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ABSTRACT 

This study analyses the trend for initial detection times using both passive and 

active sonar during submarine-on-submarine operations.   Specifically, it simulates a 

nuclear powered submarine (SSN) searching for a diesel submarine in an environment 

where the SSN has a speed advantage and active sonar detection ranges exceed passive 

sonar detection ranges.  The simulation uses a mover-sensor discrete event application of 

SIMKIT, developed by Professor Arnold Buss.   

The simulation results show that initial detection times of a search follow an 

exponential trend as a function of SSN speed, diesel submarine speed, detection ranges, 

ping interval and detection probability.  As a result, as detection ranges continue to 

decrease due to increases in sound quieting technology, initial detection times during a 

submarine search will increase exponentially.  This can render a passive sonar 

prosecution ineffective when combating a modern diesel submarine.  Should an SSN use 

active sonar, initial detection times can be significantly reduced, especially if combined 

with an effective search path.  The threat to the SSN of using active sonar can be 

mitigated by judicious consideration of ping interval and search speed with detection 

probability and active detection ranges.  All values used to arrive at the conclusions 

stated are notional, and no classified information sources were consulted as part of this 

work.  
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DISCLAIMER 

The reader is cautioned that computer programs developed in this research may 

not have been exercised for all cases of interest.  While every effort has been made, 

within the time available, to ensure that the programs are free of computational errors, 

they cannot be considered validated.  Any application of these programs without 

additional verification is at the risk of the planner. 
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EXECUTIVE SUMMARY 

There has been an increase in production worldwide of modern diesel submarines.  

Nations have found that these ships can provide a relatively inexpensive ability to both 

defend local coastlines and provide a credible anti-surface warfare threat.  Traditionally, 

the nuclear submarine fleet (SSNs) has been trained to passively detect and track 

opposing submarine forces. As these passive detection ranges continue to decrease with 

modern sound-silencing techniques, the ability to detect these diesel submarines 

diminishes, and it must be determined how to properly utilize SSNs to search for these 

threats. 

This thesis uses discrete event simulation to observe trends in both passive and 

active sonar detection.  The simulation recreates a submarine–on-submarine operation, 

with an SSN searching for a diesel submarine until initial detection occurs.  The 

simulation is performed using SIMKIT, a software simulation tool developed by 

Professor Arnold Buss of the Naval Postgraduate School. 

The initial analysis focuses on performing a random search of a diesel submarine 

using first passive sonar detection, then active sonar detection.  This analysis shows that 

initial detection time follows an exponential relationship between detection ranges and 

submarines’ operating speed.  Additionally, ping interval and probability of a ping 

resulting in detection contribute to the exponential effect when using active sonar.  Due 

to this relationship, it can be concluded that as passive detection ranges continue to 

decrease, the time needed to locate a target submarine will increase exponentially.  It also 

shows that as the detection range of active sonar exceeds that of passive sonar by a factor 

determined by the conditions in which active sonar is implemented, it rapidly reduces the 

time to initial detection.  

The second part of the analysis explores how the search path affects the time to 

initial detection when using active sonar.  It was found that a "lawnmower" search path-- 

that is, boundary to boundary sweeps as the submarine travels down an area--did not 

improve performance above that of a random search.  Though diesel submarine speed is 



 xvi

relatively slow when submerged, it has sufficient speed in some instances to cross the 

perimeter of an area previously searched by the searching submarine, especially with 

long ping intervals and lower detection probabilities.  However, a "spiral-out" search path 

was found to significantly reduce initial detection time by making it less likely for a 

diesel submarine to enter previously searched areas.  This is due to the perimeter of the 

searched area being initially small and increasing linearly as the search progresses. 

The final analysis involves how ping interval is affected by other ships’ 

parameters during a search.  If the Commanding Officer deems it necessary to minimize 

the ping interval to be able to minimize the risk to his own ship through the use of active 

sonar, other factors will change the effects of the exponential contribution of ping interval 

to detection time.  With a long detection range, a reduction in the SSN's search speed as 

well as a moderate to high detection probability will allow for a lengthening of the time 

between pings with a relatively small increase in detection time. 

The conclusions of the thesis are: 

• The initial time to detect a target is an exponential function based on 

detection range, speed of the participants, and in the case of active sonar, 

ping interval and detection probability.  As a result, as the passive 

detection range of diesel submarines continues to decrease, the average 

detection time will increase exponentially.  A point exists where a passive 

prosecution is no longer feasible, and either other assets need to be 

employed or an active search could be performed to maintain a reasonable 

detection time. 

• The speed of a submerged diesel submarine is limited; however, it is 

sufficient to make many search patterns no more effective than a random 

search if the diesel can enter previously searched areas.  A "spiral-out" 

path can provide an additional decrease in detection time, as it provides an 

initially small perimeter that the diesel can cross in order to enter this 

previously searched area.  The simulations suggest that an active search 
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can yield detection times at a fraction of passive searches, but real world 

exercises are needed to determine the breakpoint at which this occurs. 

• If the Commanding Officer deems it necessary to reduce ping interval to 

minimize the threat of being counter-detected, the following factors (listed 

in order of priority) will mitigate the effect of the exponential increase in 

detection time: 

1.  A long active detection range 

2.  Traveling at slower search speeds 

3.  A moderate to high detection probability 
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I. INTRODUCTION  

This chapter summarizes the thesis.  It includes the problem statement, the focus 

of the research performed, and the expected outcome of the analysis. 

A. PROBLEM STATEMENT 

When a submarine is conducting search operations in an attempt to detect another 

submarine, it is generally conducted using passive sonar.  This method detects the target 

submarine once its radiated noise level exceeds that of the ambient noise of the 

environment by way of a receiver mounted on the searching vessel.  Another method that 

is available is the use of active sonar, which emits a signal into the environment that 

reflects off a target submarine and is received by the searching submarine.  This places 

the searching submarine at risk, as this signal is also generally heard by the target, who 

may then evade or act against the searcher.  With modern diesel submarines, however, 

the radiated noise it emits is generally very small, making passive detection difficult.  

During events in which detection of these submarines is vital or the threat of the diesel 

submarine is relatively low, active sonar is a tactical option that must be considered 

during the prosecution of diesel submarines. 

Currently, many nations are developing or purchasing modern diesel-electric 

submarines that are extremely quiet when submerged and operating on the battery.  

Recent technological advances allow them to remain submerged for extended periods of 

time at low speeds.  Their low radiated noise has reduced the passive detection ranges to 

the point that the effectiveness of passive prosecution is substantially reduced, especially 

in areas of high ambient noise. 

The current fleet of U.S. nuclear powered attack submarines (SSN) is equipped 

with active sonar.  As stated previously, active sonar effectively broadcasts the location 

of the SSN, placing it at risk if the diesel submarine is able to obtain the bearing of the 

SSN based on the radiated noise.  The slow speed of the diesel submarine makes evasion 

difficult, but, if equipped with a capable weapons system, can allow the diesel to fire 
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upon the SSN.  Given this risk, active search is still a viable option for specific high-

threat situations involving a diesel submarine or against those diesels that are less capable 

of successfully engaging a modern nuclear-powered submarine.  

