
Policy Specification for Non-Local Fault Tolerance

in Large Distributed Information Systems

A Thesis

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Master of Science

by

Philip E. Varner

May 2003

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2003 2. REPORT TYPE

3. DATES COVERED
 00-00-2003 to 00-00-2003

4. TITLE AND SUBTITLE
Policy Specification for Non-Local Fault Tolerance in Large Distributed
Information Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia,Department of Computer Science ,151 Engineer’s
Way,Charlottesville,VA,22904-4740

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

90

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

c© Copyright May 2003

Philip E. Varner

All rights reserved

Approval Page

This thesis is submitted in partial fulfillment of the requirements for the degree of

Master of Science

Philip E. Varner

Approved:

John C. Knight (Advisor)

Anita K. Jones

David Evans (Committee Chair)

Accepted by the School of Engineering and Applied Science:

Richard W. Miksad (Dean)

Dean, School of Engineering and

Applied Science

May 2003

Abstract

The services provided by critical infrastructure systems are essential to the operation of modern

society. These systems include the financial payments system, transportation systems, military

command and control systems, the electric power grid, and telecommunications systems including

the Internet. Widespread failure of any of these system might result in severe financial loss or per-

haps human injury. Critical infrastructure systems rely heavily on distributed information systems

for operation. These information systems must therefore be dependable; that is, they must “deliver

service that can justifiably be trusted.”

Traditional dependability alone does not provide a rich enough model to deal with the faults in

large, critical distributed systems operating in hostile environments. These systems require not sim-

ply dependability but instead require survivability. Informally, survivability is when a system has

“the ability to continue to provide service (possibly degraded or different) in a given environment

when various events cause major damage to the system or its operating environment.”.

One means of achieving survivability is non-local fault tolerance, where faults that affect signif-

icant portions of the network must be detected and handled in a coordinated fashion. Our approach

to doing this is with a survivability control system. This control system takes network sensor events

as input, uses these to detect faults, and responds with application reconfiguration. This thesis

presents TEDL, the Time-based Event Detection Language, for formal specification of the reactive

policy of this control system. A translator is used to synthesize an executable implementation from

this specification. The results from using TEDL to describe and execute several attack and failure

scenarios for a simplified financial payments system are presented.

iv

Acknowledgments

First of all, I would like to thank my Mom and Dad, Bettie Sue and Jerry Varner. Without their

continual support, I would not be where I am today. Thanks to my fiancee Christy Pagels for

putting up with me while I was working on this. Thanks to my advisor John Knight for getting me

into this mess. Thanks to Jonathan Hill for being a great research role model. Thanks to the Legion

Research Group for access to the Centurion cluster.

This work was supported in part by the Defense Advanced Research Projects Agency under

grant N66001- 00-8945 (SPAWAR) and the Air Force Research Laboratory under grant F30602-

01-1-0503. The views and conclusions contained in this document are those of the authors and

should not be interpreted as necessarily representing the official policies or endorsements, either

expressed or implied, of DARPA, the Air Force, or the U.S. Government.

v

Contents

1 Introduction 1

2 Survivability and the Willow Architecture 4

2.1 Survivability . 4

2.2 Survivability Control Systems . 9

2.3 The Willow Architecture . 9

3 Language Role and Requirements 14

3.1 Scalability . 15

3.2 Expressivity . 16

3.3 Ease of Use . 17

3.4 Implementability . 17

3.5 Analyzability . 17

3.6 Summary . 18

4 Language Design 19

4.1 Declarative Object-oriented Constructs . 20

4.2 A Model of Time . 21

4.3 Event-Driven Architecture . 23

4.4 Inherited Hierarchy of Event Types . 24

4.5 Dynamic Sets of Events . 25

4.6 Finite State Machines for Detection . 27

vi

Contents vii

4.7 Hierarchy of Finite State Machines . 29

4.8 Reaction . 31

4.9 Machine Event Generation . 33

4.10 Assessment of success and subsequent recovery 33

4.11 Exception handling . 34

4.12 Transforms . 34

4.13 Summary . 35

5 Implementation 36

6 Experimentation and Assessment 39

6.1 Evaluation Challenges . 39

6.2 Financial Payments System Scenarios . 40

6.3 Summary . 47

7 Language Evaluation 48

7.1 Scalability . 48

7.2 Expressivity . 50

7.3 Ease of Use . 52

7.4 Implementability . 52

7.5 Analyzability . 53

7.6 Additional Limitations . 53

8 Related Work 54

8.1 Fault-tolerant Distributed Systems . 54

8.2 Languages . 56

8.3 Event Correlation . 58

9 Conclusion 61

9.1 Conclusion . 61

Contents viii

9.2 Future Work . 62

A Language Grammar 63

B TEDL Source Files 68

B.1 File siena.tedl . 68

B.2 Money Center Bank Failure Scenario . 68

B.3 Coordinated Attack Scenario . 69

B.4 Regional-level Power Failure Scenario . 71

Bibliography 73

List of Figures

2.1 Willow Architecture . 10

4.1 Example Finite State Machine Detector . 20

4.2 Event Inheritance Hierarchy . 25

4.3 Example Finite State Machine Hierarchy . 30

5.1 SPARTAN Implementation Architecture . 37

6.1 Example Financial Payments System Diagram . 41

6.2 MCBFailureDetector State Diagram . 41

6.3 CoordinatedAttackDetector State Diagram . 42

6.4 RegionalFailureDetector State Diagram . 46

6.5 NationalFailureDetector State Diagram . 46

ix

List of Tables

6.1 Results for Money Center Bank Failure Scenario (times in seconds) 42

6.2 Results for Coordinated Attack Scenario (times in seconds) 43

6.3 Command Response Times for Coordinated Attack Scenario (times in seconds) . . 44

6.4 Response times for Selective Notification (times in seconds) 45

x

Chapter 1

Introduction

Electric power is the critical utility. After more than about three days (of failure)

everything just folds up. Trains, heat, refrigeration, water supplies all go. We’d be

straight back to 18th and 19th century, and it would take 20 years to regain the lost

economic capability. – Ross Anderson

Our lives depend on distributed information systems. Widespread failure of any critical infrastruc-

ture system would result in high financial loss and possibly human injury. These systems include

financial payments systems, transportation systems, military command and control systems, the

electric power grid, and telecommunications systems including the Internet. These critical infras-

tructures rely heavily on distributed information systems for operation. Failure of the underlying

information systems will usually result in failure of the infrastructure system. The information

systems must therefore be dependable; that is, they must “deliver service that can justifiably be

trusted” [74]. This thesis presents TEDL, the Time-base Event Detection Language. TEDL is a

language for specifying the detection of errors and repair of faults in Internet-scale distributed sys-

tems. It has been designed to be scalable, expressive, easy to use, implementable, and analyzable.

These properties allow manageable description of complex fault scenarios in large information sys-

tems.

Great care is taken to avoid introducing design faults and minimizing degradation faults in

critical distributed systems. However, faults will always be a part of such systems. Therefore, they

1

Chapter 1. Introduction 2

must be handled through a combination of fault avoidance, fault elimination, and fault tolerance.

That is, faults must be avoided through rigorous system development, eliminated when they are

discovered during development, and their effects tolerated during service [30]. Component- and

node-level faults can be handled with techniques such as N-modular redundancy. These faults are

referred to as local because they only affect individual components or nodes and, therefore, can be

handled at a local level. The faults we are interested in are those that either cause or create potential

for affecting significant portions of the network. We call these non-local faults. Tolerating non-

local faults requires coordinated non-local action as they cannot be masked on an individual basis.

They also cannot usually be fully masked and require that the system be placed in an alternate

service state.

With this in mind, survivability has emerged as a concept that provides applications with the

necessary framework to tolerate non-local faults. Informally, survivability is when a system has “the

ability to continue to provide service (possibly degraded or different) in a given environment when

various events cause major damage to the system or its operating environment” [31]. Survivability is

more rigorously defined elsewhere [31]. Non-local fault tolerance is one mechanism for achieving

system survivability.

Implementation of non-local fault tolerance requires that errors first be detected and then treated

through reconfiguration. Our approach to doing this is through a survivability architecture or in-

formation survivability control system [66]. Such a system senses network state, analyzes this

state, and then actuates the network appropriately to enforce non-local fault tolerance policy. This

approach to survivability is embodied in the Willow architecture [30].

Willow is a comprehensive survivability architecture for providing fault avoidance, fault elim-

ination, and fault tolerance. Willow is based on the general notion of reconfigurable applications.

These applications can be postured at runtime to meet the demands of the environment. Sensor

events are gathered from both the application and other monitors such as intrusion detection sys-

tems. These events are input into the SPARTAN distributed analysis system and used to detect

non-local faults. When a fault of interest is detected, SPARTAN enforces the survivability control

policy by reconfiguring the network using the ANDREA system. ANDREA allows for intentional

Chapter 1. Introduction 3

command, scalable assessment of command success, and command conflict resolution.

In many fault-tolerant systems, the policy of the system is directly embedded in the mechanism

at a design/implementation level. Fault-tolerance algorithms are usually described informally using

natural language or pseudocode and then hand-coded into an executable implementation. This

approach makes the fault-tolerance algorithms difficult to understand, analyze, and modify. For

a typical large-scale survivable application there are thousands of complex non-local faults and

reconfigurations. An ad hoc approach to this definition would quickly make modification of the

policy difficult; therefore a different approach must be taken.

This different approach is synthesis from formal specification [29]. The policy of the surviv-

ability control system, i.e., which faults require which reactions, is first specified in a formal policy

specification language. This specification is then translated mechanically into an executable im-

plementation. This allows us to “describe what the system must do without saying how it is to be

done” [64], thereby cleanly decoupling policy and mechanism. The policy can then easily be un-

derstood and modified apart from its implementation. This thesis is about a language, TEDL, that

has been designed for the specification of survivability control system policy.

The remainder of this thesis is organized in the following manner. Chapter 2 presents a more

complete description of survivability and detailed discussion of the Willow architecture as it relates

to survivability. Chapter 3 describes the requirements for a language to specify survivability control

system policy for non-local fault-tolerance. Chapter 4 details the syntax and semantics of TEDL.

Chapter 5 then argues how TEDL meets the requirements set forth in Chapter 3. Chapter 6 describes

our experimentation of using TEDL to describe non-local fault scenarios in a real distributed appli-

cation. Chapter 7 presents work related to this thesis. Chapter 8 concludes with a summary of the

work presented and proposed future work.

Chapter 2

Survivability and the Willow Architecture

Oh no not I! I will survive! Oh, as long as I know how to love, I know I’ll stay alive.

I’ve got all my life to live, And I’ve got all my love to give, I’ll survive, I will survive!

Hey hey... – Gloria Gaynor

2.1 Survivability

Survivability, like love, is serious business. The systems that require the property of survivability

prevent modern society from falling into chaos. They run the electric power grid, control military

defense systems, support the transport of food from producer to consumer, and prevent aircraft

collisions. The loss of the service provided by any one of these can have financial consequences

and possibly endanger human life. People are generally unaware of many of the systems they rely

on because they rarely must do without them. For instance, if the national rail transportation system

were made unavailable, food could not be transported efficiently and coal would not be available to

power plants. If service were out for more than a few days, the economic impact would be immense

and possibly irreparable. These events could all stem from the failure of a critical infrastructure

system of which many people are completely oblivious.

That said, widespread catastrophic failures have a low chance of occurrence. A nationwide

power outage has never occurred and only a few regional outages have occurred. Network worms

have attacked the Internet many times over the past several years, but none has caused major dam-

4

Chapter 2. Survivability and the Willow Architecture 5

age. However, the potential for catastrophic failure exists and therefore necessitates careful failure

recovery planning. Survivability gives us a framework for describing and providing for the depend-

ability requirements of these critical infrastructure systems.

2.1.1 Description of Survivability

Within the context of dependable systems in dynamic environments, survivability has emerged

as a concept that provides a structure for describing the necessary system service requirements.

Dependability is not a rich enough model for defining necessary properties of these systems because

there is no explicit concept of degraded or different service. Under dependability, service is treated

as a binary concept – either service is provided or it is not. Survivability, instead, deals explicitly

with varied service in response to varied environment. For instance, we may want to vary the

security and functionality of a system. When the system is not under attack, we want to provide full

service. If the system comes under attack, the operating mode must be changed such that resources

are redirected from providing service to defense. Another example is major damage to a command

and control system where the non-damaged resources must be dynamically reconfigured to provide

some specified level of service.

Great care is usually taken to avoid introducing design faults and minimizing degradation faults

in critical distributed systems. Design faults are carefully prevented using a variety of rigorous

system and software development techniques. Techniques such as formal methods are used to

minimize the introduction of faults in the specification phase. Depending on their purpose, systems

are implemented in safety-oriented languages such as Ada or security-oriented languages such as

Java. Static analysis can be performed to find faults before execution. Systems are extensively

tested and verified using formal proof techniques. Hardware degradation faults are prevented with

rigorous manufacturing techniques and extensive testing.

Even with these techniques, deployed systems will still have faults. These faults must be han-

dled through a combination of fault avoidance, fault elimination, and fault tolerance. Faults would

ideally be eliminated when they are discovered by updating the running system. Some cannot be

eliminated due to runtime constraints, so these faults must be avoided by reconfiguring the system

Chapter 2. Survivability and the Willow Architecture 6

such that the fault is never activated.

Some faults inherently cannot be eliminated or avoided, so they must instead be tolerated [30].

Fault tolerance is a mechanism by which the property of survivability can be ensured. For instance,

network worm attacks are an inherent consequence of operating in an open environment. The

threat of these worms cannot be avoided or eliminated completely, but they can be tolerated using

emerging techniques [72] that dynamically modify the environment. This modification not only

results in defense against the attack, but also changes the service provided to users. This type of

response is the fundamental concept behind survivability.

Informally, survivability is a system property in which [30]:

1. the system must provide complete service a fraction of the time

2. the system must provide reduced or different service if it cannot provide complete service

due to failure or attack

3. the system must have several sets of service modes that correspond directly to the character

of the failure or attack

Survivability is not just “graceful degradation.” This would imply that the only course of action

is to simply reduce service. Reduction of service is one possible response, but survivability places

explicit importance upon the provision of alternate service. The survivability control system can be

programmed to reconfigure the application to provide this alternate service. These alternate service

modes are precisely defined by the user of the system such that they can be automatically effected

under specified circumstances.

Component- and node-level faults are referred to as local because they only affect individual

components or nodes, and can therefore be handled at a local level. A survivability control system

is only concerned with faults that affect significant portions of the network. These are known as

non-local faults. Non-local fault tolerance is much more difficult than local fault tolerance because

it requires coordinated non-local action. These faults cannot be masked on an individual basis

because they only exhibit non-local effects. In addition, they cannot usually be masked fully and

Chapter 2. Survivability and the Willow Architecture 7

instead require that the system be placed in an alternate service state. Examples of non-local faults

include extensive physical damage, widespread power failure, common-mode software defects, and

coordinated, multiple-target security attacks.

