ − γ1) Present

The matrix L from (36) is defined by L(i, j) = 〈φ̃i, φj〉. If we replace φ̃1(γ1) by δ(γ − γ1),
then the first row depends on γ and is given by L(1, j) = 〈δ(γ − ·), φj〉 = φj(γ). We thus
have a matrix that depends on γ,

L(γ) =











φ1(γ) φ2(γ) · · · φN (γ)

〈φ̃2, φ1〉 〈φ̃2, φ2〉 · · · 〈φ̃2, φN 〉
...

...
. . .

...

〈φ̃N , φ1〉 〈φ̃N , φ2〉 · · · 〈φ̃N , φN 〉











. (55)

To compute with L(γ) without resorting to cofactor expansions, we express L(γ) as a rank-
one perturbation of a matrix of numbers. Define

E =











d(1) d(2) · · · d(N)

〈φ̃2, φ1〉 〈φ̃2, φ2〉 · · · 〈φ̃2, φN 〉
...

...
. . .

...

〈φ̃N , φ1〉 〈φ̃N , φ2〉 · · · 〈φ̃N , φN 〉











, (56)

where the vector d∗ is chosen to be a unit vector orthogonal to the remaining rows of E.
This choice assures that the rank deficiency of E will be smaller than or equal to the rank
deficiency of the matrix with any other first row. It also gives us some convenient properties,
namely Ed = e1, d∗

E
‡ = e∗1, E

‡e1 = d, and e∗1E = d∗, where E
‡ is the modified pseudo-

inverse of Definition 4. It costs O(N2M) to construct E and O(N3) to compute E
‡ and

|E|.
We then have

L(γ) = E + e1(Φ(γ)− d)∗ (57)

and, with the help of Proposition 2, compute

|L(γ)| = |E‖I + d(Φ(γ)− d)∗| = |E| (1 + (Φ(γ)− d)∗d) = |E|Φ(γ)∗d , (58)

which yields
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Proposition 13

〈

δ(γ − γ1)

N
∏

i=2

φ̃i(γi),

N
∏

i=1

φi(γi)

〉

A

= |E|Φ(γ)∗d , (59)

where E and d are defined as above.

Remark 14 If i > 1 then

〈|E|Φ∗d, φ̃i〉 = |E|〈Φ, φ̃i〉
∗d = |E|E(i, ·)∗d = 0 , (60)

since d is orthogonal to E(i, ·), which is row number i of E. Thus the function (59) is

orthogonal to φ̃i for i > 1. The same property will hold when the operators T , V, and W
are present in the antisymmetric inner product, as described in the following sections.

IV.2 Antisymmetric Inner Product with δ(γ − γ1) and (T and/or

V) Present

To compute antisymmetric inner products involving operators, we will modify formulas from
Section III. The first (trivial) modification is to denote the variable of integration in those
formulas by γ′, so as not to confuse it with the variable γ in δ(γ − γ1). Next we replace |L|
with |L(γ)| given by (58). Using (57), we can express

L(γ)−1 = (E + e1(Φ(γ)− d)∗)
−1

= (E (I + d(Φ(γ)− d)∗)))−1

= (I + d(Φ(γ)− d)∗)
−1

E
−1 . (61)

Using the Sherman-Morrisson Formula (see e.g. [21] and (B5) in Appendix B) we then have

L(γ)−1 =

(

I−
d(Φ(γ)− d)∗

1 + (Φ(γ)− d)∗d

)

E
−1 =

(

I + d
(d−Φ(γ))∗

Φ(γ)∗d

)

E
−1 . (62)

The vector of functions Θ, which was defined by L
−1Φ̃, now depends on the variable γ

in δ(γ − γ1) as well as its own internal variable γ′. Replacing L
−1 with (62) and Φ̃ with

Φ̃(γ′) + e1(δ(γ − γ
′)− φ̃1(γ

′)), we obtain

Θ(γ, γ′) =

(

I + d
(d−Φ(γ))∗

Φ(γ)∗d

)

E
−1
(

Φ̃(γ′) + e1(δ(γ − γ
′)− φ̃1(γ

′))
)

. (63)

To compute it, we first compute the base case Θ̃(γ′) = E
−1Φ̃(γ′). Multiplying out (63) and

noting d∗Θ̃ = d∗
E
‡Φ̃ = φ̃1, we obtain

Θ(γ, γ′) = Θ̃(γ′) + d
d∗Θ̃(γ′)−Φ(γ)∗Θ̃(γ′) + δ(γ − γ′)− φ̃1(γ

′)

Φ(γ)∗d

= Θ̃(γ′)− d
Φ(γ)∗Θ̃(γ′)− δ(γ − γ′)

Φ(γ)∗d
. (64)

We are now ready to state our main formulas.

