
Proceedings of Department of Defense High Performance Computing Modernization Program Users Group Conference 2007,  

June 18-22, 2007, Pittsburgh, PA 

 

A tool for creating and parallelizing bioinformatics pipelines 

 

Chenggang Yu, Paul A. Wilson 

Biotechnology HPC Software Applications Institute,  

Telemedicine and Advanced Technology Research Center, US Army Medical Research and 

Materiel Command, Ft. Detrick, MD 21702, USA 

cyu@bioanalysis.org 

Introduction 

Bioinformatics pipelines enable life scientists to effectively analyze biological data through 

automated multi-step processes constructed by individual programs and databases. The huge 

amount of data and time consuming computations require effectively parallelized pipelines to 

provide results within a reasonable time. Considerable programming effort is needed for both 

integrating individual programs into a pipeline and parallelizing them. 

Objective 

The object of our Bioinformatics Pipeline Generation and Parallelization Toolkit (BioGent) is to 

reduce researchers’ programming burden. A user only needs to create a pipeline definition file that 

describes the data processing sequence and input/output files. Program termed schedpipe in 

BioGent toolkit takes the definition file and executes the designed procedure.  

Method 

schedpipe automatically parallelizes the pipeline execution through executing independent data 

processing steps on multiple CPUs, and through decomposing big datasets into small chunks and 

processing them in parallel. schedpipe controls program execution on multiple CPUs through a 

simple application programming interface (API) of the Parallel Job Manager (PJM) library. As a 

part of the BioGent toolkit, PJM is developed to effectively launch and monitor programs on 

multiple CPUs by using Message Passing Interface (MPI). The API provided by PJM is used to 

handle multiple CPUs without complicated message exchange among CPUs.  

Results 

BioGent is demonstrated to be effective for quickly parallelizing bioinformatics pipelines. It’s 

application for parallelizing a protein function analyzing pipeline (InterProScan), containing 12 

programs, shows 10% to 50% savings in time compared to the indigenous parallelization through 

batch queuing system. BioGent has been used to create a protein structural domain prediction 

pipeline that integrates three programs. A test shows that the pipeline can process over 5,000 

proteins within eight hours by using 64 processors on the JVN computer cluster at the Army 

Research Laboratory (ARL) Major Shared Resource Center (MSRC).  

Significance to DoD 

BioGent helps DoD life scientists, who lack programming experience, to use DoD's high 

performance computing resources.  

 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2007 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2007 to 00-00-2007  

4. TITLE AND SUBTITLE 
A tool for creating and parallelizing bioinformatics pipelines 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
US Army Medical Research and Material Command,Biotechnology HPC
Software Applications Institute,Telemedicine and Advanced Technology
Research Center,Fort Detrick,MD,21702 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
Proceedings of Department of Defense High Performance Computing Modernization Program Users
Group Conference 2007, June 18-22, 2007, Pittsburgh, PA 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

6 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



 

 

1 INTRODUCTION 

 

Bioinformatics pipelines (BIPs) enable life scientists to effectively analyze biological data through 

automated multi-step processes constructed by individual programs and databases. For example, 

InterProScan (Quevillon et al., 2005) was designed to use multiple applications to search 12 

independently-developed proteomics databases that are incorporated into InterPro (Mulder et al., 

2005). PUMA2 (Maltsev et al., 2006) incorporates more than 20 public databases for genome 

analysis and annotation. The huge amount of data and time consuming computations require 

effective parallelization for a pipeline to provide result within a reasonable time. Therefore, 

considerable programming effort is needed for both integration of individual programs into a 

pipeline and parallelization of the pipeline. This has led to the development of software tools to 

simplify pipeline generation.  Examples of such tools include Biopipe (Hoon et al., 2003), Pegasys 

(Shah et al., 2004), BOD (Qiao et al., 2004), EGene (Durham et al., 2005), Pipeline Pilot (Hassan 

et al., 2006), and Ergatis (ergatis.sf.net). One computational aspect of these tools is the 

decomposition of the data processing workflow into individual jobs, each consisting of one 

program (e.g., BLAST) and the necessary input data (e.g., FASTA file). This decomposition 

provides a general, multiple-program multiple-data model for parallelization.  

