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Critical infrastructure applications provide services upon which society depends heavily;
such applications require constant, dependable operation in the face of various failures,
natural disasters, and other disruptive events that might cause a loss of service. These
applications are themselves dependent on distributed information systems for all aspects
of their operation, so survivability of these critical information systems is an important
issue. Survivability is the ability of a system to continue to provide service, though possi-
bly alternate or degraded, in the face of various types of failure and disruption. A funda-
mental mechanism by which survivability can be achieved in critical information systems
is fault tolerance. Much of the literature on fault-tolerant distributed systems focuses on
tolerance of local faults by detecting and masking the effects of those faults. I describe a
direction for fault tolerance in the face of non-local faults—faults whose effects have
nificant non-local impact, sometimes widespread and sometimes catastrophic—
often the effects of these faults cannot be masked using available resources. The g
recognize these non-local faults through detection and analysis, then to provide con
service (possibly alternate or degraded) by reconfiguring the system in response to
faults.

A specification-based approach to fault tolerance, called RAPTOR, is presente
enables systematic structuring of formal specifications for error detection and reco
utilizes a translator to synthesize portions of the implementation from the formal sp
cations, and provides an implementation architecture supporting fault-tolerance acti
The RAPTOR approach consists of three specifications describing the fault-toleran
tem, the errors to be detected, and the actions to take to recover from those erro
RAPTOR System includes a synthesizer, the Fault Tolerance Translator, to ge
implementation of code components from the specifications to perform error dete
and recovery activities. In addition, a novel implementation architecture incorporate
generated code as part of an infrastructure supporting fault tolerance at both the no
system levels. Finally, the solution approach is explored and evaluated through the
case studies and experiments in two critical infrastructure application domains.
iv
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The nation is critically dependent upon a number of application domains—among
banking and finance, electric power generation, telecommunications, transportation 
tries, and military services—for the smooth and proper day-to-day functioning of so
The loss of service in any of these application domains would have serious consequ
thus these domains are referred to as critical infrastructure applications.

Many of these application domains, in turn, have become exceedingly dependen
their information systems to provide their services to society. Recently, much attentio
been given to this nation’s dependence on these critical information systems, focusing on
their fragile nature and vulnerable state [58], [61].

Given the dependence upon these critical information systems, an important pr
that these systems must achieve is survivability. Survivability is one attribute of de
ability; other aspects include reliability, availability, and safety [46]. Informally, surv
ability is the ability of a system to continue to provide service, possibly alternat
degraded, in the face of failures, attacks, or accidents [28]. The failures of concern i
ical information systems can include such events as hardware or software failure, op
error, power failure, environmental disaster, or malicious security attacks [61].

One approach to providing the requirement of survivability is fault tolerance. Faul
erance enables systems to continue to provide service in spite of the presence of
Fault tolerance consists of four phases: error detection, damage assessment, state
tion, and continued service [7]. The first two phases constitute comprehensive error 
tion, and the latter two phases constitute comprehensive error recovery. Survivab
intimately related to and dependent upon both the recognition of certain system faul
affect the provision of service (error detection) and the proper response to these 
faults in order to provide some form of continued service (error recovery). The recog
of the system faults most likely to affect the provision of service involves high-level 
detection: identifying non-local faults, correlating lower-level faults among applica
nodes, detecting widespread failures, and recognizing catastrophic events that cou
nificantly disrupt service to the end user. The proper response to these faults—non
correlated, widespread, or catastrophic—is often a reconfiguration of application n
1
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sometimes requiring coordination. The focus of this research then is a specific form of
fault tolerance, high-level error detection and coordinated error recovery, applied to criti-
cal information systems.