Proposition 15 When E is nonsingular,

〈

δ(γ − γ1)

N
∏

i=2

φ̃i(γi), (T + V)

N
∏

i=1

φi(γi)

〉

A

(65)
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is equal to

|E|

N !

[

Φ(γ)∗
(

d

∫

(T∗ + V∗) [Φ]
∗
Θ̃dγ′ −

∫

(T∗ + V∗) [Φ∗d]Θ̃dγ′
)

+ (T∗ + V∗) [Φ∗d](γ)
]

, (66)

which can be computed with total cost O(N3 +N2M).

Proof: To compute (65), we start with |L|

N !

∫

(T∗ + V∗) [Φ]
∗
Θdγ′ from (52) and substitute

in (58) and (64) to obtain

|E|Φ(γ)∗d

N !

∫

(T∗ + V∗) [Φ](γ′)∗

(

Θ̃(γ′)− d
Φ(γ)∗Θ̃(γ′)− δ(γ − γ′)

Φ(γ)∗d

)

dγ′ . (67)

Distributing out and rearranging, we have

|E|

N !

∫

Φ(γ)∗d(T∗ + V∗) [Φ]
∗
(γ′)Θ̃(γ′)− (T∗ + V∗) [Φ](γ′)∗dΦ(γ)∗Θ̃(γ′)

+ (T∗ + V∗) [Φ](γ′)∗dδ(γ − γ′)dγ′ , (68)

which yields (66). Although in (62) and (64) we divide by Φ∗d, which could be zero, this
denominator cancels in the final expression, so we can argue by continuity that the final
expression is still valid. One can also prove this directly by determining the nullspace of L

and then using (54). �

Remark 16 It is the term with pointwise multiplication, (T∗ + V∗) [Φ∗d] in (66), that al-

lows adaptive refinement around the nuclei in the numerical algorithm.

To obtain the formulas when E is singular, we follow the same logic as in Section III.6.1.
Denote the singular vectors in the nullspace of E by {(ũi, ṽi)}.

Proposition 17 When E has rank deficiency greater than one, (65) is zero. When E has

rank deficiency one, (65) is equal to

1

|E‡|N !
Φ(γ)∗

(

d

∫

(T∗ + V∗) [Φ∗ṽ1]ũ
∗
1Φ̃dγ

′ − ṽ1

∫

(T∗ + V∗) [Φ∗d]ũ∗
1Φ̃dγ

′

)

, (69)

which can be computed with total cost O(N3 +N2M).

IV.3 Antisymmetric Inner Product with δ(γ − γ1) and W Present

Conceptually the derivation if W is present in the inner product is the same and we obtain
the following propositions.

Proposition 18 When E is nonsingular,

〈

δ(γ − γ1)
N
∏

i=2

φ̃i(γi),W
N
∏

i=1

φi(γi)

〉

A

(70)
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is equal to

1

2

|E|

N !

[

2
(

Φ(γ)∗dW
P

[

Φ∗Θ̃
]

(γ)−Φ(γ)∗W
P

[

Θ̃Φ∗d
]

(γ)
)

+ Φ(γ)∗
(

d

∫

Φ∗Θ̃W
P

[

Φ∗Θ̃
]

−Φ∗W
P

[

Θ̃Φ∗
]

Θ̃dγ′

−2

∫

Θ̃W
P

[

Φ∗Θ̃
]

Φ∗d− Θ̃Φ∗W
P

[

Θ̃Φ∗d
]

dγ′
)]

, (71)

which can be computed with total cost O(N3 +N2M logM).

Proposition 19 When E has rank deficiency one, (70) is equal to

1

|E‡|N !

[ (

Φ(γ)∗dW
P

[

Φ∗ṽ1ũ
∗
1Φ̃
]

(γ)−Φ(γ)∗ṽ1WP

[

ũ∗
1Φ̃Φ∗d

]

(γ)
)

+Φ(γ)∗
(

d

∫

Φ∗ṽ1

(

ũ∗
1Φ̃WP

[

Φ∗Θ̃
]

−W
P

[

ũ∗
1Φ̃Φ∗

]

Θ̃
)

dγ′

+

∫

Θ̃
(

Φ∗ṽ1WP

[

ũ∗
1Φ̃Φ∗d

]

−W
P

[

Φ∗ṽ1ũ
∗
1Φ̃
]

Φ∗d
)

dγ′

− ṽ1

∫

Φ∗d
(

ũ∗
1Φ̃WP

[

Φ∗Θ̃
]

−W
P

[

ũ∗
1Φ̃Φ∗

]

Θ̃
)

dγ′
)]

, (72)

which can be computed with total cost O(N3 +N2M +NM logM).