The importance of parallelization increases when considering genome-wide research, 

where the large amount of data employed necessitates high throughput capabilities. Moreover, 

parallelization becomes attractive as the number of programs and databases integrated into a single 

BIP increases. Many pipeline generation tools simply submit decomposed individual jobs to a 

batch queuing system for parallel execution. The monitoring of the job status is also through 

calling particular commands provided by the queuing system, for example, command ‘bjobs’ 

provided by Load Sharing Facility (LSF) or command ‘qstat’ provided by the Sun Grid Engine 

(SGE). Although this method is easy to implement, it impairs pipelines portability by tying it to a 

particular queuing system. Moreover, the method is not effective in handling dependencies among 

individual jobs. Some queuing systems have provided dependency options in their job submission 

commands. However, the options are system dependent and are not easily handled in pipeline 

generation tools. When numerous jobs are submitted by a pipeline program to a queuing system, 

efficiency could be another issue. A large number of dependant jobs may significantly slowdown 

the job-dispatching process and affect the pipelines as well as other users’ work.    

An alternative to using batch queuing systems for parallelization is to write parallel code to 

directly use multiple CPUs to run individual jobs. This will reduce the batch queuing system’s 

burden. Since a user’s program have direct control of multiple CPUs, launching and monitoring 

jobs will become faster and easier. This method is adopted by our Bioinformatics Pipeline 

Generation and Parallelization Toolkit (BioGent), which reduces the programming burden for 

both integration and parallelization of multiple bioinformatics programs. A pipeline can be 

generated and automatically parallelized through a user provided pipeline description file. The 

parallelization is based on MPI to hand out jobs from a main pipeline program to multiple remote 

CPUs, and to monitor the progress of these jobs.   

 



 

 

2 METHODS 

 

The BioGent package has two main components: a pipeline control program called schedpipe and 

a binary library called Parallel Job Manager (PJM). They provide two tiers of solutions for quick 

parallelization of BIP programs.  

The first tier doesn't need any programming effort. Users simply write a text file to describe 

a pipeline's data processing flow as multiple 

independent or dependant steps. Each step 

consists of a program and its input and 

output. The input can be a chunk of data in a 

large data file, or the output of previous 

processing steps. Similarly, the output can be 

the final result of the pipeline, or the 

intermediate result that becomes the input to 

the next processing step. The way to split a 

large data file into chunks is set in the 

pipeline definition file.   

When schedpipe is executed, it takes 

control of multiple computer nodes. The 

program reads in the pipeline definition file, 

creates multiple jobs for data processing 

steps and sends each job to a different CPU 

for execution. When one job is done, 

schedpipe sends the next job until all jobs are 

completed. It determines the order of job 

execution by dependency. A job is sent out 

for execution only when all jobs that it 

depends on are finished.   

The second tier of quick parallelization is through calling the PJM library in user programs. 

An API for parallel job control is provided by the library that uses MPI for communication among 

processes on different computer nodes. Actually, schedpipe also uses PJM for the control of 

multiple computer nodes. Figure 1 depicts the application of PJM in schedpipe. When PJM's 

function parallel_int is called, a multi-nodes manager (MNM) thread is created on the same node 

(equivalent to a master node) running the user's programs and single node manager (SNM) threads 

are created on each remote node (i.e., slave nodes). The MNM communicates with a user program 

through shared memory and with SNM using MPI. However, this is transparent to the user's 

programs. A user program can call the getIdleNodes function to get all available slave nodes and 

use the setSimpleJob function to assign a job for execution on a specific node. The MNM thread 

relays the information to the SNM thread on the designated node, which then spawns a new job 

thread (JT) to execute the job. The SNM monitors the job's execution and constantly report to the 

MNM. The user program can call the getAllDone function to find out which jobs are completed. 

