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ABSTRACT 

A technique for deriving aerosol optical depths by measuring the radiance inside 

and outside of shaded regions is expanded to include shadows from clouds.  Previous 

research focused on utilizing QuickBird satellite imagery.  The 2.4 meter resolution of 

QuickBird allowed for sampling to focus on building-generated shadows.  Research was 

done on several different surface types, including dirt, grass, sand, and pavement.  The 

research presented in this thesis focuses on the challenges presented by attempting this 

technique with three other types of imagery—Moderate Resolution Imaging 

Spectrometer (MODIS), IKONOS, and Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER).  The lower resolution of MODIS and ASTER does not 

lend itself to focusing on building shadows, but rather cloud shadows.  Results from 

sampling cloud-generated shadows show this method has promise, much like previous 

studies, and opens up aerosol optical depth determination using this technique to a wide 

variety of imagery as well as additional sensor platforms. 
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I. INTRODUCTION 

Aerosol particles are tiny particles of matter suspended in the atmosphere that 

range in size from less than ten nanometers to more than 100 micrometers.  Aerosol 

particles are classified as either natural or anthropogenic.  Natural sources of aerosol 

particles include forest fires, wind-blown dust, volcanoes, and sea spray.  Anthropogenic 

sources such as hydrocarbon combustion byproducts account for approximately ten 

percent of the aerosol particles in the atmosphere.  As more research is done on the 

Earth’s environment related to the global energy budget the effect of aerosol particles is 

being studied, particularly from anthropogenic sources.  Aerosol particles scatter and 

absorb direct solar radiation.  The amount of scattering and absorption varies according to 

aerosol properties.  Aerosol particles can impact clouds by what is known as the Twomey 

Effect.  Twomey (1974) observed that increasing aerosol concentrations in the 

atmosphere result in greater cloud condensation nuclei concentrations (CCN) resulting in 

increased cloud reflectance and reduced heating of the Earth’s surface and atmosphere. 

Atmospheric aerosol particles are of concern to military operations because these 

particles affect the way radiation is transmitted through the atmosphere.  An increase in 

atmospheric aerosol particles can result in reduced visibility either horizontally on the 

battlefield or vertically from the air.  Military air operations are becoming increasingly 

reliant on electro-optical data to determine the most efficient tactic to use.   Having the 

ability to correctly characterize the atmosphere can be critical in selecting the correct 

weapon to use in a surgical strike.  An accurate characterization of the atmosphere is vital 

to reconnaissance operations from air and space.  Under adverse conditions, these 

operations can be severely degraded.  From a physical meteorology standpoint, an 

increase in CCN could result in an unforeseen increase in clouds and precipitation or fog 

and could delay or cancel critical strike missions.   

Quantifying aerosol properties on the battlefield in real time has proven difficult.  

Observation networks are generally not in place in hostile areas.  Having the ability to 

determine optical depths anywhere in the world within a relatively short time span by 

means of satellite-based remote sensing has been the focus of much research over the past 
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few decades.  While there has been significant and important advancement in remote 

sensing techniques and imagery, there are still limitations to retrieving optical depth and 

visibility information remotely.  Remotely retrieving atmospheric optical properties is 

particularly problematic over brighter land surfaces.   

The advancements and availability of high-resolution satellite imagery (e.g., 

imagery with five meter resolution or better) has encouraged and enabled new ideas to 

tackling the atmospheric optical properties problem.  With new advancements in 

imagery, surface details never seen before are now available for exploitation.  Vincent 

(2006) developed a technique known as the Shadow Method in which shadows of 

individual structures are identified and radiance samples are measured inside and outside 

of shadow.  Atmospheric aerosol properties were then determined.  Evans (2007) 

expanded on Vincent’s work to include more detailed results of this technique in an urban 

environment and over different surface types.  Both Vincent and Evans found this 

technique to have the potential to accurately retrieve optical depths over land.  This thesis 

will study this method further and will apply it to much larger shadows generated by 

clouds using lower resolution meteorological satellite imagery.  Just as building shadows 

were sampled in previous studies, cloud shadows can be sampled in much the same way.  

Clouds of suitable vertical and horizontal extent generate shadows that can be effectively 

sampled to determine the direct radiance transmission, and the optical depth of the 

atmosphere can be calculated.  Successfully applying this technique to cloud shadows 

will open it up to not just cloud-free high-resolution imagery where surface structures are 

casting shadows but also to any imagery with shadow generators.  This thesis will also 

study this technique using satellite sensors of differing spatial resolutions to determine its 

limitations.    
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II. BACKGROUND 

A. RELATED RESEARCH 

1. Contrast Reduction Method  

The earliest attempts to determine aerosol effects began with what is known as the 

Contrast Reduction Method.  This technique by Odell and Weinman (1975) took two 

surface objects with differing albedo and compared the radiance values from both.  A 

relationship could then be established between the aerosol optical depth and the measured 

radiances.  This relationship hinged on a contrast transmission function that is based on 

aerosol optical depth, mean surface reflectance, and sun-sensor geometry.  Later research 

by Kaufman and Joseph (1982) focused on imagery with discontinuities in albedo, such 

as along a coastline.  The image could be divided into two-halves with different albedo 

values, and then aerosol characteristics could be retrieved through automated procedures.  

Sensitivity studies showed that this procedure was highly sensitive to single scattering 

albedo and optical depth.   

2. Dark Object Method 

One of the oldest and most basic methods for determining aerosol characteristics 

is known as the Dark Object Method.   This method proved useful over regions of dense 

dark vegetation where surface reflectance is negligible.  Kaufman and Sendra (1988) 

developed an algorithm to automate atmospheric corrections using this method.  An 

assumed surface reflectance was used for dark regions and any radiance measured 

beyond that was attributed to scattering from aerosol particles.  The algorithm is sensitive 

to the assumed reflectance of the dark vegetation.  Another disadvantage to this method is 

that it can not be applied everywhere.  It is only effective in regions of dark dense 

vegetation where the characteristics of the vegetation are known.  However, this method 

is robust as it is insensitive to aerosol characteristics, satellite calibration, or fraction of 

the image covered by vegetation.   Further work by Kaufman (1997) attempted to take 

advantage of the wide spectral range of the MODIS sensor and identify dark pixels in the 

mid-infrared wavelengths (2.1 and 3.8 µm), where aerosol optical depth is traditionally 
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low due to the large wavelength relative to typical aerosol particle size.  An estimation of 

reflectance at visible wavelengths (0.47 and 0.66 µm) was then accomplished.  The error 

in the algorithm for aerosol optical depth (τ) was estimated at  

∆τ = ±0.05 to ±0.2.  Uncertainties were related to refractive index, single-scatter albedo, 

and aerosol characteristics.  Also, contamination of the longer wavelengths by dust 

resulted in an unreliable correlation between the infrared and visible wavelengths. 

Hsu et al (2004) attempted to solve the challenge in retrieving accurate aerosol 

properties over bright surfaces.  In many regions, such as arid, semi-arid, and urban areas, 

the surface reflectance is bright in the red and near-infrared wavelengths, but much 

darker in the blue wavelengths.  Hsu developed a method known as “Deep Blue”, which 

uses combinations of blue channel sensors to detect aerosol particles at a much lower 

aerosol loading.  However, variability of dust optical properties is much greater at this 

end of the spectrum.  Therefore, a red channel is used for heavy aerosol loading cases.  

Research showed this method to be within 20% of ground truth Aerosol Robotic Network 

(AERONET) values.  Uncertainties in the “Deep Blue” method are due to assumptions in 

the vertical profile of the aerosol, errors in estimation of particle size and shape, and 

approximations of the surface reflectance due to use of a 0.1° by 0.1° database. 

3. Multi-angle Method 

A completely different approach to solving this problem was taken by Veefkind et 

al (1998) with what is known as the Multi-angle Method.  The Multi-angle Method is 

only possible with multi-view sensors such as the Along Track Scanning Radiometer 

(ATSR-2) and the Multi-angle Imaging Spectro Radiometer (MISR), demonstrated by 

Martonchik et al (2004).  ATSR-2 utilizes seven wavelength bands, four in the visible 

bands and three in the infrared bands.  There are two viewing angles, nadir and a forward 

view at a 55° incident angle to the surface.  MISR utilizes four wavelength bands and 

senses from nine viewing angles.  These multiple angles allow for near simultaneous 

observation of the surface through different atmospheric columns.  While this method has 

proven successful, particularly over bright surfaces, there are limited multi-view 
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capabilities in operation.  As well, the revisit times of ATSR-2 and MISR, approximately 

three and nine days respectively, make real-time, operational AOD retrievals unrealistic.   

