
 

 

 

ADAPTIVE TARGET-SCALE-INVARIANT  

HYPERSPECTRAL ANOMALY DETECTION 

 
João M. Romano 

U.S. Army’s Armament Research & Development Center (ARDEC)
  

Picatinny, New Jersey, 07806 

joao.m.romano@pica.army.mil 

 

Dalton Rosario 

U.S. Army Research Laboratory (ARL)
  

Adelphi, Maryland 

rosario@arl.army.mil 

 

 

ABSTRACT 

Ground to ground, sensor to object viewing perspective 

presents a major challenge for autonomous window 

based object detection, since object scales at this viewing 

perspective cannot be approximated. In this paper, we 

present a fully autonomous parallel approach to address 

this challenge. Using hyperspectral (HS) imagery as 

input, the approach features a random sampling stage, 

which does not require secondary information (range) 

about the targets; a parallel process is introduced to 

mitigate the inclusion by chance of target samples into 

clutter background classes during random sampling; and 

a fusion of results. The probability of sampling targets by 

chance within the parallel processes is modeled by the 

binomial distribution family, which can assist on tradeoff 

decisions. Since this approach relies on the effectiveness 

of its core algorithmic detection technique, we also 

propose a compact test statistic for anomaly detection, 

which is based on a principle of indirect comparison. 

This detection technique has shown to preserve 

meaningful detections (genuine anomalies in the scene) 

while significantly reducing the number of false positives 

(e.g. transitions of background regions). To capture the 

influence of parametric changes using both the binomial 

distribution family and actual HS imagery, we conducted 

a series of rigid statistical experiments and present the 

results in this paper. 
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1.  Introduction 

 
Effective anomaly detection has a high value for 

applications where a priori information is unavailable 

about the objects of interest. Its value may be attributed 

to the simplicity built into this family of detection 

algorithms, where detectors search for rare pixels in the 

image whose information significantly differs from the 

local background. It is widely accepted in the target 

community that if this family of detectors could perform 

as desired, then these detectors are poised to find not 

only known targets as background anomalies, but also 

other potential targets that might not be known to the 

user.  

However, a major disadvantage of using anomaly 

detectors, as discussed for instance in [1], is that they 

often produce an intolerable high number of meaningless 

detections (false alarms) for a given scene. The challenge 

of effective anomaly detection is further augmented 

when the sensor’s line of sight is at the ground to ground 

(G2G) level (or approximately so), which corresponds to 

numerous Army applications. At this viewing 

perspective, the scales of objects in the scene are 

unknown, e.g., small targets will look large in the 

imagery for a small range. This scale uncertainty offers 

no guarantees that object samples in the imagery will be 

compared only to samples of their immediate 

surroundings, using, for instance, the well known inside-

outside window approach [1] to supply samples to the 

particular detector. Scales of known targets can be 

reasonably estimated if the sensor’s altitude is known; 

therefore, for typical surveillance operations where 

sensors are flown at known altitudes looking straight 

down (nadir look), the inside-outside window approach 

is suitable because one can place the outside window, 

WOUT, sufficiently apart from the inside window, 

WIN—although both are located concentrically—to 

ensure such that, at no location in the imagery, WIN 

shows a target and WOUT shows both background and 

target. A corrupted sample set shown in WOUT might be 

particularly damaging for detectors based on parametric 

distribution models for the clutter background (e.g., the 

industry standard RX anomaly detection is based on the 

multivariate Gaussian assumption, see [2]).       
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For robustness and adaptability purposes, we chose to 

use HS imagery and anomaly detection for the G2G 

viewing perspective. Recently, the use of HS imagery 

has also gained renewed attention in the target detection 

community. Its popularity over broadband imagery is 

due to the fact that these passive sensors simultaneously 

record images for hundreds of contiguous and narrowly 

spaced regions of the electromagnetic spectrum. Each 

image corresponds to the same ground scene, thus 

creating a cube of images that contain both spatial and 

spectral information about the objects and backgrounds 

in the scene. A host of different types of anomaly 

detectors and their performances in HSI are discussed in 

[1], [2], [3].  

Our interest has been on a general idea where anomaly 

detectors perform a comparison between two 

observations by indirect means. The implementation of 

this idea has shown to preserve the number of 

meaningful anomaly detections and to significantly 

reduce the number of meaningless false positives, see 

[4].  

