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ABSTRACT
 

Ground-based staring hyperspectral chemical detectors allow for repeated measurements through time 
with near-perfect image registration. The problem with standard spectral based hyperspectral detection 
algorithms is that they do not make effective use of this temporal information. In this paper we show that 
significant improvements in detection performance for staring geometry can be made by making use of 
statistical information obtained from previous samples and new temporal-spectral detection algorithms 
are developed. These new algorithms have the advantage that they limit detection to regions where both 
temporally and spectrally significant events have occurred. We discuss the development of these 
algorithms and demonstrate the performance of both temporal-spectral and spectral detectors for detection 
of gaseous plumes using data from the FIRST (Field-Portable Imaging Radiometric Spectrometer 
Technology) passive long wave infrared (LWIR) hyperspectral sensor. 
 

INTRODUCTION 
 

Hyperspectral imagery is often visualized as a three-dimensional image cube, where two of the 
dimensions are used to indicate spatial location of an image pixel and the third dimension specifies a 
spectral band. When the hyperspectral sensor is set-up to stare at a fixed location a fourth dimension of 
time is created as each new cube is sampled in time. Therefore, we are dealing with ‘hyper’ remote 
sensing where we have hyperspectral (many contiguous spectral bands), hyperspatial (many pixels at 
about 1m spacing) and hypertemporal (repeated coverage every few seconds) imagery [1]. In a ground-
based stare-mode geometry each new cube will have almost perfect spatial registration with the previous 
data cubes.  
 

There are three time scales inherent in a hyperspectral sensor monitoring for gaseous plumes: electronic 
noise on the MHz scale, atmospheric turbulence on the KHz scale, and long time scale (Hz) for 
atmospheric transmission drift [2, 3]. Since the hyperspectral sensor operates on the Hz scale the variance 
induced on the signal due to higher frequency (KHz and MHz) will be reduced via averaging due to the 
independence of samples. We will explore the amount of averaging required and how it relates to the third 
time scale.  
 
It will be shown that by combining temporal and spectral information we are able to significantly increase 
the signal-to-noise ratio (SNR). This significant SNR increase allows the detection thresholds to be 
raised, which greatly reduces the false alarm rate.  
 

TEMPORAL-SPECTRAL DETECTION ALGORITHMS 
 

The temporal-spectral detection algorithms function to detect targets by using statistics from time  to 
detect targets at time . The algorithms are developed as follows. Let l  represent the number of spectral 
bands and let be an  column pixel vector at spatial location 

1t

2t

1,, tjix 1×l ( )ji,  and at sample time . To 
simplify the following notation the (  spatial location information is omitted. In multivariate statistical 
analysis the Mahalanobis distance squared of a test pixel spectrum from the mean of the background class 
is given by  

1t
)ji,

 
( ) ( )

02002

1
ttt

T
ttADD μxCμx −−= −                                                         (1) 
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and in the literature is known as an anomaly detector (AD) [4,5]. In Eq. 1 the mean,  and covariance, 

0
 are measured only once at a time  when it is assumed that the target is not present in the scene. This 

method assumes that the mean and covariance are stationary. There are many ways to calculate the mean 
and covariance (e.g. image segmentation), in this paper we use the global mean and covariance. 

0t
μ

tC 0t

   
By turning Eq. 1 into a ratio and making use of both past and present statistics we can form two temporal-
spectral detectors.  The first, referred to as the temporal-spectral anomaly detector (TSAD ), is given as 
follows 
 

( ) ( )
( ) ( )

11111

22122

1

1

ttt
T

tt

ttt
T

tt
TSADD

μxCμx
μxCμx

−−

−−
=

−

−

                                                        (2) 

 
The second, referred to as the temporal-spectral covariance detector (TSCD ), is given as follows 
 

( ) ( )
( ) ( )

22222

22122

1

1

ttt
T

tt

ttt
T

tt
TSCDD

μxCμx

μxCμx

−−

−−
=

−

−

                                                        (3) 

