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Abstract
The most common theoretical approach to model
the interactions in a biochemical process is through
chemical reactions. Often for these reactions, the
dynamics of the first M-order statistical moments
of the species populations do not form a closed
system of differential equations, in the sense that the
time-derivatives of first M-order moments generally
depend on moments of order higher than M. However,
for analysis purposes, these dynamics are often made
to be closed by approximating the needed derivatives
of the first M-order moments by nonlinear functions
of the same moments. These functions are called the
moment closure functions.

This paper presents a systematic procedure to
construct these moment closure functions. This is done
by first assuming that they exhibit a certain separable
form, and then matching time derivatives of the exact
(not closed) moment equations with that of the approx-
imate (closed) equations for some initial time and set
of initial conditions. Using these results a stochastic
model for gene expression is investigated. We show
that in gene expression mechanisms, in which a protein
inhibits its own transcription, the resulting negative
feedback reduces stochastic variations in the protein
populations.

1 Introduction
This paper presents a systematic procedure for con-
structing approximate stochastic models for chemical
reactions used for modeling biochemical processes
such as gene regulatory networks. Such models are
motivated by the recent work [1, 2] which provide
considerable experimental evidence for stochastic
fluctuations in gene expression and regulation and may

account for the large amounts of cell to cell variation
observed in genetically identical cells exposed to the
same environment conditions [3, 4]. Furthermore,
studies of engineered genetic circuits designed to
act as toggle switches or oscillators have revealed
large stochastic effects. Stochastically is therefore an
inherent feature of biological dynamics and developing
stochastic models which capture this stochastically
have become increasingly important. Analysis of such
model not only helps us to discover the benefits that
biology draws from stochasticity but also helps to
explore its use for other applications, for example,
design of stochastic bio-inspired decision algorithms
to control the motion of networks of artificial mo-
bile agents such as small autonomous micro-UAVs
or UGVs involved in surveillance and/or tracking
missions. Although our work focuses on biochemical
reactions, the modeling tools developed in this paper
can be applied to a very general class of stochastic
systems, in particular Markovian systems whose
state evolves due to events triggered by stochastic
processes. Other examples of such systems include
ecological systems where these events correspond to
births, recruitment or deaths and in networked control
systems where the events correspond to exchanges of
messages, communication faults, etc.

The most common theoretical approach is to model
the interactions in a biochemical process as chemical
reactions. The stochasticity in the biochemical process
is then captured using the stochastic formulation of
chemical kinetics which treats the reactions as proba-
bilistic events. The time evolution of the system is then
described by a single equation for a probability density
function, where time and species populations appear
as independent variables, called the Chemical Master
Equation (CME) [5, 6]. This equation can only be
solved analytically for relatively few, highly idealized
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cases and generally Monte Carlo simulation tech-
niques are used which are also known as the Stochastic
Simulation Algorithm (SSA) to study stochasticity
in bio-chemical reactions [7, 8, 4, 9, 10]. Since one
is often interested in only the first and second order
statistical moments for the number of molecules of
the different species involved, much effort can be
saved by applying approximate methods to produce
these low-order moments, without actually having to
solve for the probability density function. Various
such approximate methods have been developed, for
example, using the Fokker-Plank approximation, ex-
panding the Master equation, etc [5, 11]. In this paper,
an alternative approximate method for estimating
lower-order moments is introduced using moment
closure techniques.

We show that the biochemical reactions can be
conveniently modeled as a Stochastic Hybrid System
(SHS), the state of which are the populations of
different species involved in the reactions [12]. Then,
the time evolution of the moments of the population
is obtained using results from the SHS literature. It
has been shown that for reactions with more than one
reactants, time evolution of the first M order moments
of the population is not closed, in the sense that it
depends on moments of order higher than M. For
analysis purpose, the time evolution of the first M
order moments is made to be closed by approximating
these higher order moments as a nonlinear function
of moments up to order M, which we refer to as
the moment closure function. This paper presents
explicit formulas to construct these moment closure
functions using the recently introduced techniques
[13, 14] of matching time derivatives between the the
exact (not closed) moment equations with that of the
approximate (closed) equations for some initial time
and set of initial conditions. The striking feature of
these formulas are that they are independent of the
reaction parameters (reaction rates and stoichiometry),
moreover, the accuracy of the approximation can be
improved by increasing M.