Three critical issues in non-local fault tolerance are the abilities to detect [30]:

• Fault sequences - multiple faults that arise in some grouping. One fault may occur while

another is being handled, or two faults may indicate a different fault condition than either

fault individually.

• Fault hierarchies - a refinement of detection where a more generic fault condition is initially

detected and then additional information leads to a subsequent refinement of the detection to

a more specific fault.

• Interdependent application faults - multiple separate applications may interact in a manner

that requires that events from both are used to detect a single non-local fault. One example

is the dependence of telecommunications networks on the electric power grid. Failure of

the power grid may cause telecommunications network failure even though there is no fault

directly with the telecommunications network itself.

These fault types constitute a majority of non-local fault of interest and are difficult to detect effec-

tively.

2.1.2 Motivating Applications

Critical infrastructure applications have many properties that are difficult to manage effectively.

The most relevant of these are scale, complexity, criticality, availability, reliability, and security.

Scale The applications that run critical infrastructure system are very large. They typically contain

between 10,000 and 100,000 individual nodes. For instance, the U.S. financial payments

system has more than 19,000 member banks and 12 Federal Reserve banks. In addition,

a next-generation military global command and control system could conceivably have an

Chapter 2. Survivability and the Willow Architecture 8

application node for every one of the 3.4 million active duty, reserve, and civilian personnel

and the many thousands of computers and weaponry.

Complexity The applications that run critical infrastructure systems are very complex. They typi-

cally consist of millions of lines of code. Individual software nodes usually must interact to

perform a necessary function. For instance, the U.S. financial payments system operates in

a hierarchic manner that requires multiple nodes to communicate in order to route a single

transaction. These applications typically perform complex processing at each node that is dif-

ficult to even program functionally correct. These nodes are not only functionally complex,

but they often also exhibit emergent behavior that cannot be simulated and is only appar-

ent when the application is deployed. This complexity results in a large variety of possible

non-local faults.

Criticality These applications are essential to the continued operation of critical infrastructure sys-

tems. The infrastructures usually cannot function at all without the services of the information

systems. These information systems are usually the weakest point of critical infrastructures

because of their relative fragility compared to the electro-mechanical components. It is es-

sential for these information systems to meet their service requirements, as even brief outages

can result in large losses.

Availability At any given time, there must be a high probability that the services provided by the

information system are available. As long as the the application is usually available, short

interruptions in service might be acceptable. For instance, the telephone network is usually

available, i.e., when you pick up the phone there is a dial tone, even though it experiences a

high number of very short service interruptions. The financial payments system can handle

periods of non-availability by buffering and retrying transactions, but the service must even-

tually become available again. However, even short periods of unavailability for the power

grid are unacceptable. Exact availability requirements vary among systems, but all have rel-

atively high availability requirements. This implies that a survivability control system must

be able to detect and repair failures quickly to meet system availability requirements.

Chapter 2. Survivability and the Willow Architecture 9

Reliability Reliability measures the probability that a service will be continuously provided over

time. One example of this is the power grid, where power must be continuously provided

or the service is not acceptable. Many critical infrastructures rely on continuous service

by information systems; therefore, interruptions can cause severe consequences. Reliability

implies that the survivability architecture must be able to reposture the application to prevent

impending failure and repair faults before they affect service.

Security The information systems behind critical infrastructure are a high profile target for attack,

generally because they are more fragile than the electro-mechanical systems that rely on

them. They are also usually more accessible because they allow for remote, non-physical

access. In order ensure correct operation, the confidentiality and integrity of the information

systems must be maintained at all times.

2.2 Survivability Control Systems

Survivability control systems, or survivability architectures, are an approach to providing non-local

fault tolerance in large distributed applications. They are characterized by a sense/analyze/respond

control loop model [66]. The control system is discrete state because the nature of the controlled

information system is discrete. Control is divided into multiple, parallel control loops, possibly

with overlap in their sensing and actuation domains. The controlled application, the operating

environment, and external “real-world” state are monitored. Events from these three sources are

used for detection of specified, abstract non-local events. The control system then appropriately

reconfigures the application according to the indicated fault condition.

2.3 The Willow Architecture

Willow is a comprehensive survivability architecture for providing fault avoidance, elimination,

and tolerance. Willow was briefly described in Chapter 1. The individual components, as shown in

Figure 2.1, are now described in more detail.

Chapter 2. Survivability and the Willow Architecture 10

Figure 2.1: Willow Architecture

2.3.1 Reconfigurable Applications

Willow is based on the general notion of reconfigurable applications. Many current software appli-

cations are designed to be run as immutable, monolithic entities that may have some configurable

parameters when executed. However, they are typically not designed to be reconfigured while

running; this makes response changes in the operating environment difficult. Current research is

focusing on frameworks for reconfigurable applications that will allow for scalable, consistent, and

manageable reconfiguration.

2.3.2 Sensors

Sensor events are gathered from the application, network monitors such as intrusion detection sys-

tems, and offline intelligence. These events are then used to detect errors that indicate faults. The

development of sensing technology is outside of the scope of the Willow project. It is assumed that

sensors are provided by others and can be used for input into the control system.

Chapter 2. Survivability and the Willow Architecture 11

2.3.3 Event Transmission

Sensors and detectors are decoupled, so sensor events must be transmitted from the sensors to the

detectors. This must be done scalably and and independent of location. This is accomplished in Wil-

low with the Siena content-based networking infrastructure [7]. Siena provides a publish-subscribe

interface for sending and receiving messages. This interface allows sensors to transparently send

their events to the appropriate detectors, without requiring that the sensors know where they are

sending the events. Detectors can then subscribe to receive events based on the properties of the

sensors and events without needing to explicitly name sensors from which to receive. In addition,

this decoupling allows for transparent replication of detectors and transparent migration of detectors

and sensors.

2.3.4 Error Detection Mechanism

Events emitted by sensors are then used for the detection of higher-level abstract events. Detection

is modeled as a group of finite state machines. Events cause transitions in the finite state machines

and detect specified network states of interest, i.e., non-local faults. The finite state machines are

composed into a hierarchy where increasing higher-level abstract events are detected.

The original error detection component in Willow was RAPTOR. SPARTAN is the successor

to RAPTOR and was used for the implementation of TEDL. SPARTAN is discussed further in

Chapter 5

2.3.5 Error Recovery Mechanism

When non-local faults are detected, they require response. These responses detail the commands

that must be executed to handle the indicated fault state. In RAPTOR, commands were sent directly

to all nodes affected by the fault as listed in the centralized state database. SPARTAN instead enacts

responses using an intentional command paradigm. In this paradigm, commands are sent to nodes

based on the runtime properties of those nodes using selective notification. The ANDREA system

is used to implement intentional command.

Chapter 2. Survivability and the Willow Architecture 12

2.3.6 Synthesis of Error Detection and Recovery

The complexity and dynamic nature of the faults and attacks necessitates that the detection and

recovery cannot be coded directly. Informal specification and hand-coding is slow and error-prone.

Detection and recovery must instead be formally specified and then mechanically synthesized into

an executable implementation. Such a specification language is the focus of this thesis.

In RAPTOR, detection Error Detection Specification (EDS) defines the finite state detection

machines and the Error Recovery Specification (ERS). These both use the Z formal specification

language. TEDL was designed to take the place of the EDS and ERS; TEDL specifications are

used to synthesize executable instances of SPARTAN. Recovery commands are not yet a part of the

TEDL language and are currently coded directly using the ANDREA API. They will be integrated

into the language directly when a better understanding of the intentional command paradigm is

gained.

2.3.7 Notification Mechanism

Non-local fault recovery is performed by reconfiguring the application using the services of

ANDREA. ANDREA uses selective notification to target commands to only these nodes who have

runtime state relevant to the command. There is no central database of nodes and node state, but

instead, node state is completely distributed throughout the network. This provides for scalable

command.

2.3.8 Actuators

Specific actuation will vary widely between applications. The general framework for actuation is

provided by the Field Dock software [21]. Reconfigurations are received by the Field Dock associ-

ated with each application node and then enact local system state changes. Field Dock provides a

uniform interface for universal node-level actuation.

Chapter 2. Survivability and the Willow Architecture 13

2.3.9 Conflict resolution

The control model of Willow is a set of independent parallel control loops. This asynchronous

control makes it highly likely that control loops will attempt conflicting actions. For instance,

a widespread failure may occur while a routine software upgrade is occurring. The low priority

upgrade must be suspended and the high priority failure recovery enacted. These types of conflicts

are resolved where they conflict by ANDREA resource manager/priority enforcer [24]. ANDREA

uses a prioritized reconfiguration list and dynamic resource management in a distributed workflow

model to resolve conflicting requests.

2.3.10 Security

Control of applications networks allows for survivability, but it also presents a ripe target for com-

plete application intrusion. Therefore, all components of the architecture must be protected. Se-

curity mechanisms for the publish/subscribe infrastructure are currently being researched. At the

sensor and actuator level, techniques such as code obfuscation and randomization of behavior can

be used to secure nodes [70, 30]. Trustworthiness of sensor event sources is assessed using a Trust

Mediator architecture.

Chapter 3

Language Role and Requirements

A final hint: listen carefully to what language users say they really want, until you

have an understanding of what they really want. Then find some way of achieving the

latter at a small fraction of the cost of the former. – C.A.R. Hoare

The traditional approach to fault tolerance has been to directly embed the fault-tolerant behavior

policy of a system directly into its implementation. This severely limits the flexibility of the system

in programming new or different behaviors in response to faults. The goals of the Willow project

include the notion of using a formal language to define the survivability specification of a distributed

application and using this to mechanically synthesize an executable control system.

In previous work on RAPTOR, the Z formal specification language was used for policy decla-

ration. Z is a general-purpose specification language and does not map well to the sort of structures

that must be described. Therefore, TEDL was designed as a customized language that provides,

precisely and efficiently, the necessary language constructs for survivability control system specifi-

cation.

Language design is complex and should not be undertaken lightly nor without careful thought

and development of the language requirements. In this chapter, the requirements for the language

and the motivation for those requirements are documented. The requirements can be grouped into

five categories: scalability; expressivity; ease of use; implementability; and analyzability. Each of

these categories is discussed in turn.

14

Chapter 3. Language Role and Requirements 15

3.1 Scalability

Scalability in this context refers to the ability of a language to efficiently handle scale in all the

dimensions of interest. In this case, the dimensions of scale are:

1. Number of nodes: Typical large-scale critical infrastructure information systems range in size

from several thousand to a million nodes. Approaches based on global shared state cannot

scale to these dimensions, so another approach is necessary.

2. Number of different node types: It is likely that any significant distributed application will

have many different types of node. These different types of node must be handled efficiently

with good abstraction of detail. The number of node types might reasonably be expected to

range from several dozen to several hundred.

3. Number of elements involved in a non-local fault: The faults with which Willow is expected

to deal will usually involve a large number of system elements of many different types. Thus,

for example, a fault might involve processing, storage, communications, or software compo-

nents. Scalability in this case is concerned with the number of components and the types of

these components. For the non-local faults of interest here, the number of components might

range from a few tens to a few hundreds, and the component types might range from one to

tens.

4. Number of programs in application of interest: Distributed systems that provide essential

services to critical infrastructure systems create those services by composing functionality

from a variety of interacting programs. In major financial systems, for example, it is common

for several thousand programs to coexist and interact during routine operation. The number

of programs in the applications of interest might reasonably be expected to range between a

few hundred and several thousand.

5. Amount of data communicated and the amount of computation consumed: Even with very

low sensor event rates, a million components will generate an enormous number of events.

These events must be handled in an efficient and scalable manner. The language must have

Chapter 3. Language Role and Requirements 16

mechanisms to provide decentralized detection such that the communication of events and

computation of detection are efficiently distributed.

3.2 Expressivity

The language must be sufficiently expressive to allow all non-local faults of interest to be specified.

At the highest level, the critical criterion is the ability to express the complete details of all non-local

faults of interest, together with the entire range of desired responses. It must be possible to define

these specifications precisely, completely, succinctly, and unambiguously.

The expressivity requirements are broken down into the following five categories:

1. Basic semantics: There are a number of basic semantics implied by the functional require-

ments that must be included in the language. These basic semantics include the description

of system states of interest, the changes in system state over time with real-time as well as

temporal descriptions, and arbitrary combinations of state elements.

2. Category of non-local fault: Fault sequences, fault hierarchies, and interdependent applica-

tions must be handled. These fault types were described in Section 2.1.1. These are three

fundamentally different types of complex, non-local fault and it must be possible to specify

each type.

3. Scale: All of the dimensions of scale discussed in the previous section must be definable

throughout their entire range. The language must allow for compact and efficient specification

of the survivability of large systems.

4. Specification size: It should be possible to specify the policy of a given system succinctly

and in a way that makes it easy for a reader to grasp. It is usually possible to construct

the same specification in a variety of languages. However, the resulting specification must

be a reasonable size and clearly understandable. Otherwise, the notation cannot be viewed

as having appropriate expressivity. This requirement may conflict with other elements of

expressibility, but it is essential for producing manageable specifications.

Chapter 3. Language Role and Requirements 17

3.3 Ease of Use

The language must be easy to use. Therefore, the language syntax must be simple and easy to

read. The semantics of the language must foster a clear mental model of the specified control sys-

tem action. There should be a clear mapping between the syntax and the semantics. The language

must be flexible enough to allow simple scenarios to be easily described. Complex scenarios must

not require obtuse syntax crafting or an exponential increase in programming work. The language

should allow for modularity and encapsulation so the specification can be modified without exten-

sive rewriting. Specifications must be concise to allow for easier comprehension and modification.

The language must be declarative rather than imperative, such that there is decoupling between

what should be detected and how it should be detected.

3.4 Implementability

Clearly, any language design that is to be useful must be implementable. Implementability for the

language being discussed here is significantly different from implementability of a conventional

programming language. The object language in this case is a high-level programming language,

and there must be a clear translation path from a specification to an executable implementation.

In addition, it is important to keep in mind the requirement for real-time semantics, the eval-

uation of expressions describing system state, and the efficient implementation of whatever data

structures are used to describe system state in a specification.

3.5 Analyzability

Since the language under discussion is formal, it is amenable to analysis as well as synthesis. Given

that opportunity, it is important that the language design include consideration of the potential for

analysis that will allow useful properties of specifications to be established.

Chapter 3. Language Role and Requirements 18

The types of analysis that might be undertaken include:

1. A set of type analyses based on the inclusion of a suitable type structure in the language

definition.

2. Checking completeness of the use of various types, such as node types.

3. Reachability analysis of the various state descriptions and state change descriptions that con-

stitute the various fault definitions.

4. Analysis of oscillatory behavior and terminal states.

3.6 Summary

There are few languages that have even attempted to fulfill the requirements set forth in this chapter.

Many languages related to policy specification focus heavily on precise expressivity and have no

allowance for scalability. In the next chapter, we present the syntax and semantics of TEDL, the

Time-based Event Detection Language, designed to fulfill all of the necessary requirements for a

survivability control system specification language.