B. SHADOW METHOD 

1. Introduction 

New attempts at retrieving AOD measurements over land have been made in the 

past few years.  There have been significant advances in high-resolution commercial 

satellite imagery available to the public, particularly DigitalGlobe’s QuickBird satellite.  

This high-resolution imagery is now capable of resolving ground features not previously 

possible, such as clearly defined shadows generated by buildings and clouds.  Other 

sensor platforms, such as ASTER on the TERRA satellite, and MODIS, while not at 

nearly the resolution of QuickBird, still provide sufficient resolution to distinguish larger 

scale shadows cast by clouds.  The Shadow Method is an effort to address the challenges 

of measuring AOD over bright surface areas, such as desert regions.  Vincent (2006) 

developed this method and found that AOD retrievals using QuickBird imagery are 

possible with an error of ±0.04. 

2. Shadow Method Summary 

Retrieving AOD through commercial satellite imagery is a very recent idea that is 

only made possible through advances in imagery resolution.  The resolution of QuickBird 

(60-70 centimeter for panchromatic; 2.4 and 2.8 meter for multi-spectral) allows for 

delineation of buildings such as apartments, towers, and hangars.  Shadows can be 

identified and clearly defined, and a comparison of radiance values inside and directly 

outside of the shadow over a homogeneous surface is then used to characterize the 

atmospheric aerosol particles. 

There are three main sources of radiation that the sensor detects: direct 

transmission, diffuse transmission, and diffuse reflection (Vincent 2006).  Figure 1 

graphically depicts these three sources.  Direct transmission is radiation that travels 

directly from the source (sun) and reflects directly into the sensor.  Diffuse transmission 

is defined as radiation that is reflected off atmospheric constituents (aerosol particles and 
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gases) down to the reflecting surface then directly to the sensor.  Diffuse reflection is 

radiation that is scattered by atmospheric constituents down to the reflecting surface, 

back to the atmospheric constituents, back down to the reflecting surface and finally up to 

the sensor (Evans 2007).  The shadow region is comprised of diffuse transmission and 

diffuse reflection—no direct solar radiation is received.  Outside of the shadow region, 

direct transmission is received along with diffuse reflection and diffuse transmission.   

There are benefits to using this method that are not available in other methods.  

First, retrieval success is independent of wavelength.  The Deep Blue technique only 

retrieves results in the blue wavelengths while the Shadow Method provides results for 

every available solar channel.  Also, the results are independent of shadow generator.  As 

long as the surfaces in and out of the shadow have identical reflectance characteristics, 

the diffuse transmission and reflection can be isolated to arrive at the direct transmission 

portion.   

 

 

Figure 1. The shadow method uses the difference between the radiances within and 
outside of the shadowed area to quantify the direct transmission and the total 
optical depth. Optical depth is defined as the sum of extinction above a vertical 
position in the atmosphere (therefore equals zero at the top of the 
atmosphere).Vincent 2006 
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3. Governing Equation 

The governing equation was derived by Vincent (2006) by mathematically 

defining the three sources of radiation and deriving equations for radiance in the shaded 

and unshaded regions.  Subtracting these two equations and solving for optical depth, 0δ ,  

an equation for determining optical depth is calculated: 

0 0 0
0

0

ln
1

s

ds

r F
Lr r

µ µ µδ
µ µ π

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟+ −⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

 

This equation is the governing equation for solving optical depth by measuring radiance 

values inside and outside of shadow regions over a homogeneous surface. 

 All terms except for mean aerosol reflectance, r , are known.  This term is 

assumed to be much smaller than the surface reflectance such that the product of the two 

in the equation above results in a value much less than one.  The total optical depth is 

then corrected for molecular Rayleigh scattering.  Vincent (2006) determined the 

Rayleigh optical depth based on the work of Russell et al (1993) and Frolich and Shaw 

(1980).  The Rayleigh optical depths for QuickBird, MODIS, ASTER, and IKONOS are 

depicted in the following tables. 
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Table 1.   Molecular Rayleigh optical depths for each of the QuickBird channels 
assuming a radiometer height of zero kilometers and atmospheric pressure of 
1013.25 hPa. (Vincent 2006) 

Band 
Center Effective  

Wavelength 
(micrometers) 

Molecular Rayleigh  
Optical Depth 

Panchromatic 0.673 0.05 

Blue 0.482 0.17 

Green 0.556 0.09 

Red 0.658 0.05 

Near-Infrared 0.816 0.02 

 
 

Table 2.   Molecular Rayleigh optical depths for each of the MODIS channels 
assuming a radiometer height of zero kilometers and atmospheric pressure of 
1013.25 hPa. 

Band 
Center Effective  

Wavelength 
(micrometers) 

Molecular Rayleigh  
Optical Depth 

Blue 0.469 0.19 

Green 0.556 0.09 

Red 0.645 0.05 

Near-Infrared 0.853 0.02 

Short-Wave Infrared 1.640 0 
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Table 3.   Molecular Rayleigh optical depths for each of the ASTER channels 
assuming a radiometer height of zero kilometers and atmospheric pressure of 
1013.25 hPa. 

Band 
Center Effective  

Wavelength 
(micrometers) 

Molecular Rayleigh  
Optical Depth 

Green 0.556 0.09 

Red 0.661 0.05 

Near-Infrared 0.807 0.02 

 

Table 4.   Molecular Rayleigh optical depths for each of the IKONOS channels 
assuming a radiometer height of zero kilometers and atmospheric pressure of 
1013.25 hPa.    

Band 
Center Effective  

Wavelength 
(micrometers) 

Molecular Rayleigh  
Optical Depth 

Panchromatic 0.727 0.03 

Blue 0.480 0.17 

Green 0.551 0.10 

Red 0.665 0.05 

Near-Infrared 0.805 0.02 
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III. DATA AND METHODOLOGY 

A. DATA 

1. Location 

All case studies in this thesis focused on Southwest Asia, specifically Saudi 

Arabia and the United Arab Emirates.  This was done for two reasons.  First, as stated in 

Chapter II, all previous methods of determining aerosol optical depth have had difficulty 

over bright backgrounds.  The Arabian Desert provides the bright background necessary 

to test the Shadow Method.  Second, this region has been the focus of military operations 

for over 17 years.  If this method is going to be applied operationally, it needs to be tested 

and verified in this region.  To apply the Shadow Method to cloud shadows, cumulus 

clouds are ideal as they generally provide shadows with more clearly defined edges than 

middle and upper clouds.  Also, cumulus clouds, particularly in this region, are associated 

with unstable air, often with multiple clouds whose shadows can be sampled.  Figures 2-5 

below depict typical months in winter, spring, summer, and fall with frequency of 

occurrence of cumulus clouds.  January through May provides the greatest chance for 

cumulus cloud development, with the second half of the year decreasing in frequency.     
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Figure 2. Frequency of occurrence of cumulus clouds over Southwest Asia in 
January (Air Force Combat Climatology Center 2008). 

 

Figure 3. Frequency of occurrence of cumulus clouds over Southwest Asia in April 
(Air Force Combat Climatology Center 2008). 



 13

 

Figure 4. Frequency of occurrence of cumulus clouds over Southwest Asia in July 
(Air Force Combat Climatology Center 2008). 

 

Figure 5. Frequency of occurrence of cumulus clouds over Southwest Asia in 
October (Air Force Combat Climatology Center 2008). 
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2. QuickBird 

QuickBird imagery has been solely used for the shadow technique until this study.  

