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POLYNOMIAL-TIME IDENTIFICATION OF OPTIMAL ROBUST NETWORK
FLOWS UNDER UNCERTAIN ARC FAILURES

VLADIMIR BOGINSKI AND CLAYTON W, COMMANDER

ABSTRACT. Network flow problems have a wide variety of important applications in
many areas. Although deterministic formulations of these problems are well-studied, in
many practical situations onc has to deal with uncertainties associated with possible fail-
ures of network components (e.g., each arc has a probability of failure). Formulations and
optimal solutions of these problems need to be adjusted to take into account these uncer-
tainty factors. The main difficulty arising in addressing these issues is the dramatic increase
in the computational complexity of the resulting optimization problems. We propose LP-
based solution methods for network flow problems under a set of failure scenarios, which
allows for robust solutions to be found in polynomial time. We justify this fact by proving
that for network flow problems under uncertainty with linear loss functions, the number of
scenarios required to approximate the mean of the loss distribution for any fixed € > 0 with
probability (1 — e}, for & € (0, 1], is polynomial with respect to the size of the network.

1. INTRODUCTION

Network flow problems are among the most well-studied topics in operations research
with numerous papers and textbooks devoted to their study [1, 3, 4, 9, 14, 15, 17, 20].
These problems have a wide varicty of important applications in many areas. Although
deterministic formulations of these problems are well-studied, in many practical situations
one has to deal with uncertainties associated with possible failures of network components
(e.g., some arcs have a probability of failure). Formulations and optimal solutions of these
problems need to be adjusted to take into account these uncertainty factors.

The main difficulty arising in addressing these issues is the dramatic increase in the
computational complexity of the resulting optimization problems. For example, Corea and
Kulkarni [6] have considered the MINIMUM COST FLOW PROBLEM where the length (cost)
of each edge is a random variable. They construct continuous time Markov chains to derive
stable algorithms computing the distribution of the minimum cost. The stochasticity of the
edge weights makes the problem particularly challenging in that the size of the state space
grows exponentially with the size of the graph. Glockner and Nemhauser [12] have also
considered dynamic network flow problems where the arc capacities are random variables.
They describe novel decomposition techniques for the resulting multi-stage stochastic lin-
ear program. Doulliez and Rao [10] have studied the problem of determining the maximum
flow in a graph subject to a single arc failure. Along this line, Aneja et al. [2] considered
the MAXIMUM FLOW PROBLEM and present a strongly polynomial algorithm for maxi-
mizing the residual flow in a graph after a single arc is destroyed. Cormican et al. [7]
have formulated stochastic programming formulations of the NETWORK INTERDICTION
PROBLEM in which arcs are removed in order to minimize the expected maximum flow on
the network. These problems are modeled as two-stage stochastic programming problems
and are A P-hard.
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FIGURE 1. A graphical depiction of VaR and CVaR [5].

In this paper, we propose linear programming based solution methods for network flow
problems under uncertainty. In particular, we provide a polynomially solvable formulation
for the ROBUST MINIMUM COST FLOW PROBLEM (RMCF), in which each arc has a prob-
ability of failure. To our knowledge, this is the first formulation of its type. Moreover,
we prove for linear programming problems under uncertainty with linear loss functions,
the required number of scenarios needed in order to ensure that the sample mean is within
€ > 0 of the true mean with probability (1 - &), for 0 < & < 1, is polynomial in the size of
the input. To our knowledge, this is the first time such questions have been considered for
optimization problems under uncertainty.

2. SCENARIO-BASED APPROACHES FOR OPTIMIZATION PROBLEMS UNDER
UNCERTAINTY

Optimization problems that involve uncertainties are typically formulated using random
samples (or, scenarios) from loss distributions [8]. An important question that needs to be
answered is, how many scenarios are needed to accurately reflect the statistical properties
of the loss distributions with a high confidence level? More specifically, does the required
number of scenarios grow polynomially or exponentially with respect to the size of the
input? Clearly this is an important problem, and to the best of our knowledge has not been
previously addressed in the literature on optimization under uncertainty. In this paper, we
will formulate the ROBUST MINIMUM COST FLOW PROBLEM under uncertainty and prove
that for network optimization problems with linear loss functions, for any fixed positive
€>0and € (0,1], 0(m?) scenarios are sufficient to ensure that the sample mean of
the total loss associated with possible edge failures is within € from the true mean with
probability (1 — o) (where m is the number of edges in the network).

Next, we discuss the basic statistical concepts (sometimes referred to as risk measures),
which we utilize in this study.