Proposition 20 When E has rank deficiency two, (70) is equal to

1

|E‡|N !
Φ(γ)∗

[

d

∫

Φ∗ṽ1ũ
∗
1Φ̃WP

[

Φ∗ṽ2ũ
∗
2Φ̃
]

−Φ∗ṽ2WP

[

ũ∗
2Φ̃Φ∗ṽ1

]

ũ∗
1Φ̃dγ

− ṽ1

∫

Φ∗ṽ2ũ
∗
2Φ̃WP

[

Φ∗dũ∗
1Φ̃
]

−Φ∗ṽ2WP

[

ũ∗
2Φ̃Φ∗d

]

ũ∗
1Φ̃dγ

− ṽ2

∫

Φ∗ṽ1ũ
∗
1Φ̃WP

[

Φ∗dũ∗
2Φ̃
]

−Φ∗ṽ1WP

[

ũ∗
1Φ̃Φ∗d

]

ũ∗
2Φ̃dγ

]

, (73)

which can be computed with total cost O(N3 +NM +M logM).

V Details of the Green’s Function Iteration

In this section we fill in the missing pieces in the Green’s function iteration algorithm
outlined in Section II.2. First we give a representation for the Green’s function itself. Then
we use the methods in the previous sections to construct the vector b in (18) and the matrix
A in (17) to form the normal equations (15). Next we give the algorithm from Section II.2 in
outline form as pseudocode. Finally we gather the computational cost of the whole method,
and present some linear algebra techniques to reduce it.

V.1 Representing the Green’s Function

In this section we construct a separated representation for the Green’s function Gµ in (7),
following the ideas in [4, 5] (see also [22, 23]). We will use this representation in Section V.2
when constructing the right-hand-side of the normal equations.
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We begin by constructing an approximation of 1/t with exponentials such that
∣

∣

∣

∣

∣

1

t
−

L
∑

p=1

wp exp(−τpt)

∣

∣

∣

∣

∣

< ǫ , (74)

on the interval t ∈ [1,∞), with wp and τp positive. Expansions of 1/t into exponentials have
been used in several applications and constructed by diverse techniques; see [8, 29, 59, 6, 9,
24] and the references therein. The interval [1,∞) is addressed specifically in [9], where it is
shown that the error rate ǫ = O(exp(−c

√
L)) can be achieved, which means we can achieve

L = O((ln ǫ)2).
Substituting t = s/(−µ) for µ < 0 into (74) and dividing by −µ, one has

∣

∣

∣

∣

∣

1

s
−

L
∑

p=1

wp

−µ
exp(−

τp
−µ

s)

∣

∣

∣

∣

∣

<
ǫ

−µ
, (75)

valid on the interval s ∈ [−µ,∞). In Fourier coordinates, we can express

Gµ =
1

2π2
∑

ξ2i − µ
, (76)

from which we see that ‖Gµ‖ = 1/(−µ). Since the denominator is at least −µ > 0, we can
substitute into (75) and obtain

∣

∣

∣

∣

∣

Gµ −
L
∑

p=1

wp

−µ
e−τp

N
⊗

i=1

exp(−
2π2τp
−µ

ξ2i )

∣

∣

∣

∣

∣

<
ǫ

−µ
= ǫ‖Gµ‖ . (77)

Thus we obtain an approximation of Gµ with relative error ǫ in norm using L terms, with
L independent of N and µ. To construct Gµ as an integral operator in spatial coordinates,
we apply the inverse Fourier transform to obtain

Gµ ≈

L
∑

p=1

N
⊗

i=1

Fp
ri

, (78)

where the convolution operator Fp
ri

, which depends implicitly on µ, is defined by

Fp
ri

f(γ1, . . . , γN ) =

(

wp

−µeτp

)1/N (
−µ

2πτp

)3/2

×

∫

exp

(

−
−µ

2τp
‖ri − r′‖2

)

f(γ1, . . . , γi−1, (r
′, σi), γi+1, . . . , γN)dr′ . (79)

This construction has theoretical value, since it has proved the following theorem.

Theorem 21 For any ǫ > 0, µ < 0, and N , the N -particle Green’s function Gµ has a sepa-

rated representation with relative error in operator norm bounded by ǫ using L = O((ln ǫ)2)
terms, with L independent of µ and N .

