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ABSTRACT 

 

Wireless sensor networks are being widely 

deployed for providing physical measurements to 

diverse applications that have wide variety of data 

quality requirements. Energy is a precious resource in 

such networks as sensor nodes are typically powered 

by batteries with limited power and high replacement 

cost. This paper presents PSS: an energy-efficient 

stochastic sensing framework for wireless sensor 

platforms. PSS is a node-level framework that utilizes 

knowledge of the underlying data streams as well as 

application data quality requirements to conserve 

energy on a sensor node. PSS employs a stochastic 

scheduling algorithm to dynamically control the 

operating modes of the sensor node components. This 

scheduling algorithm enables an adaptive sampling 

strategy that aggressively conserves power by 

adjusting sensing activity to the application 

requirements. Using experimental results obtained on 

Power-TOSSIM with a real-world data trace, we 

demonstrate that our approach reduces energy 

consumption by 29-36% while providing strong 

statistical guarantees on data quality. 

 

 

1. INTRODUCTION 

 

 

1.1 Sensor Energy Management 

 

Unattended Ground Sensors (UGS) are being 

widely deployed for providing situational awareness 

that is vital to Army’s Future Combat Systems (FCS). 

These small sensors are organized into mesh networks 

providing continuous monitoring functions over large 

areas. Energy efficiency has been widely recognized as 

one key issue and presents major challenges 

(Estrin,2002). Many sensor platforms now allow their 

main components to have multiple operating modes 

with significantly different power levels 

(Shayder,2004; Polastre,2005). Even low-end sensors 

such as temperature/humidity sensors on the Telos 

platform (Telos,2004; SHT,2004) now allow 

automatic mode switching. Most existing research 

efforts in sensor energy management have focused on 

optimizing the power consumption of the radio and the 

CPU (Estrin, 2002; Boulis, 2003). These efforts have 

been driven largely by the conventional wisdom that 

these components consume most of the power on a 

sensor node (Estrin, 2002). In reality, the operation of 

sensors can be critical in determining the lifetime of a 

sensor node for the following reasons. First, 

specialized sensors can be energy consuming. For 

example, the heading sensor offered by xBow 

(xBow,2004) can consume a power of about 375 mW, 

which is much higher than the 60 mW consumed by 

the mica2 radio transmitting at full power. Second, 

after common CPU and radio energy management, 

even low power sensors, if not well managed, could 

account for a significant fraction of the total energy 

consumption. Our experiments, presented in Section 4, 

reveal that the SHT series temperature sensor 

integrated on the Telos platform, that uses only 1.65 

mW of power while sampling, could consume up to 

38% of the total energy at a modest sampling rate of 

0.1 Hz. After excluding the inherent idle energy 

consumption, which can be improved only through 

better hardware design, the percentage of sensing is 

even higher (about 45-90%). Thus, effective 

modulation of the sensor operating modes is crucial 

for better energy conservation. Moreover, reduced 

sensing activity enables the CPU and the radio to 

spend more time in sleep mode, thus resulting in even 

higher energy savings for these components. Therefore, 

we believe that sensor power control is not only 

desirable but essential for sensor platform energy 

management. 

 

 

1.2 Dynamic Data Quality Requirements 

 

Sensor platforms support versatile applications, 

which have widely varying data quality requirements 

from the sensor data streams (Tatbul,2003). For 

instance, a Heating, Ventilation and Air-conditioning 
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(HVAC) application might require fine-grained 

temperature readings of a building. On the other hand, 

a fire monitoring application may only need to know 

whether the temperature is greater than a pre-defined 

threshold, and could afford to have coarse-grained 

accuracy in its temperature readings. In addition, data 

quality requirements may change even for the same 

application over different time periods and for 

different value ranges (Tatbul,2003). For example, the 

HVAC application may require more precise readings 

during daytime when offices are occupied, while only 

coarse measurements might be sufficient at night when 

offices are empty. System support for dynamic data 

quality on sensor nodes also provides applications 

with an effective means to achieve graceful 

performance degradation (Deshpande,2005) when the 

network is congested or the sensor nodes are 

constrained. In case of such constraints, the 

application can throttle the data sensing and 

transmission rates by reducing its data fidelity 

requirement. As a result, sensor platforms must be able 

to satisfy dynamic data quality requirements. 