The satellite was launched in 2001 and operates at an altitude of 450 kilometers at a 98° 

sun-synchronous inclination angle.  This allows for a revisit frequency of approximately 

one day at the poles and closer to 3.5 days near the equator.  The satellite crosses the 

equator at 1030 local time and the swath width is 16.5 km.  QuickBird provides imagery 

at two different resolutions:  0.61 meter resolution from the panchromatic sensor (445 nm 

to 900 nm) and 2.44 meter resolution from the multi-spectral sensor.  The multi-spectral 

sensor consists of a blue (450 nm to 520 nm), green (520 nm to 600 nm), red (630 nm to 

690 nm), and near-infrared (760 nm to 900 nm) channel.  (DigitalGlobe 2008) 

3. MODIS 

A goal of this thesis is to study how effective this technique is with sensors at 

lower resolutions than QuickBird.  One of these sensors is MODIS, located on both the 

Terra and Aqua satellites.  These satellites operate at an altitude of 705 km and are 

positioned so that Terra descends over the equator at 1030 local time while Aqua ascends 

over the equator at 1330 local time.  They operate in a sun-synchronous orbit with an 

inclination angle of 98.2° and combined can view the entire Earth every 1-2 days.  

MODIS operates at a ±55° scanning pattern which results in a swath width of 2330 km, 

noticeably different than that of QuickBird.  MODIS provides imagery in 36 spectral 

bands ranging from 400 nm to 1440 nm in wavelength.  Three different resolutions are 

available depending on the band.  Bands 1 and 2 are available at 250 meter resolution, 

Bands 3-7 are available at 500 meter resolution, and Bands 8-36 are available at 1000 

meter resolution.  The table below shows the bands and their respective channel used for 

this study (GSFC 2008). 
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Table 5.   MODIS bandwidths with respective channel and resolution used in 
this study.  

Band Bandwidth (nm) Channel Resolution (m) 

1 620-670 Red 250 

2 841-876 Near-Infrared 250 

3 459-479 Blue 500 

4 545-565 Green 500 

6 1628-1652 SWIR 500 

 

4. ASTER 

ASTER, like MODIS, is an imaging radiometer flown on Terra and therefore 

operates with the same orbit characteristics as MODIS.  ASTER has a swath width of 

60 km and has a revisit time of 16 days.  Imagery is provided in 14 different bandwidths 

ranging from 520 nm to 11.65 µm.  Three different ground resolutions are available.  

Bands 1-3 (Very Near-Infrared) provide imagery at 15 meter resolution, Bands 4-9 (Short 

Wave Infrared) provide imagery at 30 meter resolution, and Bands 10-14 (Thermal 

Infrared) provide 90 meter resolution imagery.  The table below shows bands and 

respective bandwidths used in this study (JPL 2008).  

 

Table 6.   ASTER bandwidths with respective channel and resolution used in 
this study. 

Band Bandwidth (nm) Channel Resolution (m) 

1 520-600 Green 15 

2 630-690 Red 15 

3 760-860 Near-Infrared 15 

 

5. IKONOS 

IKONOS is a high-resolution satellite very similar to QuickBird.  It was launched 

in 1999 and provided the first one-meter resolution imagery from a commercial satellite.  
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It operates at an orbit of 681 kilometers in a sun-synchronous orbit with an inclination 

angle of 98.1°.  IKONOS has a revisit time of approximately three days at 40° latitude.  

Like QuickBird, IKONOS provides imagery in blue, green, red, near-infrared, and 

panchromatic bandwidths.  At nadir, panchromatic imagery is provided at 0.82 meter 

resolution.  All other channels are provided at 3.2 meter resolution.  The swath width of 

IKONOS is 11.3 km at nadir.  (GEOEYE 2008) 

6. AERONET 

AERONET readings were used as ground truth for the Shadow Method for the 

three instruments.  The AERONET program is a ground-based remote sensing network 

established by NASA, the French National Center for Scientific Research (CNRS), and 

other agencies and universities.  This network provides observations of AOD, inversion 

products, and diverse aerosol regimes from around the globe.  Three different levels of 

data are provided:  Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 

(cloud-screened and calibrated).  AERONET retrievals are taken at the center 

wavelengths and bandwidths listed in the table below.  For this study, 440, 675, 870, 

1020, and 1640 nm wavelengths were used. 
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Table 7.   Standard AERONET Channels and their associated bandwidths 
(GSFC 2008).  

Standard AERONET 

Wavelengths (nm) 
Bandwidth (nm) 

340 2 

380 4 

440 10 

500 10 

675 10 

870 10 

940 10 

1020 10 

1640 25 
 

AERONET instruments are recalibrated every six to twelve months and analyses show an 

uncertainty of approximately 0.01 to 0.02 in AOD due to calibration methods (GSFC 

2008). 

B. METHODOLOGY 

The Environment for Visualizing Images (ENVI) 4.3 software was used for 

viewing, georeferencing, orthorectificating, calibrating, and analyzing all imagery in this 

study.  Code written by Dombrock (2007) in the Interactive Data Language (IDL) was 

used to calculate optical depths according to the governing equation.  Since there were 

three types of imagery studied, analysis varied according to the imagery interrogated as 

described below.   

1. Imagery Collection 

The QuickBird, IKONOS, and ASTER imagery used in this investigation were 

obtained through the National Geospatial-Intelligence Agency via the Commercial 

Satellite Imagery Library.  MODIS imagery was obtained through NASA’s Level 1 and 

Atmospheric Archive Distribution System (LAADS).   
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There were several factors that had to be accounted for before choosing suitable 

imagery.  First, there must be an AERONET site available in the region with current 

optical depth measurements.  Also, samples taken from imagery must be considered 

representative of measurements at the AERONET site.  A defined range from the 

AERONET location was not specified due to inconsistencies in available samples and the 

differing resolutions of the imagery.  Representativeness was done subjectively by 

analyzing the synoptic pattern of the region.  There also needed to be sufficient shadows 

generated by clouds.  Since all satellites in this study are in a sun-synchronous orbit, 

shadow size in a particular image was strictly dependent on the height and thickness of 

clouds.  Shadows at resolutions near or below the image resolution were considered 

unreliable and not considered.  Finally, shadows had to be over a bright and 

homogeneous background.  Shadows that fell over complicated surfaces such as 

mountain ranges or over dark backgrounds were not considered.   

2. Imagery Orthorectification 

For the QuickBird imagery used, images were orthorectified to project image 

coordinates into real-world coordinates that allow for corrections in tilt and relief.  ENVI 

allows the user the choice of orthorectifying using a rational polynomial coefficient 

(RPC) file provided with the imagery or defining ground control points in the imagery.  

The RPC file was used for this purpose for all QuickBird imagery. 

3. Imagery Georeferencing 

The MODIS and ASTER imagery used in this study was provided with header 

information that included latitude and longitude of any point in the image.  However, it 

does not arrive preprocessed in this manner.  ENVI was used to extract latitude and 

longitude values from the header information to georeference the data.  This information 

was necessary to determine exactly where the AERONET collection site was in the 

image and determine distances from this location. 
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4. Conversion to Calibrated Absolute Radiance/At-Sensor Radiance 
Values  

The QuickBird imagery was calibrated for absolute radiance after 

orthorectification.  Vincent (2006) constructed an expression based on the absolute 

calibration factor and bandpass width for each channel to alleviate potential errors in 

using the ENVI-provided calibration tool.  This expression reduces the uncertainty in the 

absolute radiance values that is introduced by rounding off bandpass width values.    

IKONOS imagery is provided with values in a Digital Number format and 

conversion to at-sensor radiance is necessary.  The Band Math tool in ENVI was used to 

apply the equation below and determine radiance values. 

410 * / *L DN CalCoef Bandwidthλ λ λ λ=  

Lλ is the radiance for the spectral band λ  at the sensor, DN is the Digital Number 

provided in the IKONOS imagery, CalCoef is the radiometric calibration coefficient, and 

Bandwidth is the bandwidth of the spectral band.  The table below outlines the CalCoef 

and Bandwidth for each spectral band.   

 

Table 8.   Calibration Coefficients and Bandwidth for each spectral band in 
IKONOS imagery (GEOEYE 2008). 

IKONOS Band CalCoef ( 2/ /DN mW cm sr− ) Bandwidth (nm) 

Panchromatic 161 403 

Blue 728 71.3 

Green 727 88.6 

Red 949 65.8 

NIR 843 95.4 
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5. Sample Retrieval 

Sampling was performed using ENVI’s Region of Interest (ROI) tool.  This tool 

allows the user to define a polygon, rectangle, or line and analyze data in that area only.  