2.1. Quantitative Loss Measures. One of the most well-known risk measures used in
robust optimization under uncertainty is known as Value-at-Risk (VaR) [13]. VaR provides
an upper bound, or percentile on a given loss distribution. For example, consider an appli-
cation in which a constraint must be satisfied within a specific confidence level o € (0,1].
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Then the corresponding o-VaR value is the lowest value { such that with probability o,
the loss does not exceed { [16]. In economic terms, VaR is simply the maximum amount
at risk to be lost from an investment. VaR is the most widely applied risk measure in
probabilistic settings primarily because it is conceptually simple and easy to incorporate
into a mathematical model [5]. However with this ease of use come several complicating
factors. Some disadvantages are that the inclusion of VaR constraints increases the num-
ber of discrete variables in a problem. Thus a polynomially solvable problem is likely to
become 7 #-hard [11] after the VaR constraints are added to the model. Also, VaR is not
a so-called coherent risk measure, implying among other things that it is non-convex and
not sub-additive.

Another risk measure closely related to VaR is the so-called Conditional Value-at-Risk
(CVaR). CVaR is a more conservative measure of risk, defined as the conditional expec-
tation of the loss under the condition that VaR is exceeded. Rockafellar and Uryasev [18]
proved several important results regarding optimization of CVaR, which make this risk
measure rather attractive from the optimization viewpoint. In particular, CVaR has been
shown to possess the properties that VaR lacks; in particular, it is coherent (which includes
convexity among other properties). This makes this statistical measure much more con-
venient to handle in optimization models. A graphical representation of the relationship
between CVaR and VaR is shown in Figure 1. In order to define CVaR and Var we need
to determine the cumulative distribution function for a given decision vector subject to
some uncertainties. Suppose L(x,y) is a loss function associated with a decision vector
x € X CR”, and a random vector y € R™ which is the uncertainties that may affect the
performance. Assume that y is governed by a probability measure P on a Borel set, say ¥
[5]. Then the loss L(x,y) for each x € X is a random variable having a distribution in R
induced by that of y. Therefore the probability of L(x,y) not exceeding some value { is
defined as

V(x,§) = P{ylL(x,y) <} (e))
By fixing x, the cumulative distribution function of the loss associated with the decision x
is thus given by y(x, {) [21].
Given the loss random variable L(x,y) and any o € (0,1), we can use equation (1) to
define a-VaR as

Ca(¥) = min{C € R: y(x.) > a}. @
From this we see that the probability that the loss L(x,y) exceeds {q(x) is 1 — o Using
the definition above, CVaR is the conditional expectation that the loss according to the
decision vector x dominates {y(x) [18]. Thus we have a-CVaR denoted as ¢q(x) defined
as
0o (x) := E{L(x,y)IL(x,y) > Ca(x)}- 3
In order to include CVaR and VaR constraints in optimization models we must charac-
terize (o (x) and ¢ (x) in terms of a function Fy : X x IR — R defined by

€)= L = Efmax (L) ~ 01 @

In [18], Rockafellar and Uryasev prove that as a function of {, Fyy(x, {) is convex and con-
tinuously differentiable. Moreover, they show that a-CVaR of the loss associated with
any x € X, i.e., 0y(x), is equal to the global minimum of F4(x,&), over all { € R. Fur-
ther, if Aq(x) := argmingcg Fo(x,§) is the set consisting of the values of § for which F is
minimized, then 44(x) is a non-empty, closed and bounded interval and {y(x) is the left
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endpoint of Ay (x). In particular, it is always the case that Ly (x) € argming i Fu(x,) and
Wu(x) = Fu(x,Co(x)) [18].

This result gives a linear optimization algorithm for computing a-CVaR. It is a result of
the convexity of Fy(x, ), that we are able to minimize CVaR for x € X without having to
numerically calculate ¢, (x) for every x. This has been shown by Rockafellar and Uryasev
in [19]. Further, it has been shown in [19] that for any probability threshold o and loss
tolerance C, that constraining ¢y (x) < C is equivalent to constraining Fy(x,£) < C.

3. MINIMUM COST FLOW PROBLEM UNDER UNCERTAINTY WITH CVAR
CONSTRAINTS
An instance of the MINIMUM COST FLOW PROBLEM (MCF) consists of a directed graph
G = (V,E), where each edge (arc) (i, /) € E has an associated cost ¢;; per unit of flow along
this edge, as well as a capacity u;; denoting the maximum amount of flow that can traverse

edge (i, /). For each node i € V, d; denotes demand (supply) of node i. Then the MCF can
be formulated as the following linear program

(MCF) min Y cyxiy (%)
(ij)eE
s.t.
Y xy— Y xi=d,VieV, (6)
{:if)cE} {:()cE}
0<xij'§ﬂgj,Vf,|f€V (7

Suppose that L(x,y) is a loss function, where x : ¥ x ¥ — {0, 1} is a vector of decision
variables. In the context of a network flow problem, x;; represents the total amount of flow
through arc (7, ). Further let y be a random vector representing the edge failures in the
graph defined as follows:

