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Introduction 

From a systems engineering point of view, cells consist of a complex set of nested, nonlinear control 

systems dominated by feed-back and feed-forward loops. The more complex the system is, the more im-

portant are the issues concerning the robustness and parameter optimization, therefore modeling and 

simulations are important for both engineering and reverse-engineering of biosystems. 

 

Objective 

At the functional level, all biological processes in cells can be represented as a series of biochemical re-

actions. Since such reactions are stochastic in nature, the user must run thousands of simulations to char-

acterize the “ensemble” behavior of biological systems. We developed a software package called Bio-

molecular Network Simulator (BNS) to model and simulate complex biomolecular reaction networks 

using High Performance Computing (HPC). 

 

Methodology 

The Biomolecular Network Simulator uses the Gillespie stochastic algorithm to simulate the evolution 

of a system of biochemical reactions. The BNS code is a combination of MATLAB and C-coded mod-

ules. This combination allows one to use the interactive features and visualization tools of MATLAB, 

while achieving high speed for the computationally intensive part of the software. The software is paral-

lelized with the MPI library to run on multiprocessor architectures.  

 

Result 

The Biomolecular Network Simulator consists of two sets of tools: for simulations of the system and for 

the analysis of simulation results. The Graphical User Interface of BNS allows users to easily set pa-

rameters for the model and simulations and to select analysis method. Multiple types of post-simulation 

analyses are available. 

 

Significance to DoD 

The Developed software allows DoD scientists to build, simulate and analyze complex cellular bio-

molecular networks utilizing the capacities of HPC. It provides the foundational capability to design and 

integrate biological constructs into a new generation of biotechnology products.  
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1 INTRODUCTION 

All chemical reactions require the interaction of the reactants with sufficient energy to overcome the ac-

tivation energy barrier and, fundamentally, they are stochastic in nature. The best way to model kinetics 

of a system of chemical reactions is to use a stochastic approach in terms of the Chemical Master Equa-

tion (CME), with the number of molecules of each molecular species as variables. The CME describes 

transitions of the system from one state to another state based on probabilistic methods. Gillespie pro-

posed a method to simulate probabilistically-correct trajectories based on the CME through the use of 

Monte Carlo methods [1].  

 Although the Gillespie stochastic algorithm is a method for exact simulations, as it explicitly counts 

each reaction event that occurred in the system, the accuracy of the method comes at a high computa-

tional cost. This is especially true for systems with a large number of molecular species where reactions 

occur numerous times in a short period of time. To accelerate discrete stochastic simulation, Gillespie 

proposed the tau-leaping method as an approximate simulation strategy [2]. By using Poisson random 

numbers, the tau-leaping method can leap over many reactions without a significant loss of accuracy.        

 We developed a software package – the Biomolecular Network Simulator (BNS) – that can use the 

Gillespie stochastic algorithm or the tau-leaping algorithm to simulate the behavior of a system of bio-

chemical reactions. It allows scientists to build a synthetic biomolecular network and explore its per-

formance utilizing the capacities of High Performance Computing. BNS contains tools for both simulat-

ing the system and for analyzing the results of the simulation.  Since the simulations are stochastic in 

nature, the user must run thousands of simulations to characterize the “ensemble” behavior of biological 

systems.  The parallelized BNS code allows users to run multiple simulations and store results on multi-

processor platforms. In this paper, we present a brief description of the Biomolecular Network Simulator 

software along with some examples. 

2 STOCHASTIC SIMULATION ALGORITHM 

Let us consider a system composed of N well mixed chemical species, Si (i = 1,…N), in a fixed volume 

V, which are involved in M reactions, Rj (j = 1,…M).  The dynamical state of the system can be speci-

fied by the state vector X(t) = (X1(t), X2(t),…XN(t)), where Xi(t) is the number of molecules of species Si 

at time t.  