One sample was taken inside the shadow and the second sample was taken directly 

outside the shadow.  Care was taken to ensure there was clear delineation of where the 

shadow ended.  Also, it was critical to guarantee the background was reasonably 

homogeneous.  This step was easier to verify with QuickBird, IKONOS, and ASTER 

imagery than it was with MODIS imagery at 500 meter resolution.   

6. Determination of Aerosol Optical Depth 

Aerosol optical depths were extracted through an IDL program developed by 

Vincent (2006) and further modified by Dombrock (2007) to automate radiance 

extraction from ENVI.  User input was required for satellite zenith angle, solar zenith 

angle, and estimate of single scatter albedo and asymmetry parameter; which were 

retrieved from file header and climatology information.  Optical depth results were output 

with a maximum, mean, and minimum measurement.  The mean result was used in all 

case studies. 

7. Analysis 

An analysis of the ground truth data from the AERONET sun photometers was 

required before shadow samples were taken.  The tables below detail the wavelengths 

used for each of the satellite instruments.  Since these do not match the AERONET 

channels, the AERONET data was applied to an exponential best-fit curve.  An example 

is shown in Figure 6.  This was required for every change in imagery (scene and/or 

instrument).   
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Table 9.   QuickBird minimum, maximum and center effective wavelengths 
(after DigitalGlobe (2005)) with in band spectral solar irradiance based on 
Wehrli (1985) spectral solar irradiance curves.  

QuickBird  
Channel 

Minimum 
Wavelength 

(nm) 

Maximum 
Wavelength 

(nm) 

Center 
Effective 

Wavelength 
(nm) 

Spectral Solar 
Irradiance  

(W m-2 nm-1) 

Ch 1 (Blue) 450 520 482 1973 

Ch 2 (Green) 520 600 556 1854 

Ch 3 (Red) 630 690 658 1570 

Ch 4 (Near-Infrared) 760 900 816 1095 

Panchromatic 445 900 673 1506 

 
 

Table 10.   IKONOS minimum, maximum and center effective wavelengths 
(after GEOEYE (2007)) with in band spectral solar irradiance based on 
Wehrli (1985) spectral solar irradiance curves. 

 

IKONOS 
Channel 

Minimum 
Wavelength 

(nm) 

Maximum 
Wavelength 

(nm) 

Center 
Effective 

Wavelength 
(nm) 

Spectral Solar 
Irradiance  

(W m-2 nm-1) 

Ch 1 (Blue) 445 516 480 1880 

Ch 2 (Green) 506 595 551 1870 

Ch 3 (Red) 632 698 665 1535 

Ch 4 (Near-Infrared) 757 853 805 1111 

Panchromatic 526 929 727 1382 
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Table 11.   MODIS minimum, maximum and center effective wavelengths with 
in band spectral solar irradiance based on Wehrli (1985) spectral solar 
irradiance curves. 

MODIS 
Channel 

Minimum 
Wavelength 

(nm) 

Maximum 
Wavelength 

(nm) 

Center 
Effective 

Wavelength 
(nm) 

Spectral Solar 
Irradiance  

(W m-2 nm-1) 

Ch 1 (Red) 620 670 645 1628 

Ch 2 (Near-Infrared) 841 876 858 1014 

Ch 3 (Blue) 459 479 469 2018 

Ch 4 (Green) 545 565 555 1860 

Ch 6 (Shortwave-
Infrared) 1628 1652 1640 234 

 
 

Table 12.   ASTER minimum, maximum and center effective wavelengths with 
in band spectral solar irradiance based on Wehrli (1985) spectral solar 
irradiance curves. 

ASTER 
Channel 

Minimum 
Wavelength 

(nm) 

Maximum 
Wavelength 

(nm) 

Center 
Effective 

Wavelength 
(nm) 

Spectral Solar 
Irradiance  

(W m-2 nm-1) 

Ch 1 (Green) 520 600 560 1861 

Ch 2 (Red) 630 690 660 1573 

Ch 3 (Near-Infrared) 760 860 810 1121 
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AERONET derived Optical Depth
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Figure 6. Sample best-fit curve applied to extract equivalent AERONET derived 

optical depth. 

 

Once the equivalent AERONET measurements were determined, the results from 

the Shadow Method were analyzed and compared to these values.  Evans (2007) 

determined that using the mean radiance value from the shaded region in the calculation 

was more accurate than the minimum radiance value over urban areas due to possible 

influence from surface variations.  Factors that influenced the final results varied 

according the instrument used.  The background sampled should be as homogeneous as 

possible as mentioned in Chapter II.  QuickBird, ASTER, and IKONOS imagery 

backgrounds were considered acceptable to judge the background due to the higher 

resolutions.  However, at such high resolutions, an extraneous amount of background 

detail can be deciphered, making the decision of where to sample difficult.  In these 

cases, it was imperative to ensure the background in both the shaded and unshaded areas 

were as close as possible.  MODIS imagery is at much lower resolution and therefore the 

background lacks detail and generally appears homogenous.   
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The resolution of the QuickBird and IKONOS imagery introduced another factor 

when analyzing cloud shadows.  Previous studies focused on building shadows.  In these 

cases, the shadow can receive indirect radiation from reflectors such as buildings (Evans 

2007).  When studying cloud shadows, additional indirect radiation is received around the 

edges of the shadow due to the cloud being suspended above the ground.  As a result, 

there is more diffusivity around the edge of the cloud shadow than a building shadow.  

This effect is shown in Figure 7.  Three samples were taken at various locations within 

the cloud shadow and compared to the same surface outside the shadow.  Optical depth 

calculations varied by as much as 0.5 although all samples were considered within the 

shadow. 

 

 

Figure 7. IKONOS imagery of cloud shadow.  The image on left displays the full 
cloud shadow.  The image on right illustrates the samples taken more clearly.  
Note how cloud shadow edge becomes blurred, requiring sample selections to be 
made carefully.  Colored boxes denote where samples were taken in Table 13.   
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Table 13.   Measured optical depths for the blue, green, red, and near-infrared 
channels from different regions within same cloud shadow.  All three shaded 
samples were compared to the same unshaded sample, which is yellow.   

Shaded 
Sample 

Location 
Blue Channel Green Channel Red Channel Near Infrared 

Channel 

Red 0.5360 0.4431 0.3900 0.3458 
Green 0.6202 0.5235 0.4664 0.4198 
Blue 0.9761 0.8747 0.8297 0.7814 
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IV. RESULTS 

A. QUICKBIRD—19 SEPTEMBER 2004 

1. Overview 

Imagery used from QuickBird was collected over the island of Sir Bu Nair off the 

United Arab Emirates (UAE) coast on 19 September 2004.  Three different images were 

captured during the pass: forward-looking, approximately nadir, and a rear-looking 

image.  Figure 8 displays an overview of the region for this day.  Figures 9-11 display the 

QuickBird images from forward, nadir, and rear angles, respectively.  Two primary cloud 

shadows were sampled and then compared to measurements from an AERONET site 

located on island.  

 

Table 14.   Time of QuickBird passes over Sir Bu Nair along with satellite and 
solar zenith angles for each collection. 

Location Date Time (UTC) Satellite Zenith Solar Zenith 

Sir Bu Nair 19 Sep 04 0651 54.1 31.4 

Sir Bu Nair 19 Sep 04 0653 34.1 31.2 

Sir Bu Nair 19 Sep 04 0654 54.7 31.0 
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Figure 8. MODIS overview of southeastern Saudi Arabia and United Arab Emirates 
for 19 September 2004.  Red circle denotes location of Sir Bu Nair.   
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Figure 9. Forward-looking image of Sir Bu Nair from QuickBird collected on 19 
September 04. 

 

 

Figure 10. Image of Sir Bu Nair from QuickBird at approximately nadir collected on 
19 September 04. 
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Figure 11. Rear-looking image of Sir Bu Nair from QuickBird collected on 19 

September 04. 

 

2. Ground Truth 

The ground truth optical depth was retrieved from the AERONET site and the 

equivalent QuickBird channels were then derived.  The table below depicts the derived 

AERONET values that were used for verification. 

 

Table 15.   AERONET integrated AOD for 19 September 2004 over Sir Bu Nair. 

