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 Introduction

For the last few years, our lab has been attempting to build robots that are similar

to humans in a variety of ways. Our goal has been to build systems that think and act like

a person rather than look like a person since the state of the art is not sufficient for a robot

to look (even superficially) like a human person. We believe that there are at least two

reasons to build robots that think and act like a human.  First, how an artificial system

acts has a profound effect on how people act toward the system.  Second, how an

artificial system thinks has a profound effect on how people interact with the system.

How people act toward artificial systems
“Everyone” knows that computers have no feelings, attitudes, or desires.  Most

people do not worry about hurting a toaster’s feelings or cursing at a VCR.  However, in

a surprising series of studies, Cliff Nass has shown that people in some situations do, in

fact, treat computer systems as social entities.  Nass has shown that it takes very little

“social-ness” for a person to treat computers (including robots, AI programs, etc.) as

social creatures.

For example, Nass and Moon (2000) examined people’s application of social

categories to computers.  Nass and Moon (2000) compared users’ interactions with two

computer systems – a tutor and an evaluator – using different combinations of male and
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female voices.  Even though the participants indicated that they knew they were

interacting with a computer, and explicitly reported that the voice did not relate to the

‘gender’ of the computer, or even the computer programmer, there were distinct gender-

related biases in the experiment data.  The evaluator, whose job was to evaluate both the

user and the tutor, was said to be less friendly when connected to a female voice than a

male.  Similarly, the tutor system was evaluated as more competent when praised by a

male evaluator than a female evaluator (Nass & Moon, 2000).   This application of social

rules to computers, and similar studies involving ethnicity, politeness and personality,

enforces Nass’s hypothesis that humans treat computers as having social properties.

Nass has also conducted experiments showing that not only do humans transfer

social properties to computers, but they also treat different computers as distinct social

actors (Nass, Steuer, & Tauber, 1994).  Nass et al. showed this by injecting notions of

“self” and “other” into participants’ interactions with different computer boxes and voice

output. Interestingly, the participants associated this embodiment with the computer’s

voice output (i.e. one voice per social actor) as opposed to the physical computer.  In

other words, two voices on one computer was considered by the user as two different

social actors; the same voice on two computers was considered to be the same actor both

times.

In other experiments, Nass and his colleagues have shown that computers can

elicit social behavior from humans without explicitly displaying emotions.  Nass has also

shown that people transfer social categories to computational systems, view computers as

distinct social entities, and apply social behaviors to their conversations with artificial

agents (Nass & Moon, 2000; Nass et al., 1994).  In short, Nass and his colleagues have



gathered strong evidence that with very minor social cues , people interact with

computers the same way people interact with other people.

Nass’ overall hypothesis and evidence have at least two implications for how

people act toward robots and other artificial systems.  First, it means that embodied

artificial systems do not have to look like a person in order for people to act in a social

manner toward the robot:  subtle social cues can cause people to think of computers as

social entities.  It is not clear how human (or non-human) a robot needs to look in order

to elicit social behavior (e.g., would a polite mound of “goo” elicit polite behavior?).

Second, if robots act socially, people have a “built in” way of dealing with them – exactly

how they would deal with another person.

How people interact with artificial systems
How do people perceive and interact with artificial systems?  In most cases,

people want the system to help them solve their task or problem while making no

mistakes and being polite about it (see above).  Our desire for this type of interaction has

probably been influenced by popular robots like C3PO (from Star Wars), Data (from Star

Trek), and even Robbie the Robot (from Forbidden Planet).

For example, movies and television often portray people interacting with robots as

if they were human. They use normal conversation and other modalities of

communication associated with humans, such as gestures. These robots refer to objects

and have the near-perfect ability of recognizing these objects.  Also, they are able to

reason about space and time. In reality, however, the interaction humans have with

mobile robots is closer to teleoperation – in which humans directly (or in some cases

indirectly) control the robot’s behavior.



Figure 1 shows the scale of human interaction with the robot as a continuum from

teleoperation, where the human directly controls the robot’s motions, to dynamic

autonomy, where the robot can exercise its own initiative and set its own goals while

collaborating with the human.1

Figure 1: Levels of human interaction with autonomous system

Teleoperation requires that a human attend to the robot one hundred percent of the

time.  The human is completely responsible for all actions of the robot.  Examples of

robots that fall into this category include the robots used to help find victims and assess

damage in the World Trade Center (WTC) collapse (Casper, 2002), and the small robots

used by the U.S. Army in Afghanistan to explore caves. Teleoperation, however, can be

very difficult.  One of the main problems is ensuring that the human has enough

awareness of the environment to understand the robot’s position (Blackburn, Everett, &

Laird, 2002). For example, rescue workers at the WTC had trouble determining if the

robots were right side up with their camera view.  Also, teleoperation requires a high-

                                                  
1 Various scales have been devised to show the level of autonomy of an unmanned
vehicle, the best known being the Sheridan Levels of Autonomy (Sheridan, 1992).
Figure 1 deemphasizes the notion of full autonomy that minimizes human interaction,
and instead emphasizes the varying levels of collaboration, but in fact implies that the
vehicle has the ability to operate autonomously.



bandwidth communications channel between the human and the robot in order to supply

the real-time video.

By providing the robot with some basic skills, for example collision avoidance,

the human is freed from having to control the vehicle at such a low level.  This mode,

mediated (also known as safe-guarded) teleoperation, allows the human to concentrate on

other, higher-level decision making, such as choosing a path for the robot.

Moving further along the continuum, supervisory control gives the robot even

more autonomy.  Here the human picks one or more locations and other constraints (such

as time), and the vehicle autonomously navigates to those waypoints.  Now the human is

freed from actually driving the vehicle and can concentrate on analyzing the robot’s

situation and making higher-level decisions.  This level of interaction is particularly

suited to very remote operations, such as the exploration of Mars during the Mars

Pathfinder and Mars Exploration Rover missions, because the lag in round-trip

communications does not support the quick execution of a human’s decisions or for

scientists and controllers to get real-time video.