V.2 Constructing the Right-Hand-Side Vector b in (18)

In order to do a step in the iteration, we need to construct the right-hand-side b in the
normal equations (15) in Section II.2.2. Since A is an orthogonal projection, A and Gµ

commute, and Gµ is self-adjoint, the entry (18) is equal to

b(l)(γ) = −s̃l

r
∑

m

sm

〈

AGµδ(γ − γ1)

N
∏

i=2

φ̃l
i(γi), [V +W ]

N
∏

i=1

φm
i (γi)

〉

. (80)
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Substituting (78) in for Gµ and rearranging, we have

b(l)(γ) = −s̃l

r
∑

m

sm

L
∑

p=1

〈

AFp
r1
δ(γ − γ1)

N
∏

i=2

Fp
ri

φ̃l
i(γi), [V +W ]

N
∏

i=1

φm
i (γi)

〉

. (81)

The computation is of the same form for each value of the indices l, m, and p, so we can
consider a single term and suppress the indices.

To evaluate a single term 〈AFr1
δ(γ − γ1)

∏

i=2 Fri
φ̃i(γi), [V +W ]

∏

i=1 φi(γi)〉 we use
the formulas in Propositions 15–20 in Sections IV.2 and IV.3, with two modifications. The
first modification is that Φ̃ is replaced with FΦ̃ throughout. This replacement causes no
structural change to the formulas; it just changes the inputs. The second modification is
caused by the replacement of δ(γ − γ1) by Fr1

δ(γ − γ1). The first row of L(γ) in (55)
becomes FΦ(γ)∗, which makes |L(γ)| = |E| FΦ(γ)∗d. Similarly, (64) becomes

Θ(γ, γ′) = Θ̃(γ′)− d
FΦ(γ)∗Θ̃(γ′)−Fδ(γ − γ′)

FΦ(γ)∗d
. (82)

Tracking F through the formulas, we find that all we need to do is to modify the formulas
in Sections IV.2 and IV.3 by applying F to the final result.

V.3 Constructing the Matrix A in (17)

In this section we construct the kernels in (17) for the normal equations (15), using the same
ideas as in Section IV. We fix l and l′ and define

K(γ, γ′) =
A(l, l′)(γ, γ′)

s̃ls̃l′
(83)

w(γ′) =
[

φ̃l
2(γ

′) . . . φ̃l
N (γ′)

]∗
(84)

y(γ) =
[

φ̃l′

2 (γ) . . . φ̃l′

N (γ)
]∗

(85)

D =







〈φ̃l
2, φ̃

l′

2 〉 · · · 〈φ̃l
2, φ̃

l′

N 〉
...

. . .
...

〈φ̃l
N , φ̃

l′

2 〉 · · · 〈φ̃
l
N , φ̃

l′

N 〉






. (86)

Using Löwdin’s rules (37) we have

K(γ, γ′) =
|L|

N !
=

1

N !

∣

∣

∣

∣

δ(γ − γ′) y∗(γ)
w(γ′) D

∣

∣

∣

∣

. (87)

Expressing L as a low-rank perturbation of

[

1 0
0 D

]

, we have

K(γ, γ′) =
1

N !

∣

∣

∣

∣

[

1 0
0 D

]

+

[

1
0

]

[

0 y∗(γ)
]

+

[

δ(γ − γ′)− 1
w(γ′)

]

[

1 0
]

∣

∣

∣

∣

=
1

N !

∣

∣

∣

∣

1 0
0 D

∣

∣

∣

∣

∣

∣

∣

∣

I +

[

1
0

]

[

0 y∗(γ)
]

+

[

δ(γ − γ′)− 1
D

−1w(γ′)

]

[

1 0
]

∣

∣

∣

∣

=
|D|

N !

∣

∣

∣

∣

1 y∗(γ)D−1w(γ′)
1 δ(γ − γ′)

∣

∣

∣

∣

=
|D|

N !

(

δ(γ − γ′)− y∗(γ)D−1w(γ′)
)

. (88)
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If D is singular then we apply the same logic as in Section III.6.1. If D has rank-deficiency
greater than one then K(γ, γ′) = 0. If it has rank-deficiency one then we have K(γ, γ′) =

1

|D‡|N !

∣

∣

∣

∣

I +

[

0
−v

]

[

0 v∗
]

+

[

1
0

]

[

0 y∗(γ)
]

+

[

δ(γ − γ′)− 1
D

‡w(γ′)

]

[

1 0
]

∣

∣

∣

∣

=
1

|D‡|N !