B. RESEARCH FOCUS 

This thesis uses discrete event simulation to analyze the use of passive and active 

sonar to search for and detect diesel submarines by SSNs.  The proliferation of diesel 

submarines throughout the world poses significant challenges to the U.S. dominance of 

the sea.  Though unable to travel and operate in vast expanses of the ocean as effectively 

as nuclear powered submarines, diesel submarines are adept at patrolling local littoral 

waters and provide a credible Anti-Submarine Warfare (ASW) and Anti-Surface Warfare 

(ASUW) threat.  Though incurring risk, an active sonar prosecution is viable in several 

scenarios to reduce the time to locate diesel submarines.  Examples of these include but 

are not limited to: 

• The deployment of significant numbers of diesel submarines by a nation in 

which, though a state of war does not exist, tensions exist.  This assumes 

the opposing nation has not authorized the diesel submarines to engage 

any tracking submarines. 

• Diesel submarines are equipped with weapons that cannot effectively 

engage SSNs.  For example, their torpedoes are not effective against SSN 

countermeasures or are designed/designated for a high priority surface 

target. 

• A nation sponsoring terrorism has supplied a diesel submarine to terrorists 

which intend to conduct operations in the immediate future.  

The lack of use of active sonar in recent years has likely led to atrophy in 

Commanding Officers’ experience in effectively using active sonar, specifically in the 

knowledge of the benefit (reduction in detection times) that can be gained, and the proper 

employment of active sonar.   
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An analysis of the trends of detection times using both passive and active sonar 

provides a guide to the Commanding Officer such that future options have a greater 

chance of success in detecting diesel submarines.  The analysis also provides information 

on how to reduce the risk of counter-detection by minimizing the frequency at which a 

ping needs to be emitted using an active sonar search. 

C. OUTLINE 

This thesis is organized into five chapters. Chapter I is divided into four sections.  

The first section describes the problem statement. The second section explains the focal 

point of the research. The third section gives a brief overview of each chapter in this 

thesis. The fourth section explains the expected research outcomes. 

Chapter II explores the different participants that are considered in this study.  A 

description of the current U.S. SSN fleet is given.  Selected diesel submarines common in 

the world and their capabilities are also discussed. 

Chapter III defines the discrete event simulation and scenario.  In the first section, 

the simulation program is explained, along with the parameters and the assumptions 

designated for the simulation.  The second section discusses the scenario used as the basis 

of the specific simulation. 

Chapter IV covers the analysis of the simulation results, and contains four 

sections.  The first section describes the passive sonar search of a diesel submarine.  The 

result of the first section is used as the baseline for further evaluation of following 

searches.  The second section analyzes the active sonar search and compares it to those of 

the passive sonar search. The third section analyzes a simulation of an active sonar search 

using different search paths.  The fourth section examines ping interval, and how altering 

ping interval and associated search parameters affects initial detection.   

Chapter V summarizes the results obtained from simulations.  The conclusions 

provide a guideline for future sonar searches, and areas of further research are identified.   

The Appendix includes results from the simulation runs and the regressions 

performed on the data.   
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D. EXPECTED OUTCOME OF RESEARCH 

The thesis explains the trend of initial detection rates as a function of the 

parameters of passive and active sonar searches.  The results can be used as a guide in 

future sonar searches by Commanding Officers to provide a better understanding of how 

search type, parameters and actions will affect the time to detect a target submarine.  It 

can also be used by senior naval personnel to determine which assets can be effectively 

utilized to conduct a search for diesel submarines.   
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II. RELEVANT SUBMARINE DESCRIPTIONS 

In order to establish context, this chapter provides a brief introduction of the 

submarines considered in the analysis.  This chapter is not intended to thoroughly 

examine each submarine and its capabilities, but rather to explain relative performances 

and provide a background for the model. 

A. SUBMARINES OF THE UNITED STATES 

1. Los Angeles Class Submarine 

The Los Angeles Class submarine is the mainstay of the U.S. Navy's attack 

submarine fleet, with 46 currently commissioned.1,2  This will remain in effect in the 

foreseeable future, as its replacement, the Virginia Class submarine, is currently at a 

production rate of two per year.3   

2. Seawolf Class Submarine 

There are three Seawolf Class submarines in the U.S. Navy, with no further 

construction planned.  This submarine class was designed to conduct Cold-War era 

submarine warfare, and is faster, better armed, and has an improved sonar system 

compared to the Los Angeles Class submarine.4 

 

 

 

                                                 
1 Navy Fact File “United States Navy Fact File Attack Submarines – SSN”, 

http://www.navy.mil/navydata/fact_display .asp?cid=4100&tid =100&ct=4 (accessed Feb 2, 2008).  
2 Stephen Saunders, Commodore, RN, editor, Janes Fighting Ships 2007-2008, (Surrey, UK: Jane’s 

Information Group Limited, 2005), 884.  
3 DefenseLink News Transcript "Briefing on the Virginia Class Submarine Contract", 

http://www.defenselink.mil/transcripts/ transcript.aspx?transcriptid=3224 (accessed Feb 2, 2008). 
4 Saunders, 883.  
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3. Virginia Class Submarine 

Virginia Class submarines will eventually replace Los Angeles Class submarines 

as the primary attack submarine in the U.S. fleet.  Though not as fast and well-armed as 

the Seawolf Class, its modular design allows it to act in multiple roles in most ocean 

environments.5 

B. DIESEL SUBMARINES 

1. Kilo Submarine 

Countries that maintain a Kilo class submarine in service include China and Iran.  

This dual-hulled submarine has an at-sea endurance of 45 days, and can perform multiple 

missions, from mine-laying to anti-naval operations.  It is one of the significant assets 

sold by Russia to foreign nations.6  

2. Song Submarine  

In October 2006, a Song class submarine surfaced within five miles of the aircraft 

carrier Kitty Hawk (CV-63).  The Song Class is the first modern-era Chinese-built 

submarine, and is armed with wake homing torpedoes and anti-ship cruise missiles.  The 

incident emphasized the threat that quiet diesel submarines pose to carrier strike groups.7 

                                                 
5 Saunders, Janes Fighting Ships 2007-2008,  882.  
6 GlobalSecurity.org, "Kilo Class Submarine - People's Liberation Army Navy," 

http://www.globalsecurity.org/military/world/china/kilo.htm (accessed Feb 2, 2008). 
7 GlobalSecurity.org, "Song Class - People's Liberation Army Navy," 

http://www.globalsecurity.org/military/world/china/song.htm (accessed Feb 2, 2008). 
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III. SIMULATION MODEL AND SCENARIO 

This chapter explains the model that is used in the thesis.  The program used in 

the simulation, the construction of each entity, how parameters are implemented in the 

model, and the scenario are discussed.  Assumptions that are made in the model are 

explicitly stated.  