 
Eqs. 2 and 3 are ratios of anomaly detectors.  In order for the TSAD  to improve detection performance 
the anomaly (e.g. gaseous plume) is assumed not to be present at pixel location ( )ji,  at time  or at least 
that the concentration of target gas has increased from time  to time  at pixel location ( . Both the 

 and TSCD   assume that the covariance matrix formed at time   is  free from a temporal signal or 
when the gas concentration has increased from time  to time   to have less temporal signal than the 
covariance matrix formed at time .  The TSAD  further assumes that the plume is either present in only 
a portion of the scene or non-uniform. Under these assumptions both the ratios in Eqs. 2 and 3 will be 
larger than one for any pixel vector  that contains an anomalous temporal signal. However, if the gas 
concentration is determined to be decreasing when the system is started then the ratios in both Eqs. 2 and 
3 can be inverted in order to improve detection performance. 

1t

1t 2t )ji,
TSAD 1t

1t 2t

2t

2t
x

 
Eqs. 2 and 3 are easily coupled with any standard detector such as the matched filter (MF) or adaptive 
coherence/cosine estimator (ACE) detector [5]. The matched filter is given by Eq. 4 
 

( )
tCt

tCμx
1

1
02

0 −

−−
=

o

o

t
T

t
T

tt
MFtD ,                                                                (4) 

 
where  is the target vector of interest. Like the AD, the mean and covariance are measured only once at 
a time . Again, this assumes that the mean and covariance are stationary. Another variation of the 
matched filter given by 

t
0t

( )
tCt

tCμx
1

1

2

222

2 −

−−
=

t
T

t
T

tt
MFtD ,                                                               (5) 

 
uses data only at the present time. This method does not require the stationarity of Eq. 4, but its 
performance will be reduced by the presence of signal at time  due to whitening. By incorporating the 
use of covariance matrix at time  into Eq. 5 we get another version of the matched filter that uses the 

2t

1t
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covariance matrix formed at time  when the scene is potentially free from target signal or has less target 
signal than the covariance matrix formed at time  

1t

2t
( )

tCt
tCμx

1

1

1

122

1 −

−−
=

t
T

t
T

tt
MFtD .                                                               (6) 

 
This method assumes stationarity over the short period from  to . By coupling the TSAD  and/or 

 detectors with the matched detector the following three temporal-spectral matched filter (TSMF ) 
detectors are formed. 

1t 2t
TSCD

 
TSADMFtTSMFAD DDD ×=

1
                                                           (7) 

TSCDMFtTSMFCD DDD ×=
1

                                                            (8) 

 TSCDTSADMFtTSMF DDDD ××=
1

                                                     (9) 
 

The advantage of the last 3 detectors (Equations 7-9) is that they combine temporal knowledge with 
spectral knowledge. Therefore, they only alarm when a pixel vector contains both a temporally anomalous 
signal which is a good match spectrally with the target vector.  
 
For the matched filter SNR performance can be characterized once the inverse covariance matrix is 
known. If we let  
 

( )C0y ,~0 N                                                                      (10) 
( )Cty ,~1 N                                                                       (11) 

 
where  is the signal model under hypothesis  and  signal model under hypothesis , with t  
representing the target signal vector and C  the covariance matrix. We can then whiten  and  by 

multiplying by 

0y 0H 1y 1H

0y 1y

2
1

−
C . If we let  

 

oyCz 2
1

0

−
=                                                                        (12) 

1
2
1

1 yCz
−

=                                                                        (13) 
 

Then 
 

( )I0z ,~0 N                                                                      (14) 
( )Isz ,~1 N                                                                      (15) 

 
where, 

tCs 2
1

−
=                                                                         (16)     

 
The unnormalized matched filter is given by:   
 

szTM =                                                                         (17) 
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then 
 

( )
( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

1

0

,
,0~

HunderN
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tt

t

ssss
ss

                                                        (18) 

 
SNR can be defined as the mean score under  divided by the standard deviation of the score under 

; therefore, SNR for the matched filter is simply 
1H

0H
 

ss tSNR = .                                                                     (19) 
 

EXPERIMENTAL RESULTS 
 

The Data used in the following experiments are from FIRST hyperspectral sensor [6]. The data was 
collected in 2006 at Dugway, UT. Three FIRST sensors with focal plane array up to 256 x 320 were used 
to capture data. The sensors were setup to stare at a fixed location where the simulant would be released. 
Frames were captured approximately every 6 seconds. Visible imagery was collected using a co-aligned 
camera. Figure 1 shows the visible image with broadband IR overlay (150 x 320).  
  