These closed moment equations provide time evolution
of lower order moments for populations of species
involved in the biochemical reactions. Apart from
providing fast simulation times and lesser computation
burden compared to Monte Carlo simulations these
approximate models also open the doors to other types
of analysis tools, for example, sensitivity analysis
of chemical master equation with respect to reaction

parameters. However, they provide lesser information
about the probability distribution as compared to
Monte Carlo simulations. To illustrate the applicability
of our results, we investigate a stochastic model for
gene expression. We show that a negative feedback
mechanism caused by the expressed protein inhibiting
its own transcription, reduces stochastic variations in
the protein populations.

2 Stochastic Modeling of Chemi-
cally Reacting Systems

Consider a system of n species X j, j ∈ {1, . . . ,n} inside
a fixed volume V involved in K reactions of the form

Ri : ui1X1 + . . .+uinXn
ci−→ vi1X1 + . . .+ vinXn +∗

(1)

for all i∈ {1, . . . ,K}, where ui j ∈N≥0 is the stoichiom-
etry associated with the jth reactant in the ith reaction
and vi j ∈ N≥0 is the stoichiometry associated with the
jth product in the ith reaction, and ∗ represents products
other than the species X j. As all chemical reactions oc-
cur in a series of elementary reactions [15], which are
generally uni- or bi-molecular, we assume

ui1 + . . .+uin ≤ 2, ∀i ∈ {1, . . . ,K}, (2)

and hence, we only allow reactions which have the
form given in the first column of Table 1. The reac-
tion parameter ci characterizes the reaction Ri and, to-
gether with the stoichiometry, defines the probability
that a particular reaction takes place in an “infinitesi-
mal” time interval (t, t + dt]. This probability is given
by the product cihidt where hi is the number of distinct
molecular reactant combinations present in V at time t
for the reaction Ri and cidt is the probability that a par-
ticular reactant combination of Ri will actually react on
(t, t + dt]. The number, hi depends both on the reac-
tants stoichiometry ui j in Ri and on the number of reac-
tant molecules in V . Table 1 shows the value of hi for
different reaction types [7]. In this table and in the se-
quel, we denote by x j, the number of molecules of the
species X j in the volume V and x := [x1, . . . ,xn]T ∈Rn.

To model the time evolution of the number of
molecules x1, x2, . . . , xn, a special class of Stochastic
Hybrid Systems (SHS) were introduced in [12] . More
specifically, to fit the framework of our problem, these
system are characterized by trivial dynamics

ẋ = 0, x = [x1, . . . ,xn]T , (3)
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Table 1: hi(x) for different reaction types.
Reaction Ri hi(x)
X j −→ ∗ x j

X j +Xt −→ ∗, (t 6= j) x jxt

2X j −→ ∗ 1
2 x j(x j −1)

a family of K reset maps

x = φi(x−), φi : Rn→Rn, (4)

and a corresponding family of K transition intensities

λi(x), λi : Rn→ [0,∞) (5)

for all i ∈ {1, . . . ,K}. Each of the reset maps φi(x), and
corresponding transition intensities λi(x) are uniquely
defined by the ith reaction and given by

x 7→ φi(x) =


x1−ui1 + vi1
x2−ui2 + vi2

...
xn−uin + vin

 , λi(x) = cihi(x) (6)

for all i ∈ {1, . . . ,K}. In essence, if no reaction takes
place, the state remains constant and whenever the ith

reaction takes place, φi(x) is “activated” and the state
x is reset according to (6), furthermore, the probability
of the activation taking place in an “infinitesimal” time
interval (t, t +dt] is λi(x)dt.

3 Moment Dynamics
Given a vector m = (m1,m2, . . . ,mn)∈Nn

≥0 of n greater
than equal to zero integers, we define the (uncentered)
moment of x associated with m to be

µ
(m)(t) = E

[
x(m)(t)

]
, ∀t ≥ 0 (7)

where E stands for the expected value and

x(m) := xm1
1 xm2

2 · · ·xmn
n . (8)

The sum ∑
n
j=1 m j is called the order of the moment m.