A. SIMULATION MODEL 

1. SIMKIT 

The simulations performed in this thesis were developed using the Java-based 

program SIMKIT, developed by Professor Arnold Buss of the Naval Postgraduate 

School.  The discrete event simulations execute an event graph, in which subsequent 

actions are appended onto an event list.  These actions are continuously ordered and 

performed chronologically, and time periods without events do not consume 

computational overhead.  The benefit of discrete event simulation is the ability to perform 

multiple simulations in a fraction of the time of equivalent time-step simulations, since 

the model calculations are performed after each event rather than after each time 

increment.  In this thesis, over 36,000 distinct simulations were performed, representing 

millions of total simulated hours. 

2. Submarine Representation 

The submarines are represented as uniform linear movers.  A more complicated 

representation is not necessary in this model for two reasons: First, the time scale of this 

model (based on the size of the simulation area and speed of the vessels involved) do not 

require a detailed analysis of acceleration, deceleration, advance, and transfer.  Second, 

the ability to change depth is not analyzed in the model because any change in depth can 

be represented as a new two-dimensional problem, as depth changes should only have an 

effect on the sonar detection range and the probability of receiving a signal. 
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A uniform linear mover starts its move at position x at time to and starts to move 

with velocity v.   As a result, its location at time t is x+(t- to)v.  As a result, the position of 

the mover does not have to be explicitly stored at all times in the model, but rather can be 

calculated as needed.  

A separate mover manager maintains the scheduling of all movements in the 

simulation associated with the specific mover.   As such, this manager is able to store a 

set of waypoints that the mover is to follow during the conduct of the simulation. 

Though submerged diesel submarines can operate above 10 knots, this places a 

significant drain on the battery and cannot be sustained for long periods of time.  

Therefore, the simulation assumes the diesel submarine travels between two and five 

knots.  The SSN is assumed to have a speed advantage over the diesel submarine, and 

will travel between five and fifteen knots (fifteen knots giving a 3:1 speed advantage over 

the diesel's highest speed).   

For the random passive and active sonar searches, each submarine is randomly 

generated in the simulation area.  The Kilo performs random maneuvers during all 

simulations.  This occurs even if the Kilo is pinged by active sonar.  Though the Kilo 

may determine that it is being pinged, it is assumed that it is unable to resolve the bearing 

from which the ping originates.  The SSN also maneuvers randomly during the initial 

active searches to provide a baseline for further analysis, in which definitive search paths 

during active sonar prosecution are performed. 

3. Sonar Detection Representation 

Both active and passive sonar systems rely on the principle of signal excess.  In 

all underwater detection, detection range relies on multiple factors depending on the 

target position, searcher position, and ocean characteristics.   Bottom depths, ocean 

bottom contour, composition of the ocean floor, target aspect, and several other factors all 

have an effect on detection range.   

In passive systems, a receiver is mounted to the hull of the searching submarine.  

As radiated noise leaves the target submarine, its intensity decreases as a result of 
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spreading and attenuation losses.  A receiver mounted on the searching submarine 

receives the signal and is processed to be evaluated by a sonar operator.   If the radiated 

noise level is sufficiently greater than the ambient noise level, detection will occur.  This 

detection relies on the operator being able to isolate and recognize the radiated noise as 

that of the target submarine.  In passive sonar detection, continuous monitoring of the 

passive sonar system leads to very quick detection once the source (diesel) travels within 

the range that the signal-to-noise ratio is above that required for detection.  As a result, 

passive sonar can be reasonably represented as a cookie-cutter sensor.  The detection 

ranges vary widely between the types of submarines and operating environments, and the 

simulations assume a notional detection range between 0.5 and 3 nautical miles (nm).  

With active sonar, the SSN will emit a ping (radiated noise) that will travel, reflect off a 

target, and return to the SSN.  If the return signal is sufficiently strong, it will be read as a 

detection event.  Pings also suffer from spreading and attenuation losses. Though this 

limits the range that active sonar can be effectively used, the source signal generated is 

such that its effective range will be greater than passive range.   

Clutter such as sea mounts and biologics can distort, reduce, or confuse the signal 

such that detection is not certain even if the target is within the range required for 

detection.  Increased training can assist in the ability to discriminate a return signal as the 

target, but cannot eliminate all errors.  As a result, when a ping occurs and the target is 

within the detection range of the SSN, there is an associated probability that the ping both 

returns to the SSN and is then recognized as the target.  It is assumed that the 

Commanding Officer would recognize and not operate active sonar in a poor acoustic 

environment.  It is also assumed that active sonar detection ranges will be greater than 

passive detection ranges.  The simulation uses an active detection range between 5nm and 

15nm, a ping interval between 0.01 and 1 hour, and a detection probability of 0.3 to 1.0.  

Baffle zones are not considered in the simulation, in order to maintain this thesis’s 

unclassified status.  This should not affect results, as the speed advantage of the SSN 

makes detection of the diesel submarine very unlikely to occur in such an area. 

In this simulation, the sensor is a separate object that is attached to the mover.  

The sensor maintains a list of contacts that have been detected, as well as maintaining the 
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parameters needed to calculate if a detection event occurs.  A separate referee is 

implemented that will determine whether a detection occurs as a mover enters the range 

of the sensor.  Similarly to a mover manager, the referee calculates and stores the times at 

which a mover will enter detection range, be detected, remain undetected, and exit 

detection range.  As the movers change course, these times are recalculated and updated 

on the event list.    

4. Parameter Input 

As submarine speeds, detection ranges, ping intervals, and detection probabilities 

all act as a continuous range, there are virtually unlimited combinations of these 

parameters.  In order to efficiently ensure that the possible range of these combinations is 

considered, a Nearly Orthogonal Latin Hypercube (NOLH) was used to input the 

parameters of the simulation.  This provides uniform samples for the marginal 

distribution of each single input, with the main effects being nearly orthogonal to each 

other (allowing for greater distinction of these effects).8  Each data point in the NOLH 

design was replicated for 200 trials (simulations).   

A general representation of the model is shown in Figures 1 and 2.  These were 

obtained directly from the passive detection model to aid in the visual representation of 

the model.  The blue square represents the SSN, and the red square represents the Kilo.  

The yellow circle surrounding the SSN represents the sensor's range--in this case either 

passive or active sonar.  Each submarine will continue to maneuver until the Kilo 

penetrates the yellow detection range as shown in Figure 2.  In the case of passive sonar, 

detection will then occur.  If the sensor represents active sonar, detection will only occur 

when a ping is scheduled and a drawn random number is then compared to detection 

probability.   An example of the coding used for this simulation is included in the 

Appendix. 

                                                 
8 Thomas M.Cioppa,"Efficient Nearly Orthogonal and Space-Filling Experimental Designs for High-

Dimensional Complex Models" (master’s thesis, Naval Postgraduate School, 2002) . 
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Figure 1.   Visual Representation of Initial Model Generation 
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Figure 2.   Visual Representation of Initial Model Detection 

 

3. Model Intent 

The discrete event simulation construction is optimistic when compared to real 

world scenarios.  Any best possible outcome for a flexible model that can cover multiple 

current and future scenarios requires having an active detection range that is significantly 

high.  As a result, the area that the simulation covers is a 125nm x 125nm area.  It should 

also be noted that the initial detection times are not predictive, but rather show trends and 

relationships between factors and tactics.    