Channel Blue Green Red NIR Panchromatic 

Band(microns) 0.450-0.520 0.520-0.600 0.630-0.690 0.760-0.900 0.445-0.900 

AOD 0.4975 0.4359 0.3777 0.3327 0.3774 

 

3. Results 

a. Forward-looking 

The set of data in Table 16 shows results from the forward-looking image 

collection.  Eight samples were taken from each image.  The average AOD and standard 
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deviation are shown in the first table below.  Table 17 displays the values of all samples 

taken along with distance from the AERONET site.  All samples were taken within 

approximately three miles of the AERONET sensor.  Figure 12 illustrates how well the 

shadow method correlated to AERONET measurements.  The results were fairly 

consistent with a slightly low bias across all wavelengths.  Although the panchromatic 

channel had an effective wavelength of 673 nm, which is very close to the red channel 

(658 nm), the panchromatic results were much closer to AERONET readings.  This is 

most likely due to the quality of the panchromatic imagery and the ability to take 

confident samples inside and outside of the shadow.     

Table 16.   Shadow Method AOD results for forward-looking angle over Sir Bu 
Nair. 

Channel Blue Green Red NIR Panchromatic
Average 0.4918 0.3922 0.2949 0.2578 0.3552 
Standard 
Deviation 0.0552 0.0475 0.0472 0.0446 0.0414 

 
 

Table 17.   Table showing sample values and distance from AERONET site used 
for representativeness of forward-looking angle.   

Distance 
(km) Blue Green Red NIR Panchromatic

3.1 0.426378 0.334789 0.244826 0.218874 0.316723 
2.9 0.541363 0.392434 0.28076 0.245375 0.311277 
2.5 0.469896 0.36881 0.262089 0.224131 0.309529 
3 0.410886 0.326731 0.24117 0.2079 0.418212 

2.1 0.513852 0.406352 0.302007 0.253348 0.384966 
1.4 0.478059 0.411138 0.326965 0.287915 0.365687 
3.2 0.527339 0.429542 0.322689 0.283002 0.342343 
2.6 0.566819 0.468054 0.379007 0.341779 0.392801 
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Figure 12. Comparison of QuickBird AOD measurements to AERONET derived 
AOD measurements over Sir Bu Nair island from a forward-looking angle.  The 
standard error of the samples is annotated as a vertical error bar.  The uncertainty 
of the AERONET measurement, ±0.2, is annotated as a horizontal error bar.   

 

b. Nadir-looking 

Table 18 displays the results from samples made from the nadir-looking 

collection.  Ten samples were taken around the cloud shadow. Table 19 displays the 

values of all samples taken along with distance from the AERONET site.  Looking at 
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Figure 13, the results in this case were slightly lower than the forward-looking case, with 

the blue and green channels differing the most (0.07 and 0.05, respectively).  Again, the 

slight low bias is apparent.   

 

Table 18.   Shadow Method AOD results for nadir-looking angle over Sir Bu 
Nair. 

Channel Blue Green Red NIR Panchromatic
Average 0.4204 0.3465 0.2758 0.2528 0.3169 
Standard 
Deviation 0.0617 0.0510 0.0334 0.0299 0.0255 

 
 

Table 19.   Table showing sample values and distance from AERONET site used 
for representativeness of nadir-looking angle. 

Distance 
(km) Blue Green Red NIR Panchromatic

1.3 0.399913 0.323546 0.265974 0.240989 0.289284 
2.9 0.453548 0.373747 0.305602 0.285372 0.318942 
3 0.371372 0.301809 0.226841 0.201039 0.366074 

1.8 0.354242 0.288631 0.238847 0.226498 0.3099 
1.4 0.372763 0.314492 0.257938 0.239957 0.321988 
3.3 0.34856 0.283995 0.24198 0.226085 0.304982 
1.7 0.513072 0.418567 0.318302 0.284733 0.288893 
1.8 0.507732 0.418243 0.309459 0.282707 0.355205 
3.1 0.468124 0.382705 0.298752 0.266301 0.308031 
1.3 0.414611 0.359708 0.294768 0.274647 0.30531 
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Figure 13. Comparison of QuickBird AOD measurements to AERONET derived 
AOD measurements over Sir Bu Nair from a nadir-looking angle.  The standard 
error of the samples is annotated as a vertical error bar.  The uncertainty of the 
AERONET measurement, ±0.2, is annotated as a horizontal error bar.  

  

c. Rear-looking 

The final results from the QuickBird pass are shown below in Table 20 

and Figure 14.  Ten samples were taken around the cloud shadow.  Table 21 displays the 

values of all samples taken along with distance from the AERONET site.  The results in 

this case were very similar to the forward-looking angle, with the blue and panchromatic 

correlating very well to the AERONET values and all channels having a low bias.  
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Table 20.   Shadow Method AOD results for rear-looking angle over Sir Bu Nair. 

Channel Blue Green Red NIR Panchromatic
Average 0.4892 0.388 0.2809 0.2493 0.3585 
Standard 
Deviation 0.0744 0.0623 0.0424 0.0362 0.0589 

 

 

Table 21.   Table showing sample values and distance from AERONET site used 
for representativeness of rear-looking angle. 

Distance 
(km) Blue Green Red NIR Panchromatic

2.8 0.455769 0.366584 0.267635 0.235972 0.293676 
3.8 0.463507 0.355861 0.252852 0.223962 0.373842 
2.7 0.483433 0.404873 0.288491 0.257365 0.306879 
1.7 0.456991 0.369676 0.297682 0.268731 0.325835 
3.2 0.505648 0.399802 0.287507 0.254497 0.325428 
3.8 0.520684 0.38781 0.2813 0.241543 0.370077 
2.1 0.681647 0.554041 0.388684 0.340416 0.36166 
2.8 0.408421 0.341284 0.252424 0.23075 0.505271 
3.5 0.46771 0.355749 0.241216 0.213192 0.348646 
3.8 0.44832 0.344489 0.251767 0.226245 0.374071 
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Figure 14. Comparison of QuickBird AOD measurements to AERONET derived 
AOD measurements over Sir Bu Nair island from a rear-looking angle.  The 
standard error of the samples is annotated as a vertical error bar.  The uncertainty 
of the AERONET measurement, ±0.2, is annotated as a horizontal error bar.   

 

4. Summary 

All three angles provided similar results at every wavelength, with slightly lower 

biases at nadir than forward and aft angles in the blue channel.  The results appear to be 

nearly independent of sensor angle.  This slight low bias is consistent with previous case 

studies sampling QuickBird imagery.  Also, Evans (2007) noted how standard deviation 

decreases with increasing wavelength.  Results will be more consistent with longer 
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wavelengths.  This can be attributed to the affect of Rayleigh scattering on each 

wavelength.  As the wavelength increases, the affect of Rayleigh scattering decreases.  

This relationship holds true in the Sir Bu Nair case as well.     

B. ASTER 

1. Overview 

Contrails were visible in ASTER  and MODIS imagery over Saudi Arabia from 

15 November 2001 as shown in Figures 15 and 16.  These contrails were between 25000 

and 30000 feet and provided excellent shadows for sampling along with other cloud 

shadows in the image.    

 

Figure 15. MODIS overview of Saudi Arabia for 15 November 2001.  Red circle 
denotes location of Solar Village AERONET site.  Red box denotes dimensions 
of ASTER imagery.   
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Figure 16. ASTER image from Saudi Arabia on 15 November 2001 showing 
contrails.  Smaller contrail in upper portion of image was not sampled due to 
possible contamination due to cirrus clouds 

 

2. Ground Truth 

The Solar Village AERONET site in central Saudi Arabia was used for 

verification.  All samples taken were located within 200 kilometers of the AERONET 

site.  The ASTER imagery was collected at 07:50 UTC and AERONET measurements 

from 07:34 UTC were used for verification.  Table 22 depicts the derived AERONET 

values that were derived and used for verification. 
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Table 22.   AERONET integrated AOD for 15 November 2001 over Saudi 
Arabia.  