Moving along the scale towards collaboration, the interactions become more

complex and require that the human and the robot share more common knowledge about

the world and about how things within the environment are related.  In order to achieve

these kinds of interactions and knowledge, the robot and the human must participate in a

dialog to achieve common goals. Collaborative control refers to the ability of the robot

and the human to ask each other for help in completing a task (Fong, Thorpe, & Bauer,

2002).



This level of interaction requires mixed initiative, or the ability of any agent in a

collaborative act to initiate action in solving a task.  In other words, each participant takes

advantage of unique skills, location, and perspective of the current situation.  We believe

that at this level and beyond, the robot should utilize representations and procedures that

are similar to those used by humans, rather than the other way around, in order to

collaborate successfully; this is called the representational hypothesis.  There are at least

three reasons why a system with human-like representations and procedures will

collaborate better with a person than a system that does not have human-like

representations and procedures.

First, since algorithms written for traditional real-time robotic systems have to be

computationally efficient, they tend to use efficient mathematical representations, such as

matrices and polar coordinates, which may not be natural, or at best are extremely

cumbersome, for people to use.  For example, most position and motion information in

robotics is conveyed using position vectors and transformation and rotation matrices.  In

general, people do not think or reason in this format.  Instead, people seem to use a

combination of spatial and propositional knowledge (Anderson, Conrad, & Corbett,

1989; Anderson & Lebiere, 1998; Shepard & Metzler, 1971; Taylor, 1992; Trafton et al.,

2000; Trickett, Ratwani, & Trafton, under review).  Thus, in order to interact with a

human, the system must translate the robot's representation to the person's representation.

However, because a person's representation of space is so complex (Harrison & Schunn,

2002, 2003a, 2003b; Previc, 1998), this is not a trivial task.  Another, more functional

argument, is that traditional AI spatial reasoning techniques do not adequately capture



how people perform spatial reasoning; a model based on human spatial reasoning will

provide some robust advantages over those systems that do not reason as a person would.

Second, if a human is going to collaborate in shared space with a robot, the robot

should not exhibit unexpected, unnatural, or “martian” behaviors (Petty, 2001).  While

the robot may be able to perform a task efficiently, using for example a behavior-based

approach, if the resulting behavior is perceived to be unnatural by the human, further

interaction suffers as a kind of cognitive disruption. From this it follows to create some

robot behaviors by modeling how humans perform such tasks.

Finally, we believe that some tasks for robots can best be programmed not by

using more traditional control algorithms, but by understanding how humans solve the

task and then creating a computational model of that understanding.  So, for example, a

robot that could search for hidden snipers would probably perform best if it had been

programmed knowledge about how humans hide.

Two reasons for building artificial systems that think and act like a person have

been presented.  First, systems that act like people will elicit more social behaviors from

people and make such systems more natural for people to deal with, and second, artificial

systems that think like a person will interact with people with far greater ease than

systems that do not.  Our specific interest is in how to build robots, so the remainder of

our discussion will focus on robotic agents.  One issue with working with physically

embodied robots is that, because they are physical and move around, people must interact

with them in non-trivial ways:  social interaction will probably occur, and communication

and collaboration should occur.  Our overall goal is to build robotic systems that think

and act like people do in order to enable natural social behavior and allow better and



easier communicative and collaboration.  It should be noted, however, that our primary

point can be generalized to all types of physically embodied systems.

Task domains

In the following sections, our robotic system will be described and three examples

of work in our lab that show humans and robots collaborating and working together on

various tasks will be presented.  In the first example, the robot is taught how to hide

(based on data obtained from a 3 1/2 year old child’s behaviors in learning how to hide)

and then it is asked to seek using these representations and strategies.  The second and

third examples use perspective-taking situations to facilitate human-robot communication

and interaction.  The first model of perspective taking emphasizes a good cognitive

model of the representation used by humans, and the second perspective-taking model

emphasizes the human process of using mental simulations to imagine another’s

perspective.

Since robots will be used for all these tasks, our mobile robots and their

capabilities and sensors will be described first.

Mobile Robots

The empirical results were obtained by running the computational cognitive

models, along with more traditional, reactive control software, on an indoor mobile robot

in a laboratory environment.



Hardware

The robot is a commercial Nomadic Technologies Nomad200 suited to operation

in interior environments.  It has a zero turn radius drive system, an array of range, image,

and tactile sensors, and an onboard network of Linux and Windows computers with a

wireless Ethernet link to the external computer network.

Software

A combination of non-cognitive methods (primarily for robot mobility and object

recognition), cognitively-inspired interactions (primarily for communicating with a

person), and computational cognitive models (primarily for the high-level thinking and

reasoning) were used.  In previous work the utility of combining low-level reactive

systems with cognitive models has been shown (Bugajska, Schultz, Trafton, Mintz, &

Gittens, 2001; Bugajska, Schultz, Trafton, Taylor, & Mintz, 2002; Trafton, Schultz,

Bugajska, Gittens, & Mintz, 2001).

Non-cognitive Methods:

This project draws on the robot mobility capabilities of the previously developed

WAX system (Schultz, Adams, & Yamauchi, 1999), which includes components for map

building, self-localization, path planning, collision avoidance, and on-line map adaptation

in changing environments.  The robot's lowest level of information comes from a dead-

reckoning component that integrates motion over time to compute the robot's current

location.  As the robot moves, it gathers range data from its 16 ultrasonic transducers and

a laser-based structured light rangefinder.  In a process developed by Moravec and Elfes

(Moravec & Elfes, 1985), the range data is interpreted using a sensor model that converts



the raw range data to a set of occupancy probabilities for the sensed area.  In this manner,

data from multiple sensors can be fused into a single short-term occupancy map of the

robot's vicinity, represented as a three dimensional array of discrete cells, each containing

the probability that it is occupied or empty.

