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SUMMARY

An expression is obtained for the detection performance of a
"DEMON" processor used to detect modulated signals imbedded in
noise. It is shown that "DEMON" performance is degraded rela-
tive to the conventional power detector and that the "DEMON"
threshold is more sharply defined than that of the power detector.
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1. INTRODUCTION

Ships and submarines frequently radiate sounds underwater which exhibit
distinct amplitude modulation. For example, the noise from a cavitating
propeller is usually modulated at a frequency equal to the blade rate (i.e.,
the rate of rotation of the shaft multiplied by the number of blades of the
propeller). This noise can be received by a passive sonar, and with training
and in conjunction with other sounds, an operator can often, from the modulation,
identify the type of vessel and estimate its speed.

The operator can be greatly assisted by rectifying the sonar signals to
extract the modulation and spectrum analysing the result. This is termed
"DEMON" processing. A block diagram of a DEMON processor is shown in
figure 1. The writer is not aware of any published mathematical analysis
of this processor. In this memorandum, an expression of its theoretical
performance is derived.

It should be pointed out that the processor shown in figure 1 is not
necessarily the optimum detector for such modulated signals. Tuteur(1) has
made an attempt to determine the optimum processor and its performance, but
the simplifying assumptions he makes are unrealistic, and as a consequence his
results should be regarded as useful only in giving an upper bound to the
performance which might be achieved. The present writer has not yet succeeded
in determining the optimum processor under realistic assumptions.

2. ASSUMPTIONS

The following assumptions are made.

(i) The sound radiated from the vessel has the properties of zero-mean
Gaussian noise which is amplitude modulated by a low-frequency
sinusoidal wave. The resultant is henceforth referred to as the
"signal".

(ii) The frequency of the modulating wave is known, but its phase is
random,

(iii) The signal is contaminated by additive zero-mean Gaussian noise.

(iv) Both the signal and noise are wholly contained in a narrow bandwidth
B (i.e., the centre frequency is much greater than B).

(v) The spectrum is computed for samples of data of duration T, where BT
is an integer >> 1.

(vi) The average is taken of M spectra, where M >> 1.
(vii) Signal and noise are stationary, ergodic processes.
(viii) Signal and noise are independent.

Although 1t is unlikely that the modulating frequency would be known a
priori, assumption (ii) above is nonetheless not unrealistic, because in
practice one would compute the entire power spectrum over all the frequencies
of interest.
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3. NOTATION

Let the input waveform to the processor be described by

z(t) = {1 +b cos <27&,Pt + <o> } s(t) + n(t) , (1)

where s(t) and n(t) are zero-mean Gaussian random waveforms,
P is an integer > O,
P << BT (assumption (i) ),
0<b<g,
¢ is random in (O, 2m).

It is possible to express s(t) and n(t) in terms of low-frequency (complex)
waveforms modulating a "carrier" frequency:

s(t) = f@ [a(t) exP(iznfot) + a*(t) exp(—i2wfot)} (2)
1 . .
n(t) = & {,B(t) exp(i2nf_t) + §*(t) exp(-127r_f'ot)} ()

where a(t) and B(t) are in general complex, and
* denotes the complex conjugate.

We shall decompose a(t) and ﬁ(t) into their respective Fourier components:

B?
2{; x(n) exp(i27 nt/T) (L)

n=1

I

a(t)

BT
Z y(n) exp(i2r nt/1) (5)

n=1

A(t)

I

where x(n) = %r/‘a(t) exp(-i27 nt/T) dt,
) (6)

y(n) =%f B(t) exp(-i2m nt/T) at.
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For BT >> 1,
Cx(n) x*(m))
Cy(m) y* (@)

b

S(n) 8 ?