 The probability for each reaction Rj is defined by a propensity function aj (X)= cj ·Hj(X) , where cj is 

the stochastic probability constant and Hj (X) represents the number of possible combinations of reac-

tants. The probability that reaction Rj will occur in the time interval dt is defined as aj(X)dt. Each reac-

tion is also characterized by its state-change vector vj = (v1j , v2j , …vNj), where vij   is the change in the 

number of molecules Si caused by one Rj reaction . 

 To study the evolution of the state vector X(t), Gillespie proposed an algorithm for Monte Carlo 

generation of stochastic trajectories [1].  The direct simulation algorithm, which is implemented in the 

Biomolecular Network Simulator, answers two questions: (1) which reaction will occur next, and (2) 

what is the waiting time for the next reaction to occur. 

 To answer these questions, two random numbers uniformly distributed over the interval (0,1) – r1 

and r2 – are generated.  The first random number is used to determine the next reaction Rj , such that 
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The distribution of the waiting time is given by following probability density function: 
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Here, ),( jP τ  is the probability that the waiting time for the reaction is τ and that it will be an Rj reaction. 

The waiting time for the next reaction is calculated as [1] 
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 After the next reaction and its waiting time are determined, the reaction is executed and the state of 

the system is changed according to the state-change vector vj.  The simulation time is increased then by τ  

and the next simulation step is generated.            

 The Gillespie stochastic algorithm is exact for the elementary reactions (uni-uni, uni-bi and bi-uni 

types of reactions) with any number of molecules in the system. For the system with large numbers of 

molecules, the trajectories generated by stochastic Monte Carlo simulations converge to the trajectory 

generated by  deterministic differential equations [1].   

3 TAU-LEAPING ALGORITHM 

The tau-leaping method calculates a time interval τ which encompasses more than one reaction event 

and satisfies the Leap Condition, i.e., the expected state change induced by the leap must be sufficiently 

small that no propensity function changes its value by a significant amount. Several methods have been 

proposed recently to choose the size of the time interval for tau-leaping [3-5]. We implemented the tau-

leaping method proposed by Cao et al. [6]. In that method a tau selection formula is given by 
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where gi is the highest order of reaction in which species Si appears as reactant, ε is an error control pa-

rameter, Irs is the set of indices of all reactant species, and  
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 After the time interval τ′ has been selected, the number of firings of each reaction channel during 

this time interval is approximated as a Poisson random variable. The Poisson random variable can have 

arbitrary large sample value and it is possible that the population of some of the molecular species can 

run negative. Therefore, a critical number of molecules nc (typically in the range of 5-20) was intro-

duced. If the number of molecular species gets less then nc, all reaction in which that species appears as 

reactant are defined as critical. These reactions are simulated by the stochastic simulation algorithm. We 

calculate the sum of propensity functions of all the critical reactions c
a0  and generate a second candidate 

time τ′′ according to   
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The actual time leap τ is selected as the smaller of τ′ and τ′′.  If τ = τ′, a number of firings ki is generated 

as a Poisson random variable with mean τ)(xai  for all of the noncritical reaction and reactions are exe-

cuted; no critical reaction is executed in this case. If τ=τ′′, we generate ki and fire noncritical reactions as 

in the previous case; also, another random number with uniform distribution is generated to find which 

critical reaction needs to be fired according to Eq. (1).   

 Evaluations of the performance of the tau-leaping algorithm shows a 2-3 fold speed up of simula-

tions compared to the exact stochastic algorithm while maintaining excellent accuracy with regard to 

both rare and frequent events.  

4 BIOMOLECULAR NETWORK SIMULATOR 

The Biomolecular Network Simulator uses a combination of MATLAB and C-coded modules. The 

front-end, graphical user interface (GUI) and analysis tools of BNS are written in MATLAB, while the 

simulation core engine is written in C. Such a combination allows one to use the interactive features and 

visualization tools of MATLAB, while achieving high speed for the computationally intensive part of 

the software. The parallelization of the code is done with the help of the MPI library. The BNS can be 

run on any computer platform where MATLAB 6.5 or newer is installed.  