 

 

1.3 Adaptive Data Sampling 

 

Due to the dynamic data quality requirements, the 

determination of proper data sampling rate on a sensor 

platform must be driven by application semantics and 

the dynamics of the measured data. Existing sensor 

network applications such as TinyDB (Madden,2002) 

do not account for these requirements, and the 

conventional sampling rates used in such applications 

are static user-supplied parameters. Statically defined 

sampling rates result in either energy wastage under 

stable conditions, or unsatisfactory sample quality 

when the physical phenomenon experiences rapid 

changes. It is thus desirable to provide adaptive 

sampling as a system service to end applications, 

which only need to supply semantic data requirements. 

This distinction between the semantic and the actual 

sampling rates would benefit both low as well as high 

data rate applications by achieving a better tradeoff 

between energy and data quality. Since sensor data 

streams are measurements of physical phenomena, 

correlations within data streams are inherent. For 

instance, the temperature variation in a room is 

governed by heat transfer laws, which limit the amount 

of variation that can occur between two successive 

temperature readings. Such temporal correlations can 

be exploited for energy management by taking sensor 

measurements only when large variations are expected 

in the underlying data values. In this paper, we present 

PSS: an energy-efficient sensing framework that 

utilizes knowledge of the underlying data streams to 

conserve energy on a sensor node, while satisfying the 

application data quality requirements. Coupled with 

data stream prediction models and data quality models, 

our scheduling framework dynamically controls the 

operating modes of the sensor node components. The 

core of our approach is a stochastic scheduling 

algorithm that performs data sampling in a 

probabilistic manner. Using experimental results 

obtained on an enhanced version of PowerTOSSIM 

(Shnayder,2004) we demonstrate that our approach 

reduces energy consumption by 29-36% while 

providing strong statistical guarantees on data quality. 

 

 

2. SYSTEM ARCHITECTURE AND 

COMPONENT MODELS 
 

Figure 1 shows the architecture of the scheduling 

framework, which implements the PSS scheme on a 

wireless sensor platform. A data stream model is first 

constructed from historic readings. State change 

probabilities can then be computed based on predicted 

future readings and data quality requirements. A 

stochastic scheduling algorithm is then applied to 

compute the sampling probability that minimizes the 

sampling activities while guaranteeing the quality 

requirements. Feedbacks from the real time readings 

are used to dynamically adjust parameters used in the 

scheduler. 
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Figure 1: Architecture of PSS Scheme 

 

 

2.1 Data Quality Model 
 

The quality of measurement data can be generally 

quantified in terms of temporal resolution, 

measurement resolution, and sampling quality. 

Temporal resolution refers to the maximum available 



sampling frequency, which determines the granularity 

of temporal changes that can be captured in the data 

stream. We define this maximum sampling frequency 

as the base sampling frequency. The base sampling 

frequency could depend on the physical limitations of 

the sensing device, the available communication 

bandwidth, or the highest temporal resolution required 

by the application. Thus the sampled data sequence at 

the base sampling frequency represents the closest 

approximation to the underlying process that could be 

achieved by a sensor node in an application. We refer 

to this data sequence obtained by sensing at the base 

sampling frequency as the baseline data sequence. The 

concept of measurement resolution refers to a data 

range around the measured value that contains the 

actual data value. For example, a measurement 

resolution of 2
o
C for a measurement value of 100

 o
C 

means that the true value is bounded in the range (98
 

o
C, 102

 o
C). We refer to this measurement resolution 

as the relative resolution threshold σ, capturing the 

relative error range. In addition, we use the term 

absolute resolution threshold to denote the absolute 

difference between the measured value and an absolute 

threshold. Absolute resolution threshold is commonly 

used in predicate-based filtering operations in sensor 

network queries. We then define state change to be a 

change in the data value exceeding the resolution 

threshold. Intuitively, a state change corresponds to an 

interesting sensor measurement that needs to be 

reported to the application. 

 

In the proposed PSS framework, unnecessary 

sensing operations are avoided through adaptive 

sampling, i.e., data is sensed only when a state change 

is expected. With this approach, it is possible to miss 

certain state changes if data was not sampled at those 

time instances. We refer to such missed state changes 

as false negatives or misses, as they correspond to a 

false expectation of not having a state change when 

actually there is one. Non-zero misses are commonly 

acceptable to many monitoring and aggregation 

estimation applications in sensor networks. Similarly, 

it is possible for this sensing approach to make a 

measurement when there is no actual state change. We 

refer to such redundant sensing events as false 

positives or false hits, as they correspond to a false 

expectation of observing a state change when there is 

none.  