Robot odometry suffers from gradual drift, sometimes punctuated by larger errors

from wheel slippage, rough ground, or collisions, so odometry alone is insufficient.

Using the process of continuous localization (CL) (Schultz & Adams, 1998), a temporally

overlapping progression of short-term perception maps is maintained.  At periodic

intervals, the oldest short-term map, which has the most data, is registered against a long-

term map of the larger environment (typically a room) to determine the correction needed

to correct the odometric drift.  The long term map can be supplied a priori, or learned

through a careful exploration, as was done in (Yamauchi, Schultz, & Adams, 1998).  For

this work, mapping was not the focus, so an a priori map was used.  As a byproduct of

correcting odometry, the long-term map can also be adapted to incorporate the now-

corrected new readings from the short-term map.  Thus, as the robot moves, it not only

maintains an accurate estimate of its position but also keeps the long-term map up to date

with any changes to the environment.

Because the robot's basic motor system is geometry-based and metric maps can be

easily produced, it is a matter of practicality to state goal locations as points in Cartesian

space.  These goals are passed to the Trulla path planner (Hughes, Tokuta, &

Ranganathan, 1992), which uses the long-term map to determine the best path to the goal.

Because there may have been changes to the environment that are beyond the robot's

sensor range, or recent changes such as people walking near the robot, the paths made by



Trulla cannot be followed blindly. Instead, they are passed as a single vector field to the

Vector Field Histogram (VFH) process (Borenstein & Koren, 1991).  VFH uses the

robot's current position to retrieve from the vector field the direction the robot should

move to head toward the goal.  This vector is compared to an occupancy histogram built

from the short-term map (which has the recent data close to the robot), and the robot is

steered in the unblocked direction closest to the one indicated by the vector.  In effect,

Trulla handles the room-level navigation while VFH provides collision avoidance.  If the

robot is blocked, VFH prevents collision. CL learns the changes and produces a new

adapted long-term map, and Trulla replans around the obstruction.

In addition to general mobility, the robot needs to recognize objects in its

environment for the high-level cognition that will be demonstrated below. Rather than

providing the robot with a priori information about discrete objects, the robot is instead

equipped with limited computer vision in order to detect some objects autonomously.

This also allows objects to be rearranged, added, or removed with the robot reacting

accordingly.  The CMVision package (Bruce, Balch, & Veloso, 2000) was used to

provide simple color blob detection using an inexpensive digital camera mounted on the

robot.

Relevant objects in the environment are tagged with color markers that are easily

distinguished from the surroundings.  The marker color is the identifier for the

characteristics of an object.  For example, all lime green objects are "chairs" and have the

same characteristics. The bearing to the object is then determined from its location in the

camera image, and the range to it is obtained from a scanning laser rangefinder.



Cognitively Inspired Methods

In order to communicate with a person, several methods that have some basis in

human cognition are used.  The methods that are used here allow a user to communicate

with the robot using spoken language, gestures in the real world, and gestures on a Palm

Personal Digital Assistant (PDA).

The human user can interact with the mobile robot using natural language and

gestures that are part of our multimodal interface (Perzanowski, Schultz, & Adams, 1998;

Perzanowski et al., 2002; Perzanowski, Schultz, Adams, & Marsh, 1999, 2000;

Perzanowski, Schultz, Adams, Marsh, & Bugajska, 2001).  The natural language

component of the interface uses a commercial off-the-shelf speech recognition engine,

ViaVoice, to analyze spoken utterances.  The speech signal is translated to a text string

that is further analyzed by our in-house natural language understanding system, Nautilus

(Wauchope, 1994), to produce a regularized expression.  This latter representation is

linked, where necessary, to gesture information, and an appropriate robot action or

response results.

For example, the human user can tell the robot “Coyote, go hide and I’ll try to

find you.”  The speech signal is analyzed into a text string which when parsed produces

the following representation, simplified here for expository purposes.

(and (imperative (p-hide: hide)

                  (system: you

 (name: coyote)))

     (future (p-attempt: try)

           (agent: I)



            (action (p-find: find)

 (agent: I)

          (system: you

     (name: coyote)))))

Basically, Nautilus parses the utterance into appropriate commands (e.g. the

imperative structure in our example) and statements (e.g. the future declaration in our

example), and the various verbs or predicates of the utterance (e.g. hide, try, and find) are

mapped into corresponding semantic classes (p-hide, p-attempt, and p-find) that have

particular argument structures (agent, system) which result in a semantic interpretation of

the utterance.  With gesture information, where appropriate, a combined representation

incorporating both the linguistic and gestural information is then sent to the robotic

component whose modules translate the representations into appropriate actions.

In the example above, no further gesture information is required to complete the

command.  Coyote will, therefore, respond “I will go and hide,” in order to inform the

user that it has understood the utterance.  The appropriate behavior based on the cognitive

model for the hide-and-seek activity is invoked and appropriate robot action according to

the model ensues.

If a gesture is required to disambiguate the speech, as in “Coyote, hide

somewhere over there,” the gesture information obtained from the laser rangefinder

mounted on the top of the robot indicates the desired location, and this information is

included in the interpreted utterance for further analysis by the robotic system.



Hide and Seek

The first domain in which robotic agents that think and act like people will be

demonstrated will be the children's game commonly known as “hide and seek.”  Hide and

seek is a simple game in which one child is "It," stays in one place counting to ten with

eyes closed, and then goes to seek, or find, the other child or children who have hidden.

This game allows us to address our high-level goals of understanding how human

representation and processing of spatial information (Skubic, Perzanowski, Blisard,

Schultz, & Adams, in press) can aid in designing better human-robot interaction in

collaborative spaces.  This work is described more fully elsewhere (Trafton, Schultz et

al., under review); a summary of our findings is discussed here.