∣

∣

∣

∣

∣

∣

0 0 v∗
D

‡w(γ′)
−y∗(γ)v 1 y∗(γ)D‡w(γ′)

0 1 δ(γ − γ′)

∣

∣

∣

∣

∣

∣

=
−(y∗(γ)v)(v∗

D
‡w(γ′))

|D‡|N !

=
−(y∗(γ)v)(u∗w(γ′))

|D‡|N !
, (89)

where D
‡ is the modified pseudo-inverse of Definition 4.

In the nonsingular case, we can construct D at cost O(N2M) and compute D
−1 at cost

O(N3). Applying this kernel costs O(NM) to integrate against a function in γ′, O(N2)
to apply D

−1, and then O(NM) to apply y∗ to the result. In the singular case, we can
compute D

‡ at cost O(N3) and construct y∗v and u∗w at cost O(NM). Since the variables
separate, applying this kernel costs O(M).

Remark 22 In the case r = 1, which corresponds to the Hartree-Fock formulation, D = I

and K(γ, γ′) is just the projector orthogonal to {φ̃i}
N
i=2.

V.4 Pseudocode

In this section we give the algorithm in outline form as pseudocode. We do not indicate
when objects can be recalled or updated from previous computations.

Loop through I Green’s function iterations (9,10,13). For each of these:
Construct Gµ as in Section V.1, obtaining the operators Fp in (79).
Loop through the N directions (electrons). For each of these:

Compute A(l, l′) via (88) for all (l, l′).
Compute b(l)(γ) in (81) by:

Loop in the r values of l and for each:
Sum over the L values of p and for each:

Compute Fpφl
i for all i.

Sum over the r values of m and for each:

Using FpΦ̃ in place of Φ̃, construct E in (56).
Compute |E| and E

−1.

Construct Θ̃ = E
−1FΦ̃.

Construct Φ∗Θ̃, Φ∗d, and Θ̃Φ∗.

Compute W
P

[

Φ∗Θ̃
]

and W
P

[

Θ̃Φ∗
]

.

Compute (66) and (71) using these ingredients.
Apply Fp to ((66) + (71)).

Apply conjugate gradient to solve the normal equations (15).
Renormalize as in (10).
Update µ via (13).

Remark 23 We have presented the algorithm in serial form for clarity. The loop in l,
sum in p, and sum in m can be trivially parallelized. Parallelizing the loop through the N
electrons would represent a change in the algorithm, which we will develop elsewhere.
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V.5 Overall Computational Cost

The computational cost is dominated by the repeated construction and solution of the
normal equations (15). For a fixed direction, the construction cost is dominated by (81),
which has r2L inner products. The most costly portion of the inner products is (71), which
requires O(N3 +N2M logM) operations, giving us the net construction cost

O(r2LN2(N +M logM)) . (90)

The operation count to solve the normal equations (15) by applying the matrix of integral
operators A S times is

O(r2SN(N +M)) . (91)

As we loop through the directions, we may reuse several quantities, so the total cost of
the construction is less than N times the cost for one direction. In fact, the construction cost
for the entire loop through N directions is of the same order as the cost for one direction.
The application cost is simply multiplied by N . In the sections below we show how to
update the construction for direction k = 2 using what we already have for direction k = 1,
and then determine the cost for one loop through the directions. We defer the development
of the technical linear algebra rules on low-rank updates to Appendix B, and here only show
how to apply them to our problem. Our final conclusion is the computational cost

O(Ir2N2[L(N +M logM) + S(N +M)]), (92)

where I the number of Green’s function iterations.

V.5.1 Reuse in Computing A

Let D1 denote D in (86) for directions one, and D2 the version for direction two. We let φ̂l
1

denote the updated version of φ̃l
1. To construct D2 requires only the first column and row

of D1 to be updated, specifically

D2 = D1 + e1

[

0 (〈φ̂l
1, φ̃

l′

3 〉 − 〈φ̃
l
2, φ̃

l′

3 〉) . . .
]

+

[

〈φ̂l
1, φ̂

l′

1 〉 − 〈φ̃
l
2, φ̃

l′

2 〉
...

]

e∗1 . (93)

Computing those inner products involving φ̂l
1 and φ̂l′

1 costs O(NM). Using Proposition 24

twice, we compute D
‡
2, |D

‡
2|, and if appropriate v, all at cost O(N2). The formulas (87) and

following are modified by inserting the extra column and row in the second place instead of
the first, but otherwise the procedure is unchanged. The cost for one loop through the N
directions is thus O(N3 +N2M).