 

Note that a sensing scheme should strive to 

minimize both false negatives as well as false positives: 

while false negatives result in degraded data quality, 

false positives result in energy wastage. We define two 

quantities — the miss ratio µ and the false hit ratio ρ— 

to quantify the degradation in data quality and 

wasteful sampling respectively: 

µ ρ= =
n

n

n

n

f p
,  

where, nf and np denote the number of misses and false 

hits respectively, and n denotes the total number of 

sampling points (corresponding to the base sampling 

frequency). 

 

 

2.2 Data Stream Prediction Model 
 

PSS employs a data stream model to predict future 

sensor readings from historical data. Statistical models 

are particularly suitable for sensor network 

applications (Deshpande,2004). While several 

sophisticated statistical models (Vilalta,2002; 

Deligiannakis,2004) can be used, we used a biased 

random walk model in our experiments. This model is 

a type of first-order Markov model that we chose for 

its computational efficiency and compact 

representation. This simple model can readily capture 

the intrinsic correlations in data streams and is 

sufficient to evaluate the effectiveness of our 

scheduling algorithm. We now summarize this model 

here. More details can be found in a technical report 

(Liu,2005). In this model, a k-step prediction is given 

by: 

Xi+k = Xi + N(µk, σk) 

where, Xi denotes the data value at time instance i, 

Xi+k denotes the predicted data value at time i + k, i.e., 

k time steps forward from step i, and N(µ,σ) denotes a 

normal distribution with mean µ and standard 

deviation σ. The possibly non-zero mean value µ or 

the bias, captures the systematic trend in the data 

stream, while σ captures the process random noise and 

non-linear error components. Given the data quality 

model with a resolution threshold δ, computing the 

state change probability is as simple as looking up the 

value of probability in a locally stored unit normal 

distribution table after appropriate transformations. 

The model can be constructed from a training data 

stream and updated with new data samples. The initial 

construction and subsequent updates could be carried 

out at base stations, similar to (Deshpande,2004), 

taking advantage of the storage and computing power 

of base stations in addition to more complete view of 

measurement data streams. Since the prediction 

models take small number of parameters and are 

updated infrequently, the amortized communication 

cost of model updates on a sensor node is expected to 

be negligible. 



 

 

3. STOCHASTIC SCHEDULING ALGORITHM 
 

 

3.1 Overview 
 

In this section, we present a stochastic scheduling 

algorithm that employs the underlying data stream 

model and the data quality requirement to determine 

sampling instants for the sensor. The goal of this 

algorithm is to minimize the sensor energy 

consumption while meeting the desired data quality 

requirements. The intuition behind our algorithm is to 

sample with high probability at instants when state 

change probabilities are expected to be high. The 

sensor scheduling algorithm must satisfy several 

important requirements while determining the sensing 

points: • The overall energy consumption of a sensing 

process is the sum of energy spent in the sensors (for 

making measurements), the radio (for sending required 

value updates when necessary), and keeping the CPU 

in power-on state (for sensing, radio transmission and 

scheduling operations). The scheduling algorithm must 

try to minimize the sensing energy consumption of all 

these components. • Since the scheduler tries to save 

energy by not sampling at some time instants, it is 

possible to miss some of the state change events. In 

this case, the scheduling algorithm must ensure that 

the overall sampled data meets an application-

specified data quality requirement such as the miss 

ratio µ, defined in Section II-A. As sensing decisions 

must be made for future instants Based on predicted 

information, uncertainty is inherent in the decisions. 

For such probabilistic events, deterministic scheduling 

would result in poor data quality or energy wastage. 

Therefore, scheduling decisions must be stochastic to 

account for the uncertainty. Overall, the scheduling 

algorithm must minimize the energy consumption 

while meeting the desired data quality requirements in 

a stochastic manner. Note that our stochastic 

scheduling algorithm does not depend on the specific 

prediction model and data quality model being used, 

and can be used in conjunction with any kind of 

models as long as they can estimate state change 

probabilities at future time instants. Next, we 

formalize the scheduling problem and present our 

solution. 