Visible Image w/ Broadband IR Overlay

-9.45 -2.75 3.65 9.45 

-7.09

-1.81

1.18 

7.09 

 
Visible Image 

up to 1392×1040 pixels 

258 μrad IFOV 

IR Image 
up to 320×256 pixels 

350 μrad IFOV 

up to 6.4×5.1° FOV 

.98×.98 m/pixel @ 2.8 km 

 
Figure 1. Visible image with broadband IR overlay (150x320) showing location of data acquisition. 

 
Since there are 8 methods to compare (Equations 2-9) we started with only Equations 2-6. We began by 
examining the performance of each algorithm versus SNR. A simulation was conducted by inserting SF6 
from our library spectra into row 64 of a data cube free of target signal using half the focal plane array 
(128 x 320). The signal was set to have a SNR of approximately 45 (this corresponds to a concentration 
path length of approximately 135 mg/m2 and delta temperature of 2 degrees) in column 1 of row 64 and 
linearly decay to 0 in column 320 of row 64. The signal to noise was calculated by taking the norm of the 
inserted SF6 signal divided by the standard deviation of the noise measured at each pixel in row 64. The 
input SNR can be used as a measure for the matched filter performance; for instance, if the inverse 
covariance matrix is equal to the identity matrix then the matched filter SNR will be about equal to the 
measured input SNR (Eq. 19). However if the target vector is whitened by the inverse covariance matrix 
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then the matched filter performance will be poor. This is the main advantage of the temporal-spectral 
approach in which earlier covariance matrices without target are used to enhance SNR performance.  

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45

Column

Si
gn

al
-to

-N
oi

se

Input SNR
TSAD
TSCD
MFt0
MFt2
MFt1
Matched SNR

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45

Column

Si
gn

al
-to

-N
oi

se

Input SNR
TSAD
TSCD
MFt0
MFt2
MFt1
Matched SNR

 
Figure 2. Detectors (Eqs. 2-6 & Eq. 19) SNR performance along the plume. The black line indicates the 
input SNR. The dark yellow line indicates predicted matched filter performance (Eq. 19) (Simulation). 
 
Figure 2 contains a plot of the detectors (Eqs. 2-6 & Eq. 19) SNR performance where the noise was 
calculated by taking the standard deviation of all pixels except for those in row 64. The two matched 
filters and  had almost identical performance. Their performance was mostly equal to the 
predicted matched filter SNR performance of Eq. 19. The matched filter,  of Eq. 4 performed 
slightly worse than the other two matched filters since the data was not completely stationary. The TSAD  
(Eq. 2) had the worst performance of all the detectors at low SNR values, but did the best at higher SNR 
values. The TSCD  (Eq. 3) performed similar to the matched filters.  

1t
MF

2t
MF

0t
MF

 
The three additional detectors (Eqs. 7-9) were formed by coupling the TSAD  and/or TSCD  detectors 
with the matched detector. Figure 3 shows the results for these detectors using the same data and input 
signal as in Figure 2. As we can see, at the higher SNR values the TSMF  performed extremely well. 
Figure 4 shows the region in Figure  3  from  columns  160  to  column  320.  Comparing Figure 2 and 4 
we see that  performance the TSMFAD  and TSMF  of Figure 4 are closer to the input SNR than the 
matched filters of Figure 2 at low input SNR values and start to have a significant improvement in 
performance for input SNR values of 12 and greater.  
 