In this paper, we present a compact test statistic for 

anomaly detection based on a principle of indirect 

comparison (PIC), see Section 2. We also present a 

random sampling approach that does not require 

secondary information about the targets (range), where a 

parallel process is introduced to mitigate the inclusion by 

chance of target samples into clutter background classes 

during the process of randomly sampling. The rationale 

here is that the likelihood of surpressing the presence of 

targets in all parallel processes is real however, relatively 

small. 

The remaining of this paper is organized as follows: 

Section 2 formulates a PIC based anomaly detector, 

which in essence is an asymmetric variance test; Section 

3 proposes a parallel random sampling approach, which 

makes possible for attaining a fully autonomous G2G 

anomaly detection without knowledge of object scales in 

the scene; Section 4 discusses the analyses performed on 

using results from Section 2 and Section 3; and Section 5 

concludes this paper.   

 

2.  PIC-Based Anomaly Detector 
 

The principle that leads to the design of a PIC based 

anomaly detector employs an indirect sample 

comparison to test the likelihood that local HS random 

samples belong to the same population. Let X and Y 

denote two random samples, and let Z = X U Y, where U 

denotes the union. We showed [4] that X can be 

indirectly compared to Y by comparing, instead, Z to Y 

(or to X). Using PIC, we propose next the asymmetric 

variance test (AVT) anomaly detector. Let random 

sequences x0 and x1 be observed according to the 

independent, identically distributed (iid) model 

 

x0 = (x01, x02, x03, …, x0n1) iid ~ g0(x) 

      (1) 

x1 = (x11, x12, x13, …, x1n1] iid ~ g1(x) 

 

where, x0 (test sample of size n1) and x1 (reference 

sample of size n0) are independent, g1 and g0 are 

unknown, and  

E(x0j)= 0 ; Var(x0j) = 
2

0 <        (2) 

E(x1j) = 1 ; Var(x1j) = 
2

1 <   (3) 

Var[(x0j - μ0)
2
] = 

2
0 <   (4) 

 

where, )(E  and  )(Var  are expectation and variance 

operators. Now, consider the null hypothesis 

 

H0 :   0
2 =   > 0( )                       (5) 

 

In (5), we would like to test the hypothesis that the 

variance from a reference sample is equal to an arbitrary 

positive value. At a first glance, the null hypothesis does 

not seem too effective as a discriminant feature, because 

 can take any positive value, and additionally the 

variance, as a discriminant feature, does not account for 

the mean, which itself can be another discriminant 

feature. However, one can cleverly incorporate the 

indirect comparison approach discussed earlier to test 

(5), by designing in the process a rather effective 

anomaly detector. A solution follows. 

Let the combined sample be represented by 

 

t = (t1, t2, … , tn) = (x01, …, x0n1, x11, …, x1n1)     (6) 

 

where, n = n1+n2, and lets assume that its components 

have the same variance, i.e., Var(tk) = 
2

u. The last 

assumption may not be satisfied for all t, but would 

certainly be satisfied when x0 and x1 are sampled from 

the same population, in which case one could set = ˆ  u
2
 

in (5), where 2ˆ
u

 estimates 
2

u. Without the normality 

assumption in (1), deriving a test for the null hypothesis 

in (5) can be quite difficult. But as we anticipate a 

relatively large sample size in HSI, we shall rely on the 

central limit theorem (CLT) and the weak law of large 

numbers (WLLL), [5], to design the new detector. The 

set of parameters ( 0, 
2

0) then can be estimated by the 

following consistent estimators: ( x 0 , s0
2
), respectively, 

where 

            x =
x0 j

n0j=1

n0

, s0
2 =

x0 j x 0( )
2

n0 1j=1

n0
            (7)  

      

Following (7), under general regularity conditions and 

using the denotations in (1), CLT ensures that the 

random variable z1, below, converges in law to the 

standard Normal distribution [N(0,1)], as the sample size 

0n  increases, or   



Z1 = n0

s0
2 ˆ  0

2

0
2

 
n0

 N 0,1( )            (8)        

To estimate 
2

0  using a consistent estimator ˆ  0
2( ), 

consider this rationale: Let , 

 

j = x0 j μ0( )
2
              (9) 

 

and note that, based on (3) and (4),  

 

E  j( ) = 0
2 :Var  j( ) = 0

2              (10) 

 

A consistent estimator of Var  j( )  then would qualify 

for application in (8). An obvious estimator of Var  j( )  

is 

ˆ V 0 =
j  ( )