 

 

3.2 Problem formulation 
 

We formulate the stochastic scheduling problem as 

an optimization problem that minimizes the total 

energy consumption while providing statistical 

guarantees on data sampling quality. Let us assume 

that the baseline data sequence consists of N data 

samples, and the probability of state change at a 

sampling instant i (determined using the underlying 

data stream model and the application’s resolution 

threshold δ) is qi. Further assume that the average 

energy spent for each measurement is eavg (this 

includes the average energy spent by the sensor, CPU, 

and the radio). Finally, let the application’s data 

quality requirement be expressed as a tolerance level 

FN ∈[ , ]0 1 , such that its miss ratio µ ≤ FN. Then, the 

goal of the stochastic scheduling algorithm is to 

determine a probability of sensing pi ∈[ , ]0 1  for 

each sampling instant such that it minimizes the total 

energy 

E p ei avgi

N
= ⋅

=∑ 1
      (1) 

under the constraint 

( )1
1

− ⋅
≤=∑ p q

N
F

i ii

N

n                   (2) 

 

The constraint given by Inequality 2 satisfies the 

statistical data quality requirement of the application 

as we require the expected miss ratio to be less than 

the application-specified tolerance level. Recall from 

Section II-A that the expected miss ratio, µ, is 

evaluated as the expected number of false negatives 

divided by the total number of data samples. Thus, 

given the false negative probabilities fni over all 

sampling instances, we have, 

µ = =∑ f

N

nii

N

1
                                     (3) 

 

To catch state changes more effectively, the higher 

the probability of state change qi, the higher the 

probability of sensing pi should be. Therefore, we 

assume that pi is, by design, positively correlated to 

the probability of state change qi at each sampling 

instant. Hence, the false negative probability fni at each 

scheduling instant is less than what would be obtained 

by assuming independence between pi and qi. In other 

words, fni ≤(1 − pi) · qi. Thus, the miss ratio (Equation 

3) reduces to 

µ = ≤
− ⋅

= =∑ ∑f

N

p q

N

nii

N

i ii

N

1 1
1( )

 

 

Thus, the constraint (Inequality 2) satisfies the data 

quality requirement µ ≤ Fn. In fact, the constraint is a 



conservative bound on the data quality requirement, 

such that if a schedule satisfies the constraint, it must 

also satisfy the data quality requirement. 

 

 

3.3 Scheduling Algorithm 
 

Having presented the problem formulation, we now 

present a stochastic scheduling algorithm that closely 

approximates the optimization problem. The goal of 

the scheduling algorithm is to determine the sensing 

probability pi for each sampling instance given the 

state change probability qi for that scheduling point. 

Given qi, solving for the precise value of pi would 

require the joint distribution of the random processes 

of sampling and state changing. This distribution is 

neither available nor desirable due to its high storage 

and computational overhead. Instead, we simplify the 

computation of pi as follows: we first determine the 

upper and lower bounds for pi, and the scheduling 

algorithm then chooses a value from this range based 

on a heuristic we describe later. Intuitively, the upper 

bound of pi specifies a limit such that selecting values 

higher than it would only waste energy for providing 

unnecessary data quality improvement. On the other 

hand, the lower bound of pi corresponds to a limit, 

such that going below it would always result in 

violation of the application’s tolerance level. 
 

1) Determining the Upper Bound of Sensing 

Probability: To determine the upper bound on the 

value of pi for a given qi value, our scheduling 

algorithm performs local Optimization instead of 

global optimization. Note that local optimization 

meets a stricter requirement since satisfying the 

constraint at each sampling instance automatically 

satisfies the constraint over all sampling instances. In 

other words, the optimization problem is reduced to 

minimizing pi at each scheduling instant under the 

constraint 

(1 − pi) · qi ≤Fn, 

which yields the solution 

i

nub

i
q

F
P −= 1  if 1≤< in qF ; = 0 otherwise. 

 

In other words, pi
ub
is the minimum value of pi that 

guarantees the satisfaction of the data quality 

requirement for each sensing instance. This value of pi 

is an upper bound on the value of the sensing 

probability, because, any sensing probability value 

higher than pi
ub
, while always satisfying the local 

optimization constraint, would be more wasteful of 

energy. 
 