B. SCENARIO DESCRIPTION 

A U.S. Los Angeles class submarine has been tasked with locating and tracking a 

Kilo submarine prior to the commencement of a carrier strike group exercise.  The Kilo 

has recently been deployed and is believed to be located in an area in which a carrier task 
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group will be conducting exercises.  The exercise will be conducted in a 125nm x 125nm 

box, and will not include ASW operations.  There has been an increase in tension with 

the nation that has deployed the Kilo, and due to the sensitive nature of the exercise it is 

desired that any external presence be identified prior to the decision to initiate the 

exercise.  The Kilo has orders to remain in the area unless detected due to the high 

priority its government places on the mission.  The Kilo is unable to resolve the bearing 

of any active sonar it detects, and as such will move randomly in the area to avoid 

developing any pattern that can be exploited by searchers. 
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IV. SIMULATION ANALYSIS 

This chapter contains the results and analysis of the various simulations 

performed in the thesis.  The initial simulations include baseline passive and active sonar 

searches that provide a baseline for further analysis.  Later simulations analyze the 

performance of search patters in relation to detection times.  The final portion of this 

chapter examines how to effectively utilize active sonar when a minimum ping interval is 

desired. 

A. RANDOM PASSIVE SEARCH 

The simulation involves both the SSN and the diesel submarine moving randomly 

in the designated area.  Though a random search path is not optimal, it has historically 

been shown to be a good representation of reality.9  This is due to the fact that target 

speed, though small, is sufficient to provide some evasion capability.  This causes most 

exhaustive search paths to perform no better than a random search.  Both submarines are 

generated at a random position in the simulation area.  The SSN travels at a constant 

speed between 5 and 15 knots, the Kilo travels at a constant speed between 2 and 5 knots, 

and passive detection range varies from 0.5 to 3 nm.  The Kilo does not respond if 

pinged, which may be interpreted as an inability to localize the direction of the ping 

received.  Each data point was replicated 200 times, and the results of the simulation are 

shown in Table 1. 

 

 

 

 

 

 

                                                 
9 Alan Washburn, "Models Based on Detection Rate" Search and Detection, 4th ed., (Institute for 

Operations Research and the Management Sciences, 2002), 2-5. 
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SSN Speed 
(Knots) 

Kilo Speed 
(knots) 

Passive  Range 
(nm) 

Avg Time to Initial 
Detection (hours) 

Std Dev 
(hours) 

8 5 2.5 348.916 344.70302
6 3 2.7 487.147 455.51209
6 3 0.7 1627.281 1652.0335
7 4 1.3 812.296 726.73581

13 5 1.6 374.088 357.67805
15 3 1.4 410.684 370.34432
11 3 3 248.216 196.66892
11 5 2.4 303.318 306.36165
10 4 1.8 452.372 406.5141
12 2 1 689.644 685.42818
14 4 0.8 707.931 613.38593
14 4 2.8 208.467 180.78828
13 3 2.2 320.392 296.14057

8 2 1.9 622.731 561.17153
5 4 2.1 745.226 599.67577
9 4 0.5 1763.783 1618.2752
9 2 1.1 808.765 770.54226

  Overall Mean 643.015  
  Overall Std Dev 596.585  

Table 1.   Random Active Search Results 
 

The mean value of detection times over the range of submarine speeds and 

detection ranges is 643 hours.  The standard deviations of the results are not constant, 

suggesting heteroscedasticity.  Additionally, the values of the standard deviations are 

almost equal to those of the mean detection times.  This is a property of the exponential 

distribution.  Figure 3, which charts the detection times as a function of passive detection 

range, also suggests that detection time looks similar to general exponential decay. 
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Figure 3.   Passive Random Search Detection Time 
 

Since the detection time is not a linear function, a linear regression is not 

appropriate for this data.  As a result, an intrinsically linear regression is performed by 

taking the natural log of initial detection times.  The results of the regression are shown in 

Figure 4.  The initial model that includes all factors shows the p-value for the Kilo speed 

is 0.148.  Though common sense would dictate that the Kilo’s speed will affect the time it 

will be detected, the model suggests that the other factors have a much greater effect, to 

the point of making the Kilo's speed negligible. A subsequent regression, shown in Figure 

5, was performed without the Kilo’s speed.  Removing this factor did not change the 

amount of variation that is explained by the regression (R squared remains at .2324), 

suggesting that the Kilo’s speed did not explain any more of the variation in detection 

times.  The F statistic p value is essentially zero, implying a statistically significant 

model.  Both passive detection range and SSN speed have individual t statistic p-values 

of essentially zero, which strongly suggests that these factors are important in predicting 

initial detection times, with passive detection range being the most important factor.  The 

R squared states that the model only explains 23% of the variability in detection times, 

but this was expected due to the random submarine location generation and random 

courses of the submarines involved over such a large area.  The formula resulting from 

the regression is: 
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Initial Detection Time(hrs)=  

2916.1*e7.978 - 0.1*(SSN Speed, knts) - 0.567*(Passive Detection Range, nm) 

 

The conclusion drawn from this equation is that as detection range decreases, the 

time to initial detection will increase exponentially.  This can be partially offset by 

increasing SSN search speed, but it cannot be overcome.  As a result, as the detection 

range of diesel submarines continue to decrease, it is likely that a passive search using an 

SSN will be ineffective and will not find the diesel submarine in any reasonable period of 

time.   
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Figure 4.   Full Regression of Passive Random Search  
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Figure 5.   Regression of Passive Random Search Without Kilo Speed 
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B. RANDOM ACTIVE SEARCH 

This SSN will now use active sonar to search for the Kilo in the area.  The Kilo 

and SSN will move randomly in the area, with the SSN ping interval and detection 

probability being set at a constant value.  The simulation stops upon initial detection of 

the Kilo.  The detection range of active sonar is 5 to 15 nm as compared to the 0.5 to 3 

nm of passive sonar.  The lower bound was selected because active detection range will 

always be greater than passive detection range.  This will take into account the 

Commanding Officer’s  use of active sonar only if its range is significantly greater than 

passive detection range.  The higher bound was selected to give a 5:1 advantage of 

maximum passive detection range and maintain the area of simulation at a reasonable 

size.  SSN and Kilo speed and limitations will remain the same as in the passive search. 