In this work, I present a specification-based approach to fault tolerance, called RAP-
TOR, that enables systematic structuring of formal specifications for error detection and
error recovery, utilizes a translator to synthesize portions of the implementation from the
formal specifications, and provides an implementation architecture supporting fault-toler-
ance activities. A RAPTOR specification of fault tolerance consists of three components: a
system specification, an error detection specification, and an error recovery specification.
System specification uses an object-oriented database to store the descriptions associated
with these large, complex systems, while the error detection and error recovery specifica-
tions rely on the formal specification notation Z to describe fault-tolerance activities. The
RAPTOR System provides a synthesizer, the Fault Tolerance Translator, to generate
implementation components for both high-level error detection and coordinated error
recovery from the formal specifications. Lastly, the implementation architecture incorpo-
rates the generated code at both the node and system levels to achieve fault tolerance. At
the node level, a special type of process—called a reconfigurable process—supports
cation reconfigurations and can be manipulated by generated code components to
low-level failures and to effect recovery responses. At the system level, a supplem
the application network—the Control System—performs high-level error detection
controls error recovery [75], while another architectural supplement—the Coordin
Recovery Layer—coordinates recovery responses across multiple application nod
processes.

The outline of this document is as follows. The next chapter describes the cont
the problem, including relevant characteristics of critical information systems and 
views of two application domains studied in this work. Chapter 3 explores the noti
survivability and outlines a motivating example of survivability from the financial p
ments domain intended to illustrate the scope of the problem and some requiremen
solution. Chapter 4 presents a framework for the solution—fault tolerance—as well 
characteristics of the faults of interest and the activities that must be undertaken to t
those faults. Chapter 5, outlines the solution requirements, discusses a set of pri
that guide the solution approach, and presents an overview of the solution. Cha
describes two preliminary systems constructed for problem investigation and the ob
tions and lessons learned from those experiences. The next three chapters (7 thr
present in detail the aspects of the solution approach: specification of fault tolerance
thesis of implementation, and the implementation architecture. Chapter 10 discuss
approach to evaluation, a set of key research questions to guide evaluation, and the
for experimentation used in evaluation. Then Chapter 11 describes the set of exper
performed in two critical application domains, as well as analysis of those experim
Next, chapter 12 addresses the key research questions posed for evaluation. Thi
closes with a survey of related work and conclusions. To supplement the thesis, a
appendices present the details of the methodology and provide example specificatio
systems from the case study application domains.
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This chapter explores the problem domain in more detail, describing the critical infrastruc-
ture applications and outlining the pertinent characteristics of their critical information
systems. The balance of the chapter focuses on two particular application domains and
their information systems that are the subject of experimentation later in this work.

2.1 Critical Infrastructure Applications

The President’s Commission on Critical Infrastructure Protection (PCCIP) cited a va
of infrastructure application domains upon which society has come to rely for no
daily life, the national defense, and economic security [61]. The Commission addr
five different sectors:

• Information and Communications
• Banking and Finance
• Energy (including Electric Power, Oil, and Natural Gas)
• Physical Distribution (including Transportation)
• Vital Human Services (including Water Supply Systems, Emergency Services

Government Services)
The thrust of the Commission’s report was that the infrastructure applications’ inc

ing dependence upon information systems has introduced new threats and vulnera
including “cyber threats” and system interdependencies. To address the wide spect
threats, the PCCIP made many recommendations, including a program of infrastr
protection through cooperation and information sharing between industry 
government [62].

As appendices to the complete PCCIP report, each of the five sectors produce
mary reports. These sector summaries included background information related to
industry, threats and vulnerabilities, findings, and recommendations [61]. (In additi
these sector reports, detailed descriptions of four of these application domains can 
found elsewhere [39]).
3
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A separate study, conducted by the Defense Science Board (DSB) for the Department
of Defense, focused on the dependence of national security and military defense systems
upon civilian infrastructure systems [58]. The DSB study was concerned with providing
an information warfare defensive capability for protection of the infrastructures. This
study also cited a great deal of interdependence among the infrastructures, as well as a
variety of vulnerabilities in the information infrastructures [58].

Finally, Presidential Decision Directive 63 (PDD-63) instituted a governmental man-
date to address the problem of infrastructure protection [18]. The directive required that an
initial operating capability be achieved by the year 2000. This has prompted the infrastruc-
ture application domains discussed above to institute policies and procedures specific to
their industries in response to the government mandate and growing awareness of this
problem.