The study had two primary goals:  1) to understand how children learn to play

hide and seek via computational cognitive modeling; and 2) to build a system that thinks

and acts like people do.  This latter point should serve to facilitate human-robot

interaction.  The first point will be briefly summarized and more fully described to show

how our system thinks and acts like children learning how to play.

Hide and seek game-playing behavior was gathered from a 3 1/2 year old child.

Previous research suggests that 3 1/2 year old children do not, in general, have

perspective-taking ability (Huttenlocher & Kubicek, 1979; Newcombe & Huttnelocher,

1992; Wallace, Allan, & Tribol, 2001), but they are able to play a credible game of hide

and seek (supported mostly by anecdotal evidence of the game-playing behavior at local

parks and playgrounds, since there are almost no empirical investigations of the

naturalistic game of hide and seek). Spatial perspective taking is clearly needed for a

“good” game of hide and seek: a good hider needs to take into account where "It" will



come into a room, where "It" will search first, and where to hide behind an object taking

the perspective of "It" (Lee & Gamard, 2003) so that “It” will not be able to find the hider

easily.  Additionally, the hider must know that just because the hider can't see "It" doesn't

mean that "It" can't see the hider.  The research question was to explore how 3 1/2 year

old children learned to play hide and seek without perspective taking.  The hypothesis

(which was supported by computational simulation) was that 3 1/2 year old children were

able to learn relationships of objects to play hide and seek.  For example, a child may

learn that hiding under or inside of an object was a good hiding place.  In contrast, hiding

behind an object occurred rarely because that required spatial perspective taking.

Evidence was obtained from a child learning to play hide and seek; subsequently,

computational simulations in ACT-R (Anderson & Lebiere, 1998) were written that

learned how to play hide and seek in the same manner as the child did.  Additionally, the

computational system was put on our robot and hide and seek was played (Trafton,

Schultz et al., under review) with it.

In order to show the benefits of a system that thinks and acts like a person, we

wanted to show how the computational system could be generalized to a different

situation where similar but not exact knowledge would be needed.  The most obvious

task to explore was the “seeking” part of hide and seek, since the computational cognitive

model that was written focused solely on learning how to hide.  The seeking system

should exhibit several interesting behaviors.  First, it should seek according to its own

model of hiding.  That is, it should search in places that it thinks are plausible for “It” to



hide in.2  Second, it should be able to deal with novel objects or objects that were not in

its original environment.  Third, it should be able to accomplish this seeking behavior

without new learning mechanisms while using its current representations and algorithms.

This seeking behavior would be a proof of concept for the representational hypothesis:

building a system that thinks and acts like a person would make the system more

“natural” in some ways.  In this case, a child would presumably find a system that plays

hide and seeks like another child more fun than a system that hides or seeks in very odd

places (e.g., a robot that hid in a very difficult location would not be much fun to play

with).

In order to explore how our existing system would seek for a person after it had

learned how to hide, several straightforward steps were gone through.  First, the model

was run as above, allowing the to learn different pertinent features of objects and object-

relations.  The model was then “frozen.”  In order to allow the robot to seek, two more

pieces of information were given to it:  (1) what a person “looked like” (e.g., the person

might wear a blue shirt which was identifiable by CMVision) and (2) how to start the

game (e.g., a location to start from; what to count to, etc.).  In order to seek for a person,

the computational cognitive model determined where it would best hide and then gave

those coordinates to the robot where it would then look.  If it did not find the person in

that location, it searched in the next place that it would have hidden until either it had

found the person or it had run out of locations to search.  The model’s “individual

preferences” (e.g., locations that had higher or lower levels of activation) were not

                                                  
2 Because our robot cannot bend or change shape like a young child, as a simplification
for both the model and the robot, we assumed that our hider is small (approximately the
size of a small child) and does not contort itself a great deal or squeeze itself into a
location that is smaller than itself.



cleared. The model searched those locations in approximate (because of noise) order of

activation.  The environment was changed slightly as well (i.e., added additional objects

it already knew something about, moved the location of other objects, etc.).

Both the model and robot behaved as expected.  The robot systematically

searched different locations that it had learned were acceptable hiding places until it

found the person hiding.  Over multiple games, it searched locations in different orders.

Most importantly, it did not attempt to search for a person in locations that would have

been very “odd.”  For example, while it could have found a person hiding out in the open

(like children do when they’re first learning how to play hide and seek), it did not

systematically search all the open space for a person hiding out in the open.  Instead, the

robot searched where it thought it would have hidden.  A full set of movies of the robot

seeking can be found at http://www.aic.nrl.navy.mil/~trafton/hideseek.html.

The fact that the robot and computational system were able to find a hiding person

successfully by using its own representations and processes supports our representational-

level hypothesis; namely, a computational or robotic system that thinks and acts like a

person will interact well with the person.  This hypothesis  was supported by taking the

“hiding” model and applying it to seeking.  The model successfully searched for a person

using the same representations and processes that it had learned and used while learning

how to hide. Our hypothesis also states that by using similar representations and

processes, alien behaviors could be avoided.   As shown above, our system did not search

for or hide in unusual places; instead, it only considered those places that a human would

consider.



Clearly, our approach could lead the system to make systematic errors:  it would

not expect a person to have climbed a rope and clung to it, etc.  It also could not use

perspective taking for seeking or even assume that the hider would move locations

because that information was not built into the original hiding model.  However, 3 1/2

year olds do not typically climb ropes or use perspective taking to hide from someone,

and they do not typically look for hiders in these types of odd places, either (Trafton,

Schultz et al., under review).

Perspective Taking

Our second and third domains for exploring robots that think and act like people

involve the basic cognitive skill of perspective taking.

Imagine two astronauts working together on a collaborative construction project.