2

n0 1j=1

n0

            (11) 

where   is the sample average using all j ’s. Notice 

that ˆ V 0  can be also expressed by the following 

decomposition,  

ˆ V 0 =
n0

n0 1
j 0

2( )
2

 0
2( )

2

n0j=1

n0

    (12) 

 

where the normalized summation term (which does not 

include  ) tends to 0
2
 in probability by the WLLN, and 

the term that includes   tends to zero in probability also 

by the WLLN. Therefore, ˆ V 0  is a consistent estimator of 

0
2
. In addition, using results from (7), notice that s0

2
 is 

also a consistent estimator of E  j( ) . We then propose 

the following consistent estimator of  

 

0
2 = E  j E j( )[ ]

2
 { }             

 (13) 

to be 

ˆ  0
2 =

x0 j x 0( )
2

s0
2[ ]

2

n0 1j=1

n

              

(14) 

 

Setting = ˆ  u
2
 in (5), where 

ˆ  u
2 =

t j t ( )
2

n 1
,

j=1

n

 t =
t j

nj=1

n

n = n0 + n1

       (15) 

 

if the null hypothesis in (5) is true, the following must 

also be true 

   Z2 = n0

s0
2 ˆ  u

2

ˆ  0
2

 
n0

 N 0,1( )         (16)      

Using properties of the family of chi square distributions 

(see for instance [5]), the following is also true under the 

null hypothesis: 

  ZAVT = Z2
2 = n0

s0
2 ˆ  u

2( )
2

ˆ  0
2

 
n0

 1
2          (17) 

where 1
2
 is the chi-square probability density function 

(pdf) with 1 degree of freedom (dof). Testing hypothesis 

H0 in (5) using (17) constitutes the AVT anomaly 

detector.  

 

 

 

3.  Random Sampling and Fusion Processes 
 

For applications requiring G2G viewing perspective, full 

automation of the AVT algorithm can be only achieved if 

underlying difficulties (e.g., target scale uncertainties) 

can be handled effectively.  

We propose in this section a random sampling technique 

and fusion of results to curb G2G perspective difficulties. 

The proposed random sampling technique and fusion of 

results can be simplified as follows: Suppose an N 

number of spectrum sets are randomly collected from the 

imagery, such that each set is tested against spectra from 

a window that moves across the imagery yielding  N 

output surfaces from an anomaly detector. These N 

surfaces are fused by retaining the piecewise minimum at 

each pixel location in order to produce a single output 

surface (FMIN). In FMIN, blocks of data in the original 

imagery that are significantly different from the sampled 

N sets should be accentuated with respect to the spatial 

locations of the clutter background. In order to minimize 

the suppression probability of targets in the imagery by 

chance, a parallel process is introduced to repeat this 

sampling process M number of times and to finally yield 

a single decision surface by fusing (adding) these M 

FMIN surfaces.  

An implicit assumption in this proposed approach is that 

the detector being used is quite effective suppressing 

both homogeneous regions and transitions of these 

regions, while capable to accentuate spectrally 

anomalous materials from background materials. If this 

assumption is satisfied, then as long as one out of the M 

FMIN surfaces has that anomalous object(s) accentuated, 

and M-1 FMIN surfaces have those same anomalous 

object(s) suppressed (due to the object[s] probability of 



being selected by chance from the random sampling 

stage), the fusion of these M FMIN surfaces will show 

the accentuated anomalous object(s), as desired.      

The number N of random samples collected per image 

needed depends on the level of background heterogeneity 

of the scene. Lesser heterogeneity requires a smaller N, 

and vice versa. In this paper, we study the overall 

approach by setting N = (10, 20, 50). Each random 

sample Rj ( Nj ,,1L= ) drawn from the image is 

defined by the transposed []t  vector 

 

  
  
R j = E C( ) = μ j1,L,μ jb[ ]

t
  (18) 

 

where C has a size of w x w x b, w x w is the total 

number of pixels within the jth block of data, b is the 

number of bands, and jiμ  is the sample mean at the i
th

 

band from an input size of w x w. 

Fig. 1 shows the random locations of two experiments 

using N = 10 (white circles) and N = 50 (yellow circles), 

where representations of (18) can be assembled as   

 

 [ ]NRRR ,,1 L=       (19) 

 

For a given N and a given image area A, the probability 

P  of random locations landing at least once by chance 

at the target spatial area a within A can be modeled by 

the binomial distribution family as 

 

( )
( )01             

)(..)2()1(1

==

=++=+==

nP

NnPnPnPnP
 

 (20) 

 

Figure 1. The SOC-700 HS sensor was used to collect this 640 

x 640 pixel imagery by 120 bands, shown as the average of all 

bands. The background is formed by gravel, rocks, vegetation 

(tress and grass), and munitions (targets) lying in the ground—

targets are shown at the top center. Random locations are 

shown for N = 10 (white circles) and N = 50 (yellow circles). 