2) Determining the Lower Bound of Sensing 

Probability: To determine the lower bound on the 

value of pi, we consider the most optimistic scenario 

where every sample catches a real state change, i.e., 

there are no false positives. In this scenario, the data 

quality requirement can be satisfied only if qi − pi ≤ Fn, 

which provides us with the following lower bound: 

ni

lb

i FqP −=  if 1≤< in qF ; = 0 otherwise. 

 

This value of pi is the lower bound because any 

sensing probability value smaller than pi
lb
would 

always result in violating the data quality requirement. 

Thus, the value pi
lb
corresponds to the smallest value 

of pi given qi, such that the data quality constraint 

could be met. 
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Figure 2: Relation between sensing probability and 

state change probability 
 

3) Selecting the Sensing Probability Value:  Given 

the upper and lower bounds on the value of pi given qi, 

we present a heuristic to select the actual value of pi. 

Note that the application uses a miss ratio bound Fn to 

limit the data quality degradation. Analogously, we 

can bound the energy wastage by using a false hit ratio 

limit Fp. Our heuristic uses this limit Fp as the tuning 

parameter to determine the pi value from the region 

bounded by pi
lb
and pi

ub
. Lower values of Fp 

correspond to more aggressive energy saving, while 

higher values of Fp provide better data quality at the 

expense of higher power consumption. Fp can be 

approximated as Fp = pi · (1 − qi), which yields 



p
F

q
i

p

i

=
−( )1

 

subject to the two bounds derived above. The 

stochastic scheduling algorithm then uses this pi value 

to probabilistically schedule a sensing event at a 

sampling point. Note that this formula also satisfy the 

design principle that the higher state change 

probability is, the higher sampling probability would 

be. Figure 2 shows the relation between the sensing 

probability pi and the state change probability qi for a 

given value of the data quality threshold Fn. The figure 

also shows the intermediate values that pi would take 

based on the value of the tuning parameter Fp. 
 

4) Dynamic Adaptation:  While major trend change 

of the measurement data stream can be captured by 

model updates, local fluctuations and inaccuracy in 

estimation of qi may lead to poor scheduling decisions 

affecting the sample data quality. Thus, it is important 

to ensure that our scheduling scheme adapts to sudden 

or unforeseen data variations. While it is not possible 

to directly observe false negatives (corresponding to 

missed state changes), we can measure false positive 

rates to estimate the dynamism in the underlying data. 

Intuitively, a low rate of false positives implies that 

most of the sensing events result in state changes, 

suggesting the possibility of missing other significant 

changes. Thus, a low false positive rate could be taken 

as an indication of more dynamic data values, and the 

number of sampling events should be increased in this 

case to catch possibly significant state changes. On the 

other hand, if we observe a high rate of false positives, 

it means that we are taking large number of redundant 

samples, many of which are non-informative. Such a 

high rate indicates a relatively stable data process, and 

the sampling probability should be decreased in this 

case to save energy. We use the tuning parameter Fp 

to achieve this dynamic adaptation of the sampling 

probability pi. A Multiplicative Increment Additive 

Decrement algorithm is utilized in hope of fast 

responding to sudden events. 
 

5) Practical Considerations: While sampling 

decision must be made for each time instant, it is 

inefficient to compute at each instant. Instead, at each 

scheduled sensing instant (when the CPU is turned on 

anyway for the sensing operation), the stochastic 

scheduler determines the next sampling instant using a 

pre-generated random number sequence and the 

sequence of sampling probabilities.  

 

4. EXPERIMENTAL EVALUATIONS 
 

4. 1 Experimental Setup 

 

The prototype of this framework was implemented 

on Telos platform running TinyOS. We used real-

world temperature readings to test the effectiveness of 

our prototype. 

 

The temperature data was sampled in an air-

conditioned storage room at sampling frequency of 

0.1Hz for two days (illustrated in Figure 3). The 

simulation time period starts at the data point 

corresponding to about 6 am on the second day in the 

trace, when air conditioning is configured to turn on in 

the room. This choice of data set results in richer 

variations in the test data. A simulation period of 

10,000 seconds (corresponding to 1000 sample points) 

was selected for each run. In order to reduce the 

artifact of pseudo randomness, each simulation run 

was repeated multiple times with different random 

seeds and the arithmetic mean is reported. 
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Figure 3: Sampled Temperature Data Trace 
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Figure 4: Gaussian approximation to the histogram of 

a single-step predictor (k=1) 

The parameters of the data stream model are 

derived from the histogram over a training period of 



10,000 seconds. Figure 4 shows the data histogram 

and the corresponding Gaussian distribution 

approximation for single-step prediction (k=1). The 

close approximation illustrated in this figure validates 

our selection of the biased random walk model. 