While they might be able to talk and gesture to each other to get their job done, they

would be dressed in full spacesuits and consequently have diminished perceptual abilities

and decreased freedom of movement.  Given these limitations, their work could be

facilitated by a robotic system that could hand them tools and follow simple instructions,

or perhaps even give them instructional assistance.  In order to determine the kinds of

instructions and utterances the robots would need to understand and process in this

situation, we have analyzed data that was collected during a specific astronaut training

session.  When astronauts train for missions, part of their training occurs in various

simulated microgravity environments, such as the Neutral Buoyancy Laboratory (NBL)

at NASA/JSC.  In the NBL, astronauts conduct a wide variety of training for



extravehicular activity (EVA); i.e., working outside the space shuttle, including working

out the procedures and defining roles to perform EVAs.

One issue that astronauts must deal with is spatial language and spatial

perspective taking. Virtually all of the experimental work on spatial language and

perspective-taking to-date has focused on five frames of reference:  exocentric (world-

based, such as “Go north”), egocentric (self-based, “Turn to my left”), addressee-centered

(other-based, “Turn to your left”), deictic (“Go here [points]”) and object-centric (object-

based, “The fork is to the left of the plate”) (Carson-Radvansky & Logan, 1997; Carson-

Radvansky & Radvansky, 1996; Goldin-Meadow, 1997; Levelt, 1984; McNeill, 1992;

Mintz, Trafton, Marsh, & Perzanowski, in press).  Unfortunately, astronauts must deal

with frames of references and spatial situations that people here on Earth do not typically

have to deal with.  For example, “up” may mean something completely different in space

in different situations (i.e., up may mean toward the ceiling of the spaceship rather than

with reference to the normal sense of gravity here on Earth).  In general, astronauts do not

have problems themselves in understanding the spatial language and taking another’s

point of view, but one of the challenges for robotic systems is to understand what

someone else is talking about from a different spatial perspective.

As part of this project a series of astronaut utterances has been analyzed as they

performed a cooperative assembly task for Space Station Mission 9A, specifically the

construction of the first right-side Truss segment and the Crew and Equipment

Translation Aid (CETA) Cart A in the NBL (Trafton, Cassimatis et al., under review).

This analysis project is still under progress, but several critical issues have already

surfaced.  First, astronauts seem to switch reference frames quite often, just as people do



while giving directions (Franklin, Tversky, & Coon, 1992). Second, astronauts in this

collaborative process must frequently take another’s perspective, even when they cannot

see the person whose perspective they are taking.  For example, the following

conversation (Table 1) occurred between three individuals--two astronauts (EV1 and

EV2) in the neutral buoyancy tank at NBL and one person (Ground) outside of the tank in

mission control.  The latter watched the two astronauts through a video feed of the

activity.

EV1 EV2 Ground
Bob, if you come straight down from
where you are, uh, and uh kind of
peek down under the rail on the nadir
side, by your right hand, almost
straight nadir, you should see the uh,

Mystery hand-rail
The mystery hand-rail, exactly

OK
There’s a mystery
hand-rail?

Oh, it’s that sneaky one.  It’s there’s
only one in that whole face.

Oh, yeah, a mystery
one.

And you kinda gotta cruise around
until you find it sometimes.

I like that name.
Table 1:  Dialog between two astronauts and an observer

Notice several things about this conversation.  First, the mission control person

mixes reference frames from addressee-centered (“by your right hand”) and exocentric

(“straight nadir” which means towards the earth) in one instruction, the very first

utterance.  Second, the participants come up with a new name for a unique unseen object

(“the mystery hand-rail”) and then tacitly agree to refer to it with this nomenclature later

in the dialog.



This short excerpt shows that an automated reasoning system needs to be able not

only to mix perspectives, but to do so in a rather sophisticated manner.  One of the most

difficult aspects of this problem is the addressee-centered point of view, which happens

quite often in the corpus that was examined.  Thus, in order for a robotic system to be

truly helpful, it must be able to take into account multiple perspectives, especially another

person’s perspective.

At this point we turn to a discussion of two further projects that show how robots

can think and act like people.  The first project uses similar processes (specifically

simulation) that people use when they take another person’s perspective, and the second

project uses the same spatial representations that people use.

Perspective taking using similar processes:  Polyscheme

Our hypothesis that humans and robots interact better when they share similar

representations and when robots can take the perspective of humans has helped determine

how to implement the cognitive subsystem of our robots.   First, since robots must share

similar representations with humans, a cognitive architecture that had cognitively-

inspired spatial and logical reasoning mechanisms was used.  Second, an architecture that

provides a mechanism for simulating alterative states of the world was used so that the

robots could reason about the perspective of other people.  The Polyscheme (Cassimatis,

2002) cognitive architecture fulfills both requirements.

Polyscheme is a cognitive architecture based on the ability to conduct mental

simulations of past, future, distant, occluded and/or hypothetical situations.  Our

approach has been to use Polyscheme to enable robots to simulate the world from the



perspective of people with whom they are interacting and  to understand and predict the

actions of humans.

Polyscheme uses several modules, called specialists, which use specialized

representations for representing some aspect of the world.   For example, Polyscheme’s

space specialist uses cognitive maps to represent the location of and spatial relations

among objects.  Its physics specialist uses causal rules to represent the causal relationship

between events.  Using these specialists, Polyscheme’s specialists can simulate, i.e.,

represent the state and predicted subsequent states, of situations it cannot see at present,

either because they occurred in the past or future, they are occluded from view and/or

they are hypothetical.

Polyscheme modelers have the ability to set strategies for choosing which

situations to simulate in what order.  Modelers use these strategies to implement

reasoning and planning algorithms, including perspective taking.  For example, the

counterfactual simulation strategy, “when uncertain about A, simulate the world where A

is true and the world where A is false”, implements backtracking search when used

repeatedly.  The stochastic simulation strategy, “when A is more likely to be true than

false, simulate the world where A is true more often than the world where A is false”,

implements an approximate form of probabilistic reasoning (often used, e.g., to estimate

probabilities in a Bayesian network).  Polyscheme’s ability to combine multiple

simulations from multiple strategies and to share simulations among strategies is the key

to its ability to tightly integrate multiple reasoning and planning algorithms (Cassimatis,

Trafton, Schultz, & Bugajska, 2004).  Since each simulation is conducted by specialists



that use multiple representations (e.g., perceptual, spatial, etc.), the integration of

reasoning with sensation and multiple forms of reasoning is constant.