Chapter 4

Language Design

An alternative approach lies in the creation of extremely simple languages, languages

with very little built in. It is hoped that the simplicity of the tool will contribute more

to the reliability of the product than would the omitted features. – D.L. Parnas [50]

The syntax and semantic model of TEDL allow for manageable construction and modification of

complex survivability control system specifications. The TEDL model of non-local fault detection

is that of a group of finite state machines. Sets of temporally associated events are used to predicate

transitions in the detection model. Each finite state has an associated response that enforces the

appropriate element of survivability policy.

The most important aspects of the TEDL language are:

• Event-driven architecture instead of a complete system state model.

• Modular specification construction using declarative object-oriented classes.

• Finite state machine model of detection (Figure 4.1).

• Hierarchy of finite state machines for scalable detection.

• Action predicated on dynamic sets of sensor events rather than single events.

• Response based on intentional command paradigm for scalability.

19

Chapter 4. Language Design 20

Figure 4.1: Example Finite State Machine Detector

4.1 Declarative Object-oriented Constructs

Many existing policy languages have syntax that is difficult to write, read, understand, and modify.

There is little or no mechanism for abstraction and the syntax is not conducive for understanding

the semantic meaning of a specification [38]. Declaration of policy elements is not modularized,

so multiple, different semantic levels must be understood simultaneously [13]. The ability to ab-

stract away detail and focus on single conceptual levels is essential for a maintainable and scalable

language.

Many general purpose formal specification languages have syntax based on discrete mathemat-

ical constructs. These concepts are incredibly powerful but not intuitive for a majority of users. The

syntax of TEDL is designed to have a similar look and feel to the Java object-oriented language.

The declarative object-oriented syntax and semantics of TEDL, as opposed to a more mathematical

notation, makes comprehension easier for many people.

TEDL consists of a set of class primitives that are declared as named objects with specific

attributes. These objects are then composed to form control system specifications. Naming these

objects and referencing them during composition allows abstraction of details; this allows a specifier

to focus on fewer semantic levels in each part of a specification. Inheritance of declared objects is

allowed for several classes to decrease redundancy. For other classes, inheritance only obfuscates

their behavior and is, therefore, disallowed.

Chapter 4. Language Design 21

An example of the object-oriented syntax is seen in the predicate class. This declaration is

presented only to give an idea of the syntax. All classes in TEDL have similar syntax to the predicate

class. A predicate object is declared as:

predicate MyPredicate {
SetOne > SetTwo ;

}

The meaning of this class will explained in detail later. This example declares a predicate named

MyPredicate that is true if the cardinality of SetOne is greater than the cardinality of SetTwo.

The syntax for object inheritance is similar to Java and uses the extends keyword:

set ParentSet { set description }
set ChildSet extends ParentSet{ more set description }

In this declaration, ParentSet is declared with some properties, and then ChildSet inherits those

attributes and then adds properties.

4.2 A Model of Time

Our specification approach includes time as an integrated notion. Unfortunately, many formal spec-

ification languages, such as Z, have no inherent notion of time. Timing information must be added

as a postcondition on operations based on a special variable that is assumed to be a clock [65]. In

RAPTOR, time is expressed this way and was difficult to use effectively [14]. The event-condition-

action language PDL [38] takes the approach of treating time as simply another attribute of events.

Time is so important to event detection that it is a carefully considered notion in TEDL. Time is

a formal, precise entity in TEDL, that is based on a simple approach to the problem of synchroniza-

tion and time measurement. The crucial problems in dealing with time as an entity in specification

for a distributed system are: (1) that the different components in the system will have clocks that

can never be synchronized precisely thereby making the notions of simultaneity and time difference

difficult to deal with; and (2) that delays in processing and transmission always make time asso-

ciated with events at one location difficult to determine at another thereby making the problem of

non-synchronized clocks much worse. To solve the first problem, it would be necessary to operate a

Chapter 4. Language Design 22

distributed system either with a single clock or with very tightly synchronized clocks, and to solve

the second, it would be necessary to determine transmission delays very accurately. Neither of these

approaches is possible for the types of system of interest.

The basic approach in the TEDL model of time is to assume that these problems do not exist.

In other words, to assume that all clocks in all network components are fully synchronized and

that transmission delays are zero. Clearly, this assumption is not valid. However, it is a clear and

easy-to-understand assumption that TEDL programmers can build on in the preparation of TEDL

specifications. The reason that the assumption is made in TEDL is because we are not aware of

any other reasonable assumption that could be made which would allow the user of the language

to control the problems that time raises. With this assumption, the specifier is both aware of the

assumption because it is defined in the TEDL semantics and aware that, for his/her system, the

assumption is invalid. Thus, when constructing a specification, the specifier can take into account

the degree of drift in system clocks and the delays in transmission for his/her specific system in

the specification by adjusting specific time values to meet the known system characteristics. In this

way, any system timing characteristics can be accommodated because there is no attempt within

TEDL itself to provide a “one-size-fits-all” model of reality. Specifiers are given an ideal model

and they can adjust the meaning of TEDL statements to reflect the reality of their own systems by

adjusting any time references suitably.

As an example, consider a system in which a specifier is interested in a series of related events

that he/she expects to occur within some set of network nodes over a period of five minutes if

the network is under a particular form of attack. The specifier knows: (1) that the events will be

timestamped using component clocks that are skewed; (2) that the event notifications will arrive

with realistic delays; and (3) that the interpretation of all timestamps by TEDL will be using the

ideal time model. Thus, to specify such an attack, the specifier will have to use time intervals longer

than five minutes to accommodate the known errors, and will have to understand that decisions

made in the SPARTAN detector (the TEDL output) will have all of the uncertainty that is inherent

in real timing situations. The great benefit that the TEDL model gives is that the specifier has as

much control of the problem as can be provided, and he/she has a precise model of exactly what the

Chapter 4. Language Design 23

SPARTAN detector will do since it implements the TEDL semantics.

In our experience, the event patterns used for non-local fault detection are usually of the form

“10 A events occurred in the last 20 minutes and 5 B events occurred in the last 10 minutes.”

These patterns are of thresholds of the number of events that must have occurred in a certain time

period relative to when the pattern is evaluated. In TEDL, these time periods are referred to as time

windows. Time windows are declared as an amount of time, e.g., 10 minutes, and a description of

when the window ends as an offset from when the time window is evaluated, i.e., the present. As

the time windows move ahead with the real progression of time, the windows are evaluated against

independently timestamped events to determine what events are in what windows. Inclusion is

determined based on the ideal time model that TEDL uses and so, in general, will not be accurate

with respect to the clock of the entity evaluating the time window. As noted above, the burden

of dealing with the difference between ideal and actual time semantics is placed on the specifier.

The specifier must correct for the fact that evaluation of the windows is not instantaneous and takes

computational time proportional to the size of the window and the number of candidate events.

This model of time provides a convenient model and is the only viable alternative to infeasible

real-time semantics. It is also not a significant restriction because time windows will be large

relative to clock skew, and non-local faults will usually go far above minimum detection thresholds.

4.3 Event-Driven Architecture

The approach to fault detection in previous work on RAPTOR [14] was to hold complete network

state information in a centralized database. Queries were performed on this database for non-local

fault detection. This approach does not scale to large systems because the communication and

computation requirements are too great and the state model will always be inconsistent with actual

system state. The SITAR system [71] for intrusion tolerant applications requires consistent global

shared state as provided by reliable atomic multicast, distributed shared memory, or Javaspaces.

However, these approaches to global state also will not scale to large distributed systems. Therefore,

a different approach must be taken.

Chapter 4. Language Design 24

The approach behind TEDL is to rely on sensor events to provide small subsets of the actual

complete state of the network. Only state relevant to detection and synthesis of response at a

detection node is maintained at that node. This minimizes the amount of information that must be

contained in any single node of the detection network. Events also hide specific properties of the

monitored nodes not relevant to detection. Non-local fault detection is thereby mapped to detection

of event sequences instead of detection of specific configurations of perceived system state.

The three required attributes of an event instance are a type, a source, and a timestamp. Event

types may be declared with arbitrary attributes describing additional information. Instances of these

event types are assigned values by the generating entity.

For example, the following event type would be assigned a source, timestamp, region, and

severity when an instance of it is generated.

event IDSAlarmEvent {
region ;
severity ;

}

An instance event of this type could then be:

{ type="IDSAlarmEvent" source="node180" timestamp="1052590255"
region="NorthWest" severity="8" }

4.4 Inherited Hierarchy of Event Types

A hierarchy of inherited event types provides a convenient mechanism for handling diverse types

of events [48]. This hierarchy has the same semantics as a programming language class hierarchy

through is-a relationships. For example, we could have an inheritance hierarchy as in Figure 4.2

where an DoSAttackEvent is-a AttackEvent and both LandDoSAttackEvent and SmurfDoSAttack-

Event are-a DoSAttackEvent. The purpose of this hierarchy is to allow generic description of

attacks or failures that are composed of certain classes of events, regardless of the specific event

type. This hierarchy does not indicate any semantic relationship between events, as described by

the detection hierarchy (Section 4.7).

Chapter 4. Language Design 25

Figure 4.2: Event Inheritance Hierarchy

TEDL provides a mechanism for describing these inherited hierarchies of event types. The

syntax for a declaring the event hierarchy uses the extends syntax similar to Java. The following

code declares the previously described hierarchy.

event AttackEvent { }
event DoSAttackEvent extends AttackEvent { }
event SmurfDoSAttackEvent extends DoSAttackEvent { }
event LandDoSAttackEvent extends DoSAttackEvent { }

4.5 Dynamic Sets of Events

Many event-condition-action policy languages are only designed for few-to-one mappings between

events and the associated required responsive action. Ponder [40] obligations allow multiple events

to trigger action, but there is no easy way to describe the time relationship between these events.

Describing time relationships between single events in PDL [38] is obtuse, and describing relation-

ships between groups of events is even more difficult. Detection of non-local faults will always

involve multiple events over time, so clear language mechanisms for this are essential.

Detection in TEDL is based not on single events but, rather, on logical sets of temporally quali-

fied events. These sets specify membership qualification declaratively. The most important of these

qualifications is time. All sets have a specific time window (as described previously) in which all

of their events must have occurred. This semantic provides a clear and concise mechanism for

describing sets of events over time. Sets significantly decrease the complexity of event sequence

specification and maintenance. They are a key element for allowing scalable specification. The

Chapter 4. Language Design 26

notion of time is contained within the set concept and, therefore, preserves the untimed semantics

of the finite-state-machine detection model, as described in the next section. The use of sets as the

basis of detection reduces the precision of specific event sequences that can be described, but it is

essential for scalable event specification.

The set class is used for set declaration. The following code declares an example set of events:

set SetOfEventA {
EventA in 20 min offset 0 min;

}

The first item is the name of the set, SetOfEventA. The type of events in the set is EventA.

Sets are restricted to having a single event type for simplicity. However, any event that is a subtype

of the specified event type in the event inheritance hierarchy will match the type specification.

This restriction is not overly limiting because sets can be composed together using the predicate

mechanism, described later.

The value specified after the in keyword is the size of the time window with a time unit. Valid

time units are msec, sec, min, hour, and day. The offset is how much time the leading edge of the

time window is offset from the present. A zero offset means the window ends at the time the set is

evaluated, i.e., the present. Offsets are useful for describing changes in event rates over time.

As real time progresses, the sets are evaluated as often as possible for membership and events

are added or removed according to set membership requirements. The implications of the model

of time used in these sets was discussed previously. The rate at which the sets are updated depends

on the computational resources available, the complexity of the set specification, the number of

candidate events, and the implementation. Note that even this computation delay is accommodated

by the TEDL model of time. The specifier has to understand the impact of realistic calculation

times for set expression.

Sensor events may be emitted from anywhere in the application network and any element can

emit any number of events pertaining to the same attack. It is therefore necessary to have a mech-

anism to distinguish between these events. This is done with the unique modifier. A set specified

with the unique modifier makes multiple events with the same source attribute only be counted once

in a set.

Chapter 4. Language Design 27

set DoSEventsIn10min {
unique DoSEvent in 10 min offset 0 min;

}

This declares a set DoSEventsIn10min that is the set containing all events DoSEvent from

unique sources that have been received in the previous ten minutes.

Additional constraints can also be specified on event inclusion. These are done with the qual

keyword.

set DoSEventsIn10min {
unique DoSEvent in 10 min offset 0 min qual OS = Linux ;

}

This set is the same as the previous one with the additional constraint that the “OS” attribute of

the DoSEvents must be equal to the string “Linux”.

Sets can inherit other sets and change their qualifications using extends and super. The dec-

laration of an inherited set uses the syntax of “extends parentname” after the set name, and then

contains the keyword “super” in the declaration body. This is useful for encapsulating common

properties of related sets into a single place. The common specific properties are then included in

the inherited sets.

set DoSEventsIn10min extends DoSEventsWindow2 {
super offset 30min ;

}

set DoSEventsOnImmunixBoxes extends DoSEventsIn10min {
super qual LinuxDistro = Immunix;

}

4.6 Finite State Machines for Detection

The semantic model of detection is a collection of finite state machines that use dynamic sets of

events to predicate state transitions. An example of this can be seen in Figure 4.1. Each state in this

figure is a specific abstract state of the application network, and transitions between states are based

on perceived faults. In this example, a transition to state S2 from state S1 is based on the satisfaction

of the predicate D1, where this predicate indicates some specified damage has occurred.

Chapter 4. Language Design 28

Each finite state machine detects specific abstract events and then takes action, either by emit-

ting an abstract event or initiating application reconfiguration. This is different than the approach

of most event-condition-action policy languages that predicate action only on sequences of events

and have no notion of state. PDL represents state by translating it into an event and including this

event in detection sequences. This is a confusing semantic for specification of state. While at some

level these approaches are algebraically equivalent, the finite-state-machine model for detection is

much easier to comprehend, especially with visual depiction.

To transition in a TEDL finite state machine, a predicate must be satisfied. These predicates are

based on the event sets. The semantics of the sets and predicates are abstracted away from the finite

state machine. The machine is only aware of the condition (satisfied or not) of a predicate at a given

time and knows none of the internal structure of that predicate. This abstraction allows us to easily

integrate the notion of events that are relevant over time without affecting the untimed-semantics of

traditional finite state machines. It also allows additional set or predicate description mechanisms

to be added to the language without affecting the syntax or semantics of other language elements.

Predicates are either simple or compound. Simple predicates define either a comparison of the

cardinalities of two sets or the cardinality of a set and a constant value. The relative operations =,

! =, >, <, >=, and <= are supported for comparison. Using the Boolean operators and, or, and

not, these simple predicates can then be composed into compound predicates. This forces abstrac-

tion and encapsulation of predicates and makes them much easier to understand when reading a

specification.