V.5.2 Reuse in Computing Antisymmetric Inner Products with δ(γ − γ1) and

Operators

We again let φ̂l
1 denote the updated version of φ̃l

1 computed during the k = 1 solve. The

inner products needed to construct E2 require only the one row involving φ̂1 to be updated,
at cost O(NM). The vector d1 can be constructed by doing the SVD of E1 with the first
row set to zero and then selecting one of the right singular vectors vi with zero singular
value. Using Proposition 24 we obtain the SVD of E2 with first row set to zero and second
row containing the new inner products, and thus can find d2. Putting the first and second
rows back in proper position, we then have

E2 = E1 + e1

([

〈F φ̂1, φ1〉 · · · 〈F φ̂1, φN 〉
]

− d∗
1

)

+ e2

(

d∗
2 −

[

〈F φ̃2, φ1〉 · · · 〈F φ̃2, φN 〉
])

, (94)
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and we can compute |E‡
2| and E

‡
2 using Proposition 24 twice, at cost O(N2).

Proposition 24 produces a rank two update and we must apply it twice. For notational
ease we will show how to use a rank one update applied once; the method easily extends.
Assuming E

‡
2 = E

‡
1 + fg∗, we next update

Θ̃2 = E
‡
2FΦ̃2 = (E‡

1 + fg∗)(FΦ̃1 + e1(φ̂1 − φ̃1))

= Θ̃1 + d1(φ̂1 − φ̃1) + fg∗FΦ̃1 + fg∗e1(φ̂1 − φ̃1) (95)

at cost O(NM). It is insufficient to just update Θ̃2 in this way, since it would still cost

O(N2M logM) to compute W
P

[

Θ̃2Φ
∗
]

in (71). Instead we update the combined quantity

Φ∗W
P

[

Θ̃2Φ
∗
]

= Φ∗W
P

[

Θ̃1Φ
∗
]

+ Φ∗d1WP

[

(φ̂1 − φ̃1)Φ
∗
]

+ Φ∗fW
P

[

g∗FΦ̃1Φ
∗
]

+ Φ∗fg∗e1WP

[

(φ̂1 − φ̃1)Φ
]

(96)

at costO(NM logM). With this quantity and Θ̃2 we can compute (71) at costO(NM logM).
The singular cases work similarly. The cost for one loop through the N directions is thus
O(N2M logM).
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A Appendix: Algorithms Based on Gradient Descent

We prefer the integral iteration in Section II.2.1 due to the generally superior numerical
properties of integral formulations. One could, however, try to minimize (4) directly with a
method based on gradients. Since the machinery that we have constructed applies to these
methods as well, we sketch how it can be used.

To minimize (4) we could use a gradient descent, starting at some initial guess for ψ.
Inserting our current approximation ψ and formally taking the gradient, we have

2
〈Hψ,∇ψ〉A〈ψ, ψ〉A − 〈Hψ, ψ〉A〈ψ,∇ψ〉A

〈ψ, ψ〉A
2 . (A1)

Defining µ to be our current value of (4), the gradient reduces to

2

〈ψ, ψ〉A
(〈Hψ,∇ψ〉A − µ〈ψ,∇ψ〉A) . (A2)

The gradient is with respect to the parameters that are used to minimize (4). In our case
that is the values of the functions φl

j . Taking the gradient with respect to the point values
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of φl
j results in a vector g of functions, defined by

gl
j(γ) =

2

〈ψ, ψ〉A
sl

r
∑

m=1

sm

〈

δ(γ − γj)

N
∏

i6=j

φl
i(γi), (H− µI)

N
∏

i=1

φm
i (γi)

〉

A

, (A3)

where δ(γ − γj) is the delta function. The methods in Section IV can be used to construct
g.

Moving t in the direction opposite the gradient replaces ψ with

r
∑

l=1

sl

N
∏

i=1

(φl
i − tg

l
i) . (A4)

Some search procedure can then be used to find an appropriate t. Then ψ is updated and
the procedure repeated.