Using this framework, we have been able to improve human-robot interaction by

giving robots the ability to simulate the world from the perspective of humans they

interact with.  An important problem when humans and robots communicate using

natural language is that most verbal commands or questions have multiple literal

meanings.  Although humans are normally able to use contextual information to eliminate

most possible interpretations and thus identify the speaker’s intent, this has remained a

difficult problem for computers and hence robots.

By using Polyscheme to implement the perspective simulation strategy, “when a

person, P, takes action, A, at time, T, simulate the world at time T from A’s perspective”,

we have given our robots the ability to reason about the world from the perspective of

people and to thereby disambiguate their utterances.  In many cases, for instance, an

utterance is ambiguous given the listener’s knowledge, but unambiguous given the

speaker’s knowledge.  Figure 2 is an example.  The figure shows a robot and a person

facing each other.  The robot can see that there are two cones in the room, cone1 and

cone2, but the person only knows about cone2 because cone1 is hidden from her.  When

the person commands, “Robot, go to the cone”, the phrase “the cone” is potentially

ambiguous to the robot because there are two cones, though unambiguous to the person

because he only knows of the existence of one cone.  Intuitively, if the robot could take

the perspective of the person in this task, it would see that, from that perspective, cone2 is

the only cone and therefore “the cone” must refer to cone2.



Polyscheme was used to implement this sort of reasoning on the robot described

earlier.  The following list outlines the sequence of simulations that enable the robot to

properly disambiguate the person’s utterance:

• Simulate current real world (i.e., perceive it):

o Perception specialist notices the existence and location of person,

cone1, cone2 and obstacle.

o Language specialist hears “Coyote, go to the cone” and infers that

there is an object, C, that is a cone and that the person wants it to go to.

o Identity hypothesis specialist infers that C can be identical to cone1 or

cone2:

 C = cone1, C = cone2

o Identity constraint specialist notices a contradiction.

o This contradiction triggers the counterfactual simulation strategy.

• Simulate the world where C = cone1

o Since in this world Person has referred to cone1, the perspective-

simulation strategy is triggered:

o Simulate the world where C=cone1 and Robot=Person.

 The spatial reasoning perspective indicates that cone1 does not

exist in this world since person cannot see it.

 Thus, C != cone1.

• Simulate the world where C = cone2

o Since in this world Person has referred to cone2, the perspective-

simulation strategy is triggered.



o Simulate the world where C=cone2 and Robot=Person

 Since cone2 is visible in this world, there is no contradiction in

this world.

• Infer that C = c2, i.e., that “the cone” refers to cone2.

This example illustrates how robots can use their own mechanisms for reasoning

about the world to reason about the beliefs and intentions of other agents without needing

elaborate machinery for social reasoning.  An online video of this example can be found

at http://www.aic.nrl.navy.mil/~trafton/movies/perspective-2objects-mp4.mov.

Polyscheme is able to solve this problem by using mental simulation, a human-

level ability that is, in general, not well used in other cognitive architectures.  By using

mental simulation (a similar mental process to what people do), it greatly increases the

human-robot interaction in this situation:  without this kind of machinery, the robot

would need to ask “Which cone?” which could lead to confusion on the person’s part if

she did not know there was more than one cone.  Other work not only provides a more

complete description of Polyscheme, but also provides more details about other tasks,

including the perspective-taking examples used here (Cassimatis, 2002; Cassimatis,

Trafton, Bugajska, & Schultz, in press; Cassimatis et al., 2004; Trafton, Cassimatis et al.,

under review).



Figure 2. The robot needs to take the perspective of the person to determine to which

cone the human has referred.

Perspective taking using similar representations:  ACT-R

Polyscheme showed that mental simulation could be used to solve a problem in

perspective taking, and shows an example of how to build a robot that thinks and acts like

a person.  Could a similar perspective-taking task be accomplished by focusing on the

spatial representations that people have?  We attempted to answer this question by using

ACT-R/S (Harrison & Schunn, 2002, 2003a, 2003b).

The cognitive architecture jACT-R is a java version of the ACT-R architecture

(Anderson & Lebiere, 1998).  To represent declarative memory, it uses chunks of various

types of elements.  These chunks can be accessed through a memory retrieval buffer.  In

order to use and manipulate the chunks of memory, ACT-R provides a framework for

Person

Robot

Cone1 Cone2

Obstacle



production rules.  A sample chunk and production rule are shown in Figure 3.  ACT-R

then simulates cognitive behavior and thought based on activation values and propagation

of chunks and higher-level goals.  ACT-R also includes support for perceptual and motor

cognitive tasks, such as Precognitive Remote Perception tasks, by including a second

visual buffer for viewing objects in space.

ACT-R/S extends jACT-R to implement a theory about spatial reasoning

(http://simon.lrdc.pitt.edu/~harrison/). It posits that spatial representations of objects are

temporary, egocentric and dynamically updated (Wang & Spelke, 2002).  ACT-R/S has

three buffers for spatial cognition:  the configural buffer, the manipulative buffer, and the

visual buffer.  The configural buffer represents spatial extents of objects that are updated

during self-locomotion and is used during navigation, path-computation, object-

avoidance, etc.  The manipulative buffer represents the metric spatial bounds of an object

and is used for spatial transformations of objects (Trafton, Marshall, Mintz, & Trickett,

2002; Trafton, Trickett, & Mintz, in press).  The visual buffer is the same as the

“standard” perceptual-motor buffer in ACT-R/PM (Byrne & Anderson, 1998).