Using results from the SHS literature, more specif-
ically by applying Theorem 1 in [16] to the SHS
(3)-(5), one can show that the time derivative of a
moment µ(m) is

µ̇
(m) = E

[
K

∑
i=1

(
φi(x)(m)−x(m)

)
λi(x)

]
. (9)

If any of the reactions have more than one reactants, i.e,
has the form X j +Xt

ci−→ ∗ for which λi(x) is quadratic
in x, then, from (9) it can been shown that the time
derivative of a moment of order m∗, is given by a linear
combination of moments of orders upto m∗ + 1 [17].
Hence, if one stacks all moments in an infinite vector

µ∞ = [µ(m1),µ
(m2), · · · ]T , mp ∈ Nn

≥0, ∀p ∈ {1,2, . . .}
(10)

its dynamics can be written as

µ̇∞ = A∞µ∞, (11)

for some infinite matrix A∞. As the above infinite di-
mensional system cannot be solved analytically, we
truncate (11) by creating a vector

µ = [µ(m1),µ
(m2), . . . ,µ

(mk)]T ∈ Rk (12)

containing the top k elements of µ∞ which correspond
to the lower-order moments of interest. Then, (11) can
be rewritten as

µ̇ = Ik×∞A∞µ∞ = Aµ +Bµ̄ (13)

where µ ∈ Rk, Ik×∞ denotes a matrix composed
of the first k rows of the infinite identity matrix
and µ̄ ∈ Rr contains all the moments that appear in
the first k elements of A∞µ∞ but that do not appear in µ .

In this paper we let the vector µ ∈ Rk contain all
the moments of x of order upto M ∈ N≥2, i.e., we con-
sider an Mth order truncation. With this, the evolution
of vector µ can be written as (13) for some matrices
A and B with µ̄ ∈ Rr being a vector of moments of
order M+1. Our goal now is to approximate (13) by a
finite-dimensional nonlinear ODE of the form

ν̇ = Aν +Bϕ̄(ν), ν = [ν(m1),ν(m2), . . . ,ν(mk)]T (14)

where the map ϕ̄ : Rk → Rr should be chosen so
as to keep ν(t) close to µ(t). This procedure is
commonly referred to as moment closure. We call
(14) the truncated moment dynamics and each element
ϕ(m̄)(µ) of ϕ̄(µ) the moment closure function for the
corresponding element µ(m̄) in µ̄ .

The procedure we adopt to construct these mo-
ment closure functions is to first assume a certain
separable form for each element ϕ(m̄)(µ) of ϕ̄(µ) and
then matching time derivatives of µ and ν at some
initial time t0, for every deterministic initial condition
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of the form x(t0) = x̄ with probability one. The choice
of initial conditions is justified by the fact that the
class of deterministic distributions forms a natural
basis for the infinite dimensional space Ω∞ containing
every possible state µ∞ of (11). Referring the reader
to [17] for further details the above procedure leads to
the following moment closure functions. Assume that
each entry ϕ(m̄)(µ) of ϕ̄ has the following separable
form

ϕ
(m̄)(ν) =

k

∏
p=1

(
ν

(mp)
)γp

= ν
(γ), γ = (γ1, . . . ,γk) (15)

with γp are the unique solution of the following system
of linear equations1

C(m̄)
(ms) =

k

∑
p=1

γpC(mp)
(ms) , ∀s = {1, . . . ,k} (16)

where we define for vectors m̂ = (m̂1, . . . , m̂n) and m̌ =
(m̌1, . . . , m̌n)

C
ˆ(m)

(m̌) := Cm̂1
m̌1

Cm̂2
m̌2

. . .Cm̂n
m̌n

. (17)