A simple predicate is declared:

predicate AttackOccuring {
IDSAlarmsSet > IDSAlarmThreshold ;

}

A compound predicate is declared:

predicate LockdownTrigger {
AttackOccuring and UnderOrangeAlert ;

}

Sets can also be negated when being used in compound predicates:

Chapter 4. Language Design 29

predicate WidespreadFailureNotRecovered {
WidespreadFailure and not RecoveredFromWidespreadFailure ;

}

These predicate declarations are used to build finite state machine declarations with the

machine class. The following declaration defines a simple machine that has a “normal” state which

indicates full operation with no attacks or failures and a failure state when failure is detected. When

the failure has been recovered, it transitions back to the normal state. States are described in greater

detail later.

machine DetectWidespreadFailure {
Normal + WidespreadFailureDetected -> WidespreadFailure ;
WidespreadFailure + WidespreadFailureRecovered -> Normal ;

}

Each state in the machine corresponds to an abstract network state that requires detection and

response. States and responses are described in Section 4.8.

The finite state model is convenient for describing survivability policy. Our goal is to vary

application service in response to the network environment [31]. For instance, finite resources

can be redirected from providing service to providing defense, depending on the level of attack

the system is under. When not under attack, all services are available. Under localized attack,

only essential services are available, and under intense widespread coordinated attack the system is

shutdown completely to maintain integrity. As the attack worsens over time, we vary our response

to it. An example of this is our Coordinated Attack Scenario in Section 6.2.2.

The finite state model is convenient for conducting formal analysis. Model-checking can be

used to prove properties of the specification. For instance, it would be useful to be able to prove

that all states in finite state machine description are reachable.

4.7 Hierarchy of Finite State Machines

Our finite state machines are not intended to be completely independent of one another. Instead,

they are intended to be composed into a detection hierarchy (Figure 4.3). Machines in the hier-

archy detect increasingly abstract events from events that lower-level detectors output. Individual

Chapter 4. Language Design 30

Figure 4.3: Example Finite State Machine Hierarchy

machines in the hierarchy take multiple lower-level events as input, use these to predicate their

state change, and then output higher-level events or reconfigurations in response to state change.

This decomposition allows us to easily describe the path from low-level network sensor events to

high-level abstract event detection and reaction.

The hierarchy also provides for decentralization of detection. This is essential for scalability.

Any centralized entity, i.e. a central state database, will quickly be overwhelmed by both the number

of events it has to process and the amount of state it has to hold. In our distributed model, only state

necessary for detection and response at any particular detection node is maintained at that node.

An example of the use of this hierarchy is the detection of geographic or topological non-local

failures. In one machine, a local attack is detected, with one detector attached to each local area.

These attack detectors then send their detected local-level attack events to their appropriate regional-

level attack detector. All regional-level attack detectors then send their events to a national-level

detector. This decentralizes detection to provide for scalability. At each level of detection we can

vary the response to the perceived threat level. In response to a local attack, the local detector can

make a relatively minor adjustment, such as shutting off a few services. When a nation-wide attack

occurs, drastic action must be taken to prevent data loss and ensure future operational potential.

Chapter 4. Language Design 31

4.8 Reaction

When detection is successful, the system must react. This reaction is an application reconfiguration.

Reconfiguration in TEDL is based on an intentional command paradigm. In our implementation,

the services of ANDREA are used to provide an efficient interface to intentional command [24].

Our approach to intentional command is based on selective notification for sending commands

only to those nodes whose runtime state is relevant to the command. Selective notification is ex-

plained in greater depth elsewhere [26]. The basic premise behind selective notification is that mes-

sages are targeted to receivers based on the runtime properties of the message sender, messages, and

possible receivers. In this case, these messages are commands that select only nodes with relevant

runtime state. Receiver nodes expose an “antigen” of relevant state, and then commands “bind” at

runtime to only those node antigens that meet the command’s selection criteria. A simple example

of this is that a command could be sent to perform a software update only to hosts that are running

a particular defective version of that software, without requiring that the sender have a list of such

nodes beforehand. Just as the event-based detection allows us to collect only relevant network state,

intentional command enables the same for response. A complete state database is not necessary to

target commands to relevant nodes, but rather commands are dynamically targeted to relevant nodes

by the underlying communications infrastructure.

Responses to detection are associated with entrance to a state. The state class declares a state

name and possible response. For example, a state “UnderAttackState” is declared:

state UnderAttackState {
do RespondToAttack ;

}

The do element declares the name of the response that must be enacted upon entering the

state. Responses then describe the event or actions that occur as a response. This provides another

abstraction and allows multiple states to reuse the same responses.

The mechanism of action responses is implementation dependent. A formal description of re-

sponses was not added to to the language because the details of the intentional addressing paradigm

Chapter 4. Language Design 32

were not well modeled. When a better model is developed, a formal description of responses will

be added. Responses are currently written directly in Java and compiled.

Action responses are declared as:

response RepairApplicationResponse {
action RepairApplication ;
SecurityLevel := 5 ;

}

In our implementation of TEDL, the action “RepairApplication” refers to an executable Java

object. Runtime parameters are set in this object by declaring their name and value, as the case with

“SecurityLevel”.

Responses can also be inherited. For instance, there may need to be multiple machines that

perform similar actions, but have different specific parameters for their responses. This could be

done as:

Chapter 4. Language Design 33

response RecoverFromWormAttack {
action WormDefense ;
sienaURI := "tcp:sirius.cs.virginia.edu:23456" ;

}
response WebserverRecoverFromWormAttack extends RecoverFromWormAttack {

target_application := "WebServer" ;
}
response FileserverRecoverFromWormAttack extends RecoverFromWormAttack {

target_application := "NFS" ;
}

This syntax is used in place of a function call-like mechanism to maintain orthogonality with

other language elements. If the syntax were similar to that of a function call, the declarative nature

may be obfuscated.

4.9 Machine Event Generation

The second type of response a machine can enact is an event response. This is the emittance of an

event from a finite state machine that is used as input to a higher-level event detector.

Event responses are declared similarly to action responses. Instead of a do directive, the output

directive sets the type of the event to output. Additional string value/attribute pairs can set attributes

in the event instance.

response rEmitAttackEvent {
output AttackEvent ;
operating_system := "Immunix" ;
region := "NorthWest" ;

}

4.10 Assessment of success and subsequent recovery

Assessment of the success or failure of a response is important. With communications mechanisms

such as selective notification [24], one can send a message to an unknown and arbitrarily large

number of hosts based on their properties. Individual replies are generally not required, and would

quickly flood the system. This problem is solved with the concept of harvesting [25]. Harvesting

provides a scalable, decoupled mechanism for receiving replies to selective notifications. The reply

can be in the form of either individual responses, of which there may be millions, or a summary

Chapter 4. Language Design 34

histogram of the responses. Assessment of success is difficult because, in large-scale networks, the

variability of reply time may be arbitrarily large. One must therefore describe a complex expected

response model and then base assessment on the comparison of this expected model to the actual

responses.

The normal finite-state mechanism is relied upon for assessment instead of a specialized lan-

guage construct. Response states have transitions from them that indicate either success or failure.

Events are fed back into the control system from the response and these events are used to transi-

tion into failure or success states. The primary difficultly with this is that expected responses from

responding nodes must be predicted and then a response to unfavorable ones must be formulated.

Additionally, a reconfiguration could possibly cause even greater damage to the system when at-

tempting to fix it. This is an especially hard problem because one can get into a continuous cycle

of attempts and failures.

4.11 Exception handling

When attempting a reconfiguration, actuations may fail or additional damage could occur while

reconfiguring, prompting the need for an alternate plan. Exception handling in this case is similar,

but not identical, to assessment of success and subsequent recovery. With exception handling, it is

not that the reconfiguration did not work, but that something went wrong with the reconfiguration

mechanism itself.

The low-level command execution of responses is currently implemented in Java code. All

exception handling is done within this code. Exceptions can be handled by retrying the command

or emitting a failure event back into the finite-state model. Future work will focus on evaluation of

the intentional command paradigm for providing a useful exception handling model.

4.12 Transforms

Transforms allow arithmetic computations to be performed on the cardinality of sets. This is useful

for comparing two sets that do not necessarily need to be equal, but must be within some tolerance

Chapter 4. Language Design 35

of each other.

Transforms are declared as:

transform t90Percent{ * 0.9 }

This would multiply the value of the cardinality of the transformed set by 0.9. Transforms are

used by placing them before the set to be transformed:

predicate WidespreadFailure {
PrevMinHeartbeats < (t90Percent) PrevMinHeartbeatsOffsetOneMin ;

}

This would say “the predicate WidespreadFailure is true when the cardinality of the set Pre-

vMinHeartbeats is less than 0.9 times the cardinality of the set PrevMinHeartbeatsOffsetOneMin.”

Because set cardinalities are integer values, the type representation of the transformed set will also

be an integer.

4.13 Summary

Together, these language elements provided a clear and concise language that efficiently fulfills the

requirements for a control system policy language. In the next chapter, we present the results of us-

ing TEDL to specify example non-local fault-tolerance scenarios in an example financial payments

system.

Chapter 5

Implementation

Implementation is the sincerest form of flattery – L. Peter Deutsch

In previous research with RAPTOR, the system was constructed as a simulation to demonstrate the

feasibility of a survivability architecture. SPARTAN was, instead, implemented as a real system to

further demonstrate feasibility. SPARTAN is a simple object-oriented framework for detection that

is used by the translator to compose executable detectors. Close integration with TEDL makes syn-

thesis from formal specification a mostly simple transformation. The object-oriented SableCC com-

piler framework [15] was used to construct the translator. The use of object-oriented paradigms in

the syntax of TEDL, the SableCC compiler framework, and the SPARTAN implementation frame-

work expedited system development.

Each node in our hierarchy of detectors corresponds to a single SPARTAN agent. These dis-

tributed mobile agents communicate events via a publish-subscribe network, in this case Siena [7].

In contrast to traditional point-to-point communication, publish-subscribe messages are not sent to

a single host based on name, but rather to a group of interested hosts based on attributes of the

message. This allows transparent flexibility in detector location, easy replication of detectors, and

simple construction of the agent hierarchy.

The SPARTAN Java class design can be seen in Figure 5.1. The EventHandler thread commu-

nicates with the Siena network via the ThinClient interface. Events are received and put into the

EventDatabase component, encapsulating a timestamp-ordered linked list of all received events.

The EventHandler then signals the SpartanSetHolder that the EventDatabase has changed. The

36

Chapter 5. Implementation 37

Figure 5.1: SPARTAN Implementation Architecture

SpartanSetHolder has references to all of the sets in the detector and updates them based on the

current time and updated EventDatabase. The SpartanSetHolder then signals the PredicateHolder

to update all predicates based on the updated sets.

Each SpartanSet represents a logical set declaration. Events must match this declaration to be

placed in the set. Each Predicate then examines the cardinality of the SpartanSets it depends upon

to determine if it is true or false. If it transitions from false to true, it notifies the Machine that uses

it and then that Machine updates its state and takes appropriate action based on the Predicate. This

action can either be emitting an event or the execution of Java code. This architecture is simple and

presents us an easy to use framework for translation.

Currently, all sets and predicates are updated for every event. However, high event rates would

quickly overwhelm this approach. A better approach would be to have a maximum and minimum

rate at which the sets were updated, and any rate between these bounds the sets are updated for each

event.

Reconfigurations rely on the ANDREA system to provide several key services. ANDREA is a

set of services for highly scalable management of large scale application networks [24]. The first

service SPARTAN uses is selective notification, a novel communications paradigm where receptor

nodes expose an “antigen” of their state and messages “bind” to the antigen based on a selection

function. With this, messages are routed only to receptors that match their selector. This service

is used for reconfiguration in an intentional command paradigm. Instead of commanding nodes by

Chapter 5. Implementation 38

name, we command only those with relevant runtime state. A simple example of this is that we

could send a command to only to hosts that are running a vulnerable piece of software to shutdown

the software, upgrade it, and then restart the service. The second ANDREA service used is harvest.

Harvesting is a scalable and decoupled reply mechanism for selective notifications. Using harvest,

a selective notification can be sent to an unknown and arbitrarily large number of hosts and only

receive a single reply containing a histogram of all receiver responses. This allows us to scalably

assess the success or failure of a response. The final ANDREA service that SPARTAN uses is in-

tention council conflict resolution. Each reconfiguration command is accompanied by an intent and

a reason. The intent describes what the reconfiguration is designed to do, and the reason describes

why it is doing it. Multiple commands with conflicting intents and reasons are arbitrated before

affecting the application. This aspect of ANDREA is currently in development and is therefore

only used nominally.

In the next chapter, we present the use of this implementation for executing several non-local

fault-tolerance scenarios for a simplified financial payments system.

Chapter 6

Experimentation and Assessment

Language designers are not intellectuals. They’re not as interested in thinking as you

might hope. They just want to get a language done and start using it. – Dave Moon

6.1 Evaluation Challenges

The evaluation of a language is difficult. While one may make arguments on how a language fulfills

desired goals, one cannot prove that a language fulfills them. One cannot run experiments directly

on a language and gather quantitative data. However, we can use the language and qualitatively

assess its usefulness. In this chapter, we present the results from our use of TEDL for describing

several non-local fault-tolerance scenarios in an example distributed application. We then use the

results of these experiments in the next chapter as part of our language evaluation.

With our current resources, we are limited to a network of several thousand application nodes

running on approximately 100 physical machines that are part of the Centurion cluster. This appli-

cation is nearly two orders of magnitude smaller than our theoretical target, but it is large enough

to demonstrate that our approach exhibits at least minimal scalability.

Several scenarios have been devised to demonstrate that TEDL easily and efficiently describes

real-world, non-local fault scenarios. These specifications have been constructed for scenarios in-

volving a prototype financial payments system. The scenarios involve non-local fault detection and

recovery that use the intentional command paradigm provided by ANDREA.

39

Chapter 6. Experimentation and Assessment 40

6.2 Financial Payments System Scenarios

Throughout this thesis we have argued how TEDL provides the properties necessary for a useful

survivability control system specification language. However, the only true evaluation of a language

is whether or not it allows users to easily solve real problems in their domains. Towards this,

we have used TEDL to specify several example attack and failure scenarios. These scenarios are

representative of the many non-local faults that can occur in large distributed systems. The results

from the execution of each scenario are presented to show the correct function of the implementation

and give the reader a general idea of the timing of detection and response.

These scenarios are for a simple financial payments system based on the United States financial

payments system, the Federal Reserve’s Fedwire System. Our simplified example system routes

electronic money transfers between separate banks. The system is hierarchical and consists of three

levels, as seen in Figure 6.1. At the top of the hierarchy are multiple Federal Reserve banks. Each

of these has some number of Money Center Banks (MCBs) that use its services. Each MCB in

turn has child Branch Banks. In our examples, the size of the network varies between scenarios

because of resource limitations. More information about operational financial payments systems

can be found in Elder [14].

In our system, the individual bank application nodes have been made reconfigurable such that

they can be modified in response to attack and failure. These actuations range from practical and

useful ones, such as the ability to change the bank’s parent node and start and stop services, to more

abstract actuations, such as specifying a “security level” to operate under.

The testbed for running these experiments was a set of 100 dual Intel Pentium II 400mHz

machines with 512 MB of memory running Red Hat Linux 6.2. The machines are connected with

switched 100BaseT Ethernet. The Sun JDK 1.4.1 02 was used to execute the Java bytecode.

