Passive Sonar Tracking on Multibeam Intensities

Dr. Marcus L. Graham

Naval Undersea Warfare Center Division Newport
Code 2501
GrahamML@npt.nuwc.navy.mil

Presented at the 15th Annual Adaptive Sensor Array Processing Workshop
5-6 June 2007
Passive Sonar Tracking on Multibeam Intensities

Naval Undersea Warfare Center Division Newport Code 2501

Approved for public release, distribution unlimited

See also ADM002078., The original document contains color images.
Sonar Processing Architectures

- Beamformed Intensity Data
 - Broadband Peak Pick Threshold & Beam Interpolate
 - Data Association
 - Tracking
 - Narrowband Peak Pick Threshold & Beam Interpolate
 - Tracking
 - Signature Building
 - Energy Superposition Modeling
 - Hybrid Broadband Narrowband Tracking
Intensity Data

Wide Targets, Increasing Intensity
Single Target Tracking Results

Wide Targets, Increasing Intensity
Estimated +/- 3 sigma overlaid on True Bearing
History

Modeling multibeam intensity as a histogram

- Perlovsky (c. 1991), Luginbuhl (c. 1999)
 - Interpreted cell-level sensor data amplitudes as histogram counts

- Streit (c. 2000), Streit (c. 2001)
 - Treated broadband intensity as a histogram
 - Modeled the superposition of energy from multiple targets using a mixture density
 - Extended histogram interpretation to frequency-azimuth domain

Direct energy superposition model

- Ristic, Farina, Hernandez (c. 2004)
 - Used a model of the sensor “point-spread function” to describe the distribution of energy across cells for tracking on image data
 - Applied a simple energy superposition model for developing a CRLB
 - No longer treating energy distribution as a pdf
Basic Model

• The basic superposition model

\[Z_t = \{z_{t,1}, z_{t,2}, \ldots, z_{t,n}\}^T = C_t \mathbf{1}_n + \sum_{j=1}^{k} h(x_t^j) + \eta_t \]

• The augmented state

\[X_t = \{ C_t, (x_t^1)^T, (x_t^2)^T, \ldots, (x_t^k)^T \}^T \]

\[x_t^j = \{ \beta_t^j, \dot{\beta}_t^j, I_t^j, \gamma_t^j \}^T \]

• The target viewed through the sensor point spread function

\[h(x_t^j) = \{ h_1(x_t^j), h_2(x_t^j), h_3(x_t^j), \ldots, h_n(x_t^j) \}^T \]

\[h_i(x_t^j) = I_t^j \exp\left\{ -\frac{1}{2} \left(\frac{(\beta_i^j - \beta_t^j)^2}{\gamma_t^j} \right) \right\} \]
Estimation Algorithm

- Non-Gaussian noise
 - Not a problem for filtering, optimality sacrificed
 - Exponentially distributed frequency cells yield Gamma distributed broadband intensities, closely approximated by Gaussian

- Applied straightforward Kalman filter
 - Could use smoother, MLE or other
 - Relatively high dimensionality compared to traditional trackers
 - n-vector measurement
 - km+1 vector state

- Covariance decoupling
 - If prior covariance is decoupled, so is much of the processing
 - Kalman gain can be performed with a $km+1$ vs. n dimensional inversion
 - Output covariance is fully coupled, but little performance penalty seen from extracting target blocks to form a decoupled prior for the next update
Intensity Data

Narrow Targets, Increasing Intensity
Single Target Tracking Results

Narrow Targets, Increasing Intensity

Estimated +/- 3 sigma overlaid on True Bearing
Intensity Data

Fixed Amplitude, Varying width Targets
Single Target Tracking Results

Fixed Amplitude, Varying width Targets

Estimated +/- 3 sigma overlaid on True Bearing

Intensity Processing

Peak Pick Processing - PDA
Improving SNR & Separability

Non-parametric model of target spectral characteristics:

\[S_t^j = \{s_{t,1}, s_{t,2}, \ldots s_{t,k}\}^T \]

Outer product forms model of frequency-azimuth image:

\[\text{FRAZ} = h_i(x_t^j)^T S_t^j \]

Parametric model of spatial location:

\[h_i(x_t^j) = I_t^j \exp \left\{ -\frac{1}{2} \frac{(\beta_i^j - \beta_t^j)^2}{\gamma_t^j} \right\} \]

- Hold \(S_t^j \) fixed, estimate \(x_t^j \)
- Given estimate of \(x_t^j \), estimate \(S_t^j \) as a weighted average over beams, weighting based on \(h(x_t^j) \)
Summary

• Initialization requires detection, but tracking does not
• Superposition model results in an implicitly multitarget algorithm, no combinatorial problems
• Simple model admits simple processing
• Filter dimensionality is not a problem, simplifying approximations can make processing even simpler
• Provides reliable track bearing quality outputs
• “Self tuning”
• Tracks over-resolved targets without modification