4.1 Input Data 

A model is a set of mathematical relationships that describe the behavior of biochemical reactions that 

control cellular biological processes. Each of the ‘Model’ directories contains one or more subdirectories 

with model description files and/or different sets of parameters for the same model and an ‘Output’ di-

rectory where the results of simulations are stored. There are two types of model directories: one for 

models defined in the Systems Biology Markup Language (SBML) format [5] and one for models de-

fined as a set of MATLAB  m-files, referred to as the BNS format. In addition, BNS allows one to per-

form simulations with multiple parameter sets, with each parameter set being run multiple times.  Simu-

lations with multiple parameter sets can be used for optimization and sensitivity analysis of the model.  
 

                                        
                                         Figure 1.  Scaling of BNS with the number of processors. 

4.2 Output Data 

There are two types of output files: snapshot data and event log data. Snapshot data files contain the 

state of the system (number of molecules of each molecular species) at user specified time intervals. The 

information stored in the snapshot files are used to create runtime interactive graphics and for post hoc 



analysis of the data. The second type of output files – the event log files – contain the record of every 

discrete event that occurs during the simulation. The user should be aware that event log files may re-

quire considerable memory or hard disk space and, therefore, may create memory management prob-

lems for simulations involving a large number of long runs or for large reaction networks. 

4.3 Parallelization 

The parallelization of the BNS code is accomplished using the MPI library. In our parallelization 

scheme, the ‘master’ processor divides the total number of user specified runs between the available 

processors, sends a set of jobs to each of the ‘workers’ and performs some of the simulation runs itself. 

In this approach to parallelization, sometimes called “embarrassingly parallel”  we reduce the communi-

cation between the nodes and increase the speedup of multiple simulations. To test BNS scaling with the 

number of processors, we ran 1000 simulations on an SGI Origin 3900 machine at ASC MSRC, which 

has shared memory architecture. A simulation here is defined as a single run of the mathematical model 

of a particular biochemical reaction network. A 92-fold speedup was observed by running BNS on 100 

processors (Figure 1).                                     

4.4 Running the Simulations 

The BNS can be run either in command line mode or via a GUI.  The GUI allows the user to modify 

model parameters at runtime and to execute simulations in the interactive or batch mode on HPC re-

sources.          

                                        (a)                                                                        (b)           

                      
 

Figure 2.  The screen shots of the BNS GUI dialog windows. (a) The main BNS dialog window. (b) 

The parameters dialog window which allows users to modify the model parameters and to set simulation 

parameters. 

 

 The main dialog window of the BNS GUI is shown in Figure 2.  It allows the user to select the ap-

propriate ‘Model’ and ‘Parameters’ directories and set the ‘Run’ mode. A click on the ‘Details’ button 



next to the ‘Parameters’ directory opens a new window, shown in Figure 2(b). This dialog window al-

lows the user to modify model parameters and to set parameters for the simulation.  

If simulations are run in the interactive mode, partial results of the simulations will appear on the 

screen during the run. Usually, HPC centers allocate limited resources (in number of processors and 

running time) for interactive simulations, therefore BNS can be run in ‘Batch’ mode. In this mode all 

output data are stored on the hard drive for further analysis. 

4.5 Analysis 

The Biomolecular Network Simulator has a comprehensive set of tools for post-simulation analysis. A 

GUI for the analysis tools allows the user to easily select the data and to set conditions for the analysis. 

Multiple types of post-simulation analyses are available. 

4.5.1 Plots of number of molecules vs. time 

The most frequently used type of analysis is a plot of the number of molecules vs. time. Such plots are 

available in the interactive mode or as post-simulation analysis.  There are two ways to create plots: each 

compound is plotted on a separate figure or multiple compounds are plotted on the same figure window 

(grouping mode). The number of molecules vs. time plots can be created with both types of output files: 

snapshot data or event log data.  