(7)

I’

N(n) 8 ?

where S(n) is the unmodulated signal power component at the frequency corres-
ponding to the index n,
and Bnm is the Kronecker delta,

|
@)
]
+
=]

(8)

N(n) is the noise power component at the frequency corresponding to
the index n,

< > denotes an ensemble average.
By virtue of assumption (viii),

<ix(n) y*(mi> = 0, for all n, m, (9)

and from assumption (iv)
x(n) = y(n) = O forn<1 and n>BT (10)

In what follows, we shall make extensive use of the following theorem for the
moment of complex gaussian processes(2) :

g:z(m1) z(mg)...z(mr) z*(n1) Z*(nz)-..z*(ns):> = 0 if r # s,
) Z<z(mw<1>> 2*(1)> Calig()) 2 (m2)) oo Kol o)), )
§ if r =s (11)

where 7( ) denotes a permutation,

Specifically, if r = 5 = 2,
<z(m1) Z(mz) Z*(m) z*(n2)> = (z(m1) z*(n1)><z(m2) Z*<n2)>
+<z(mq) 2*(n2)>z(mz) 2*(n4)) (12)

4. MATHEMATICAL DEVELOPMENT

After squaring and low-pass filtering z(t), only terms remaining are those
not containing fo’ and we have, from equations (1) to (3):
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(14 b oo (ZEE ) JREOIREON

(0w o (B o) Hatre (o) + w(00p(o)]

After substituting equations (4) and (5) into this expression, and a little
manipulation, we have:

2 ‘D .
{1+%— +bexp<l—7TTP—t+igo +b exp<—l——2gpt-i¢>
b2 * 2 .
+ T SxP (%lﬂ: + iZgo) +% exp <— LL”,IT‘&— 12<p> } .

. Z w(n) x*(n) exp {iZﬂ(n—m) t/T]

n,m

N Z 7(n) v*(m) exp {iZﬂ(n—m)t/T}

n,m
b i2nPt . . b i27P% .
+{‘I+2exp<T +1¢>+2e@<—T—1¢>}.

. Z [x(n) y*(m) exp {iZﬂ(n—m)t/T} + x*(n)y(m) exp {—i27r(n—m)t/T}:l

n,m
(13)
Consider now multiplying this by cos(ZWPt/T) and integrating over (O,T).
Noting that
T
1 .
F[ exp ilzﬂ(n-m) t/T} at = 8, (14)
o ;
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we have

£ +223> Z{x(n) x(n+?) + x(n) x*(n—P)}
N be;q’ Z{x(n) (04 28) + x(n) x*(n)}

N bé;go Z{x(n) x*(n) + x(n) x*(n- 2P)}

VB2 Y (o) e ) + o) e8]
VB2 T o) 0 8) ) 0 )]
1[50 o) + o) a2

1Y (563 #a0) o x(0) 320-2)]
26T (xte) 300 28) + ) (o))
V215 () ) + 20 (o 2]
T o) 400 st

20 T[540 sam29) o 2400) 5]

b2 o0 Z{an) v(n) + x*(n) y(n+2P)} (15)

A similar expression (except for a change of sign inside each curly bracket,
and the presence of i outside each term) obtains after multiplying by
sin(27Pt/T) and integrating over (0,T).
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These two outputs (i.e., after cosine and sine multiplications and integrating)
are squared and summed. The algebraic manipulations are simplified if we note
that the two outputs take the forms:

cos: (p+q) +(r+3s)+...
sin: (ip - iq) + (ir - is) + ...,

and that after squaring and summing the only terms remaining are the cross
products:

Lpg +4ps +4qr +4 s + ..,

Making use of equations (7), (9) and (12), we f£ind that the expression for
the mean after squaring and summing eventually reduces to:

4

(1 + %;;f zg:s(n)S(n:+P) + %%— S(n)S(n+ 3P) + %@T S(n)S(n-P)

. b2 ZS(n)S(n+P) + b2 Zsz‘(n) + b2 { Zs@)}z . ZN(n)N(n+P)

. Zs(n)N(mp) . Zé(n)N(n_p) +l°$ S(n)N(n+ 28) + "{- S(n)N(n - 2)

+ 2= S(a)N(n) (16)

In expression (16), the sums are taken over the range (1,BT); it should be
noted that from the initial assumption (iv),

S(n) = N(n) = O for all n< 1 and n > BT.

We now make the additional assumption that except at the band limits, both the
signal and noise spectra are locally slowly varying, i.e.,

S(n +2P) = S(n +P) = S(n),
and N(n + 2P) = N(n +P) = N(n).