Channel Green Red NIR 

Band(microns) 0.520-0.600 0.630-0.690 0.760-0.860 

AOD 0.3895 0.3849 0.3796 

 

3. Results 

Table 23 shows the average AOD and standard deviation from 15 November 

2001.  The results correlated well to AERONET measurements as shown in Figure 17, 

with all three wavelengths measured between 0.03 and 0.04.   

 

Table 23.   Shadow Method AOD results from 15 November 2001 over Saudi 
Arabia. 

Channel Green Red NIR 
Average 0.3272 0.3247 0.3526 
Standard 
Deviation 0.0627 0.0694 0.0723 
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Figure 17. Comparison of ASTER AOD measurements to AERONET derived AOD 

measurements over Saudi Arabia on 15 November 2001.  The standard error of 
the samples is annotated as a vertical error bar.  The uncertainty of the 
AERONET measurement, ±0.2, is annotated as a horizontal error bar.   

 

4. Summary 

All three channels provided very similar results including a low bias as seen in 

imagery from other sensors.  This case was the first to sample cloud shadows other than 

that from cumulus clouds.  It appears that the results using this method are independent of 

cloud type, which was hypothesized as described in Part II. 
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C. MODIS 

MODIS imagery introduces new challenges compared to other imagery.  At 250 

meter and 500 meter resolution, the sample quality is relatively poor (as depicted in 

Figure 18), because at times, cloud shadows were sub-pixel, meaning the radiance inside 

and outside the shadow was averaged and could not be used with confidence.  Great care 

was taken to ensure there was no contamination of direct radiation into the shadow of any 

samples.  Therefore, samples were biased towards the center of the shadow and may have 

resulted in slightly low optical depth measurements.  Also, since MODIS imagery has a 

wider field of view, samples had to be taken farther away from the AERONET sites that 

were considered to be representative.  All of these analysis constraints could result in the 

data being slightly skewed. 

 

 

Figure 18. MODIS imagery at 250-meter resolution showing blurring of shadows. 
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1. United Arab Emirates, 28 November 2007 

a. Overview 

A series of cloud streets (Figure 19) over UAE on this day provided 

shadows large enough for sampling.  MODIS data sampled consisted of three visible and 

two near-infrared channels.  Ten samples were collected and analyzed over UAE.   

 

Figure 19. MODIS overview of southeastern Saudi Arabia and United Arab Emirates 
for 28 November 2007.  Red circle denotes location of Mezaira AERONET site.   

 

b. Ground Truth 

The Mezaira AERONET site in UAE was used for verification.  All 

samples taken were located within 115km of the AERONET site.  The MODIS imagery 
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was collected at 09:40 UTC and AERONET measurements from 09:44 UTC were used 

for verification.  The table below depicts the derived AERONET values that were derived 

and used for verification. 

 

Table 24.   AERONET integrated AOD for 28 November 2007 over UAE. 

Channel Blue Green Red NIR SWIR 

Band(microns) 0.459-0.479 0.545-0.565 0.620-0.670 0.841-0.876 1.628-1.652 

AOD 0.2693 0.2453 0.2254 0.1927 0.1535 

c. Results 

Table 25 shows the average AOD and standard deviation results from 28 

November 2007.  Table 26 displays the values of all samples taken along with distance 

from the AERONET site.  Figure 20 illustrates the final results as compared to 

AERONET measurements.   All samples were taken within 115 km of the AERONET 

site.  This resulted in a relatively high standard deviation across all channels.  However, 

the final results are within approximately 30% of AERONET readings and are considered 

to be an acceptable tolerance.  

 

Table 25.   Shadow Method AOD results from 28 November 2007 over UAE. 

Channel Blue Green Red NIR SWIR 
Average 0.2590 0.1831 0.1538 0.1464 0.2427 
Standard 
Deviation 0.0853 0.0654 0.0592 0.0557 0.0622 

 
 

Table 26.   Table showing sample values and distance from AERONET site used 
for representativeness on 28 November 2007. 

Distance 
(km) Blue Green Red NIR SWIR 

30 0.187237 0.127918 0.10329 0.102298 0.137358 
12 0.300662 0.192036 0.150376 0.13524 0.256455 
23 0.188798 0.137379 0.092908 0.091574 0.183849 
32 0.267338 0.188262 0.182075 0.174045 0.295472 
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72 0.381097 0.285869 0.212853 0.198789 0.256583 
89 0.324361 0.201736 0.189455 0.182165 0.181745 
113 0.229036 0.149146 0.121904 0.116721 0.153812 
102 0.191062 0.132493 0.120002 0.115959 0.306717 
77 0.236456 0.184951 0.223493 0.21183 0.359255 
13 0.283965 0.230797 0.14149 0.135511 0.296426 
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Figure 20. Comparison of MODIS AOD measurements to AERONET derived AOD 
measurements over UAE on 28 November 2007.  The standard error of the 
samples is annotated as a vertical error bar.  The uncertainty of the AERONET 
measurement, ±0.2, is annotated as a horizontal error bar.   
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d. Summary 

This was the first time the SWIR channel (1628 nm) was sampled and 

compared to AERONET, and it provided results much different than the visible and NIR 

channels.  With the exception of the SWIR, there were low biases as compared to 

AERONET.  As with QuickBird, the bias decreased with decreasing wavelength.  The 

SWIR channel had a high bias.    This could be due to how sensitive the SWIR band is to 

single-scatter albedo.  A sensitivity analysis was performed to see how each channel 

responded to the single-scatter albedo (SSA) value used in the calculation of optical 

depth.  Values between 0.70 and 0.95 were input and the same sample shaded and 

unshaded regions were tested.  Results showed that between SSA’s of 0.70 and 0.95, the 

SWIR band only decreased by two percent of its AOD value, compared to nearly 13 

percent for the blue channel.  Figure 21 details all channels and their response to SSA.  

For this case study, an SSA of 0.97 was used.  As a comparison, if an SSA of 0.88 was 

used in this case, all channels would be slightly higher in value.  However, the SWIR 

channel would more closely match the response of the other channels.   
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Figure 21. Sensitivity analysis of each channel as single scatter albedo changes.  
Shorter wavelengths are more sensitive to changes in albedo than longer 
wavelengths.   

 

2. United Arab Emirates, 07 January 2008 

a. Overview 

This date was chosen due to a dust storm moving through the region, 

resulting in extremely high optical depth readings from AERONET sites around the 

region.  Visibility dropped as low as 500 meters in the region as the system passed.  Eight 

samples were taken throughout UAE and compared to AERONET measurements.  Figure 

22 displays an overview of the region during this time.  Heavy dust is clearly visible over 

UAE and the Persian Gulf.   
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Figure 22. MODIS overview of southeastern Saudi Arabia and United Arab Emirates 
for 7 January 2008. 

 

b. Ground Truth 

As with the 28 November 2007 collection, the Mezaira AERONET site 

was used for verification.  The MODIS imagery was collected at 07:20 UTC.  

AERONET measurements were available for 06:35 and 07:40 UTC.  Looking at the trend 

of AERONET measurements in Figure 23, there is a fairly steady consistency in the 

increase in AOD values.  Therefore, an interpolation of AOD to the time of the MODIS 

pass was calculated using the data below.  Table 27 displays the AOD values used after 

interpolation.  
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Figure 23. Aerosol optical depth trend for Mezaira AERONET site sorted by 
wavelength.  The vertical line indicates the time of the MODIS pass which 
corresponds with the time of greatest optical depth change. 

 

Table 27.   AERONET integrated AOD for Mezaira AERONET site on 7 
January 2008. 

Channel Blue Green Red NIR SWIR 

Band(microns) 0.459-0.479 0.545-0.565 0.620-0.670 0.841-0.876 1.628-1.652 

AOD 1.874 1.874 1.874 1.873 1.670 

 

c. Results 

Table 28 shows the average AOD and standard deviation results from 7 

January 2008.  Table 29 displays the values of all samples taken along with distance from 
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the AERONET site.  Figure 24 displays the results from this case as compared to 

AERONET.  Measurements across all wavelengths varied between approximately 0.025 

and 0.07, with no correlation to AERONET readings or distance the sample was taken 

from the AERONET site.   

 

Table 28.   Shadow Method AOD results from 7 January 2008 over UAE. 