The results, shown in Table 2, again suggest an exponential trend of average 

initial detection time.  The mean time to initial detection is 110.74 hours, as opposed to 

643 hours for the passive random search.  Figure 6 also suggests that an exponential trend 

is reasonable. 
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SSN 
Speed 
(knots) 

Kilo 
Speed 
(knots) 

Active  
Range 
(nm) 

Detection 
Probability 

Ping Interval 
(hours) 

Average Initial 
Detect Time 

(hours) 
Standard 
Deviation 

15 4 8.8 0.48 0.94 200.81185 195.5241582
8 5 10.6 0.3 0.32 71.03755 71.5955215
9 2 7.5 0.74 0.81 133.14265 138.0111488

11 3 15 0.69 0.13 35.69445 38.76185187
14 3 6.3 0.52 0.01 67.2388 63.85972261

8 3 13.1 0.34 0.75 78.49365 75.59156854
7 5 8.1 0.91 0.44 95.82585 97.72846919

14 4 14.4 0.87 0.63 28.6538 27.6565906
10 4 10 0.65 0.51 72.67396985 70.00585123

5 3 11.3 0.83 0.07 87.25525 98.2287408
13 2 9.4 1 0.69 50.9184 52.07474125
11 5 12.5 0.56 0.2 36.0078 39.35277176

9 4 5 0.61 0.88 501.518 452.1313694
6 4 13.8 0.78 1 63.06215 62.74986837

12 4 6.9 0.96 0.26 75.79385 81.09363257
13 2 11.9 0.39 0.57 65.37125 61.84093894

6 3 5.6 0.43 0.38 219.14805 211.6105996
    Overall Mean 110.743  
    Overall Std Dev 108.107  

Table 2.   Random Active Search Results 
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Figure 6.   Active Random Search Detection Times 

 

A full regression performed using the natural log of initial detection time, as 

shown in Figure 7, shows an F statistic p value of essentially zero, and all factors have a t 
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statistic p-value less than 0.05.  The R squared states the model explains only 20% of the 

variability in the simulation.  Though yielding 3% less than the passive search, more 

factors are involved, and there is some probability the Kilo will not be detected even if it 

is pinged inside of the active detection range.  The most important factor is active 

detection range, followed by ping interval, detection probability, SSN speed, and Kilo 

speed, respectively.  The regression results in the following equation to predict initial 

detection time: 

Intial Detection Time(hrs)= 

437*e0.173*(Active Range, nm)+1.02*(Ping Interval, hrs)-0.86*(Detect Prob) - 0.055*(SSN Spd, knts) + 

0.047*(Kilo Spd, knts) 
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Figure 7.   Full Regression of Active Random Search 
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This regression suggests that the exponential effect of ping interval, though 

important to the model, can be delayed (up to a point) without a significant increase in 

initial detection time.  This is due to the diminishing returns inherent in the exponential 

distribution.  As ping interval is shortened, it will yield sequentially less reduction in 

initial detection time.  This is further explored in Section D.   

C. SEARCH PATH EFFECTS ON TIME TO INITIAL DETECTION 

The previous model was performed with the SSN conducting a random search.  

This is not an optimal search configuration, and any Commanding Officer performing a 

search would undoubtedly choose a specific patrol path to conduct it.  There are multiple 

methods in which a sonar search can be conducted.  This thesis considers two such search 

paths.  The paths were selected based on capabilities of the SSN and ease of use. 

The lawnmower path of the SSN begins the search in the southwest corner of the 

area and conducts a west–to-east sweep, traveling some distance north, and then 

conducting an east to west sweep.  This pattern is continued until the entire area is 

searched.   

The next path approximates a "spiral-out" search.  The SSN will start at the center 

of the area, and then travel outward in areas of expanding squares until the entire area is 

searched.   

A "spiral-in" search path is also possible but was not included in the 

simulationbecause the SSN's speed advantage was not sufficient to be able to trap the 

Kilo within the area of diminishing squares.10   

Table 3 shows the average results at each trial point involving the different search 

paths used, including the random search.  With the same input parameters and limitations 

as the random active sonar search, the lawnmower path performance was on par with the 

random search path.  This suggests that the Kilo's speed is sufficient to reduce the 

performance of the lawnmower search to be no better than a random search.  The spiral-

                                                 
10 Washburn, Search and Detection, 1-11. 
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out search path, however, performed better than a random search at every data point.  

Table 4 shows an overall reduction in detection time of 20%. 

 

 
Table 3.   Comparison of Search Paths 

SSN 
Speed 
(knots) 

Kilo 
Speed 
(knots) 

Act  
Rng 
(nm) 

Det 
Prob 

Ping 
Interval 
(hours) 

Avg Time to 
Init. Detect 

Using Random 
Search 

Avg Time To 
Init. Detect 

Using 
Lawnmower 

Search 

Avg Time to 
Init. Detect 

Using Spiral 
Out 

15 4 8.8 0.48 0.94 200.81185 207.5831 141.19825 
8 5 10.6 0.3 0.32 71.03755 77.57815 64.4391 
9 2 7.5 0.74 0.81 133.14265 131.60635 117.37425 

11 3 15 0.69 0.13 35.69445 49.6619 33.32905 
14 3 6.3 0.52 0.01 67.2388 82.22545 48.61055 
8 3 13.1 0.34 0.75 78.49365 86.9401 63.48285 
7 5 8.1 0.91 0.44 95.82585 90.6327 72.2219 

14 4 14.4 0.87 0.63 28.6538 47.05835 22.68425 
10 4 10 0.65 0.51 72.67396985 51.6569 49.2787 
5 3 11.3 0.83 0.07 87.25525 98.26395 72.6421 

13 2 9.4 1 0.69 50.9184 70.85855 47.84445 
11 5 12.5 0.56 0.2 36.0078 40.9402 29.1944 
9 4 5 0.61 0.88 501.518 607.351 417.1178 
6 4 13.8 0.78 1 63.06215 83.9345 57.1936 

12 4 6.9 0.96 0.26 75.79385 74.41265 51.4453 
13 2 11.9 0.39 0.57 65.37125 74.54735 50.1851 
6 3 5.6 0.43 0.38 219.14805 204.8426 150.4501 

    
Overall 
Mean 110.74396 122.3584588 87.57010294 
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Table 4.   Comparison of Random and Spiral-Out Search Paths 

 

It was previously noted that the Kilo's speed is the factor that causes an 

exhaustive search to decline into a random search's performance.  This is due to the Kilo's 

ability to enter previously searched areas while the SSN continues conducting its 

assigned search pattern.  In a lawnmower search path, the perimeter that the Kilo can 

cross to enter the previously searched area is the length of the operational area (125nm).   

In the spiral-out search path, this perimeter begins at zero and then increases linearly as 

the search is conducted.  As a result, it is difficult in the first part of the simulation for the 

Kilo to enter the previously searched area.  This yields a more efficient search as well as 

a reduction of initial detection time. 