In the remainder of this section, these three non-local fault scenarios are described. The TEDL

specification for each scenario is presented in Appendix B.

Chapter 6. Experimentation and Assessment 41

Figure 6.1: Example Financial Payments System Diagram

Figure 6.2: MCBFailureDetector State Diagram

6.2.1 Money Center Bank Failure

In this scenario, a Money Center Bank (MCB) fails and this failure is detected by transaction faults

reported by its child Branch Banks, as specified by the MCBFailureTrigger. The state diagram

for this is shown in Figure 6.2. The TEDL source is listed in Section B.2. All bank nodes are

reporting their sensor events to a single SPARTAN detector node. After one of the MCBs (Rich-

mond MCB 000) is stopped to simulate failure, the child Branch Bank nodes of this MCB cannot

transact with it. In response, each affected node emits a sensor event indicating this condition. Af-

ter the SPARTAN detector receives 10 of these events, the predicate MCBFailureTrigger is satisfied

and the detector transitions to the state MCBFailure. A reconfiguration is emitted that instructs

all Branch Banks with one or more transaction faults to change their parent Money Center Bank

to a different parent (Richmond MCB 001) to repair the application network. In a more complex

example, the response would attempt to find a MCB that has not failed and switch to that one, but

we have simply devised a static response for simplicity.

In our tests for this scenario, there were 6,700 banks in the network. The results for five trials

Chapter 6. Experimentation and Assessment 42

Figure 6.3: CoordinatedAttackDetector State Diagram

are shown in Table 6.1. The first column shows the amount of time from when the failure was

caused until the first error event was received. The bank nodes attempt transactions once every

three minutes, so this amount of time varies depending on where in that cycle the banks are. The

second column shows the time at which the non-local fault had been detected and a reconfiguration

emitted. The next column shows the time at which all of the reconfigured banks had responded to

the reconfiguration, and the last column shows the total elapsed time from the first sensor event to

successful reconfiguration. In this scenario, all 25 branch banks that should receive the command

do and the network is therefore successfully repaired.

6.2.2 Coordinated Attack

This scenario demonstrates a coordinated attack where multiple bank nodes are attacked simultane-

ously. We assume that host or network-based attack sensors, like intrusion detection systems, exist

to detect attacks at each node. The system correlates the attacks happening at multiple sites and

then takes action that is different from the action that would would be taken with only local attack

knowledge. In our scenario, the response is increasing an abstract “security level” at each bank and

Table 6.1: Results for Money Center Bank Failure Scenario (times in seconds)

First Input Event Reconfiguration emitted All nodes reply Elapsed Time
Trial 1 0.55s 0.57s 2.07s 1.12s
Trial 2 0.08s 0.14s 1.16s 1.08s
Trial 3 2.07s 2.10s 3.17s 1.10s
Trial 4 2.44s 2.48s 3.55s 1.11s
Trial 5 0.54s 0.59s 1.57s 1.03s
Average – – – 1.07s

Chapter 6. Experimentation and Assessment 43

Table 6.2: Results for Coordinated Attack Scenario (times in seconds)

Event Total Elapsed Time Elapsed Time since last event
First event 0.0 0.0
Last event 13.7 13.7
Attack detected 13.8 0.1
Response complete 194.0 180.2
Adv. Attack first event 253.7 59.7
Adv. Attack last event 282.3 28.6
Adv. Attack detected 282.4 0.1
Response complete 462.6 180.2
Transition back to Normal 762.6 300

disabling all non-essential services at each bank to redirect as many resources as possible to defend

against the attack. When the attack worsens, the security level is increased further and all services

are disabled. This phased response allows varied service in response to escalating attack. The state

diagram for this scenario can be seen in Figure 6.3 and the TEDL source is listed in Section B.3.

While shutting down all the services is essentially a self-denial-of-service, we assume that this is

the only way to defend against the attack adequately. This is assumed to be a major attack and

drastic action is necessary to preserve essential service, prevent worse damage, and ensure quick

recovery after the attack.

In our experiment, synthetic sensor events (DoSSecurityEvent and PortscanSecurityEvents)

were injected into the SPARTAN detector using our Syringe publish-subscribe event injection tool.

These two event types are representative of the myriad of possible events from real intrusion sen-

sors. 100 DoSSecurityEvents and 100 PortscanSecurityEvents were injected to trigger a control

system response. The control system then attempted to reconfigure the network to defend against

this level of attack by setting an artificial “security level” higher and shutting down non-essential

services. 200 more events were injected to trigger a more drastic response in the network. This

response sets the security level even higher and shuts down all services to prevent further damage.

The results of a typical execution of this scenario are seen in Table 6.2. This table shows the

amount of time that elapses between different actions in the scenario. The first two entries are the

times of the first and last sensor event that is injected into the detector. The next entry is when these

Chapter 6. Experimentation and Assessment 44

Table 6.3: Command Response Times for Coordinated Attack Scenario (times in seconds)

Time from reconfig start (sec) responders out of 3444
Attack State EssentialServicesOnly()

0 0
15 0
30 1154
45 3435
60 3435
75 3435
90 3435

Attack State SetSecurityLevel(1)
0 0
15 0
30 1154
45 3435
60 3435
75 3435
90 3435

Advanced Attack State ShutdownServices()
0 0
15 0
30 1154
45 3435
60 3435
75 3435
90 3435

Advanced Attack State SetSecurityLevel(0)
0 0
15 0
30 2763
45 3435
60 3435
75 3435
90 3435

Chapter 6. Experimentation and Assessment 45

Table 6.4: Response times for Selective Notification (times in seconds)

Time (s) Total Responders Remaining Responders New Responders
0 0 3444 0
15 0 3444 0
30 856 2588 856
45 3041 403 2185
60 3435 9 394
75 3435 9 0
90 3435 9 0
105 3435 9 0
120 3437 7 2
135 3440 4 3
150 3441 3 1
165 3442 2 1
180 3444 0 2

events have been successfully used to detect the attack and initiate response. The next entry is time

of the completion of the response. The next four entries describe the times of the second phase of

the attack. The final entry in the table is the time at which the detector determines that the attack

has ended and transitions back to the normal state.

Table 6.3 shows the response times to the four selective notification commands that are emitted.

Each entry shows the amount of time elapsed since the command was emitted and the number of

nodes that had responded. There were 3,444 nodes in this example and all should have responded

to all commands. However, a few did not because all of the available hardware was saturated

and they could not respond in time. This behavior mirrors the behavior seen in a typical large

distributed application. After the execution of the scenario had ended, “Ping” bank command that

was manually injected. The command was targeted to all nodes and simply required that the nodes

respond. Table 6.4 shows the response times for this command. For intervals of 15 seconds, the

table shows the total responders, the remaining responders, and the number of new responders since

the last update period. The command was waited upon until all receivers had responded instead of

stopping after after a specified amount of time. This pattern of response matches that from all other

commands.

Chapter 6. Experimentation and Assessment 46

Figure 6.4: RegionalFailureDetector State Diagram

6.2.3 Regional-level Power Failures

The following scenario demonstrates the utility of the system for detecting topological or geograph-

ical failures. For instance, a power failure causing widespread outages in the application network

requires detection and response. It is assumed that human intervention is required in these scenar-

ios, so the results of detection are sent to an operator.

Here we have the nodes of the network divided into regional geographic areas. The nodes are

partitioned according to their Federal Reserve Bank into the following categories:

• NorthEast – Boston, New York, Cleveland

• SouthEast – Philadelphia, Richmond, Atlanta

• NorthWest – Chicago, St. Louis, Minneapolis

• SouthWest – Kansas City, Dallas, San Francisco

A hierarchy of detectors is used in this scenario. For each region, we have a SPARTAN node

that monitors power failure events from that region. When a certain number of events (in this case

250) are received, the node triggers a response that notifies a human operator that a widespread

regional failure has occurred and sends a regional power failure event up the detector hierarchy to

a national level SPARTAN node monitoring all the regional detectors. When this national detector

receives two regional failure events, it then notifies a human operator that a national failure event has

occurred. In this way, multiple local failures signal a regional failure, and multiple regional failures

signify a larger national-level failure. As in the last scenario, synthetic events were injected using

Figure 6.5: NationalFailureDetector State Diagram

Chapter 6. Experimentation and Assessment 47

Syringe to simulate sensors events. The state diagrams for this scenario can be seen in Figures 6.4

and 6.5. The TEDL source is listed in Section B.4.

The execution of this scenario was successful. The timing information is not of interest, so it is

not presented. Both regional failures were successfully detected, as was the national failure.

6.3 Summary

In this chapter, we have presented the results of our use of TEDL in specifying three non-local

fault scenarios for a simplified financial payments systems. These scenarios are far from conclusive

proof of the usefulness of TEDL, but they do give indication of such usefulness. Future work with

TEDL will involve specification of larger and more complex scenarios to further evaluate its utility.

Chapter 7

Language Evaluation

The proof of a system’s value is its existence. – Alan J. Perlis

This chapter evaluates the language with respect to the requirements put forth in Chapter 3. This

section presents these requirements along with the language elements intended to meet them.

7.1 Scalability

Scalability is the most important aspect of TEDL. While the other requirements are important,

scalability is the only one that can completely nullify the usefulness of the others. The elements of

TEDL that provide for scalability are now discussed.

1. The number of nodes in the distributed application: Large numbers of application nodes

are managed by having a hierarchical event-based architecture. A central database of net-

work state would be unscalable, but the event-based architecture abstracts away the number

of nodes in the network. Imperative command prevents the need to have a complete state

database with all node names and state. Detection and response are therefore scalable to an

arbitrarily large network.

2. The number of different node types in the distributed application: The event-based architec-

ture abstracts away any specific properties of nodes. This allows an arbitrarily large number

of node types without requiring individual specification of the details of these types. For

48

Chapter 7. Language Evaluation 49

instance, in the regional failure scenario, arbitrary bank types could emit the power failure

events without requiring that the control system know about each of these node types.

3. The number of elements that could be involved in a non-local fault: The event-based archi-

tecture and intentional command paradigm provide for this requirement. This requirement is

difficult to fulfill, as when a fault is detected, we must repair exactly those nodes affected. A

centralized state database would always be inconsistent with the actual state of the network

and, therefore, nodes that change state after the commands have been emitted may either re-

ceive unnecessary commands or not receive necessary commands. However, an intentional

command will always go to only those nodes whose actual runtime state meets the command

requirements, so command targeting is always consistent with actual network state. With the

event-based architecture, a reconfiguration can be enacted when the number of some type of

event goes above a certain threshold, but the commands will still be targeted to any nodes that

fail after the reconfiguration has started. In the Coordinated Attack scenario, an arbitrarily

large number of nodes could have been under attack, as long as that number were above a

certain threshold. The actual number involved does not matter, as the intentional command

determines this at runtime. Alternatively, this command could have been targeted to only

those nodes that were under attack at the time.

4. The number of programs that constitute the distributed applications of interest: Multiple

different programs are abstracted away by the event model. Relevant information from each

program is normalized into an event such that all data may be handled the same way for

detection.

5. The amount of data communicated and the amount of computation consumed: By having

a detection hierarchy, the communication and computation of detection can be distributed

throughout a network. Only that state relevant to detection and response at any node in

hierarchy is stored at that node, significantly decreasing the amount of data contained at any

one node. Without this distribution, it a centralized structure would soon be overwhelmed

with communication, storage, and processing. In the Regional Failure scenario, the hierarchy

Chapter 7. Language Evaluation 50

could be arbitrarily large and the specification of the detection nodes would be exactly the

same.

7.2 Expressivity

TEDL is designed to only support a small class of detections, but to do so easily and understandably.

This expressivity limitation is one of the core design decisions in TEDL. With regards to these

detections, the expressivity of TEDL is now discussed.

1. Basic semantics: System states of interest are described with the finite state machine model.

Detection is not simply based on event-action sequences but, instead, on the more meaningful

conceptual model of abstract application system state. All elements of the detection are

continuously evaluated over time, so the abstract system state model is maintained to match

the real system as closely as possible. The relevancy of events over time, as described by

the set class, is essential because events have time relevancy in the real world. For example,

local failures will usually be occurring in the network, but only groups of these occurring

in a defined time span constitute a non-local failure. The event set and state elements of

the language allow for arbitrary event sequences to be linked together without regard for the

specific types of nodes affected or types of events involved.

2. Category of non-local fault: Fault sequences and fault hierarchies are easily described using

the state model. Sequences can be composed using Boolean expressions to indicate state

transition or can be used in a branching chain of state transitions. Fault hierarchies can be

described easily with a sequence of transitions. Interdependent application faults can be

described because any specific properties of the applications can either be encapsulated by

events or abstracted away with events. These events can then be used in arbitrary ways to

describe the interaction of the application faults.

3. Scale: The use of sets of events instead of individual events for detection allows scale to

be expressed easily. If individual events were the basis, the specification would soon grow

Chapter 7. Language Evaluation 51

unmanageably large and would require an exponential increase in programming work to de-

scribe them.

4. Specification size: The modularity of the language allows the specification size to be de-

creased. Elements can be specified once and then used multiple times. All detection elements

are divided into small classes, so simple detections may be longer than some non-modular

equivalent language. However, the modularity allows for many elements, such as machine

objects, to be much smaller when describing complex detections. This leads to increased

comprehensibility. Each individual class has a clear and concise syntax, so elements can be

read and understood easily.

It is difficult to compare the size of a TEDL specification to the size of the equivalent RAP-

TOR specification. RAPTOR specifications are more monolithic, in that all detection and

responses are declared in the same file. The financial payments system scenarios presented

by Elder [14] are about 40 pages of Z. Specification of only the Money Center Bank failure

scenario would require about five of these pages, as compared with the one page of TEDL

for the same scenario (Appendix B).

There are several limitations to the expressivity. Event rate changes over time are not easily

expressible. If an attack or failure rate fluctuates over time, only the resultant events are evident and

not the peak rates. It would be possible to declare a number of small, successive time-windowed

sets, and then compare the cardinalities of these, but this approach is difficult because the size of

the fluctuating windows would not be possible to determine before execution.

Another difficulty is the “summarization” of detection information in the hierarchy. Detectors

in the hierarchy must emit discrete events, so there is loss of information going up the hierarchy.

Summary information on the sets of events resulting in a higher-level event could be put in the

higher-level events, for instance, the average value of some attribute. It is desirable to keep away

from single event values, i.e., minimum and maximum values, as these may often be statistic out-

liers.

Chapter 7. Language Evaluation 52

The lack of a full collection of set operators, such as union and intersect, is a limitation. The

set cardinality is currently the only information about a set available to the predicates. Additional

set operations such as intersect and union would be useful. Summary information on the sets,

such as average values of attributes and histograms of attribute values, will also be useful for some

detections.