Channel Blue Green Red NIR SWIR 
Average 0.3843 0.4756 0.2617 0.2486 0.6759 
Standard 
Deviation 0.0671 0.0894 0.0645 0.0592 0.0941 

 
 

Table 29.   Table showing sample values and distance from AERONET site used 
for representativeness on 7 January 2008. 

Distance 
(km) Blue Green Red NIR SWIR 

102 0.297319 0.302817 0.172958 0.167105 0.492955 
92 0.44272 0.548927 0.360807 0.343986 0.752129 
178 0.48792 0.594648 0.301089 0.281448 0.799207 
214 0.313959 0.419795 0.19463 0.186429 0.617527 
119 0.339373 0.445519 0.213703 0.205816 0.644441 
165 0.372448 0.479097 0.301156 0.284481 0.679793 
216 0.436157 0.523349 0.250541 0.24493 0.728935 
237 0.384776 0.491032 0.299228 0.274799 0.691975 
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Figure 24. Comparison of MODIS AOD measurements to AERONET derived AOD 

measurements over UAE on 7 January 2008.  The standard error of the samples is 
annotated as a vertical error bar.  The uncertainty of the AERONET measurement, 
±0.2, is annotated as a horizontal error bar.   

 

d. Summary 

This case provided the highest AOD measurements of any using this 

method to date.  Results had no consistency as in other cases and a reassessment was 

done.  First, soundings from the region were analyzed.  Figure 25 displays a sounding 

from King Fahd International Airport, Saudi Arabia.  An inversion is present at 860 

meters (2820 feet).  This can reasonably be considered to be the height of the top of the 
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dust layer.  Cloud top temperatures and corresponding heights in the region were 

determined using Channel 31 from MODIS.  The analysis showed cloud top temperatures 

between zero and -3 C, corresponding to cloud top heights between 6500 and 9800 feet.   

This was verified by measuring the distance between the sample cloud tops and 

corresponding shadows in ENVI.  Since the solar angle is known, the distance from the 

cloud top directly to the ground can be calculated.  Observations from the region showed 

cloud bases between 4000 and 5000 feet as shown in the surface observations from Abu 

Dhabi in Table 30.  For example, the observation from 09:00 UTC  (highlighted) depicts 

scattered clouds at 4800 feet and visibility restricted to 2000 meters due to dust.  The 

clouds in this observation are above the height of the top of the dust layer.   

 

 

Figure 25. Upper-air sounding from King Fahd International Airport, Saudi Arabia, 
showing presence of inversion in lower atmosphere.  This can be considered to be 
approximately the height of the top of the dust layer.   
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Table 30.    Surface Observations for Abu Dhabi, UAE, between 00:00 UTC and 
13:00 UTC on 7 January 2008.      

Observations for ABU, United Arab Emirates (OMAA) 
 
OMAA 071300Z 33012KT 9999 FEW040 SCT043 17/08 Q1017 A3003 NOSIG  
OMAA 071200Z 33013KT 9999 FEW043 SCT046 18/07 Q1016 A3002 NOSIG  
OMAA 071100Z 31015KT 7000 SCT043 18/06 Q1016 A3002 NOSIG 
OMAA 071000Z 32015KT 5000 DU SCT048 19/05 Q1016 A3003 BECMG 7000 
OMAA 070915Z 31015KT 3000 DU SCT048 18/04 Q1017 A3003 BECMG 5000 
OMAA 070900Z 31013KT 2000 DU SCT048 18/07 Q1017 A3004 BECMG 3500 
OMAA 070800Z 31015KT 1600 R13/1800U R31/1400U DU SKC 18/02 Q1018 A3007 
BECMG 3500    
OMAA 070700Z 30016KT 1400 R13/1200D R31/1100D DU VV009 18/06 Q1019 
A3009 NOSIG   
OMAA 070635Z 29017KT 1400 R13/1400D R31/1500D DU VV009 18/06 Q1018 
A3009 NOSIG 
OMAA 070600Z 29017KT 2800 DU SCT045 17/07 Q1018 A3008 TEMPO 1500 
OMAA 070521Z 29017KT 2900 DU SCT045 17/06 Q1018 A3008 BECMG 1800 
OMAA 070500Z 29015KT 4500 DU SCT045 17/05 Q1018 A3007 NOSIG  
OMAA 070400Z 30016KT 5000 DU FEW040 16/05 Q1017 A3006 NOSIG  
OMAA 070300Z 30015KT 5000 DU FEW040 16/06 Q1017 A3003 TEMPO 4000 
OMAA 070200Z 29019KT 6000 FEW040 16/07 Q1016 A3001 TEMPO 4000    
OMAA 070100Z 28016KT 6000 FEW043 16/05 Q1016 A3000 TEMPO 4000    
OMAA 070000Z 28016G27KT 4000 DU FEW043 17/07 Q1015 A2998 TEMPO 3000  

 

Clouds over the Persian Gulf were also studied to determine where the 

clouds were in relation to the dust layer.  The MODIS NIR channel from a clear day over 

the region was studied to determine a baseline for how dark the Persian Gulf appears in 

this channel and how much turbidity is present under normal conditions.  It was 

determined the water is dark and there is no turbidity under normal conditions.  

Therefore, any color change in this channel occurring over water on 7 January 2008 was 

strictly due to dust effects.  By studying the cloud field further, there appears to be 

shadowing cast upon the dust layer over the water as shown in Figure 26.   
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Figure 26. MODIS NIR imagery over UAE illustrating dust effects.  Red boxes 
denote zoomed in areas.  The image at top left shows the clarity and darkness of 
the Persian Gulf under normal conditions.  The image at top right clearly displays 
the dust over the water on 7 January 2008.  At bottom left, note how clouds do not 
cast shadows over water under clear conditions.  At bottom right, cloud over same 
location on 7 January 2008 casting shadow onto dust layer.        

  

After this analysis, it appears the clouds were just above the dust layer.  

Results were not consistent with the AERONET site measurements because the cloud 
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shadow was not being cast onto the ground but rather onto the layer of dust.  Therefore, 

the radiance values extracted from the imagery are not from within the heavy aerosol 

region but from the relatively dust-free layer just above it, resulting in lower optical depth 

values than the AERONET sun photometer which is measuring from the surface and 

within the dust layer.   

3. Solar Village, Saudi Arabia, 31 August 2007 

a. Overview  

The final MODIS image sampled was over the interior of Saudi Arabia on 

31 August 2007.  Nine samples of shadows were taken near Solar Village on this day.  

Figure 27 depicts an overview of the region for this day. 

 

 

Figure 27. MODIS overview of southeastern Saudi Arabia and United Arab Emirates 
for 31 August 2007.  Red circle denotes location of Solar Village.   
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b. Ground Truth 

The MODIS pass was at 08:15 UTC and AERONET measurements from 

08:11 UTC at Solar Village were used for verification.  The table below depicts the 

derived AERONET values that were derived and used for verification. 

 

Table 31.   AERONET integrated AOD for 31 August 2007 over Saudi Arabia. 

Channel Blue Green Red NIR SWIR 

Band(microns) 0.459-0.479 0.545-0.565 0.620-0.670 0.841-0.876 1.628-1.652 

AOD 0.5793 0.4949 0.4293 0.3297 0.2161 

 

c. Results 

Table 32 shows the average AOD and standard deviation from 31 August 

2007.  Table 33 displays the values of all samples taken along with distance from the 

AERONET site.  All samples from MODIS were taken within 230 km of Solar Village.  

Looking at Figure 28, the results show a consistent linear pattern across all channels.  All 

measurements in the solar channels differed from AERONET measurements by 

approximately 0.10.   

 

Table 32.   Shadow Method AOD results for 31 August 2007 over Saudi Arabia. 

Channel Blue Green Red NIR SWIR 
Average 0.4806 0.3951 0.3351 0.2759 0.2472 
Standard 
Deviation 0.0993 0.0804 0.0466 0.0367 0.0548 
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Table 33.   Table showing sample values and distance from AERONET site used 
for representativeness on 31 August 2007.   