. ] 1, with probability p;,
Y5790, with probability 1 — pjj,

where p;; is the probability of failure for the arc (7, /).
Furthermore, for each scenarios =1,2,....85,

s . )1, with probability p;;, ®)
Y7710, with probability 1 — p;;.
Then, the random variable L(x, y) representing the total loss is given as
n
Lix.,y) = Y, xipy. ®
ij=1
Further, for each scenarios=1,...,85,
n
L(xy)= Y, xy} (10)

ij=1
Then the characteristic function F,(x, () for CVaR constraints is given as

s S n
e d) = Ut g Smmax{ 3 3 5y~ Lo, (an
s=1

s=lij=1
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where T, is the probability of scenario y*, for s = 1.2....,8. Since L(x,y) is linear with

respect to x, Fy(x,C) is convex and piecewise linear [16]. If we assume that each scenario
is equally likely, that is i, = &, Vs = 1,2,....S, then (11) reduces to

S n
Fo(x,0) _g+ﬁ gmax{ le,-jy;:j... g,o}‘ (12)

ij=

Then we can model the the robust MCT problem with CVaR constraints as

(RMCF-1)  Minimize Y cixij+ Y, Mipi (13)
{(ij)eE} il
s.t.
K= Z xji=di—pp,VieV, (14)

UiGi)eE}  {iUid)eE)
0 Sx,-j < ujj W (f‘j) ek,

1 h n )
& (1 _a‘)S.\‘_ZI max{sélxm“" — ‘;‘0} = (15)
CER, (16)

Note that the mass-balance constraints in (6) from formulation MCF have been relaxed
in formulation RMCF-1. This modification is made in order to ensure that arc failures
do not render the instance infeasible. Notice that penalfy ferms representing the possible
loss of flow (e.g., unsatisfied demand) at node / have been added to the objective function
and the corresponding constraints. Clearly, it is desired that the penalty variables p; are
equal to zero in the optimal solution, which is modeled by multiplying these variables by
sufficiently large coefficients A in the objective.

We can linearize Fy(x,{) by using dummy variables #;, s = 1,2,...,S, and replacing
Fy(x,C) by the linear function { + S[_ilF} Zle t; and adding the set of linear constraints

t, > Lxy)-( Vs=1.2,...,8, (18)
t, > 0,Vs=12,...8. (19)
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Thus, the fully linearized mathematical programming formulation of the ROBUST MIN-
IMUM COST FLOW PROBLEM with Conditional Value-at-Risk constraints is given as

(RMCF-LP)  Minimize Y, c;jxij+ 3 Mip; (20)
(ti)cE eV
st
Xij— Z Xji =di—p;, VieV, (21)
UiG)eE}  {i:G.EE)
1 S
N S 22
C+S(]_a)i=zlta <C, (22)
n
Is = quyz, ‘;:V-T:l-.ze--':ss (23)
ij=1
>0, Vs=1.2,...,8, (24)
LeR, (25)
pi20,Viev, (26)
0 <xij<wj, Vi jEE. @7

Note that this LP formulation contains O(|V| 4 |E| + ) variables and O(|V'| + |E| +S)
constraints. Therefore, the subject of further investigation is how large the number of
scenarios S needs to be to ensure sufficiently good statistical properties of the optimal
robust solutions. In the next section, we address this issue and identify the conditions
under which S is polynomial with respect to |E| (and |V'|), which makes the proposed
problem formulation polynomially solvable.

4, ON THE REQUIRED NUMBER OF SCENARIOS

In this section, we discuss the issues of obtaining a “good” approximation of the true
distribution of the losses in the above formulations. More specifically, we investigate the
issue of the required number of scenarios that would ensure that the true mean of the loss
distribution is close enough to the sample (scenario-based) mean with a high confidence
level. In particular, the subject of special interest would be the dependency of the required
number of scenarios on the input size, e.g., the size of the network. This is particularly
important as the number of scenarios considered will directly affect the number of addi-
tional constraints in the model. In particular, if the required number of scenarios needed
is exponential in the size of the input, then the polynomial solvability of the problem is
undermined by the exponential number of constraints. In this section, we prove that the
required number of samples needed to accurately approximate the mean of the distribution
of a linear loss function is in fact polynomial in the size of the input (e.g., the number of
nodes and edges in the network) under certain conditions.

Let the sample mean loss be given as

S 5 S 1
L:ew—ézlzﬁéz 3 x (28)
s=1 s=1i,j=1
Also, let sample mean of each component of the random vector y;; be defined as y;; :—
%,Zf_] ¥i;- Let the true mean of the loss distribution be ;. With this, we have the following
proposition.