7.3 Ease of Use

Ease of use is a difficult requirement to assess and is largely personal preference. This language

was designed for use by people coming from an object-oriented programming background, whereas

many formal specification languages are based on discrete logic and many policy languages have

syntax similar to imperative languages. TEDL is both object-oriented and declarative, so it is easily

understandable yet still provides decoupling between policy and mechanism.

The syntax was designed to be clear and aesthetically pleasing. The modularity of the language

makes reading specifications easier than if they were large monolithic structures. The semantics

of various elements are encapsulated within those elements, so changes can be easily made to one

object while preserving its use by other objects. For instance, the notion of time is encapsulated

within the set class, and is therefore abstracted away from all other elements. The sets are encap-

sulated within the predicate class, so new types of predicates can easily be added without affecting

the machine declaration syntax or semantics.

The finite state model of detection fosters a clear mental model of detection. This explicit

model allows for an easier to understand model than other approaches based on simple event-action

policies and optional state. Non-local faults usually involve sequences of events, so the finite state

model matches this well.

7.4 Implementability

A translator has been implemented to synthesize executable SPARTAN nodes from TEDL specifi-

cations. Even without any experience with compiler construction, the author was able to quickly

Chapter 7. Language Evaluation 53

develop a translator and implementation framework. The event-driven, object-oriented language

semantics are easily mapped to an event-driven, object-oriented implementation. The modularity

of TEDL allowed the compiler to be constructed incrementally and made language modifications

simple.

7.5 Analyzability

Current research is focusing on language analysis. The declarative nature of the language makes this

possible. The finite state machine model makes model-checking a good prospect for analysis. The

modularity of the language makes symbolic representation more clear. Future work will explore

these aspects of analysis.

7.6 Additional Limitations

The lack of a formal response notation is a significant problem for the language. Even in the current

implementation, the notion that a response takes time to complete and that the finite state machine

may transition while a response is occurring. This indicates that the formal response language

elements must allow for this. One approach is to put a minimum time that the machine must stay

in a state, corresponding the the expected execution time of the response. In the implementation,

responses are currently spawned as separate threads and the machine continues normal operation.

These approaches will be evaluated further in the future.

Chapter 8

Related Work

... knowing about too many well-researched details can often confuse the real direction

we have to take. I like writing new code, and I prefer to approach things from the

physics side: take a few elementary rules and build up the ‘one correct’ solution, no

compromises. This might not be as effective as first reading all the available material

and then cherry-picking a few ideas and thinking up the remaining things, but it sure

gives me lots of fun – Ingo Molnar

8.1 Fault-tolerant Distributed Systems

Cristian’s Advanced Automation System (AAS) replacement for the Air Traffic Control (ATC)

system presents a useful instantiation of his fault-tolerance ideas and architecture for distributed

systems [8]. His approach was to mask multiple independent concurrent low-level component

failures through reconfiguration of redundant components. This low-level masking prevented the

failures from being apparent to higher levels of abstraction.

Papadopalos presents an event based system for online monitoring [49]. This work is primarily

concerned with state changes in complex systems that change fault propagation paths. He asserts

that representing these state-fault dependencies is crucial to developing accurate system models.

He models these state dependencies using a dynamic model of hierarchical finite state machines

where each machine is a component and its children are subcomponents. This model is automati-

cally translated from graphical fault tree. Low-level failures can propagate up the hierarchy to cause

54

Chapter 8. Related Work 55

failure of components. At each level recovery measures can be enacted and conditions checked to

verify success or failure. The systems he is primarily concerned with are continuous, so he intro-

duces the concept of normal transient behavior. Inputs to the system sometimes fluctuate beyond

“normal” limits, for instance during startup. In this model, conditions must remain true over some

time period to affect the monitoring model. The system he built consists of three main components:

an event monitor, a diagnostic engine, and an event processor. The event monitor detects symptoms

of failure. It uses a trinary logic of 1, 0, and unknown to account for circumstances of incomplete

information. The diagnostic engine then traverses a fault tree where symptoms are top level events

to return a set of possible root causes of the symptoms. The event processor examines the impact of

events on the state machines in order to keep track of current state and take corrective action. The

target systems for this research are mostly small physical systems rather than large distributed ap-

plications. It assumes a small number of components that can be precisely monitored in real-time.

This approach does not appear to be scalable to large distributed information systems.

Chameleon is a “software infrastructure for adaptive fault tolerance” [28]. The system uti-

lizes ARMORs to control the software elements of a system in order to provide multiple software

fault tolerance strategies. The intended target appears to be fault-tolerant program execution on

small-scale distributed systems experiencing random failures, although no specific mention is made.

There is little mention of the scalability and no mention of widespread failures or security attacks.

Other fault-tolerant systems are WAFT [1], Coyote [5], and ISIS/Horus [6]. While these sys-

tems are designed for distributed systems, they are not designed explicitly to be scalable nor to

tolerate the complex non-local faults apparent in critical infrastructure systems.

RAPTOR [14] is the system from which this work directly descends. The goals of RAPTOR

are the same as those for TEDL and SPARTAN. RAPTOR uses three specifications for their system.

One describes the fault-tolerant system, one the detectable errors, and one the recovery responses.

An object-oriented database is used to store descriptive information about the system. The formal

specification notation Z is used to define the error detection and error recovery specifications. The

system was implemented as a distributed simulation with positive results. However, the centralized

nature of detection significantly decreased the scalability. The Z notation made description difficult

Chapter 8. Related Work 56

and was the primary impetus for developing a specialized notation.

8.2 Languages

8.2.1 Policy Languages

The Policy Description Language (PDL) [38] is an event-condition-action (ECA) language from

Bell Labs designed to describe policies in network switches. There is little inherent modularity in

the language, which makes complex rules difficult to write and understand. Their basic construct

is the “event causes action if condition” statement. Groups of these statements are composed to

define policies. The main focus of the work on PDL is the formal semantics of the language, so the

usability of the semantic model and language for complex policies is not a primary concern.

Ponder [40] is a general, declarative, object-oriented policy language. The main focus is role-

based access control, but it has an ECA construct known as an “obligation.” The main target of

Ponder is small scale network management. The language is tailored to small sequences of events,

so describing large complex sequences of events is difficult. There is little structure for modularity

or abstraction, as all elements of an obligation must be contained within a single declaration.

8.2.2 IDS Languages

Much work has been done in the area of specification languages that are specifically for intrusion

detection systems. These languages mostly fall into the categories of event, response, reporting,

correlation, exploit, and detection [13]. Event languages describe how data should be formatted and

are generally used for application logging. Examples are Sun Microsystems’ SunSHIELD Basic

Security Module (BSM) audit records [45], syslog messages [3], shorewall firewall log messages

[61], xinetd messages, tcpdump packets [42], and the Normalized Audit Data Format (NADF) [46].

Response languages describe action that should be taken in response to attacks. There are currently

no examples of these languages. Most systems that allow response require that this action be coded

directly in a programming language.

Reporting languages describe a common format in which to encode IDS alerts. Examples are

the Common Intrusion Specification language (CISL) [18], the Intrusion Detection Message Ex-

Chapter 8. Related Work 57

change Format (IDMEF) [11], and the Snort alert format [62, 56]. Exploit languages attempt to

encode the steps an attacker must take to exploit a vulnerability. These include the Custom Attack

Simulation Language (CASL) [47] and Nessus Attack Specification Language (NASL) [12]. Ex-

ploit languages are generally focused on specific, single-point types of attacks, i.e., buffer-overflow

attacks, and are not general purpose attack description tools.

The main body of research related to TEDL is in the area of correlation and detection languages.

Detection languages are designed to detect certain events, usually from network streams, that iden-

tify an attack. These include N-code used in Network Flight Recorder [55], P-BEST used in SRI’s

EMERALD [36], RUSSEL used in ASAX [20], SNP-L [68], GASSATA [43], the language used

in IDIOT [9, 34, 33], the language used in Bro [51], the language used in Snort [56, 62], parallel

environment grammars [32], JIGSAW [67], REE [59, 60], and ASL [58].

Correlation languages describe the relations among separate events, possibly detected by a de-

tection language, and attempt to reason abstract meaningful events from them. Examples of corre-

lation languages are Honeywell’s ARGUS [2], SRI’s eBayes [69], STATL [13], SRI’s P-BEST [36],

MuSigs [35], Roger and Goubault-Larreq’s linear time temporal logic [57], Uppuluri and Sekar’s

REE [59, 60], Sutekh from Pouzol and Ducasse [53, 54], Gerard’s LaDAA language for generating

ASAX rules [17], LAMBDA from Cuppens and Ortalo [10], and ADeLe from Michel and Me [44].

STATL [13] is a detection language developed for attack specification in the STAT family of

intrusion detection systems, including USTAT, NetSTAT, and WinSTAT. STATL models attacks as

a set of states, beginning with an initial secure state and moving through predicate transitions un-

til a final compromised state is reached. The primary focus is network intrusion detection so the

language is targeted to a packet or connection level event detection. The language itself has a very

similar look to C. Detection units are called scenarios and consist of a set of states and transitions

that occur between the states. Transitions in the language are either consuming, nonconsuming, or

unwinding. Consuming transitions act like a deterministic finite automaton, such that the machine

transitions to only one state upon input. Non-consuming transitions allow a non-deterministic ap-

proach such that after a transition event, further events can still cause transitions from the previous

state. Unwinding transitions allow for “rollback” of state transitions whose predicates are no longer

Chapter 8. Related Work 58

be satisfied or after certain amount of time transpires before a new event causes another transition.

The timing element of the system is instantiated using the concept of countdown timers that than

can be started upon entering a state. Unwinding transitions can occur if the the timer goes off before

another transition occurs. One of the limitations in the language is that all elements of a scenario

must be contained within the scenario. This does not allow for reuse of any of the specified elements

in other scenarios.

Sutekh from Pouzol and Ducasse [53, 54] is a declarative language for intrusion detection. The

construct their system from events consisting of attribute/value pairs, sets of constraints called filters

on these events, totally ordered sequences of these events called trails, and signatures consisting

of combinations of filters. They present an approach of how this declarative language would be

translated into an algorithmic description for execution.

ADeLe is IDS exploit, detection, correlation, and response language from Michel and Me [44].

It was developed in parallel with the LAMBDA language [10] in the Mirador project. LAMBDA’s

approach is more declarative, while ADeLe’s approach is more procedural. The syntax for ADeLe

is a hybrid of XML and C. ADeLe is designed mainly for detection at a local level using network

traffic.

SEL is an event correlation language used in the SHAMAN network management scripting

Framework [73]. ODE [16] and CEDAR [22] are languages designed for specifying active database

triggers. EBBM [4] is designed to create meaningful abstractions from system events for debugging

purposes. These languages are designed with precise expressivity as their main criterion and are

generally not scalable.

8.3 Event Correlation

A significant amount of work in the area of event correlation applies to this research. The primary

focus of most event correlation systems is on simple management of relatively small networks

suffering from random failures or on possibly large telecommunications networks suffering from

a small number of different types of failures. In general, their syntax is not modular or clearly

readable. Many of the research systems available are described in more detail in Henderson [23].

Chapter 8. Related Work 59

The Generalized Event Monitor (GEM) was developed [41] for network management event

correlation. It has a powerful expression language with syntax similar to C and introduces effective

algorithms for enacting this language on events. RAPIDE [39] uses partially ordered sets to repre-

sent detected event patterns and then generates higher-level events. One advantage of RAPIDE is

that new rules can be dynamically modified while the program is running.

The Software Monitoring System (SoMoS) was developed by the Computing Services Sup-

port Solutions [63]. SoMoS is programmed in the Formal Language for Expressing Assumptions

(FLEA) which is based on Common Lisp. Unfortunately, SoMoS was not originally intended to be

an event correlation system and, therefore, does not have several of the necessary characteristics for

high-volume event correlation.

JECTOR [37] is an event correlator based on the JEM event detector. Their primary focus is

on condition detection in active databases. They introduce the concept of composite events that are

determined from basic events in the network. The system relies on a centralized event database.

The system was tested in an anecdotal way with real event data from HP OpenView. This data was

mostly from misconfigured machines and did not consider intrusion detection events or complex

failures.

Henderson’s framework is useful in designing an event correlation system [23]. For the de-

scription language, he uses a combination of XML and programming language code to make many

scenarios easy to specify and difficult scenarios possible to specify. The system uses a centralized

structure for correlation and uses a publish/subscribe network for communication with basic event

sensors.

The system most applicable to SPARTAN is the Stanford University Complex Event Processor

(CEP) [52]. Their primary focus is ”cyber battlefield awareness” so that humans can get insight

into events occurring in an application network. They introduce the concept of event abstraction

hierarchies for creating different levels of semantic human interface. However, this hierarchy is

fixed at four levels with each level performing a specific duty. They support causal relationships,

dynamic configuration with a pattern language, and decentralized processing networks, although no

mention is made of logical connection mechanism or organization. They present a pattern algebra

Chapter 8. Related Work 60

that is useful in rigorously specifying matching semantics.

Gruschke proposes the use of dependency graphs for specifying event correlation [19]. Depen-

dency graphs are built to show the functional dependencies between components, such that if A

depends on B, then a failure in B will elicit symptoms from A. However, their approach is mostly

as an interface to existing event correlation systems and is generally not suitable to high volume

event systems with large numbers of complex interactions.

Commercial systems doing event correlation include IMPACT, NetFACT, EXCpert, InCharge,

Hewlett-Packard OpenView Event Correlation Service, NerveCenter, and the experimental GRACE

[27] system from GTE. In general, they are specifically focused on small local area networks ex-

periencing misconfiguration or random rare failures and therefore have little use for our purpose.

For example, HP OpenView’s Event Correlation Description Language is very expressive, but is

tailored specifically to SNMP and CMIP events.

Chapter 9

Conclusion

Don’t worry about what anybody else is going to do. The best way to predict the future

is to invent it. – Alan Kay

9.1 Conclusion

The importance of application networks used to run critical infrastructure system necessitates that

they be survivable. Non-local fault tolerance is one mechanism for survivability and can be im-

plemented using a survivability control system. This thesis has presented the TEDL language for

specifying policy in such a control system.

The syntactic and semantic elements of TEDL combine to form an effective language for the

specification of survivability control system policy. The language has been shown to meet the

goals of scalability, expressivity, ease of use, implementability, and analyzability. The event-driven

architecture provides for scalable detection, and the intentional command mechanism provides for

scalable response. The declarative, object-oriented classes allow for modular specification with

clear abstraction and clean encapsulation. The finite state machine model provides a useful semantic

for detection. Composing these machines into a hierarchy allows for the decentralization of the

communication and computation required for scalable detection. By basing detection on dynamic

sets of sensor events rather than single events, detections involving large numbers of different events

become manageable.

61

Chapter 9. Conclusion 62

Through experimentation and argument, the TEDL language has been shown to be useful for

the specification of non-local fault detection and response in large-scale applications.

9.2 Future Work

We see the following as the future direction of this work:

• Formal specification of response commands: TEDL currently requires that response com-

mands be coded in Java. A language mechanism for declaring the response action will be

integrated into the language.