ACT-R/S represents objects using vectors to the visible sides of the object.  It has

the ability to track these objects through the configural buffer, a data structure analogous

to the other buffers of ACT-R that stores each object once it has been identified.  The

coordinate vectors of the objects in the buffer are then dynamically updated as the agent

moves throughout the spatial domain. The configural buffer, unlike the visual and

retrieval buffers of ACT-R, can hold more than one object to account for the fact that

animals have been shown to track more than one landmark at once while moving through



the world (Harrison & Schunn, 2003a).  In order to focus on the representational aspects

of perspective-taking, our model uses only the spatial representations within jACT-R/S.

Using the configural extension begins with locating and attending to an object via

the visual buffer provided by the standard Perceptual-Motor extension to ACT-R. Once

an object is found, it is possible to request that the ACT-R/S-visual object at that location,

if one exists, be placed in the configural buffer.  The model then begins tracking this

object, creating the initial vectors and updating them as the agent moves around in the

world.  The updating transformation is done by adding or subtracting vectors representing

the agent’s movement to the vectors and object’s location.

   chunk_cone:
isa: cone
color: gray
speaker_can_see: true
location: (x,y)

   production_take_cone:
if isa cone

   and speaker_can_see
   and (my_x, my_y) = (x,y)

then take_cone

Figure 3:  An ACT-R memory chunk and production rule.

In order to demonstrate the results of perspective taking using jACT-R/S, the

same perspective-taking task that Polyscheme solved was implemented:  disambiguating

which cone a person referred to when the robot could see two cones but the person could

only see one.  For this example, the full system was not implemented on a physical robot.

In the simulated world, two agents (hereafter referred to as the ‘speaker’ and the ‘robot’)

are in a room with two cones and a screen.  The screen blocks the view of one of the



conees from the speaker, but not the robot.  Then, the speaker asks the robot to hand them

the cone, using some locative clue such as “in front of me.”  If both of the conees match

this description, then the robot should hand the speaker the cone that they know the

speaker can see.

The model thus uses the ACT-R/S architecture in order to use spatial perspective

taking to complete its task.  There are several components to the perspective taking that it

goes through in order to do so.

Perspective-taking process.   The production rules involved in the perspective-

taking process are the most important part of the model, as they implement the heart of its

theory of spatial perspective-taking.  Taking the perspective of someone at position and

orientation B, from position and orientation A, the over all procedure is to:

1. Turn to face position B
2. Walk to position B
3. Face orientation B
4. Extract the desired information from the visual knowledge at this

position and orientation
5. Face position A
6. Walk back position A
7. Return to orientation A.

The key to this process is that all of these movements – i.e. turning and walking –

are mentally done by only transforming the configural buffer contents by the appropriate

vector, leaving everything else the same.  Thus, the physical location of the robot does

not change; it is only its mental perspective that changes.

Initial scan for objects.  The model first uses perspective taking to deduce where

it should begin looking for the cone.  When the speaker says 'in front of me', or ‘to my

left’, etc., the robot interprets that information by taking the speaker’s perspective and



mentally placing itself in their shoes.  It then looks at a location in front of it, or to its left

(as indicated by the speaker’s initial instructions), and keeps track of that location as it

returns to its own perspective.  This is where it begins its search for the cone.

Deciding which cone to go to.  The model also uses perspective-taking once a

cone has been found.  When it has located a cone in the desired location, it looks around

for obstacles that could possibly block the speaker’s view of the cone.  If it finds any such

obstacles, it takes the speaker’s perspective again in order to judge whether or not it can

see that particular cone.

This time, however, once the robot has taken the speaker’s perspective, instead of

turning to match the speaker’s orientation, it turns to face the located cone.  Determining

whether or not the cone is visible by the speaker is then done by comparing the

transformed location vectors of the target object with the location vectors of the possible

obstacles, making sure that the obstacle’s vectors do not completely surround the target

object’s vectors.  This ensures that the speaker has the ability to see at least part of the

cone.

If the speaker can in fact see the cone, the robot goes to that cone. If the speaker

cannot see the cone, the robot continues to look for a cone that the speaker can

Although building a model that completes this task could be done in a variety of ways,

what distinguishes jACT-R/S from other spatial cognitive models is that it uses the

spatial representation of humans in order to complete the perspective-taking task.  Once

again, this representation entails creating and updating a set of vectors to the edges of

each object currently being attended to.  Using this representation allows the cognitive

agent to undergo perspective taking by imagining movement throughout the world by



simply altering the representation of the objects in the configural buffer.  This ultimately

results in true perspective taking in the sense that the agent's representation of objects,

once it has imagined movement to the second agent's location, roughly matches the

second agent's own representation of these objects, truly seeing the world as the second

agent does.  In the end, this provides a more natural and human-like interaction with the

second agent, since the cognitive agent responds as a human plausibly would instead of

introducing into the conversation an item (here, a cone), that the second agent might now

even know exists.

Summary of Perspective taking

When a task needs perspective taking, there are, of course, many ways to solve

the task.  For example, a straightforward method of solving the “Go to the cone” problem

discussed above would be to simply ask the person “Which cone?”  Alternatively, the

robot could simply guess and go to a cone.  Unfortunately, both these solutions break

down under more complex conditions and under conditions where speed and accuracy are

critical (like the astronaut construction task discussed earlier).  Having a robot ask many

questions would quickly get boring, bringing the level of autonomy to a level that hurts

team performance.  Similarly, if a robot is going to guess frequently, team performance

will likely degrade and interaction with the robot will quickly become frustrating.

Using the forms of perspective taking that have been outlined here, we believe

that we are building robots that think and act like people (to a limited degree). The main

advantage of this approach is that if a robot thinks and acts like a person, not only will a

person treat it (approximately) as a person, but also the interaction with the robot will be

quite natural for the person.