The job thread terminates when the job finishes. The SNM thread continues to exist to spawn 

threads for new jobs, report job state, and track CPU status. It terminates when requested to do so 

Network 

MNM 

SchedPipe 

Pipe 

Definition 

Master node 

Slave nodes 

SNM 

JT JT

SNM 

JT JT

Figure 1. schedpipe's control of multiple 

computer nodes via PJM. 



 

 

by MNM after the user's program is completed. 

 

3 RESULTS AND DISCUSSION 

 

BioGent's efficiency to manage parallel computation of multiple computer nodes was tested on 

ARL's Powell cluster, which have 128 nodes with dual CPUs running Red Hat Linux and using the 

SGE batch queuing system. BioGent was first used to create a simple pipeline that has only one 

data processing step and each job generated for that step requires the same CPU time to complete.  

Figure 2 shows the speedup of parallel execution of 50,000 one-second jobs and 50,000 ten-second 

jobs. The speedup represents the efficiency of BioGent's job management of multiple computer 

nodes without concern for pragmatic issue 

such as competition for shared resources, 

like the network file-system. The Figure 

indicates that BioGent produces a nearly 

ideal speedup curve for ten-second jobs 

running on 220 CPUs while the curve for 

one-second jobs drops when the number 

exceeds 200 CPUs. This drop in speedup is 

caused by CPUs quickly finishing a short job 

and waiting for their next job. The fraction of 

waiting time increases when more CPUs are 

used to execute very short jobs. In practice, 

jobs for a bioinformatics pipeline require 

longer times to run while splitting input data 

into larger chunks also increases the 

execution time. Therefore, BioGent is 

efficient as a quick parallelization tool for bioinformatics pipelines. In fact, our test on Powell 

showed that BioGent needs only 7 milliseconds to start a new job on a remote node, which means 

that it can manage as many as 1580 CPUs to run ten-second jobs with 90% efficiency (which is 

measured as the time to run the pipeline in sequential mode divided by the product of the time to 

run the pipeline in parallel and the number of CPUs).  

 

We compared an actual pipeline's parallelization using BioGent and a batch queuing 

system. The software InterProScan contains 12 programs to search 12 different databases for an 

input protein sequence. The software splits input sequences into chunks of sequences and submits 

jobs to the batch queuing system for each program to process each chunk of data. All results are 

assembled in one output file at the end. We wrote a wrapper program iprscan_PJM to perform the 

same work but using PJM to send jobs directly to available CPUs and monitor their execution.  A 

dataset of 200 proteins was used in the comparison. The output from both programs was exactly 

the same except that iprscan_PJM runs faster than InterProScan, as showed in Figure 3. The 

figure also shows the performance improvement obtained from using BioGent. The improvement 

is measured as the percentage of time saved by iprscan_PJM as compare to InterProScan.  The 

0

50

100

150

200

250

0 50 100 150 200 250

Number of CPUs

S
p

e
e

d
u

p

Ideal 10-second Jobs 1-second jobs

Figure 2. BioGent's parallelization speedup. 



 

 

figure indicates that the parallelization of InterProScan using BioGent (iprscan_PJM) saves 10% 

to 54% in wall-clock time and the time saving increases with the number of CPUs used.  