• Robust exception handling model: Since responses are not integrated into the language, we

have not developed a robust exception handling model. Exception handling is done in an

informal way using the harvesting results of the intentional commands. As a better under-

standing is obtained of the exceptions that can occur in the intentional command paradigm,

appropriate language mechanisms will be developed.

• Graphical language: The finite state machine model of TEDL makes graphical representation

natural. We plan on developing a graphical equivalent of the language, similar to Statecharts,

that can be used to specify control systems graphically.

• Formal analysis: TEDL is a formal language and is, therefore, amenable to formal analysis.

We plan to research how formal methods, such as model checking, can be used to analyze

TEDL specifications for desired properties.

Appendix A

Language Grammar

This is the SableCC grammar for the TEDL language. The notation is nearly the same as Backus-

Nahr Form, with the replacement of the := production notation with = and the addition of a braced

alternate name (i.e., trans f orm with variable) before each alternate production.

Package tedl;

Helpers

all = [0 .. 0xffff];
letter = [[’a’ .. ’z’] + [’A’ .. ’Z’]];
digit = [’0’ .. ’9’];
non_zero_digit = [’1’..’9’];
tab = 9;
cr = 13;
lf = 10;
eol = cr lf | cr | lf; // This takes care of different platforms
sp = ’ ’;

input_character = [all - [cr + lf]];

not_star = [input_character - ’*’] | eol;
not_star_not_slash = [input_character - [’*’ + ’/’]] | eol;
a = ’a’ ;
b = ’b’ ;
c = ’c’ ;
d = ’d’ ;
e = ’e’ ;
f = ’f’ ;
g = ’g’ ;
h = ’h’ ;
i = ’i’ ;
j = ’j’ ;

63

Appendix A. Language Grammar 64

k = ’k’ ;
l = ’l’ ;
m = ’m’ ;
n = ’n’ ;
o = ’o’ ;
p = ’p’ ;
q = ’q’ ;
r = ’r’ ;
s = ’s’ ;
t = ’t’ ;
u = ’u’ ;
v = ’v’ ;
w = ’w’ ;
x = ’x’ ;
y = ’y’ ;
z = ’z’ ;
escape_sequence = ’\b’ | ’\t’ | ’\n’ | ’\f’ | ’\r’ | ’\"’ | ’\’ ’’’ | ’\\’ ;
string_character = [input_character - [’"’ + ’\’]] | escape_sequence;

Tokens

number = digit+;
plus = ’+’;
minus = ’-’;
mult = ’*’;
div = ’/’;
mod = ’%’;
l_par = ’(’;
r_par = ’)’;
l_brace = ’{’;
r_brace = ’}’;
l_bracket = ’[’;
r_bracket = ’]’;
blank = (’ ’ | tab | eol)+;
delimiter = ’;’;
transition_op = ’->’;
comma = ’,’;
colon = ’:’;
card_op = ’#’;
assignment_op = ’:=’;
equality_op = ’=’;
inequality_op = ’!=’;
greater_than_op = ’>’;
greater_than_equal_op = ’>=’;
less_than_op = ’<’;
less_than_equal_op = ’<=’;
on = o n ;
run = r u n;
conjunction_op = a n d ;
disjunction_op = o r ;
negation_op = n o t ;

Appendix A. Language Grammar 65

include_dec = i n c l u d e ;
predicate_dec = p r e d i c a t e ;
transform_dec = t r a n s f o r m ;
machine_dec = m a c h i n e ;
set_dec = s e t ;
response_dec = r e s p o n s e ;
deployment_dec = d e p l o y m e n t;
property_dec = p r o p e r t y;
has = h a s;
extends = e x t e n d s ;
super = s u p e r ;
msec = m s e c ;
sec = s e c ;
min = m i n ;
hour = h o u r ;
day = d a y ;
week = w e e k ;
month = m o n t h ;
year = y e a r ;
unique = u n i q u e ;
in = i n ;
do = d o ;
offset = o f f s e t ;
var = v a r ;
set = s e t ;
action = a c t i o n;
siena = s i e n a;
qual = q u a l;
continuous = c o n t i n u o u s;
state = s t a t e;
event = e v e n t;
output = o u t p u t ;
end_of_line_comment = ’//’ input_character* eol?;
identifier = (letter | digit | ’_’ | ’.’)+;
string_literal = ’"’ string_character* ’"’;

Ignored Tokens

blank, end_of_line_comment;

Productions
spec = elements*;
elements = {include} include_description | {event} event_description |
{predicate} predicate_description | {transform} transform_description |
{machine} machine_description | {set} set_description | {response}
response_description | {variable} variable_declaration | {deployment}
deployment_description | {siena} siena_description |
{state} state_description;
siena_description = siena string_literal delimiter ;
include_description = include_dec identifier delimiter ;
math_op = {plus} plus | {minus} minus | {mult} mult | {div} div| {mod} mod;

Appendix A. Language Grammar 66

rel_op = {eq} equality_op | {neq} inequality_op | {gt} greater_than_op |
{gte} greater_than_equal_op | {lt} less_than_op | {lte} less_than_equal_op;
bool_op = {and} conjunction_op | {or} disjunction_op | {neg} negation_op;
inheritance_phrase = extends identifier;

// Event declaration
event_description = event identifier inheritance_phrase? l_brace event_attributes r_brace;
event_attributes = event_attribute* ;
event_attribute = identifier delimiter ;

// State declaration
state_description = state identifier l_brace state_attributes r_brace ;
state_attributes = state_attribute* ;
state_attribute = do identifier delimiter ;

// Variable declaration
variable_declaration = {string_var} var identifier assignment_op string_literal

delimiter | {int_var} var identifier assignment_op number delimiter;

// Predicate declaration
predicate_description = predicate_dec identifier predicate_continuous? l_brace

predicate_body delimiter r_brace;
predicate_continuous = continuous ;
predicate_body = {pbs} predicate_body_simple | {pbc} predicate_body_compound;
predicate_body_compound = negation_op? identifier predicate_composer ;
predicate_composer = bool_op negation_op? identifier;
predicate_body_simple = identifier predicate_set_comparison;
predicate_set_comparison = rel_op predicate_comparator;
predicate_comparator = {pred_num} number | {pred_ident} identifier |

{pred_trans} predicate_transform identifier;
predicate_transform = l_par identifier r_par ;

// Clause declaration
set_description = set_dec identifier inheritance_phrase? l_brace set_body r_brace;
set_body = {cb_to_cbs} set_body_simple delimiter | {cb_to_cbd} set_body_derived delimiter;
set_body_simple = set_unique? identifier set_time_period set_time_offset set_qualifiers?;
set_unique = unique;
set_time_period = in number set_time_division;
set_time_offset = offset number set_time_division;
set_time_division = {td_to_msec} msec | {td_to_sec} sec | {td_to_min} min |

{td_to_hour} hour | {td_to_day} day ;

set_qualifiers = set_qualifier+;
set_qualifier = qual identifier set_qualifier_value;
set_qualifier_value = rel_op identifier;

set_body_derived = super set_time_period? set_time_offset?;

// Machine declaration
machine_description = machine_dec identifier inheritance_phrase? l_brace machine_body r_brace;
machine_body = machine_rule+;

Appendix A. Language Grammar 67

machine_rule = machine_condition machine_result delimiter;
machine_condition = identifier plus machine_transition;
machine_transition = identifier transition_op;
machine_result = identifier ;

// Response declaration
response_description = response_dec identifier inheritance_phrase? l_brace response_body r_brace;
response_body = response_command+;
response_command = {response_event} response_event_set | {response_action}
action identifier delimiter | {response_pair} response_pair;
response_event_set = output identifier delimiter;
response_pair = identifier assignment_op string_literal delimiter;

// Transform declaration
transform_description = transform_dec identifier l_brace transform_body r_brace;
transform_body = {transform_with_num} math_op number |
{transform_with_variable} math_op identifier;

deployment_description = deployment_dec identifier l_brace deployment_body r_brace;
deployment_body = deployment_entry+ ;
deployment_entry = identifier deployment_location deployment_machine deployment_parent delimiter;
deployment_location = colon identifier;
deployment_machine = run identifier;
deployment_parent = transition_op identifier;

Appendix B

TEDL Source Files

This appendix lists the specifications used for the experiments presented in Chapter 5.

B.1 File siena.tedl

This file is used by all of the specifications. It allows the address of the Siena router to be declared

in a single place for all specifications.

siena "tcp:sirius.cs.virginia.edu:23456" ;

B.2 Money Center Bank Failure Scenario

This is the specification for the scenario presented in Section 6.2.1. A state diagram of this scenario

can be seen in Figure 6.2.

include siena.tedl ;

var InitialAlarmThreshold := 10 ;
var AlarmMinimumSafeThreshold := 0 ;
var Success := 1 ;

event MCBNoResponseAlarmEvent { }

set PreviousMinuteUniqueAlarms {
unique MCBNoResponseAlarmEvent in 1 min offset 0 min ;

}

set SuccessfulRepairEvents {
unique MCBRepairSuccessfulEvent in 1 min offset 0 min ;

}

68

Appendix B. TEDL Source Files 69

set Previous10MinAlarms {
MCBNoResponseAlarmEvent in 10 min offset 0 min ;

}

predicate MCBFailureTrigger {
PreviousMinuteUniqueAlarms >= InitialAlarmThreshold ;

}

predicate MCBFailureRepaired {
SuccessfulRepairEvents >= Success ;

}

response ReconfigureChildBranchBanks {
action MCBFailureResponse ;
sienaURI := "tcp:sirius:23456" ;
attributeModelURI :=

"http://vasser.cs.virginia.edu/willow/ANDREA/Resources/bank/bankAttributeModel.xml" ;
backupMCB := "Richmond_MCB_001" ;

}

state Normal {
}

state MCBFailure {
do ReconfigureChildBranchBanks;

}

machine MCBFailureDetector {
Normal + MCBFailureTrigger -> MCBFailure;
MCBFailure + MCBFailureRepaired -> Normal ;

}

deployment MCBFailureDetectorDeployment {
MainMCBFailureDetector : centurion128 run MCBFailureDetector -> none ;

}

B.3 Coordinated Attack Scenario

This is the specification for the Coordinated Attack Scenario presented in Section 6.2.2. A state

diagram of this scenario can be seen in Figure 6.3.

include siena.tedl ;

var UniqueInitialThreshold := 200 ;
var UniqueAdvancedInitialThreshold := 400 ;
var ReconfiguredNumber := 1 ;
var AttackMinimum := 10 ;

event SecurityEvent { }

Appendix B. TEDL Source Files 70

event DoSSecurityEvent extends SecurityEvent { }
event PortscanSecurityEvent extends SecurityEvent { }
event AttackResponseSuccessfulEvent { }
event AttackResponseSuccessfulEvent extends AttackResponseSuccessfulEvent { }
event AdvancedAttackResponseSuccessfulEvent extends AttackResponseSuccessfulEvent { }

set PreviousByteUniqueSecurityEventSet {
unique SecurityEvent in 8 min offset 0 min ;

}

set PreviousByteAttackResponseSuccessEventSet {
AttackResponseSuccessfulEvent in 8 min offset 0 min ;

}

set PreviousByteAdvancedAttackResponseSuccessEventSet {
AdvancedAttackResponseSuccessfulEvent in 8 min offset 0 min ;

}

predicate AttackEndedPredicate {
PreviousByteUniqueSecurityEventSet <= AttackMinimum ;

}

predicate AttackPredicate {
PreviousByteUniqueSecurityEventSet >= UniqueInitialThreshold ;

}

predicate AdvancedAttackPredicate {
PreviousByteUniqueSecurityEventSet >= UniqueAdvancedInitialThreshold ;

}

predicate ReconfiguredPredicate {
PreviousByteAttackResponseSuccessEventSet >= ReconfiguredNumber ;

}

predicate AdvancedReconfiguredPredicate {
PreviousByteAdvancedAttackResponseSuccessEventSet >= ReconfiguredNumber ;

}

response AttackResponse {
action CoordinatedAttackResponse;
sienaURI := "tcp:sirius.cs.virginia.edu:23456" ;
attributeModelURI :=

"http://vasser.cs.virginia.edu/willow/ANDREA/Resources/bank/bankAttributeModel.xml" ;
}

response AdvancedAttackResponse {
action AdvancedCoordinatedAttackResponse;
sienaURI := "tcp:sirius.cs.virginia.edu:23456" ;
attributeModelURI :=

"http://vasser.cs.virginia.edu/willow/ANDREA/Resources/bank/bankAttributeModel.xml" ;
}

Appendix B. TEDL Source Files 71

state NormalState {
}

state UnderAttackState {
do AttackResponse;

}

state UnderAdvancedAttackState {
do AdvancedAttackResponse;

}

state ReconfiguredState {
}

machine CoordinatedAttackDetector {
NormalState + AttackPredicate -> UnderAttackState ;
UnderAttackState + AdvancedAttackPredicate -> UnderAdvancedAttackState ;
UnderAttackState + ReconfiguredPredicate -> ReconfiguredState ;
UnderAdvancedAttackState + AdvancedReconfiguredPredicate -> ReconfiguredState ;
ReconfiguredState + AttackEndedPredicate -> NormalState ;
ReconfiguredState + AdvancedAttackPredicate -> UnderAdvancedAttackState ;

}

B.4 Regional-level Power Failure Scenario

This is the specification for the Regional-level Power Failure Scenario presented in Section 6.2.3.

The state diagrams of the machines used for this scenario can be seen in Figures 6.4 and 6.5.

B.4.1 RegionalFailureDetector

include siena.tedl ;

var InitialAlertThreshold := 250 ;

event FailureAlertEvent { }
event PowerFailureAlertEvent extends FailureAlertEvent{ }
event RegionalPowerFailureAlertEvent extends FailureAlertEvent{ }

set PreviousMinuteUniqueAlerts {
unique PowerFailureAlertEvent in 5 min offset 0 min ;

}

predicate RegionalFailureTrigger {
PreviousMinuteUniqueAlerts >= InitialAlertThreshold ;

}

response RegionalFailureAlert {

Appendix B. TEDL Source Files 72

output RegionalPowerFailureAlertEvent ;
}

state Normal { }

state Failure {
do RegionalFailureAlert ;

}

machine RegionalFailureDetector {
Normal + RegionalFailureTrigger -> Failure ;

}

B.4.2 NationalFailureDetector

include siena.tedl ;

var InitialAlertThreshold := 2 ;

event FailureAlertEvent { }
event PowerFailureAlertEvent extends FailureAlertEvent{ }
event RegionalPowerFailureAlertEvent extends FailureAlertEvent{ }
event NationalPowerFailureAlertEvent extends FailureAlertEvent{ }

set PreviousMinuteAlerts {
RegionalPowerFailureAlertEvent in 5 min offset 0 min ;

}

predicate NationalFailureTrigger {
PreviousMinuteAlerts >= InitialAlertThreshold ;

}

response NationalFailureAlert {
output NationalPowerFailureAlertEvent ;

}

state Normal { }

state Failure {
do NationalFailureAlert ;

}

machine NationalFailureDetector {
Normal + NationalFailureTrigger -> Failure ;

}

Bibliography

[1] L. Alvisi and K. Marzullo. WAFT: Support for Fault-Tolerance in Wide-Area Object Oriented

Systems. In Proceedings of the 2nd Information Survivability Workshop, October 1998.