Expression (16) for the mean output is then approximated by

b2 {Zs(n)}z . <1 + 32 +—%—b4> Z{S(n)}2
. Z{N(n)}2 o (2 + 1) Z{S(n)N(n)} (17)
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We are also interested in the variance of the output when signal is absent.
In the absence of signal, S(n) = O, and the mean output is simply

2
Z{N(n)} . The output without signal is

Z y(n) v*(a + P) y(n) y*(u - P)

The mean square output is
Z Cy(k) y*(k+P) y(&) y*(£-P) y(m) y*(n+B) y(n) y*(a-P)> (18)
k,¢,m,n

Using equations (7) and (11), we find, after considerable algebraic manipulation,
that the mean square output for noise only is

2 { E\T(n)}2 L6 Z{N(m}“ | (19)

The variance of the output is therefore

mean square output - (mean output)? = EZ{N@)T]Z + 6 Z{N(n}}4 (20)

The signal-to-noise power ratio at the output of the processor may be defined
to be:

2 (change in mean with signal present)?

d variance without signal

As we add M independent spectra, it can readily be seen that the signal-to-noise
output power ratio will be

([ {T0) + (2 ) L]« o] ]
[Tl) T - L)
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For the special case in which both (unmodulated) signal and noise have flat
spectra, let ’

S(n) = 8, N(n) = N for all n
Defining
K £ BT,
S a
N - Mo
we have

2
KM {bz K p? + (1 + 3b2 +-%—b4> 2+ (2 + b2?) u}

K + 6

In most cases of practical interest, K >> 1, u << 1. Hence

T {b2 Ku + (2 + 192)}2 (23)

If M is sufficiently large, the output will, by the central limit theorem, be
approximately gaussian, and could therefore be defined by second-order statistics.
Further, we could then use curves for Receiver Operating Characteristics (as
derived, for example, in references 3 and 4) directly; these give a plot of
the probability of detection versus the probability of false alarm for various
values of 42 (see figure 2), which in our case is simply the output signal-to-
noise ratio.

It should be noted that in equations (21) to (23) u is not the input signal-
to-noise ratio, because S is the power spectral density of the unmodulated
signal. The modulation will increase the actual input signal-to-noise power

2
ratio to a value of‘<1 + %?> .

It is also noteworthy that the results obtained here are considerably more
pessimistic than those obtained by Tuteur(1), who assumes knowledge of the
phase of the modulating signal. Essentially, his output signal-to-noise ratio
varies with p?, whereas the result derived here, which assumed random phase,
varies with p? for large K.

5. COMPARISON WITH SIMPLE ENERGY DETECTOR T

By way of comparison, consider the simple energy detector shown 1ﬁ flgure 3.
The output signal-to-noise ratio, defined as before to be v

a & (change in mean with signal prese’nt)2 : ¢

variance without signal eI

may be shown, after the usual algebra, to be

b2 2 2
a = <1 +-2—> p° BTM (24)
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Comparing equations (23) and (24), we find that for the Demon processor, with
small signals, the output signal-to-noise power ratio varies as u?, whereas with
the simple power detector it varies as uz.

Hence it is to be expected that in general detection using a simple power
detector would take place before Demon classification could be effected.

- 6. EXAMPLE

By way of a simple example, consider the case of noise and (unmodulated)
signal spectra which are flat. It is required to calculate the value of u
which will give a probability of detection of 90%, and a probability of false
alarm of 0+01%. Other given parameters are:

B = 10°Hz,
T = 10s,
M:i= 100,

b =10

From figure 2, it is seen that 4 = 25. Hence
100 u? §{10% u + 312 = 25

i.e., u o~ 7 x 1073,

and the actual signal-to-noise input ratio is

b2 -2
<1 + > > g =10
or about -20dB.

Under the same circumstances, the ordinary power detector of broad-band
signals would have a detection threshold of -254dB.

7. CONCLUSIONS

An expression has been obtained for the output signal-to-noise ratio of the
Demon processor. It is found that in general the detection (using conventional
power detection) would occur before Demon classification could be effected.

For small signals, the signal-to-noise power ratio out of a Demon processor
falls as the fourth power of the input signal-to-noise ratio, whereas that of
the power detector falls as its square. This means that the threshold of the
Demon processor can be expected to appear more sharply defined than that of the

v power detector.

As would be expected, the performance of the Demon processor falls rapidly

as the depth of modulation of the signal is reduced.
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