Future directions in social perspective-taking

Our work on perspective taking attempts to create a robot that thinks and acts like

a person; this presents several future research questions and opportunities that fall into

two broad categories.  The first involves improving robots’ abilities to infer and represent

the perspective of humans and the second pertains to actions that they can take to ensure

that human and robot representations are synchronized and to make corrections should

they begin to diverge.

In much of the work that has been described in this chapter, robots infer a

human’s perspective by observing which objects are currently visible to him from his

perspective.  There are several other factors robots can use to infer the human

perspective, each of which enables them to coordinate their behavior with humans in

more complex situations.  These factors include perceptual salience, the history of a

person’s attentional gaze and predictions of future actions formed by predicting the intent

of past actions.

Robots must not only be able to represent the perspective of a person, but also be

able to identity which aspects of his perspective are most salient.   Such a perceptual

capacity in a robot would be valuable in many practical circumstances.  Studies of

human-human interaction have shown that people can make ambiguous references to

objects that other people can easily disambiguate by choosing the most salient

interpretation.  Clark, Schreuder, and Buttrick (1983), for example, found that a group of

thirty students individually made the same choice with an average of 70% or better when

asked to either choose an ambiguous reference, choose what another person would

choose, or simply choose what was most salient in various scenes of similar objects.  In



addition, it was found that the students’ ratings of confidence in their choices correlated

highly with the concurrence of their choices.  In accord with our theme that robots with

human-like representations will generate more predictable behavior and be easier to deal

with, we suspect endowing robots with a sense of salience similar to that of humans will

lead to more advanced human-robot interaction.

Robots must also be able to infer the perspective of a person, not only from his

current spatial location, but also from the history of where he has been and what he has

looked at.  This kind of inference is such a fundamental part of what humans expect of an

interaction, that it has been found to underlie the behavior of infants and very young

children.  For example, Baldwin (1991) has found that when toddlers are learning the

name for an object, they do not merely associate the visual and auditory stimuli they are

currently perceiving.  Instead, they keep track of what a speaker was looking at while

naming an object and attach the word he uttered to his object of attention even if they do

not actually see the object until later. Wimmer and Perner (1983) have found that four

year old children can predict the actions of another person based on what that person has

seen in the past, even if that requires them to represent that another person has an

incorrect view of the world.  These studies indicate that humans have a basic ability to

infer other people’s perspective using not only information about what person is currently

looking it, but by referring to the history of their interaction.  We hope that endowing

robots with this ability will enable them to interact in more complex tasks with people by

needing less information and time to construct richer models of their joint activities.

In addition to using more information to “see” other people’s perspectives, robots

must constantly monitor how well synchronized their view of the world is with that of the



people they are working with and take actions to correct these views when their views or

representations diverge.  There is extensive evidence that humans constantly engage in

this behavior when interacting among themselves and we assume that they will expect the

same of the robots with which they interact.

One simple strategy that people use to communicate that they understand each

other is the use of “backchannel responses”.  For example, during conversations, people

will nod their heads, smile or utter make brief utterances such as “uh huh” to indicate that

they understand each other. These behaviors are not just occasional conversational ticks

but are part of spectrum of behaviors that exhibit understanding that people expect and

whose absence can lead to substantial miscommunication (Brennan, 1998; Brennan &

Hulteen, 1995; Clark & Brennan, 1991).  We believe that recent advances in the

expressiveness of robots create an opportunity for the use of backchannel responses to

make robots act even more like people than ever before.  These types of backchannel

responses, in fact, may very well be a primary way that robots can act like people and

cause people to act toward robots in a social manner.

On many occasions, people take more overt actions to indicate how well

synchronized their representation of the world is with the people they are cooperating

with.  In cases where a person wants to verify that he understands the intent of a

speaker’s utterance, he will reformulate the speaker’s meaning with another utterance.

For example, Clark and Wilkes-Gibbs (1986) found that in scenarios where a speaker

attempted to refer to an object, the listener would sometimes find a new way of referring

to the object and ask the speaker if this was his meaning, e.g., speaker A says, “Um, third

one is the guy reading with, holding his book to the left,” speaker B asks. “Okay, kind of



standing up?” and speaker A answers. “Yeah.” In cases where one person in a

conversation detects a mismatch between the representations of the participants, he will

initiate “repair” utterances to resynchronize the representations as in this example, again

from Clark and Wilkes-Gibbs (1986):

A.  Uh, person putting a shoe on.

B.  Putting a shoe on?

A.  Uh huh. Facing left. Looks like he’s sitting down.

B.  Okay.

These future research directions indicate that many superficially disparate aspects

of interaction are all applications of the principle that humans and robots should share the

same kinds of representations and should continually engage in activities to make sure

these are synchronized.  It also enables the large body of research in human-human

interaction, especially including work that indicates what humans expect of those they

interact with, to create systems that think and act like people.

Conclusion

The main point of this paper has been to present, explore, and support ways of

building robots that think and act like people.  The strongest examples have focused on

how to build robots that think like people.  We also presented a representational

hypothesis – using similar representations and processes as a person will improve and

facilitate interaction.  This paper has shown three strong demonstrations of robots that

think and act like people.  First, we showed that a model of hiding could be used to seek.

The model used the same representations and strategies to seek as to hide.  These human-



based representations and strategies allowed the robot to interact with a person without

violating the person’s expectations.  Second, we showed two different perspective taking

models that solved a complex task in different ways.  The first model, written in

Polyscheme, focused on mental simulation to solve the task.  The second model, written

in jACT-R/S, focused on the spatial representations that people are thought to have.  Both

models successfully solved the perspective-taking problem presented to it.

In sum, the systems presented here take seriously the idea that people can be used

as models for computational systems, specifically robots.  The two primary advantages

that flow from this idea are 1) that people will act socially toward systems that act as a

human would; and 2) that people will interact with a system that “thinks” like a person

would.
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