[2] Anonymous. Argus: An Architecture for Cooperating Intrusion Detection and Mitigation

Applications, 2002. http://www.htc.honeywell.com/projects/argus/.

[3] Anonymous. syslog(3) man page, 2002.

[4] P. Bates. Debugging Heterogeneous Distributed Systems Using Event-Based Models of Be-

havior. ACM Transactions on Computer Systems, 13(1), February 1995.

[5] N. Bhatti, M. Hiltunen, R. Schlichting, and W. Chiu. Coyote: A System for Constructing

Fine-Grain Configurable Communication Services. ACM Transactions on Computer Systems,

16(4), November 1998.

[6] K. Birman. The Process Group Approach to Reliable Distributed Computing. Communica-

tions of the ACM, 36(12), December 1993.

[7] Antonio Carzaniga, David S. Rosenblum, and Alexander L Wolf. Design and Evaluation of a

Wide-Area Event Notification Service. ACM Transactions on Computer Systems, 19(3):332–

383, August 2001.

[8] F. Cristian, B. Dancey, and J. Dehn. Fault-Tolerance in Air Traffic Control Systems. ACM

Transactions on Computer Systems, 14(3):265–286, August 1996.

73

Bibliography 74

[9] M. Crosbie, B. Dole, T. Ellis, I. Krsul, and E. Spafford. IDIOT— Users Guide. The COAST

Project. Technical Report TR-96-050, Dept. of Computer Science, Purdue University, Septem-

ber 1996.

[10] F. Cuppens and R. Ortalo. LAMBDA: A Language to Model a Database for Detection of

Attacks. In Proceedings of the Third International Workshop on Recent Advances in Intrusion

Detection (RAID’2000), 2000.

[11] D. Curry. Intrusion Detection Message Exchange Format: Extensible Markup Language

(XML) Document Type Definition, 2000. http://www.ietf.org/internet-drafts/draft-ietf-idwg-

idmef-xml-10.txt.

[12] R. Deraison. The NASL2 reference manual , 2002. http://www.nessus.org.

[13] S. Eckmann, G. Vigna, and R. Kemmerer. STATL: An Attack Language for State-based

Intrusion Detection. Journal of Computer Security, 10(1/2):71–104, 2002.

[14] M. C. Elder. Fault Tolerance in Critical Information Systems. PhD thesis, University of

Virginia Department of Computer Science, May 2001.

[15] É. Gagnon. SableCC, An Object-Oriented Compiler Framework. Master’s thesis, McGill

University, 1998. http://www.sablecc.org/thesis.pdf.

[16] N. Gehani, H.V. Jagadish, and O. Shumeli. Composite Event Specification in Active

Databases: Model and Implementation. In Proc. 18th Interna-tional Conference on Very

Large Data Bases, 1992.

[17] F. Gérard. Définition et Implémentation d’un Langage d’Analyse d’Audit Trails. PhD thesis,

Facultés Universitaires Notre-Dave de la Paix Namur (Belgium), 1998.

[18] Common Intrusion Detection Framework Working Group. A CISL Tutorial, 2000.

http://www.gidos.org/tutorial.html.

Bibliography 75

[19] B. Gruschke. A New Approach for Event Correlation based on Dependency Graphs. In

Proceedings of the 5th Workshop of the OpenView University Association: OVUA’98, April

1998.

[20] J. Habra, B. Le Charlier, A. Mounji, and I. Mathieu. ASAX: Software architecture and rule-

based language for universal audit trail analysis. In Yves Deswarte et al., editor, Computer

Security - Proceedings of ESORICS 92, volume 648 of LNCS, pages 435–450, Toulouse,

France, November 1992. Springer-Verlag.

[21] R. M. Hall, D.M. Heimbigner, and A.L. Wolf. A Cooperative Approach to Support Software

Deployment Using the Software Dock. In Proceedings of the 1999 International Conference

on Software Engineering, 1999.

[22] M. Hasan. The Management of Data, Events, and Information Presentation for Network

Management. PhD thesis, University of Waterloo, 1996.

[23] M. Henderson. A Framework for Event Correlation. Master’s thesis, University of Queens-

land, 1999. http://elvin.dstc.edu.au/projects/correlation.

[24] J. C. Hill. Management and Adaptation of Large Distributed Applications. Ph.D. Proposal,

University of Virginia, 2002.

[25] J. C. Hill, J. C. Knight, A. M. Crickenberger, and R. Honhart. Publish and Subscribe with

Reply. Unpublished, University of Virginia, 2002.

[26] J.C. Hill and J.C. Knight. Selective notification: Combining forms of decoupled addressing

for internet-scale command and alert dissemination, 2003. Submitted to SRDS2003 - 22nd

Symposium on Reliable Distributed Systems, Florence, Italy (October 2003).

[27] G. Jakobson, M. Weissman, L. Brenner, C. Lafond, and C. Matheus. GRACE: Building

Next Generation Event Correlation Services. In Proceedings of the 2000 IEEE/IFIP Network

Operations and Management Symposium, 2000.

Bibliography 76

[28] Z. T. Kalbarczyk, R. K. Iyer, S. Bagchi, and K. Whisnant. Chameleon: A Software Infrastruc-

ture for Adaptive Fault Tolerance. IEEE Transactions on Parallel and Distributed Systems,

10(6), 1999.

[29] J. C. Knight and M. C. Elder. Fault Tolerant Distributed Information Systems. In International

Symposium on Software Reliability Engineering, November 2001.

[30] J. C. Knight, D. Heimbigner, A. Wolf, A. Carzaniga, J. Hill, P. Devanbu, and M. Gertz. The

Willow Architecture: Comprehensive Survivability for Large-Scale Distributed Applications.

In Proceedings of DSN-2002 The International Conference on Dependable Systems and Net-

works, 2002.

[31] J. C. Knight, E. A. Strunk, and K. J. Sullivan. Towards a Rigorous Definition of Informa-

tion System Survivability. In DARPA Information Survivability Conference and Exposition

(DISCEX 2003), April 2003.

[32] Calvin Ko, M. Ruschitzka, and K. Levitt. Execution Monitoring of Security-critical Programs

in Distributed Systems: A Specification-based Approach. In Proceedings of the 1997 IEEE

Symposium on Security and Privacy, volume ix, pages 175–187, Oakland, CA, May 1997.

IEEE Computer Society Press.

[33] S. Kumar and E. H. Spafford. A Pattern Matching Model for Misuse Intrusion Detection.

In Proceedings of the 17th National Computer Security Conference, pages 11–21, Baltimore

MD, USA, 1994.

[34] S. Kumar and E. H. Spafford. An Application of Pattern Matching in Intrusion Detection.

Technical Report CSD-TR-94-013, The COAST Project, Dept. of Computer Sciences, Purdue

University, West Lafayette, IN, USA, June 1994.

[35] J.-L. Lin, X. S. Wang, and S. Jajodia. Abstraction-Based Misuse Detection: High-Level Spec-

ifications and Adaptable Strategies. In PCSFW: Proceedings of The 11th Computer Security

Foundations Workshop. IEEE Computer Society Press, 1998.

Bibliography 77

[36] U. Lindqvist and P. Porras. Detecting Computer and Network Misuse Through the Production-

based Expert System Toolset (P-BEST). In 1999 IEEE Symposium on Security and Privacy,

pages 146–161, May 1999.

[37] G. Liu, A. K. Mok, and E. Yang. Composite Events for Network Event Correlation. In

Proceedings of IM’99, May 1999.

[38] J. Lobo, R. Bhatia, and S. Naqvi. A Policy Description Language. In Proc. of AAAI 1999,

July 1999.

[39] D. C. Luckham and B. Frasca. Complex Event Processing in Distributed Systems. Technical

Report CSL-TR-98-754, Stanford University, March 1998.

[40] L. Lymberopoulos, E. Lupu, and M. Sloman. An Adaptive Policy Based Management Frame-

work for Differentiated Services Networks. In Proc. 3rd IEEE Workshop on Policies for

Distributed Systems and Networks (Policy 2002), pages 147–158, June 2002.

[41] M. Mansouri-Samani and M. Sloman. GEM: A Generalised Event Monitoring Language for

Distributed Systems. IEEE/IOP/BCS Distributed Systems Engineering Journal, 4(2), June

1997.

[42] S. McCanne, C. Leres, and V. Jacobson. Tcpdump 3.4 Documentation, 1998.

http://www.tcpdump.org/.

[43] L. Me. Gassata, a Genetic Algorithm as an Alternative Tool for Security Audit Trails Analysis.

In Proceedings of the First International Workshop on Recent Advances in Intrusion Detection

(RAID ’98), 1998.

[44] Cédric Michel and Ludovic Mé. ADeLe: an Attack Description Language for Knowledge-

based Intrusion Detection. In Proceedings of the 16th International Conference on Informa-

tion Security (IFIP/SEC 2001), pages 353–365, June 2001.

[45] Sun Microsystems. SunSHIELD Basic Security Module Guide. SunSoft, 2000.

Bibliography 78

[46] A. Mounji. Languages and Tools for Rule-Based Distributed Intrusion Detection. PhD thesis,

Computer Science Institute, University of Namur, Belgium, Sept 1997.

[47] Secure Networks. Custom Attack Scripting Language (CASL), 1998.

http://www.sockpuppet.org/tqbf/casl.html.

[48] P. Ning, S. Jajodia, and X. S. Wang. Abstraction-based intrusion detection in distributed

environments. Information and System Security, 4(4):407–452, 2001.

[49] Y. Papadopoulos. Model-based On-line Monitoring Using a State Sensitive Fault Propagation

Model. In SAFECOMP 02, 21st Int. Conf. on Computer Safety, Reliability and Security, 2002.

[50] D.L. Parnas. Building Reliable Software in BLOWHARD. ACM Software Engineering Notes,

2(3):5–6, April 1977.

[51] V. Paxon. Bro: A System for Detecting Network Intruders in Real-time. In Proceedings of

the 7th USENIX Security Symposium, San Antonio, TX, USA, January 1988.

[52] L. Perrochon, E. Jang, S. Kasriel, and D. C. Luckham. Enlisting Event Patterns for Cyber

Battlefield Awareness. In Proceedings of DISCEX 00, 2000.

[53] J.-P. Pouzol and M. Ducassé. From Declarative Signatures to Misuse IDS. In Proceedings of

the 4th International Symposium, RAID 2001, 2001.

[54] J.-P. Pouzol and M. Ducassé. Formal Specification of Intrusion Signatures and Detection

Rules. In Proceedings of the 15th IEEE Computer Security Foundations Workshop, 2002.

[55] Marcus Ranum. NFR Homepage, 2001. http://www.nfr.com.

[56] M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In Proceedings of USENIX

LISA 99 conference, 1999.

[57] M. Roger and J. Goubault-Larrecq. Log Auditing through Model-Checking. In Proceeding of

the 14th Computer Security Foundations Workshop. IEEE Computer Society Press, 2001.

Bibliography 79

[58] R. Sekar, Y. Cai, and M. Segal. A Specification-Based Approach for Building Survivable

Systems. In Proc. 21st NIST-NCSC National Information Systems Security Conference, pages

338–347, 1998.

[59] R. Sekar, Y. Guang, S. Verma, and T. Shanbhag. A High-performance Network Intrusion De-

tection System. In Proceedings of the 6th ACM conference on Computer and communications

security, pages 8–17, 1999.

[60] R. Sekar and P. Uppuluri. Synthesizing Fast Intrusion Prevention/Detection Systems from

High-Level Specifications. In Proceedings 8th Usenix Security Symposium, pages 63–78,

Washington DC, 1999.

[61] Shoreline. Shorewall, 2003. http://www.shorewall.net/.

[62] Snort. Snort homepage, 2001. http://www.snort.org.

[63] Computing Services Support Solutions. FLEA Overview, 2002.

http://www.compsvcs.com/flea overview.html.

[64] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 2002.

[65] J. Michael Spivey. Specifying a real-time kernel. IEEE Software, 7(5), September/October

1990.

[66] Kevin Sullivan, John C. Knight, Xing Du, and S. Geist. Information Survivability Control Sys-

tems. In Proceedings of the Twenty-first International Conference on Software Engineering.

IEEE Computer Society Press, May 1999.

[67] S. J. Templeton and K. Levitt. A Requires/Provides Model for Computer Attacks. In Proceed-

ings of the New Security Paradigms Workshop 2000, Sept 2000.

[68] E. Turner and R. Zachary. Securenet Pro Software’s SNP-L Scripting System, 2000.

http://www.intrusion.com.

Bibliography 80

[69] Alfonso Valdes and Keith Skinner. An Approach to Sensor Correlation. In Third International

Workshop on Recent Advances in Intrusion Detection (RAID’2000), 2000.

[70] Chenxi Wang. A Security Architecture for Survivability Mechanisms. PhD thesis, University

of Virginia, October 2000.

[71] F. Wang, F. Gong, C. Sargor, K. Goseva-Popstojanova, K. Trivedi, and F. Jou. SITAR: A

Scalable Intrusion Tolerance Architecture for Distributed Server. In Proceedings of the IEEE

2nd SMC Information Assurance Workshop, 2001.

[72] M. M. Williamson. Throttling Viruses: Restricting propagation to defeat malicious mobile

code. In ACSAC 2002 Las Vegas, 2002.

[73] D. Zhu and A. Sethi. SEL, A New Event Pattern Specification Language for Network Man-

agement Event Correlation. Technical Report 2002-01, University of Delaware, 2001.

[74] A. Avižienis, J.-C. Laprie, and B. Randell. Fundamental Concepts of Dependability. In

Information Survivability Workshop 2000, 2000.

	Introduction
	Survivability and the Willow Architecture
	Survivability
	Survivability Control Systems
	The Willow Architecture

	Language Role and Requirements
	Scalability
	Expressivity
	Ease of Use
	Implementability
	Analyzability
	Summary

	Language Design
	Declarative Object-oriented Constructs
	A Model of Time
	Event-Driven Architecture
	Inherited Hierarchy of Event Types
	Dynamic Sets of Events
	Finite State Machines for Detection
	Hierarchy of Finite State Machines
	Reaction
	Machine Event Generation
	Assessment of success and subsequent recovery
	Exception handling
	Transforms
	Summary

	Implementation
	Experimentation and Assessment
	Evaluation Challenges
	Financial Payments System Scenarios
	Summary

	Language Evaluation
	Scalability
	Expressivity
	Ease of Use
	Implementability
	Analyzability
	Additional Limitations

	Related Work
	Fault-tolerant Distributed Systems
	Languages
	Event Correlation

	Conclusion
	Conclusion
	Future Work

	Language Grammar
	TEDL Source Files
	File siena.tedl
	Money Center Bank Failure Scenario
	Coordinated Attack Scenario
	Regional-level Power Failure Scenario

	Bibliography