A common theme in all of the studies is that these application domains have become
exceedingly dependent upon their information systems for correct and efficient operation.
While these application domains have always been carefully protected against certain
threats and vulnerabilities, the new dependence upon information systems has opened
them up to new sets of concerns and problems, including software failures and malicious
security attacks. The next section examines in more detail the information systems upon
which these application domains have become critically dependent.

2.2 Critical Information Systems

While the application domains of critical information systems differ greatly, there are
common characteristics that are pertinent to the goal of survivable systems. This section
explores those characteristics and discusses their significance.

2.2.1 General Characteristics

The architectures of the information systems upon which critical infrastructure applica-
tions rely are tailored substantially to the services of the industries which they serve and
influenced inevitably by cost-benefit trade-offs. For example, though these systems typi-
cally are distributed over wide geographic areas with large numbers of nodes, the applica-
tion dictates the sites and the distribution of nodes at those sites. Beyond this, however,
there are several other similar characteristics possessed by critical information systems in
many application domains that are pertinent to achieving the requirement of system sur-
vivability:
• Heterogeneous nodes. Despite the large number of nodes in many of these systems, a

small number of nodes are often far more critical to the functionality of the system
than the remainder. This occurs because critical parts of the system’s functional
implemented on just one or a small number of nodes. Heterogeneity extends also
hardware platforms, operating systems, application software, and even author
domains.
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• Composite functionality. The service supplied to an end user is often attained by com-
posing different functionality at different nodes. Thus, entirely different programs run-
ning on different nodes provide different services, and complete service can only be
obtained when several subsystems cooperate and operate in some predefined
sequence. This is quite unlike more familiar applications such as mail servers routing
mail through the Internet.

• Stylized communication structures. In many circumstances, critical infrastructure
applications use dedicated, point-to-point links rather than fully-interconnected net-
works. Reasons for this approach include meeting application performance require-
ments, better security, and no requirement for full connectivity.

• Performance requirements. Some critical information systems, such as the financial
payment system, have soft real-time constraints and throughput requirements (for
checks cleared per second, for example), while others, such as parts of many transpor-
tation systems and many energy control systems, have hard real-time constraints. In
some systems, performance requirements change with time as load or functionality
changes—over a period of hours in financial systems or over a period of da
months in transportation systems, for example.

• Security requirements. Survivability is concerned with malicious attacks as well as
failures caused by hardware and software faults. Given the importance of critical infra-
structure applications, their information systems provide an attractive target to terror-
ists and other hostile parties intent on disrupting and sabotaging daily life. The
deliberate faults exploited by security attacks are of significant concern to a fault-tol-
erance strategy.

• Extensive databases. Infrastructure applications are concerned primarily with data.
Many employ several extensive databases with different databases being located at
different nodes and with most databases handling very large numbers of transactions.

• COTS and legacy components. For reasons of cost and convenience, critical infra-
structure applications utilize COTS (Commercial Off The Shelf) components includ-
ing hardware, operating systems, network protocols, database systems, and
applications. In addition, these systems contain legacy components—custom
software that has evolved with the system over many years.

2.2.2 Future Characteristics

The characteristics listed above are important, and most are likely to remain so in sy
of the future. But the rate of introduction of new technology into these systems an
introduction of entirely new types of application is rapid, and these suggest that fau
erance techniques must take into account the likely characteristics of future syste
well. I hypothesize that the following will be important architectural aspects of fu
infrastructure information systems:
• Larger numbers of nodes. The number of nodes in infrastructure networks is likely to

increase dramatically as enhancements are made in functionality, performance, and
user access. The effect of this on fault tolerance is considerable. In particular, it sug-
gests that error detection and recovery will have to be regional in the sense that differ-
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ent parts of the network will require different recovery strategies. It also suggests that
the implementation effort involved in tolerating faults will increase because there are
likely to be many regions and there will be many different anticipated faults, each of
which might require different treatment.