Distance 
(km) Blue Green Red NIR SWIR 

149 0.412821 0.372875 0.313729 0.274091 0.284307 
210 0.479343 0.379619 0.337976 0.260843 0.228028 
196 0.599619 0.469277 0.314779 0.263182 0.225131 
201 0.452865 0.364047 0.236566 0.203568 0.226254 
174 0.503887 0.442844 0.34729 0.275898 0.304273 
149 0.625045 0.495607 0.410287 0.344153 0.314104 
211 0.546262 0.464365 0.357971 0.290347 0.295248 
125 0.331406 0.247622 0.341427 0.278375 0.157708 
229 0.374231 0.320021 0.355737 0.293168 0.189958 
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Figure 28. Comparison of MODIS AOD measurements to AERONET derived AOD 

measurements over Saudi Arabia on 31 August 2007.  The standard error of the 
samples is annotated as a vertical error bar.  The uncertainty of the AERONET 
measurement, ±0.2, is annotated as a horizontal error bar. 

 

d. Summary 

As in the 28 November 2007 MODIS case study, all channels had a slight 

low bias with the exception of SWIR, which had a high bias.  Again, this bias in the 

SWIR can possibly be attributed to the decreased sensitivity to SSA.  
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D. IKONOS—31 AUGUST 2007 

1. Overview 

The IKONOS imagery was collected over the Saudi Arabian desert on 31 August 

2007.  Nine samples of cloud shadows were collected and analyzed.  After analyzing 

MODIS imagery and surface observations, it was decided although the samples taken 

were approximately 450 km away from Solar Village, they can be considered fairly 

representative of conditions at the AERONET site.   

2. Ground Truth 

The IKONOS pass was at 07:22 UTC and AERONET measurements from Solar 

Village at 07:25 UTC were used for verification.  The table below depicts the derived 

AERONET values that were derived and used for verification. 

 

Table 34.   AERONET integrated AOD for 31 August 2007 over Saudi Arabia. 

Channel Blue Green Red NIR Panchromatic

Band(microns) 0.445-0.516 0.506-0.595 0.632-0.698 0.757-0.853 0.527-0.929 

AOD 0.5217 0.4669 0.4100 0.3422 0.3790 

 

3. Results 

Table 35 shows the average AOD and standard deviation from 31 August 2007.  

The results correlated extremely well to AERONET measurements as shown in Figure 

29, differing by a maximum of 0.04 and showing a fairly consistent pattern as wavelength 

increases.    

 

Table 35.   Shadow Method AOD results for 31 August 2007 over Saudi Arabia. 

Channel Blue Green Red NIR Panchromatic
Average 0.5103 0.4259 0.3777 0.3390 0.3596 
Standard 
Deviation 0.0545 0.0504 0.0487 0.0455 0.0500 
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Figure 29. Comparison of IKONOS AOD measurements to AERONET derived AOD 

measurements over Saudi Arabia on 31 August 2007.  The standard error of the 
samples is annotated as a vertical error bar.  The uncertainty of the AERONET 
measurement, ±0.2, is annotated as a horizontal error bar. 

 

4. Summary 

Out of all cases, these results most closely lined up with AERONET readings.  

There was very slight low bias in all channels.  This correlation is most likely due to the 

high sensor resolution and confidence in samples taken as shadows were clear and there 

was no risk of contamination inside and outside the shadow.   
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V. CONCLUSION 

A. CONCLUSIONS 

This is the third study of the Shadow Method and its performance under a variety 

of conditions.  Vincent (2006) proposed the technique, performing sensitivity analyses 

and initial case studies using QuickBird imagery.  Evans (2007) followed by studying 

how the technique performs in an urban environment with multiple surface types.  This 

thesis shifts the focus from shadows generated by ground-based objects using QuickBird 

imagery and expands it to cloud-generated shadows using additional data sources.  This 

means extremely high-resolution satellite imagery is not necessarily required since clouds 

can generate much larger shadows than buildings. Therefore, three additional sensors 

were analyzed: ASTER, MODIS, and IKONOS.  The results in this thesis are varied due 

to using multiple sensors and the varying environmental conditions that were occurring.  

Ultimately, the Shadow Method appears to have promise when applied to cloud shadows.  

It also appears that it can be used with sensors of varying spatial resolutions with some 

degree of confidence.  Imagery resolutions sampled varied between 0.6 meter and 500 

meter resolution and with the exception of the heavy dust case, results fell within 

reasonable standards.  From a sampling standpoint, 500-meter resolution appears to be 

the absolute upper limit where samples could be considered accurate. 

This technique was tested on five different days using four different sensors. 

AERONET measurements ranged from 0.15 to nearly 1.9 over all cases.  Again, with the 

exception of the heavy dust case, all results compared well.  The heavy dust case was 

particularly important because it highlighted Vincent’s analysis of the limitations of the 

Shadow Method.  Vincent (2006) determined that  

The upper limit of this method is determined by maximizing the cosine of 
solar and sensor zenith angles, maximizing surface reflectance, and 
minimizing mean aerosol reflectance.  Based on such parameters, the 
upper limit of the shadow-based AOD retrieval method is approximately 
2.0.  At this AOD, the surface is effectively obscured and shadows are not 
distinguishable.  
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While Vincent’s calculations are correct and this technique is limited to the ability 

to discern between shadow and surface, there is a second part to the limitations of this 

method.  The Shadow Method also has an upper limit which is based on the location of 

the cloud relative to an aerosol layer.  If there is a well-defined aerosol layer and the 

cloud generating the shadow is located entirely above this layer, AOD measurements can 

be skewed.  In the heavy dust case, the surface was not a factor in the samples taken due 

to the thick layer of dust over the region.  This dust layer essentially served as a 

secondary “surface” for cloud shadows to be cast upon.   

Across all sensors, there was a low bias across nearly all channels similar to what 

Evans (2007) observed.  The SWIR channel was slightly higher in the MODIS cases.  

Vincent (2006) and Evans (2007) offered three reasons for the low bias.  The first is an 

unrepresentative aerosol model and determining the correct inputs for single scatter 

albedo and asymmetry parameters.  This will have some effect on the results, but overall 

it is a small factor in the final output.  The second possibility for low bias was attributed 

to buildings blocking the sky and affecting scattering in the sample area.  This may 

contribute to lower results when in an urban environment.  The third possibility was 

assuming a lambertian reflectance when specular reflectance of the surface may be more 

representative.  This is more important when using QuickBird and IKONOS imagery, 

where individual surfaces are able to be distinguished.   

B. FUTURE RESEARCH 

While the final results are comparable to AERONET, studies need to be done on 

how to minimize the low bias consistently seen in QuickBird imagery.  This should be 

conducted in a controlled environment where elements such as type of reflection can be 

better controlled.  Optical depth measurements should be taken at the test site where 

shadows are being generated. 

Focus should also be directed towards automation of this detailed process.  As 

Vincent (2006) explained, this method will have greater usefulness if sampling can be 

automated.  Currently, by the time imagery is received, samples are taken, and AOD is 

calculated, six to eight hours will have passed beyond the valid time of the imagery.  
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With quickly changing environmental conditions, the data would not provide much 

usefulness at that point except in post analysis of the event.  Automation is a giant 

undertaking as it involves determining thresholds between radiance values to determine 

where shadows are if dynamic targeting is done.  In the case of fixed targeting, suitable 

target shadows would need to be identified across multiple regions and “climatology” 

would need to be developed on the performance of these shadows.  In both scenarios, 

studies need to be undertaken to determine if a correlation can be made between AOD 

and visibility.   

One final area of study is the usefulness of future satellite imagery.  High-

resolution commercial satellite imagery is becoming more available as new satellites are 

launched.  In September 2007, DigitalGlobe launched WorldView-1.  This satellite 

provides panchromatic images only and currently features the highest resolution 

commercially available with a resolution of 0.5 meters.  In 2008, DigitalGlobe will 

launch WorldView-2.  This satellite will provide multi-spectral and panchromatic 

imagery in 1.84 meter and 0.46 meter resolutions, respectively (DigitalGlobe 2008).   

Also in 2008, GEOEYE will launch GeoEye-1 to complement IKONOS.  This satellite 

will collect imagery in both multi-spectral and panchromatic bands at 1.65 meter and 

0.41 meter resolutions, respectively (GEOEYE 2008).  Once these two new satellites are 

launched, smaller shadow generators will be able to be sampled as shadows will be 

provided in resolutions never before seen.  The Shadow Method should be tested with 

these new satellites to determine any limitations.   
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