Details about this model can be found in (Liu,2005). 

 

 

4.2 Experimental Results 

 

In our experiments, multiple sampling strategies 

were compared. Base sampling corresponds to the 

original user-specified schedule requirement. Ideal 

sampling denotes the most energy-efficient schedule 

assuming Oracle knowledge. Dynamic sampling 

corresponds to the actual schedule. The upper bound 

and lower bound samplings are variations of the 

dynamic sampling. 
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Figure 5: Energy consumption for a fixed resolution 

threshold = 5 

 

Figure 5 shows up to 30% overall energy savings 

through energy-efficient sampling. Even for high data 

quality requirement of a confidence level of 99%, an 

18% saving can be achieved. Excluding the idle 

energy posed by the hardware limit, denoted by the 

dashed line with annotation of  “always sleep” in the 

graph, more than 60% energy saving can be obtained. 

In addition the dynamic sampling achieves an energy 

saving close to the ideal sampling. Note that it is 

possible the dynamic sampling costs less energy than 

ideal sampling as the former is allowed false negative 

misses while the latter catches all state changes. 

 

Figure 6 shows the performance of the stream 

select operation over the temperature stream with a 

predicate of (T > 450, equivalent to about 20
0
C). 

About 35% energy saving were obtained. 
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Figure 6: Energy Saving over for Stream Select 

(absolute resolution threshold = 450 and confidence 

level = 99%) 

 

 

5. RELATED WORK 

 

Recently, several research efforts have focused on 

energy-efficient operations on wireless sensor 

platforms. These efforts include minimizing data 

transmission through data compressions 

(Deligiannakis,2004) and saving energy by turning 

redundant nodes off while maintaining required field 

coverage (Abrams,2004). (Boulis,2003) introduces a 

node-level energy allocation scheme to maximize the 

overall gain to multiple applications running on a 

node. (Deshpande,2004) uses a statistical model at the 

base station to optimize query plans by picking the 

optimum set of attributes and nodes for data 

acquisition. However, it considers only 

communication cost in its cost model and does not 

provide real time scheduling service in response to 

sudden events. PSS is complementary to these 

approaches in that our scheduling framework is a 

node-level real time approach that primarily targets 

sensing energy conservation. PSS thus can be used in 

conjunction with existing work to further reduce 

energy consumption. Dynamic Power Management 

(DPM) (Sinha,2001) and multiple sensing unit 

scheduling (MSUS) (Cam,2005) also attempt to 

control the operating modes of sensor node 

components in response to different workloads. 

Prediction-based dynamic power control has also been 

used in energy management in mobile systems 

(Liu,2004; Lorch,2003) and embedded systems 

(Li,2002; Srivastava,1996). However, unlike our 

approach, they are completely unaware of application 

semantics. Stochastic sensor scheduling has also been 

used in target-tracking applications [23] for 



maximizing estimation accuracy. It is fundamentally 

different from our goal of minimizing energy 

consumption given an accuracy requirement. 

 

 

6. CONCLUDING REMARKS 

 

In this paper, we presented PSS: an energy-efficient 

sensing framework for wireless sensor platforms, that 

can achieve significant energy savings in response to 

dynamic data quality requirements. Our scheduling 

framework dynamically controls the operating modes 

of the sensor node components using a stochastic 

scheduling algorithm coupled with data stream 

prediction models and data quality models. Using 

experimental results obtained on PowerTOSSIM with 

a real world data trace, we showed that our approach 

reduces energy consumption by 29-36% while 

providing strong statistical guarantees on data quality.  

 

As part of future work, we intend to extend our 

work to schedule data transmissions on the network by 

modeling the radio component as a pseudo-sensor and 

to multiple sensors by exploring their correlations. The 

traffic irregularity caused by this type of sensing 

scheduling will also be studied to improve the 

communication protocol stack. 
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