Alternatively, we can use an alternating direction approach and take the gradient with
respect to the functions φl

i for one direction i, while fixing the functions in the other di-
rections, and then loop through the directions. This loop through the directions is then
repeated I times until we obtain the desired accuracy. We describe the i = 1 case. Moving
t in the direction opposite the gradient replaces ψ with

r
∑

l=1

sl(φ
l
1 − tg

l
1)

N
∏

i=2

φl
i = ψ − t

r
∑

l=1

slg
l
1

N
∏

i=2

φl
i = ψ − tψ̃ . (A5)

Inserting (A5) into (4) results in
〈

H(ψ − tψ̃), ψ − tψ̃
〉

A
〈

ψ − tψ̃, ψ − tψ̃
〉

A

=
〈Hψ, ψ〉A − 2t

〈

Hψ, ψ̃
〉

A
+ t2

〈

Hψ̃, ψ̃
〉

A

〈ψ, ψ〉A − 2t
〈

ψ, ψ̃
〉

A
+ t2

〈

ψ̃, ψ̃
〉

A

. (A6)

Once the inner products have been computed, we can find the minimizer for (A6) by solving
a quadratic equation, and then update ψ via (A5). The cost to construct g for one direction
is r2 times the cost for one inner product. The dominant cost for the inner product comes
from (71), which costs O(N3 +N2M logM), giving us the net construction cost

O(r2N2(N +M logM)) . (A7)

As described in Section V.5.2, many of the computations can be reused, so the cost for a
single loop through the N directions is of the same order. Thus, for I loops through the
directions the overall computational cost is

O(Ir2N2(N +M logM)) . (A8)

B Appendix: Low-rank Updates

In this section we develop formulas for low-rank updates to A
†, A

⊥ and |A‡|, based on
[42, 3].

Proposition 24 Given A, A
†, A

⊥, |A‡|, b, and c, let A1 = A + bc∗ and compute

d = A
†b, e = (A†)∗c, f = (I− AA

†)b, g = (I− A
†
A)c,

d = d∗d, e = e∗e, f = f∗f , g = g∗g,
λ = 1 + c∗A

†b, µ = |λ|2 + dg, ν = |λ|2 + ef,
p = λ̄d + dg, q = λe + ef .

(B1)
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1. If λ = 0, f = 0, and g = 0, then rank(A1) = rank(A)− 1 and

A
†
1 = A

† − d−1dd∗
A

† + e−1(−A
†e + d−1(d∗

A
†e)d)e∗ (B2)

A
⊥
1 = A

⊥ + (1/
√
de)de∗ (B3)

|A‡
1| = −(1/

√
de)|A‡| . (B4)

2. If λ 6= 0, f = 0, and g = 0, then rank(A1) = rank(A) and

A
†
1 = A

† − λ−1de∗ (B5)

A
⊥
1 = A

⊥ (B6)

|A‡
1| = |A

‡|λ−1 . (B7)

3. If f = 0 and g 6= 0, then rank(A1) = rank(A) and

A
†
1 = A

† − µ−1d(gd∗
A

† + λ̄e∗) + µ−1g(−de∗ + λd∗
A

†) (B8)

A
⊥
1 = A

⊥ −
|λ|(
√
µ− |λ|)g + λgd

g|λ|
√
µ

g∗
A

⊥ (B9)

|A‡
1| = |A

‡|
(λ̄− λ)|λ|2 + λµ

µ|λ|
√
µ

. (B10)

4. If f 6= 0 and g = 0, then rank(A1) = rank(A) and

A
†
1 = A

† − ν−1(fA
†e + λ̄d)e∗ + ν−1(−ed + λA

†e)f∗ (B11)

A
⊥
1 = A

⊥ − A
⊥f

(|λ|(
√
ν − |λ|)f + λ̄fe)∗

f |λ|
√
ν

(B12)

|A‡
1| = |A

‡|
(λ− λ̄)|λ|2 + λ̄ν

ν|λ|
√
ν

. (B13)

5. If f 6= 0 and g 6= 0, then rank(A1) = rank(A) + 1 and

A
†
1 = A

† − f−1df∗ + g−1g(−e∗ + λf−1f∗) (B14)

A
⊥
1 = A

⊥ − (1/
√

gf)gf∗ (B15)

|A‡
1| = |A

‡|
[

1 + (g−1f−1 − (1/
√

gf))g∗
A

⊥f
]

. (B16)

The cost to compute A
†
1, A

⊥
1 , and |A‡

1| is O(N2).