In order to compare an active sonar search using a spiral-out technique to the 

passive sonar search, simulation runs were performed to chart the time to initial detection 

using active sonar as a percentage of time to a passive sonar search.  The simulations  

 

Data 
Point 

Avg Time to Init. Detect 
Using Random Search 

Avg Time to Init. Detect 
Using Spiral Out Percent Improvement 

1 200.81185 141.19825 29.69% 
2 71.03755 64.4391 9.29% 
3 133.14265 117.37425 11.84% 
4 35.69445 33.32905 6.63% 
5 67.2388 48.61055 27.70% 
6 78.49365 63.48285 19.12% 
7 95.82585 72.2219 24.63% 
8 28.6538 22.68425 20.83% 
9 72.67396985 49.2787 32.19% 

10 87.25525 72.6421 16.75% 
11 50.9184 47.84445 6.04% 
12 36.0078 29.1944 18.92% 
13 501.518 417.1178 16.83% 
14 63.06215 57.1936 9.31% 
15 75.79385 51.4453 32.12% 
16 65.37125 50.1851 23.23% 
17 219.14805 150.4501 31.35% 

Overall 110.74396 87.57010294 19.79%
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used the same submarine speeds and a ratio of active detection range to passive detection 

range.  Figure 8 shows the result of the simulation runs, with the following input 

parameters: 

SSN Speed=15 knots 

Kilo Speed=3 knots 

Passive Detection Range=2nm 

Active detection probability=0.75 

Ping Interval=0.25 hours 

Active Range is varied from 2*(passive det. Range) to   

 7*(passive det. range) 

Active  vs Passive Detection Time

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

300.00%

2 to 1 3 to 1 4 to 1 5 to 1 6 to 1 7 to 1

Ratio of Active to Passive Detection Range

Percentage of Passive
Detection Time

 
Figure 8.   Active vs. Passive Detection Times 

 

Initially, when active sonar range is twice that of passive sonar range, the passive 

search performs better.  This is because active sonar pings occasionally miss the Kilo 

unless the SSN is constantly pinging or active sonar has a detection probability of 1.  As 

active sonar range increases, there is a significant reduction of search times that follow an 

exponential trend.  When active sonar range is five times that of passive sonar range, the 

active search detects the Kilo in 25% of the time that a passive search would take.  

Though this is not predictive of the real world situation, the results imply that an active 
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search can detect a submarine in a fraction of the time than a passive search takes.   Real-

world exercises and data could determine the breakpoint at which the active sonar search 

will outperform the passive sonar search.   

D PING INTERVAL ANALYSIS 

It has been shown that initial detection time has an exponential relationship with 

ping interval.  This means that as the time between pings increases, there is very little 

initial loss in detection time.  This effect builds, however, such that eventually initial 

detection time increases substantially.  This is shown in Figure 9.  SSN speed was set to 

10 knots,to the Kilo’s 3 knots, active detection range is 10nm, and the probability that a 

ping inside the detection range leads to detection is 0.75.  200 simulations were then 

performed on a series of ping intervals that is increased by 0.25 hours.   

Detection Time vs. Ping Interval

0
50

100
150
200
250
300
350
400
450
500

0.01 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

Ping Interval (hours)

D
et

ec
tio

n 
Ti

m
e 

(h
ou

rs
)

 
Figure 9.   Detection Time vs. Ping Interval 

 

Since initial detection time is not only a function of ping interval, the other factors 

may be adjusted to mitigate the exponential increase in detection time versus ping 

interval.  This will deteriorate the best case scenario of initial detection time, but due to 

uncertainties in a real life situation it may be appropriate in order to gain the reduction of 

risk associated with less frequent pinging.   
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1. Ping Interval vs. SSN Speed 

The first, and easiest, parameter for the SSN to change during search is its speed.  

Additional simulations to those performed in section D were conducted--once with SSN 

speed being reduced to 5 knots, and another with search speed increasing to 10 knots.  All 

other parameters are held constant.  Figure 10 shows the results of the simulations. 
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Figure 10.   Ping Interval and SSN Speed vs. Detection Time 

 

With a very short ping interval, a speed of 15 knots provides the best initial 

detection time at 29.46 hours.  Over a ping interval range of 1 to 1.75, the initial detection 

time increases from approximately 71 hours to over 520 hours.  Alternately, at 10 knots 

the initial detection time does not increase above 200 hours until a 2 hour ping interval is 

reached, and at 5 knots it is not reached until the ping interval is 2.75 hours.  If a 

Commanding Officer feels that a threat exists and is willing to sacrifice the best initial 

detection time for a reduction in ping interval, he should reduce SSN search speed. 

2. Ping Interval vs. Detection Probability 

One factor for a Commanding Officer to consider in his decision to use active 

sonar is the probability of detection if the Kilo is within active sonar range.   For  
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example, if the SSN operates in a high clutter environment and the detection probability 

is lowered, it should be understood how much detection time will change if ping interval 

is reduced.  

Figure 11 shows the results of simulation runs similar to those performed in 

Section 1. However, instead of varying SSN speed, detection probability is varied from 

0.4 to 0.9.  Varying the detection probability does not have the same impact on detection 

time as SSN speed had.  As long as sufficient looks are performed on the Kilo as it is 

within detection range, there will be a moderately high probability of detecting the Kilo.  

For example, assume the SSN is able to ping the Kilo twice as it is in detection range.  

The probability the SSN can detect the Kilo in these two looks is:  

Prob(Detected in two looks)= Prob(Detected in the First Look)+Prob(Missed in First 

Look)*Prob(Detected in Second Look) 

As a result, at a detection probability of 0.4, the overall chance of detecting the 

Kilo in two looks is 64%.  At a detection probability of 0.7 and 0.9, this chance increases 

to 91% and 99% respectively.  The ping interval in these simulations are generally short 

enough such that multiple looks at the Kilo in detection range is obtained, and detection 

probability does not have as large an affect on detection time as ping interval is varied. 
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Figure 11.   Ping Interval and Detect Prob. Vs. Detection Time 

 
 



 32

3. Ping Interval vs. Active Range 

The last factor known to the Commanding Officer is the estimated active 

detection range.  Comparably to detection probability, if the active range is considered 

low and the Commanding Officer feels it tactically necessary to reduce ping interval, 

there needs to be an understanding of how this will affect active detection time.  Figure 

12 shows the effect of changing ping interval as active detection range changes from 5nm 

to 15nm. 
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Figure 12.   Ping Interval and Active Range vs. Detection Time 

 
Active range is extremely significant in exacerbating the effects of the exponential 

distribution on detection time.  If active range is significant, it takes a drastic delay in ping 

interval to see the exponential effect.  Conversely, a relatively short detection range will 

result in a very rapid increase in detection time if ping interval is delayed.  Therefore, active 

range is the primary factor the Commanding Officer should consider if he decides to employ 

active sonar. 

Statistically, the model derived in Sections A and B are not a good fit, as they only 

explain approximately 20% of the variability in the model.  Further research, including more 

scenarios and possibly additional factors would be needed to attempt to explain more of 

variability in the scenario.  The graphs do strongly suggest and exponential relationship of 

the factors in regards to initial detection time, and this relationship still should be included in 

any decision to use active sonar when detecting diesel submarines. 
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V. CONCLUSIONS 

The following synopsis provides the outcome of the simulations performed in this 

thesis: 

• The performance graphs of the simulations do strong suggest an 

exponential pattern, implying that the time to initially detect a target is an 

exponential function based on detection range, speed of the participants, 

and in the case of active sonar ping, interval and detection probability.  As 

a result, as the passive detection range of diesel submarines continues to 

decrease, the average detection time will increase exponentially.  There is 

a point where a passive prosecution is no longer feasible, and either other 

assets need to be employed, or an active search could be performed to 

maintain a reasonable detection time. 