Another application of BioGent was examined by using schedpipe to create and parallelize 

a pipeline for protein structure domain predictions using the PPRODO program 

(http://gene.kias.re.kr/~jlee/pprodo/). The pipeline predicts protein structure domains in four steps: 

1) call the PSIBLAST program to search the non-redundant (nr) database, 2) call the PSIPRED 

program to predict secondary structure, 3)  call the PSIBLAST program again to search the nr 

database but with different parameters, and 4) perform the PPRODO prediction of the domain 

boundary. Figure 4 shows the wall-clock time for the parallelized program when predicting 

domains for 5,138 proteins using different number of CPUs on ARL's JVN cluster. The 

parallelization effectively reduces the computation time from nearly 20 days on a single CPU to a 

few hours on ~100 CPUs. The speedup curve is showed in the inner panel of Figure 4. The inferior 

speedup compared to the result in Figure 2 is mainly due to the disk I/O on the shared network file 

system. If needed, copying data files to the local disk on each node will improve the performance.  

 

 

4 CONCLUSIONS 

BioGent is a compact, portable package that currently contains the schedpipe program and the 

PJM library.  BioGent is independent of third-party programs, database management systems, and 

specific batch queuing systems.  These attributes allow for ease of installation and use. 

schedpipe leverage the PJM to create parallelized BIPs without requiring any computer 

programming from the user.  The PJM can also be employed in user programs to execute jobs on 

multiple CPUs.  This methodology is more effective than using a batch queuing system when 

parallelizing bioinformatics pipelines. 

 

0

50

100

150

200

250

0 10 20 30 40 50 60 70

Number of CPUs 

W
a
ll

 T
im

e
 (

m
in

u
te

)

10%

20%

30%

40%

50%

60%
P

e
rf

o
rm

a
n

c
e
 I

m
p

ro
v
e
m

e
n

t

iprscan/PJM

InterProScan

Performance

Improvement

Figure 3. Comparison of parallelization based 

on BioGent and a batch queuing system.  

1

10

100

1000

1 65 129 193 257

number of CPUs

w
a

ll
 t

im
e
 (

h
o

u
rs

)

Speedup 

0

64

128

192

256

1 65 129 193 257

number of processors

s
p
e
e
d
u
p

Ideal

actual

Figure 4. Performance of BioGent for a 

parallelized PPRODO pipeline.  



 

 

DISCLAIMER 

The opinions or assertions contained herein are the private views of the authors and are not to be 

construed as official or as reflecting the views of the US Army or the US Department of Defense. 

This paper has been approved for public release; distribution is unlimited. 

 

ACKNOWLEDGEMENT 

This work was sponsored by the US Department of Defense High Performance Computing 

Modernization Program (HPCMP), under the High Performance Computing Software 

Applications Institutes (HSAI) initiative. 

 

REFERENCES 

Durham,A.M., Kashivabara,A.Y., et al. (2005) EGene: a configurable pipeline generation system 

for automated sequence analysis. Bioinformatics, 21(12), 2812-2813. 

Hassan,M., Brown, R.D., et al. (2006) Cheminformatics analysis and learning in a data pipeline 

environment. Molecular Diversity, 10(3), 283-299. 

Hoon,S., Ratnapu,K.J., et al. (2003) Biopipe: a flexible framework for protocol-based 

bioinformatics analysis. Genome Res., 13(8), 1904-1915. 

Maltsev,N., Glass,E., et al. (2006) PUMA2--grid-based high-throughput analysis of genomes and 

metabolic pathways. Nucleic Acids Res., 34(Database Issue), D369-37. 

Mulder,N.J., Apweiler,R., et al. (2005) InterPro, progress and status in 2005. Nucleic Acids Res., 

33(Database Issue), D201-205. 

Qiao,L., Zhu,J., et. al. (2004) BOD: a customizable bioinformatics on demand system 

accommodating multiple steps and parallel tasks. Nucleic Acids Res., 32(14), 4175-4181. 

Quevillon,E., Silventoinen, V., et al. (2005) InterProScan: protein domains identifier. Nucleic 

Acids Res., 33(Web Server issue), W116-120. 

Shah,S.P., He, D., et al. (2004) Pegasys: software for executing and integrating analyses of 

biological sequences. BMC Bioinformatics, 5:40. 

 