In the following we analyze the performance of the detectors for field data with a release of SF6 using 
library spectra as the target vector.  In order to determine if frame averaging would help reduce the noise 
we examined the global mean over 100 frames of data without any target signal present. Window sizes 
from 1 to 7 frames over the 100 frame sequence where used to calculate the mean standard deviation of 
global mean. The mean standard deviation followed the expected square-root of the number of frames 
reduction for window size up to about 5 frames. Therefore, the mean is stationary for about five frames 
(30 seconds). This means that the atmospheric transmission drift on the Hz scale starts to become 
significant after about 30 seconds. In [1] it was shown that atmospheric drift was significant for periods as 
shorts as 5 seconds. 
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Figure 3. Detectors (Eqs. 7-9) SNR performance along the plume. The black line indicates the input SNR 
(Simulation). 
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Figure 4. Portion of Figure 3 where SNR is lower (Simulation). 

 
 
The second factor in determining how many frames to average is the signal. If the signal remains present 
in a pixel for multiple frames then it is beneficial to average and reduce the noise as stated above.  The 
signal movement will be dependent on the size of the plume and the wind speed and direction.  By 
examining the plume in the field data it was determined that the wind speed was approximately 2 m/s in a 
direction perpendicular to the sensor and the plume was about 72 meters across as viewed by the sensor 
and at a distance such that each pixel is 1m x 1m. Consequently, the plume will remain in a pixel for 
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about 36 seconds or six frames. However, the plume was not of uniform intensity with the brightest 
portion being near the center of the plume and the dimmest portion at the outer radii.  
 
In order to determine if frame averaging is useful, a subset of the data, which contained signal with low 
SNR, consisting of rows 1 through 70 and columns 1 through 320 was used. The weak signal in row 65 
was used to measure performance. Table I contains results for the SNR performance of the TSMF  with 
from 1 to 5 frames of averaging. 
 

Table 1. SNR Performance of Frame Averaging 
 

 

Frames Averaged SNR Performance 
1 24.1 
2 31.4 
3 43.2 
4 33.2 
5 23.8 

In this case, three frames of averaging had the best performance. Figure 5 contains results for Equations 2, 
3, and 6-9 with the noise normalized to that of the TSMF detector using three frames of averaging for 
both  and  . 1t 2t
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Figure 5. Performance of detectors on a release of SF6 (Field Data). 

 
As we can see, TSMF  performed the best. TSCD  performed second best, and performance of the 

 was worse than TSCD . Based on these results we may want to create a temporal spectral 
detector by coupling Eqs. 2 and 3. However, Eqs. 2 and 3 are anomaly detectors and will alarm to any 
anomalous gaseous plume, but the matched filter will only alarm to target vector like plumes. 

TSMFCD

 
If the plume is present in a pixel for more than one frame we can improve performance further by 
cascading the detector outputs. For instance, if we repeat the experiment of Figure 5, but multiply the 
output of two consecutive detector outputs we get the results of Figure 6.  This results in a significant 
SNR performance improvement. These high SNR values allow the detection thresholds to be raised which 
will result in a significant drop in false alarms. Even if the plume is not present in a single pixel during 

 
 

13



Unclassified  Unlimited Distribution 

two consecutive frames we could use a more sophisticated algorithm which searches the FOV to align the 
plume from one frame to the next, provided there is adequate SNR in each frame. 
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Figure 6. Performance of cascaded detectors on a release of SF6 (Field Data). 

 
 

CONCLUSIONS 
 

This paper presented a set of temporal-spectral detectors for target detection in hyperspectral imagery. 
This set is not complete since the TSAD  and TSCD  detectors can be coupled with any standard detector. 
The advantage of the coupled detectors is that they combine temporal knowledge with spectral knowledge 
and only alarm to temporally anomalous signals which are a good match spectrally with the target vector. 
The significant increase in SNR from this approach allows the detection thresholds to be raised and the 
false alarm rate to be greatly reduced. The FIRST data experiments demonstrated the effectiveness of this 
approach. 
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