• The speed of a submerged diesel submarine is limited; however, it is 

sufficient to make many search patterns no more effective than a random 

search if the diesel can enter previously searched areas.  A "spiral-out" 

path can provide an additional decrease in detection time, as it provides an 

initially small perimeter that the diesel submarine can cross in order to 

enter this previously searched area.  The simulations suggest that an active 

search can yield detection times at a fraction of passive searches, but real 

world exercises are needed to determine the breakpoint at which this 

occurs. 

• If the Commanding Officer deems it necessary to reduce ping interval to 

minimize the threat of being counter-detected, the following factors (listed 

in order of priority) will mitigate the effect of the exponential increase in 

detection time: 

1.  A long active detection range 

2.  Traveling at slower search speeds 

3.  A moderate to high detection probability 
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To advance the study of active sonar employment, further research is needed to 

identify additional tactics to optimize its performance.  Such studies include identifying a 

set of possible actions once detection occurs.  For example, if engagement with the diesel 

submarine is desired, there must be a determination whether to rapidly engage the diesel 

or to continue tracking and obtain better tactical positioning.  A proper combination of 

active and passive sonar tracking can also be explored.   

The regression model performed in this thesis only explains approximately 20% 

of the variability that appears in the simulations.  As a result, further research is needed to 

attempt to better explain this variability.  These may include additional scenarios and 

additional factors.  Future work in this field should include an attempt to build a better 

statistical model that better explains the variability shown.   Additional scenarios could 

include factors that were not considered in this thesis, and may also contain situations 

that would not occur in a real world encounter.  An incremental increase in the number of 

replications could identify whether the randomness of the model or the situation being 

modeled overcomes the factors due to its stochastic nature.   

The modern diesel submarine provides significant challenges to the U.S. naval 

fleet.  Not only does it pose a significant threat to high value units such as aircraft 

carriers, but the relatively cheap cost of each diesel submarine is such that they may be 

deployed in significant numbers to overwhelm small numbers of high quality units such 

as nuclear submarines.  The ability to detect diesel submarines early provides the best 

ability to successfully defend against any threat that may be posed.   
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APPENDIX 

public class ActiveSearchRandom { 
 
 /** 
  * The class random number generator will produce a different random number 
  * at the start of each run. The parameters are the number of replications, 
  * SSN speed, Diesel Speed, Active detection range, probability of 
  * detection, and ping interval which can be overridden using the arguments. 
  *  
  * @param args The values of the number of replications run, SSN speed, Diesel Speed, Active     
               *Detection Range, Detection Probability, Ping Interval, 
  */ 
 
 public static void main(String args[]) { 
 
 
 
   double simTime = 0.0; 
   double totalSimTime = 0.0; 
   int numberReplications = 200; 
   double ssnSpeed = 0.0; 
   double dieselSpeed = 0.0; 
   double activeRange = 0.0; 
   double probDetect = .0; 
   double pingInterval = .0; 
   if (args.length == 6) { 
    numberReplications = Integer.parseInt(args[0]); 
    ssnSpeed = Double.parseDouble(args[1]); 
    dieselSpeed = Double.parseDouble(args[2]); 
    activeRange = Double.parseDouble(args[3]); 
    probDetect = Double.parseDouble(args[4]); 
    pingInterval = Double.parseDouble(args[5]); 
   } 
   SensorTargetMediatorFactory.addMediator(ActiveSonarSensor2.class, 
     UniformLinearMover.class, ActiveSonarMediator2.class); 
 
 
   RandomVariate randPosit = RandomVariateFactory.getInstance( 
     "Uniform", new Object[] { new Double(0.0), 
       new Double(125.0) }); 
   Point2D.Double ssnStart = new Point2D.Double(randPosit 
     .generate(), randPosit.generate()); 
   Point2D.Double dieselStart = new Point2D.Double(randPosit 
     .generate(), randPosit.generate()); 
 
   // Create the diesel and the SSN as uniform linear movers. 
   Mover badGuy = new UniformLinearMover("Diesel", dieselStart, 
     dieselSpeed); 
   Mover goodGuy = new UniformLinearMover("SSN", ssnStart, ssnSpeed); 
 
   // Attach the passive sonar to the SSN 
   Sensor ssnActive = new ActiveSonarSensor2(goodGuy, activeRange, 
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     pingInterval, probDetect); 
 
   // Register the movers to the Referee 
   SensorTargetReferee activeRef = new SensorTargetReferee(); 
   activeRef.register(badGuy); 
   activeRef.register(ssnActive); 
 
   goodGuy.moveTo(new Point2D.Double(randPosit.generate(), randPosit 
     .generate())); 
   badGuy.moveTo(new Point2D.Double(randPosit.generate(), randPosit 
     .generate())); 
   // Have the Diesel and SSN to move randomly 
    
   RandomVariate[] rv = new RandomVariate[] { 
     RandomVariateFactory.getInstance("Uniform", new Object[] 
{ 
       0.0, 
       125.0 }), 
     RandomVariateFactory.getInstance("Uniform", new Object[] 
{ 
       0.0, 
       125.0 }) }; 
    
   RandomLocationMoverManager goodGuyMM = new 
RandomLocationMoverManager( 
     goodGuy, rv); 
   RandomLocationMoverManager badGuyMM = new 
RandomLocationMoverManager( 
     badGuy, rv); 
 
   goodGuyMM.setStartOnReset(true); 
   badGuyMM.setStartOnReset(true); 
   SandboxFrame frame = new SandboxFrame("Passive Sensor Platform"); 
   frame.setSize(1000, 1000); 
   ((PingThread) frame.getControlPanel().getController()) 
     .setMillisPerSimtime(50); 
 
   frame.getSandbox().setOrigin(new Point2D.Double(50, 150)); 
 
   frame.addMover(badGuy, Color.red); 
 
   frame.addMover(goodGuy, Color.blue); 
 
   frame.addSensor(ssnActive, Color.orange); 
   PropertyChangeFrame pcf = new PropertyChangeFrame(); 
 
   ssnActive.addPropertyChangeListener("detection", pcf); 
   ssnActive.addPropertyChangeListener("undetection", pcf); 
 
   frame.setLocation(1, 1); 
   frame.setVisible(true); 
   pcf.setLocation(frame.getLocationOnScreen().x + frame.getWidth(), 
     frame.getLocationOnScreen().y); 
   pcf.setVisible(true); 
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   for (int i=0;i<numberReplications;i++){ 
   Schedule.reset(); 
   Schedule.setVerbose(false); 
   Schedule.stopOnEvent(1, "Detection", Contact.class); 
 
   Schedule.startSimulation(); 
 
   simTime = Schedule.getSimTime(); 
   DecimalFormat form = new DecimalFormat("##.##"); 
   System.out.println(form.format(simTime)); 
   } 
  } 
  
  
 

} 
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public class PassiveSearchRandom { 
 