Then, when µ(t0) = ν(t0), we have

diµ(t0)
dt i =

diν(t0)
dt i + εi(x̄), ∀i≥ 1

for every deterministic initial conditions of the form
x(t0) = x̄ with probability one for every integer x̄. In
the equation above, each entry of the vector diµ(t0)

dt i is a
polynomial in x̄, whose degree exceeds by at least M
the degree of the corresponding entry of the error vec-
tor εi(x̄). Thus, with increasing M, the truncated mo-
ment dynamics ν(t) provides a more accurate approxi-
mation to the moments in µ(t). The striking feature of
the moment closure constructed is that they are inde-
pendent of the reaction parameters (reaction rates and
stoichiometry) and moreover the dependence of higher-
order moment on lower order ones is consistent with
x being jointly lognormally distributed, in spite of the
fact that the procedure used to construct ϕ did not make
any assumption on the distribution of the population.
For a three-specie reaction (n = 3) and a second order

1C`
h is defined as follows: ∀`,h ∈ N≥0

C`
h =

{ `!
(`−h)!h! , `≥ h
0, ` < h

where `! denotes the factorial of `.

truncation M = 2, i.e,

µ = [µ(1,0,0),µ
(0,1,0),µ

(0,0,1),µ
(2,0,0),µ

(0,2,0),µ
(0,0,2),

µ
(1,1,0),µ

(1,0,1),µ
(0,1,1)]T

(18)

Table 2 lists moment closure functions obtained from
(16), which approximate different third order moments
of x in terms of the first two.

Table 2: Moment closure function ϕ(m̄)(µ) for differ-
ent third order moments µ(m̄) with M = 2 and n = 3.

µm̄ ϕ(m̄)(µ)

µ(3,0,0)

(
µ(2,0,0)

µ(1,0,0)

)3

µ(2,1,0)
(

µ(2,0,0)

µ(0,1,0)

)(
µ(1,1,0)

µ(1,0,0)

)2

µ(1,1,1) µ(1,1,0)µ(0,1,1)µ(1,0,1)

µ(1,0,0)µ(0,1,0)µ(0,0,1)

4 Modeling of Gene Expression
with negative feedback

In this section we consider negative feedback in
gene expression caused by the protein inhibiting its
own transcription. Such auto-regulatory networks
are common means of stabilizing protein levels in
biochemical pathways [18]. This negative feedback
is realized by first assuming that there is an activator
that activate a gene to transcribe a mRNA. Proteins
are translated from the gene at a constant rate. These
proteins can then interact with the activator to change
its shape, making it incapable of activation. Hence,
more protein implies lesser number of activators, and
hence, lesser transcription.

Denoting the mRNA, protein and the activator by
X1, X2 and X3, respectively, the above interactions can
be written as

Gene+X3
Kr−→ Gene+X3 +X1,

X1
dr−→ ∗, X1

Kp−→ X1 +X2, X2
dp−→ ∗

∗ Ka−→ X3, X3
da−→ ∗

X3 +X2
k1−→ X2 +∗.
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Hence the mRNA X1 is transcribed from the gene at a
rate Krx3, where x3 denotes the number of molecules
of the activator. The protein X2 is translated from the
mRNA at a constant rate Kp. Both mRNA and the pro-
tein decay at rates dr and dp respectively. Ka and da
denote the birth and death rate of the specie X3, respec-
tively. The rate at which the protein X2 reacts with the
activator X3 and takes it away from the transcription
process is given by k1. Note that increasing values of
k1 denote larger negative feedback. If k1 = 0 then there
is no negative feedback. The deterministic chemical
rate equations are then given by

ẋ1D = Krx3D −drx1D , ẋ2D = Kpx1D −dpx2D (19a)
ẋ3D = Ka− (da + k1x2D)x3D (19b)

where x1D , x2D and x3D are continuous deterministic
approximates of x1, x2 and x3, respectively. At steady
state we have

Ka

da
=
[

1+
k1

da
x2D(∞)

]
x3D(∞). (20)