 

where 

( )
( )

( )( )nNn qq
nNn

N
nP = 1

! !

!
,        (21) 

 

Nn ,,1,0 L=  and ( )1,0q  is the ratio a/A.  

 

Fig. 2 illustrates the relationship between P using (20) 

and N (represented in figure by RP) for two fixed values 

of q (0.1 and 0.2). In essence, Fig. 2 shows that the 

likelihood of drawing target samples by chance increases 

as N increases and for a reasonable N (e.g., N = 15), as q 

increases from 0.1 to 0.2, P increases significantly, 

which is expected but undesired. It is desired to hold P at 

a relatively low value, while taking an adequate number 

N of clutter classes representing the entire background 

classes in the scene. To achieve this desired outcome out 

of this random sampling technique, we propose to 

employ a parallel sampling process, followed by a fusing 

step, as shown in Fig. 3. 

 

Let ( )MmSm ,,1 L=  be an independent anomaly 

detection process, each using N independently collected 

random sample sets from an input cube Xin. In the 

context of Section 2, mS  represents using model (1), the 

result in (17), and an additional fusing step to account for 

N independent inputs.  

As shown in (20), each parallel process mS  in Fig. 3 has 

a probability P of blindly selecting target samples by 

chance during random sampling. If target samples are 

selected to represent a background class, the AVT 

detector will likely suppress that target class. 

 
Figure 2.  Relationship between the probability P of having at 

least one random point hitting on the target of size q and the 

chosen number of random points N. Parameter q is the ratio of 

the target size to the total image size. 



 

Figure 3 Parallel Process to mitigate target suppression by 

chance from final output result. 

 

However, by fusing (adding) the detector’s output from 

each ( )MmSm ,,1 L= , one would expect this 

probability to decrease. To account for this parallel 

processing, let TP  be the probability that all of the M 

processes happen to have the target selected by change 

during the processes’ random sampling stage; this 

probability can be also modeled by the binomial 

distribution, or 

 

( )
( )

( )( )

M

mMm

T

P

PP
mMm

M
MmP

                  

1
!!

!

=

==
    (22) 

 

where, ( )1= nPP  in (20).     

The benefit of using this parallel processing is shown in 

Fig. 4, where the relationship between TP  (vertical axis) 

and M (horizontal axis) is presented for two fixed values 

of P (0.65 and 0.90).    

Having TP  decreasing relatively fast as M increases, the 

next step is to select an acceptable value of M from Fig. 

4 and to combine the detectors’ output results from the 

parallel process, as shown in Fig. 3, where a threshold  

is applied for a final decision. (This threshold can be 

attained empirically by experimenting offline with the 

detector and by estimating ROC curves, see Section 4.) 

In summary, in reference to the random sampling step, 

by choosing an adequate value of N from Fig. 2, and by 

choosing an adequate value of M from Fig. 4, the user 

can compromise between having good representations of 

the background classes in the scene and maintaining a 

low probability of including target samples by chance as 

a background class.      

 

 
Figure 4.  Probability that the random sampling stage of all the 

frames in the parallel process hit the target, given a target hit 

probability P (0.65 and 0.90) per frame. 

 

 

4.  Results 
 

In order to study the behaviour of our general approach 

to G2G anomaly detection using real HS imagery, we 

designed a rather strict set of experiments using a large 

number of trials to test the HS imagery shown in Fig. 1 

using the AVT anomaly detector. Results from these 

trials were used to estimate 95%-confidence-interval 

ROC curves representing different combinations of 

certain parameters. In addition to studying the behaviour 

of our approach, another important goal in this section is 

to show that the AVT detector’s performance via ROC 

curves does not vary significantly if the random 

sampling stage of our approach is replaced by having a 

human in the loop selecting a priori a set of the most 

representative clutter background spectral samples in the 

given imaged scene.    

In this section, Pd represents the proportion of the target 

that was detected by the AVT detector and Pfa represents 

the probability of false alarms (false positives), using a 

given threshold , as shown in Fig. 3.     