Proof: The overall method, update rules for rank(A1), and update rules for A
†
1 are taken

from [3], who also list the useful properties

c∗d = e∗b = λ− 1, b∗f = f, c∗g = g, d∗g = 0, e∗f = 0,

A
†
Ad = d, AA

†e = e, A
∗f = A

†f = 0, Ag = (A†)∗g = 0.
(B17)

They give update rules for the row and column spans of A1, which we translate into update
rules for A

⊥. The cases (B3), (B6), and (B15) follow directly. Corresponding to (B9), their
update rule is that the row span of A

⊥ should be extended (orthogonally) by d and then
reduced by projecting orthogonal to p. We translate this into a (Householder) reflection
of the vector g into a vector in the span of d and g perpendicular to p. Adjusting these
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vectors to have equal norm and real inner product yields the reflection of the vector λ̄
√
µg

to −|λ|(gd− λ̄g), resulting in
(

I−
2(λ̄
√
µg + |λ|(gd− λ̄g))(λ̄

√
µg + |λ|(gd− λ̄g))∗

‖(λ̄
√
µg + |λ|(gd− λ̄g))‖2

)

A
⊥ , (B18)

which simplifies to (B9). To obtain (B12) we use the same process, extending the column
span by e and then projecting orthogonal to q by a reflection of λ

√
ν f to −|λ|(fe− λf).

To derive the update rules for |A‡
1|, first add the update rules for A

†
1 and A

⊥
1 and then

take the determinant. On the right hand side factor out a copy of A
‡ leaving a low-rank

perturbation of the identity, to which we can apply Proposition 2. To simplify the results,
we use (B1), (B17), and the further observations

(A‡)−1d = b− f , (A‡)−1
A

†e = c− g, (A‡)−1g = (A⊥)∗c,
e∗(A‡)−1 = c∗ − g∗, f∗(A‡)−1 = b∗(A⊥)∗.

(B19)

To obtain (B4) we compute

|A‡
1| = |A

‡|
∣

∣

∣
I− d−1bd∗

A
† + ((1/

√
de)b− e−1e + d−1e−1(d∗

A
†e)b)e∗

∣

∣

∣

= |A‡|

∣

∣

∣

∣

1− d−1d∗
A

†b d∗
A

†((1/
√
de)b− e−1e + d−1e−1(d∗

A
†e)b)

−d−1e∗b 1 + e∗((1/
√
de)b− e−1e + d−1e−1(d∗

A
†e)b)

∣

∣

∣

∣

= |A‡|

∣

∣

∣

∣

0 d∗
A

†(1/
√
de)b

d−1 e∗((1/
√
de)b + d−1e−1(d∗

A
†e)b)

∣

∣

∣

∣

= |A‡|(−(1/
√
de)) . (B20)

For (B7) we have |A‡
1| = |A

‡|
∣

∣I− λ−1be∗
∣

∣ = |A‡|(1 − λ−1e∗b) = |A‡|λ−1 . To obtain (B10)
we compute

|A‡|

∣

∣

∣

∣

I + (A‡)−1

(

d(−µ−1(gd∗
A

† + λ̄e∗)−
λg∗

A
⊥

|λ|
√
µ

)

+g(µ−1(−de∗ + λd∗
A

†)−
(
√
µ− |λ|)g∗

A
⊥

g
√
µ

)

)∣

∣

∣

∣

= |A‡|

∣

∣

∣

∣

1 + (−µ−1(gd∗
A

† + λ̄e∗))b (µ−1(−de∗ + λd∗
A

†))∗b
(−λg∗

A
⊥/|λ|

√
µ)(A⊥)∗c 1− ((

√
µ− |λ|)g∗

A
⊥/g
√
µ)∗(A⊥)∗c

∣

∣

∣

∣

= |A‡|

∣

∣

∣

∣

λ̄/µ d/µ
−λg/|λ|

√
µ |λ|/

√
µ

∣

∣

∣

∣

= |A‡|
(λ̄− λ)|λ|2 + λµ

µ|λ|
√
µ

. (B21)

A similar calculation yields (B13). To obtain (B16) we compute

|A‡|
∣

∣

∣
I + (A‡)−1

(

−f−1df∗ + g(g−1(−e∗ + λf−1f∗)− (1/
√

gf)f∗)
)
∣

∣

∣

= |A‡|

∣

∣

∣

∣

1 f∗(A⊥)∗c
g−1f−1(λ− 1) 1 + (g−1λf−1 − (1/

√
gf))f∗(A⊥)∗c

∣

∣

∣

∣

= |A‡|(1 + ((−(1/
√

gf)) + g−1f−1)f∗(A⊥)∗c)

= |A‡|
[

1 + (g−1f−1 − (1/
√

gf))g∗
A

⊥f
]

. (B22)

�

When A and A1 are nonsingular, (B5) is the Sherman-Morrisson Formula (see e.g. [21]).
For our application we need the singular vectors in A

⊥, rather than A
⊥ itself, but then only

when rank(A⊥) ≤ 3. These singular vectors can be extracted by a simple modification of
the power method with deflation.
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