As this deterministic model does not provide us with
any information about the stochasticity in the protein
population, we turn to a stochastic formulation. The
above interactions can be modeled as a SHS with reset
maps

x 7→ φ1(x) =

 x1 +1
x2
x3

 ,x 7→ φ2(x) =

 x1−1
x2
x3


x 7→ φ3(x) =

 x1
x2 +1

x3

 ,x 7→ φ4(x) =

 x1
x2−1

x3


x 7→ φ5(x) =

 x1
x2

x3 +1

 ,x 7→ φ6(x) =

 x1
x2

x3−1


x 7→ φ7(x) =

 x1
x2

x3−1


and corresponding transition intensities given by

λ1(x) = Krx3, λ2(x) = drx1, λ3(x) = Kpx1, (22)
λ4(x) = dpx2, λ5(x) = Ka, λ6(x) = x3da (23)
λ7(x) = k1x2x3. (24)

Using (9) the time derivative of the the vector µ which
is given by (18) is

µ̇ = Ā+Aµ +Bµ̄. (25)

for some matrices Ā, A, B and

µ̄ = [µ(0,1,2),µ
(0,2,1),µ

(1,1,1)]T .

Using Table 2 the above system can be closed using the
following approximations

µ
(0,1,2) =

(
µ(0,0,2)

µ(0,1,0)

)(
µ(0,1,1)

µ(0,0,1)

)2

(26a)

µ
(0,2,1) =

(
µ(0,0,2)

µ(0,0,1)

)(
µ(0,1,1)

µ(0,1,0)

)2

(26b)

µ
(1,1,1) =

µ(1,1,0)µ(0,1,1)µ(1,0,1)

µ(1,0,0)µ(0,1,0)µ(0,0,1) . (26c)

The statistical variations in the protein population can
now be obtained from the closed system (25)-(26). In
this paper, we use the steady state coefficient of varia-
tion defined by

CV :=

√
E[x2

2(∞)]− (E[x2(∞)])2

E[x2(∞)]
(27)

=

√
µ(0,2,0)(∞)−

(
µ(0,1,0)(∞)

)2

µ(0,1,0)(∞)
(28)

to quantify noise strength in the protein population. As
analytical solution of the closed moment equations are
too complicated to be of any use we investigate them
numerically by taking

Kr = 1, Kp = 5 sec−1, dr = .1 sec−1,

dp = .001 sec−1, da = 100 sec−1.

For comparison purpose, we now vary parameters k1
and Ka so as to keep x2D(∞) = 500 fixed and see its
effect on the coefficient of variation. This implies from
(20) that x3D(∞) = .01 and for a given k1, Ka is always
chosen such that

Ka = da

[
1+

k1

da
x2D(∞)

]
x3D(∞). (29)

Table 3 lists the values of CV for different values of k1
obtained from the steady states of (25)-(26). Note that
CV is lower with non-zero values of k1 than with when
there is no feedback, i.e k1 = 0. Hence, we conclude
that such negative feedback reduce stochastic varia-
tions in the protein numbers.
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Table 3: Steady state coefficient of variation in the pro-
tein population CV obtained from (25)-(26) for differ-
ent values of k1.

k1 CV
0 .32
.2 .28
.8 .26

1.8 .23

5 Conclusions and Future work

An approximate stochastic model for chemically
reacting systems was presented in this paper. This
was done by representing the population of various
species involved in a set of chemical reactions as the
continuous state of a SHS. With such a representation,
the dynamics of the infinite vector containing all
the statistical moments of the continuous state are
governed by an infinite-dimensional linear system of
ODEs, which we approximate by finite-dimensional
nonlinear ODEs.

This typically involved approximating higher or-
der statistical moments of the population in terms of
the lower order moments. Using derivative matching
techniques, explicit analytical formulas to construct
these approximations were provided. Using then
we showed that in gene expression, where a protein
inhibits its own transcription, the resulting negative
feedback reduces stochastic variations in the protein
populations.

An interesting line of future work would be look
at gene expression and regulation where the mRNA
transcribed from the gene is not immediately acces-
sible for translation. This would corresponds to gene
expression in Eukaryotic cells where the mRNA is
transported from the nucleus to the cytoplasm where
translation takes place. This can be incorporated in our
model by introducing another specie that corresponds
to the inactive mRNA and is being converted into an
active mRNA at some constant rate. Another possible
direction of future work would be to investigate
stochasticity in gene cascade activation network where
protein expressed by one gene activates another gene
to express a second protein and negative feedback
schemes within this network.
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