 

                    
 

Figure 3. The averaged number of compounds S1 and S2 in the simulation interval (0, 2000) obtained 

using the exact Gillespie stochastic algorithm and approximate tau-leaping algorithm (ε=0.1, nc =5).The 

time-weighted average was calculated using a 50-sec time-averaging interval and the individual time-

weighted averages were averaged over the 200 simulation runs. Data for the mean ± SD are shown. 

4.5.2 Time-weighted average analysis  

A time-weighted average analysis refers to the calculations of the average number of molecules of a par-

ticular molecular species during a user selected time-averaging interval. The average is weighted accord-

ing to the amount of time the compound exists in each state during the selected time-averaging interval. 

The time weighted average is then plotted versus time. The averaging analysis can be performed for a 



single run or for a selected set of runs. When the analysis is applied to multiple runs, the plot shows the 

between run average (the average of each individual time-weighted average) and standard deviation.   

  The graphs in Figure 3 show the behavior of two molecular species, S1 and S2, over the time in-

terval of 2000 seconds for a biomolecular reaction network containing transcription, translation and 

metabolic reactions. The simulations were carried out using two different algorithms implemented in 

BNS: Gillespie stochastic algorithm and tau-leaping algorithm with parameters ε = 0.1 and nc = 5. Figure 

3 shows the between run average of the time-weighted average number of molecules for 200 runs using 

a time-averaging interval of 50 sec. The average number of molecules of species S1 changed in the 

range of ~0-20 molecules, while the average number of molecules of species S2 changed from 0 to 

~2500 molecules. Results obtained using an approximate tau-leaping algorithm are almost indistinguish-

able from the result of exact Gillespie algorithm for both types of species. On the other hand, using the 

tau-leaping algorithm speeds up simulations more than 3-fold compared to the exact stochastic algo-

rithm.   

4.5.3 Reaction frequency analysis 

Complex biomolecular reaction networks usually contain reactions that occur on different time scales: 

some reactions have a low propensity and occur rarely; other reactions are very fast and occur fre-

quently. The data stored in the event log files allow the user to perform various reaction frequency 

analyses of the simulation data to learn more about the basic nature of the system. One type of analysis 

creates plots of the total number of times each reaction in the network occurred during the simulation.   
 

 

            
 

Figure 4. The averaged number of reaction occurrences per time-averaging interval for the reaction 

channels rxn21 and rxn24 obtained using the exact Gillespie stochastic algorithm and approximate tau-

leaping algorithm (ε = 0.1, nc = 5). The time-averaged rate was calculated using a 5 sec time-averaging 

interval and the individual time-averaged rates were averaged over the 200 simulation runs. Data for the 

mean ± SD are shown. 

A second type of analysis is the average and standard deviation of the time-averaged reaction fre-

quency in each reaction channel. Figure 4 shows an example of the time-averaged reaction frequency for 

two reaction channels averaged over the 200 runs obtained by running simulations with the two algo-

rithms. The reaction rxn21 belongs to the group of “slow” reactions with the frequency of occurrences in 



the range of 0-20 firings per sec. The reaction rxn24 is a “fast” reaction and reached 500-600 occur-

rences per sec. As in the case of average number of molecules, the tau-leaping algorithm shows an ex-

cellent agreement with the results from exact stochastic simulations for this particular biomolecular re-

action network. 

5 CONCLUSIONS 

The Biomolecular Network Simulator allows the users to simulate the behavior of complex biological 

processes utilizing the capacities of high performance computers. Some of the features that distinguish 

BNS from similar tools are: 

• usage of MATLAB and C-coded functions allows the user to combine intensive visualization of 

data with high speed computations; 

• parallelized code for multiple simultaneous simulations allows the user to run BNS on multi-

processor machines; 

• options to run the code in the interactive or batch mode; 

• user friendly graphical user interface allows the user to easily set and modify parameters of the 

model, simulation  and analysis; and 

• comprehensive tool sets provide for post-simulation analysis of results. 
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