 /** 
  * The class random number generator will produce a different random number 
  * at the start of each run. The parameters are the number of replications, 
  * SSN speed, Diesel Speed, Passive detection range, and probability of 
  * detection, and can be overriden using the arguments. 
  *  
  * @param args  The values of the number of replications, SSN    
       *Speed, Diesel Speed, and Passive sonar detection range. 
  */ 
 
 public static void main(String args[]) { 
  
   double simTime = 0.0; 
   int numberReplications = 200; 
   double ssnSpeed =15.0; 
   double dieselSpeed = 3.0; 
   double passiveRange = 2.; 
   if (args.length == 4) { 
    numberReplications = Integer.parseInt(args[0]); 
    ssnSpeed = Double.parseDouble(args[1]); 
    dieselSpeed = Double.parseDouble(args[2]); 
    passiveRange = Double.parseDouble(args[3]); 
   } 
   SensorTargetMediatorFactory.addMediator(CookieCutterSensor.class, 
     UniformLinearMover.class, CookieCutterMediator.class); 
   // Establishing a RandomVariate position for the Diesel and SSN to 
   // be generated. 
   RandomVariate randPosit = RandomVariateFactory.getInstance( 
     "Uniform", new Object[] { new Double(0.0), 
       new Double(125.0) }); 
 
   Point2D.Double ssnStart = new Point2D.Double(0.0, 0.0); 
   Point2D.Double dieselStart = new Point2D.Double(randPosit 
     .generate(), randPosit.generate()); 
   // Create the diesel and the SSN as uniform linear movers. 
   Mover badGuy = new UniformLinearMover("Diesel", dieselStart, 
     dieselSpeed); 
   Mover goodGuy = new UniformLinearMover("SSN", ssnStart, ssnSpeed); 
 
   // Attach the passive sonar to the SSN 
   Sensor ssnPassive = new CookieCutterSensor(passiveRange, goodGuy); 
 
   // Register the movers to the Referee 
   SensorTargetReferee passiveRef = new SensorTargetReferee(); 
   passiveRef.register(badGuy); 
   passiveRef.register(ssnPassive); 
 
   goodGuy.moveTo(new Point2D.Double(0.0, 0.0)); 
   badGuy.moveTo(new Point2D.Double(randPosit.generate(), randPosit 
     .generate())); 
 
   // Have the Diesel and SSN to move randomly 
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   RandomVariate[] rv = new RandomVariate[] { 
     RandomVariateFactory.getInstance("Uniform", new Object[] 
{ 
       0.0, 
       125.0 }), 
     RandomVariateFactory.getInstance("Uniform", new Object[] 
{ 
       0.0, 
       125.0 }) }; 
}; 
 
   // RandomLocationMoverManager goodGuyMM=new 
   // RandomLocationMoverManager(goodGuy, rv); 
   PatrolMoverManager goodGuyMM = new PatrolMoverManager(goodGuy, 
     pathlawn); 
   RandomLocationMoverManager badGuyMM = new 
RandomLocationMoverManager( 
     badGuy, rv); 
 
   goodGuyMM.setStartOnReset(true); 
   badGuyMM.setStartOnReset(true); 
 
   SandboxFrame frame = new SandboxFrame("Passive Sensor Platform"); 
   frame.setSize(150, 150); 
   ((PingThread) frame.getControlPanel().getController()) 
     .setMillisPerSimtime(50); 
 
   frame.getSandbox().setOrigin(new Point2D.Double(0, 160)); 
 
   frame.addMover(badGuy, Color.red); 
 
   frame.addMover(goodGuy, Color.blue); 
 
   frame.addSensor(ssnPassive, Color.orange); 
   PropertyChangeFrame pcf = new PropertyChangeFrame(); 
 
   ssnPassive.addPropertyChangeListener("detection", pcf); 
   ssnPassive.addPropertyChangeListener("undetection", pcf); 
 
   frame.setLocation(1, 1); 
   frame.setVisible(true); 
   pcf.setLocation(frame.getLocationOnScreen().x + frame.getWidth(), 
     frame.getLocationOnScreen().y); 
   pcf.setVisible(true); 
 
   for (int i=0;i<numberReplications; i++){ 
   Schedule.reset(); 
   Schedule.setVerbose(false); 
   Schedule.stopOnEvent(1, "Detection", Contact.class); 
 
   Schedule.startSimulation(); 
   simTime = Schedule.getSimTime(); 
   DecimalFormat form = new DecimalFormat("##.##"); 
   System.out.println(form.format(simTime)); 
   } 
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  } 
  
} 

 
Figure 13.   Linear Passive Sonar Regression 
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Figure 14.   Log-Linear Passive Sonar Regression 
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Figure 15.   Multivariate Analysis in Log-Linear Passive Model 
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Figure 16.   Linear Active Sonar Regression 
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Figure 17.   Log-Linear Active Sonar Regression 
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Figure 18.   Multivariate Analysis in Log-Linear Active Model 
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Ping Interval (hrs) Td (hrs), Speed=5 kts Td (hrs), Speed=10 kts Td (hrs), Speed=15 kts 

0.01 76.1287 40.79985 29.4612 
0.25 77.1503 43.8965 33.52365 
0.5 77.29365 54.5613 39.8998 

0.75 81.87565 57.44255 51.9809 
1 92.8883 66.065 70.9209 

1.25 109.0508 73.5598 121.8946 
1.5 110.41015 95.6014 269.48165 

1.75 136.82545 157.3704 520.1694 
2 153.43715 233.63715  

2.25 160.4353 320.5972  
2.5 189.99375 455.89275  

2.75 281.05375   
Table 5.   Ping Interval and Speed vs. Detection Time 

 
Ping Interval (hrs) Td(hrs), Prob=.4 Td(hrs), Prob=.7 Td(hrs, Prob=.9 

0.01 44.50285 40.79985 39.62365 
0.25 50.16305 43.8965 43.2795 
0.5 70.1109 54.5613 49.00745 

0.75 83.89485 57.44255 52.1533 
1 102.1648 66.065 54.3191 

1.25 144.7518 73.5598 62.2855 
1.5 181.58175 95.6014 83.13195 

1.75 321.32825 157.3704 139.4684 
2 419.8263 233.63715 203.62625 

2.25  320.5972 271.86135 
2.5  455.89275 395.43825 

 

Ping Interval (hrs) 
Td(hrs), Range=5 

(nm) 
Td(hrs), 

Range=10 (nm) 
Td(hrs), 

Range=15 (nm) 
0.01 75.609 40.79985 24.11055 
0.25 89.9396 43.8965 27.1568 
0.5 136.03525 54.5613 27.05085 

0.75 222.1954 57.44255 30.80435 
1 562.2488 66.065 36.1136 

1.25  73.5598 42.4747 
1.5  95.6014 50.8127 

1.75  157.3704 54.1943 
2  233.63715 66.21745 

2.25  320.5972 71.57755 
2.5  455.89275 79.88475 

2.75   108.4174 
3   134.7461 

 
Table 6.   Ping Interval and Active Detection Range vs. Detection Time 
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