Proposition 1. Consider a linear loss function for a network flow problem, such as the one
defined above. Then for any €,0 € R such that € > 0, and o. € (0,1], the required number
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of scenarios S to guarantee that P( |Z —up| <€) >1—ois 0(m?/e?), where m = |E| is the
number of edges in the original network. Furthermore, for any fixed e, S = 0 (m?).

Proof.

P(L-p| <€) = P(Iégi;z’_txwfj—é]xu#u<€) 29
n 1 5

- P(|:_J_z_]xu(gs_z‘y:;,- uu)|<s) (30)

= P(Ijgxu@if-ﬂsj)Kﬁ)- (€Y

Now, let U := max; j{u;; } be the maximum capacity of any single arc in the network. Then
continuing from (31) we have that

P(l >, xi i — wij)| <8) > P(’”Un?ﬁx{lﬁj—ﬂfjl} <€) (32)
= i,
= g
= P(n}ﬂx{b’fj — mjl} < m_U) >l—-o (33)

Let i* and j* be the indices for which |y;; — u;;| is maximum, and let c,.{ - be the variance
of y-j+. Then, using the notation c,, representing the critical value of the normal distribu-
tion corresponding to the confidence level (1 — a) (e.g., for 1 — o= 0.95, ¢ = 1.96) the
minimum required number of scenarios S, needed to satisfy the condition above, can be
found as follows.

2
CQG‘;.J-. £
i AR § 34
VS mU (34)
2ol U2
58 = g =o(m’[¢%). (35)
Furthermore, for any fixed g, § = 0(m?). Thus we have the desired result. 0

Note that without the loss of generality, the result of Proposition 1 holds for any loss
functions that are linear with respect to the uncertain parameters y, where these parameters
can denote any uncertainties in the model, such as costs, capacities, or other application
specific parameters.

The proof of Proposition 1 provides the justification for the use of Conditional Value-at-
Risk constraints for network flow problems. That is, by incorporating CVaR constraints we
are able to guarantee that the sample mean of the loss distribution can be made arbitrarily
accurate while the size of the problem remains polynomial with respect to the input. Thus
we can find accurate, robust solutions to these problems in polynomial time using standard
linear programming techniques.

5. NUMERICAL EXAMPLE

In this section, we present a numerical example demonstrating the effectiveness of the
proposed approach. Consider the three graphs shown in Figure 2. Suppose we are consid-
ering the MINIMUM COST FLOW PROBLEM. Subfigure 2(a) represents the original network
and the triplets (c;;. uj;, pij), correspond to the cost, maximum capacity, and probability of
failure for each arc (7, j).
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(c&.,uy., f’u')

(b) The ideal optimal solution. The objective value  (¢) The optimal solution with CVaR. In this exam-
is 295. ple, § = 100 and the objective value is 340.2.

FIGURE 2. The min-cost flow problem is solved for the graph in (a).
cij,uij, and p; ; represent the cost, maximum capacity, and probability
of failure for arc (i, /) respectively.

In Subfigure 2(b), the optimal ideal solution is shown. The ideal case represents the
deterministic MCF problem, or equivalently, the probabilistic version when all edge failure
probabilities are 0. The optimal solution for this instance is 295 units of flow. However
by taking into account the edge failure probabilities, we see that this is not the preferred
solution. In 2(c), the optimal solution is shown with CVaR censtraints. In this example,
the total loss in the worst 10% of scenarios is constrained to be less than 0.23 units of
flow. We generated 100 scenarios uniformly at random for this example, with up to 20%
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of the arcs failing in any scenario. These are arbitrary values and can be specified by the
user as the situation calls. In this case, the objective function value is 340.2. We see that
in fact, the solution tends to push more flow over arcs with lower probabilities of failure
accepting the higher cost for the hedging. This is exactly the behavior we would predict.
An interpretation is that by diversifying the flow across various arcs, we are able to ensure
that the solution is robust in the event of (multiple) arc failures. Moreover, note that the
optimal solutions for robust formulations of the MINIMUM COST FLOW PROBLEM can be
Jfractional. Recall that for the deterministic version of the MCF problem, the optimal solu-
tion values are integral if all the parameters of the original model are integer. Depending on
specific applications, one can either operate with fractional flows, or use certain rounding
techniques to convert the flows to integer values.

6. CONCLUSIONS

In this paper we proposed polynomial-time linear programming based solution ap-
proaches for network flow problems subject to uncertain arc failures. Further, we have
shown that for linear loss functions, a polynomial number of scenarios is sufficient in or-
der to approximate the true mean of the loss distribution arbitrarily close. A numerical
example was given demonstrating the effectiveness of the proposed procedure in the con-
text of the MINIMUM COST FLOW PROBLEM.
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