As our major concern is to observe the behaviour of 

randomly sampling the scene as proposed, a large 

number of trials was required. The plots to follow were 

calculated by performing 2,730 trials for a parallel 

process of M = 3 and 3,000 trials for a parallel process of 

M = 5 for fixed values of N = 10, 20, and 50 randomly 

collected points. The ROC curves for each combination 

of parameter settings are presented as sample-average 

ROC curves out of the total number of trials. Each trial 

corresponds to employing the full parallel process 

discussed in Section 3 (see Fig. 3), using the HS cube 

shown in Fig. 1 as input and the AVT anomaly detector 

as discussed in Section 2 and Section 3. 

Fig. 5 shows average ROC-curve comparison for settings 

M = 3 and N = 10, 20, 50 (random sampling) and N = 10 

(manual sampling). Fig. 5 shows these curves to be 

virtually invariant to the different settings. Fig. 6 shows a 

zoomed in version of Fig. 5, by limiting the ranges of Pd 

and Pfa. The difference in performance for a given Pfa 



between 10 points randomly or manually taken from the 

HS image, show an improvement of about 1% (Fig. 6). 

The performance between 10, 20, and 50 randomly 

collected points show an improvement from 10 to 20 and 

50 of about 1 to 1.5%, but the performance between 20 

and 50 seem to be similar. Depending on the value of q, 

as discussed in Section 3, an increase in performance of 

1% may be desirable (as seen from 10 to 20 or 50 

random points), but one needs to be aware that the 

probability of one of the randomly collected points 

hitting the target increases, as N increases, thus, a larger 

N may not be desirable. 

 

 

 
Figure 5. Average ROC curves using M = 3 and N = 10, 20, 50 

(random sampling) and N = 10 (manual sampling) collected 

random points. Random points collected on the image 

surpassed manual collection by a small margin. 

 

Fig. 7 illustrates 95% confidence intervals (using 2,730 

trials) at two distinct points in the average ROC curves 

for the fixed settings: M = 3 and N = 10, 20, 50 (random 

points). These intervals are depicted in Fig. 7 as 

rectangular boxes in order to show how performance 

variability changes as a function of N. For instance, one 

can conclude from Fig. 7 that the confidence interval at 

the Pfa axis gets tighter as a function of increasing N. 

This tightness of the envelope is owed to a better 

statistical representation of the background using a larger 

N. Also, this variability was virtually the same for each 

parameter setting at two distinct points in the ROC 

curves. 

Figures 8 and 9 reveal the impact of setting M = 3 versus 

M = 5 (parallel processes) and N = 10, 50. Although an 

increase in the number of fused processes (N) may be 

well suited to minimize the probability of eliminating the 

target of interest by the random sample collection, the 

impact of using either M = 3 or M = 5 parallel processes 

is minimum. 

 
Figure 6. Zoomed in version of Fig. 5. 

 

 
Figure 7.  Confidence interval within Pd vs Pfa for 2730 trials 

for M = 3 (parallel processes). Number of random points are 

depicted as: 10 (..), 20 (--), and 50 (-.). 

 

As seen in figure 9, using 5 over 3 parallel processes for 

both 10 and 50 random points produce very limited 

improvement in performance. Obviously, one cannot 

generalize the consistency of these results using a 

different anomaly detector and/or a different 

background/target scene. For future work, we intend to 

investigate the generalization of our findings in this 

paper by employing competing anomaly detection 

techniques and alternative background/target scenes. 

 

 
Figure 8. Performance comparison between M = 3 and M = 5 

 



 
Figure 9. Zoomed in version of Fig. 8, see Pd and Pfa axes. 

 

5. Conclusions 
 

We proposed a fully autonomous parallel anomaly 

detection approach for challenging scenarios requiring 

ground to ground viewing perspectives. 

At this viewing perspective, one cannot rely on 

approximations to object scales, which adds to the 

difficulties influencing the ultimate goal of attaining 

effective anomaly detection. Using HS imagery as input, 

the approach employs a random sampling stage to 

sample the imaged scene for background class 

representatives; a new anomaly detector, based on a 

principle of indirect comparison; and a parallel process, 

followed by fusion of results, to mitigate the likelihood 

of randomly selecting by chance samples of target 

spectra as background class representatives. The 

probability of randomly selecting target spectra was 

modeled by the binary distribution family, and helpful 

plots were presented to assist the user to address a 

compromise between autonomous random selection of 

an adequate number of spectra representing distinct 

background classes and holding down the probability of 

selecting target spectra by chance. To the best of our 

knowledge, the proposed approach is unique, and it 

should be of interest to the entire target community   
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