• Extensive, low-level redundancy. As the cost of hardware continues to drop, more
redundancy will be built into low-level components of systems. Examples include mir-
rored disks and redundant server groups. This will simplify fault tolerance in the case
of low-level faults; however, non-local and catastrophic faults will still require sophis-
ticated detection and recovery strategies, analyzing and correlating error information
and coordinating recovery and reconfiguration of multiple nodes.

• Packet-switched networks. For many reasons, the Internet is becoming the network
technology of choice in the construction of new systems, in spite of its inherent draw-
backs (e.g., poor security and lack of performance guarantees). However, the transition
to packet-switched networks, whether it be the current Internet or virtual-private net-
works implemented over some incarnation of the Internet, seems inevitable and
impacts solution approaches for fault tolerance.

2.3 Example Application Domains

Later in this work, two application domains are the subjects of experimentation and evalu-
ation: (1) banking and the financial payments systems, and (2) electric power generation
and distribution. This section provides brief overviews of these two domains and their
information systems.

2.3.1 Financial Payments System Description

The nation’s payments systems are the core component of the nation’s entire fin
industry. The payments systems are critical for the efficient functioning of the nat
market economy: the daily business operations of every industry rely on the paymen
tems to make purchases and sales, pay salaries, and save and invest monetary res

There are two primary payments systems, wholesale payments and retail pay
This work will focus on the retail payments system. (For a detailed discussion of pay
systems, please refer to a survey of the banking system [39].) Retail payments ty
are small-dollar payments used by individuals and businesses as compensation 
vices rendered or goods supplied; examples include checks, credit card transactio
Automated Clearing House (ACH) payments.

Checks are the most common form of retail payment. Check clearing is the mov
of a check from the depository institution (the bank at which the check is deposited) 
institution on which its funds are drawn, with the funds moving back in the opposite d
tion, and appropriate credits and debits made to the respective accounts.

In a complex banking system with large numbers of participants, it is inefficien
banks to establish so many bilateral relationships and hold many accounts at corr
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dent banks for settling purposes. Every bank, however, must be prepared to meet custom-
ers’ needs to send money to or receive money from any economic entity holdin
account at any other bank in the system. This requirement can be satisfied in an e
manner by a central institution that provides account and settlement services to vi
the entire banking industry. In the United States financial payments system, the c
bank is the Federal Reserve [76].

The Federal Reserve System is composed of 12 regional banks along with the
of Governors in Washington, D.C., 25 branch offices, and 11 regional check proce
centers (see Figure 1 [30] and Table 1). Approximately 9,500 of the nation’s 26,000 
are members of the Federal Reserve [39]. Member banks are required to main
reserve of ten percent of their total assets with their regional reserve bank. Smalle
member banks have access to the Federal Reserve System through a correspond
tionship with a member bank.

Figure 1: The Twelve Federal Reserve Districts [30]
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Upon deposit of a check for clearance, possibly many banks are required to effect the
transfer of funds associated with that check. If the bank at which the check is deposited
hosts the account on which the funds will be drawn, then that bank can settle the transac-
tion itself; this is called an on-us check. All other checks are interbank checks and require
routing through the banking system. Typically, the process for interbank checks works as
follows:

1. When a bank receives a check to deposit from one of its customers, the check is
batched with others for similar destinations (that is if the bank is a Federal Reserve
member bank; if it is not, the checks are passed on to the member bank with which
the depository bank is affiliated).

2. Batches of checks from these banks are deposited with the Federal Reserve
regional bank of which that bank is a member.

Table 1: Federal Reserve Districts and Branch Offices

Federal Reserve Districts Additional Branch Offices

Federal Reserve Bank of Boston (none)

Federal Reserve Bank of New York Buffalo, NY

Federal Reserve Bank of Philadelphia (none)

Federal Reserve Bank of Cleveland Cincinnati, OH
Pittsburgh, PA

Federal Reserve Bank of Richmond Baltimore, MD
Charlotte, NC

Federal Reserve Bank of Atlanta Birmingham, AL
Jacksonville, FL
Miami, FL
Nashville, TN
New Orleans, LA

Federal Reserve Bank of Chicago Detroit, MI

Federal Reserve Bank of St. Louis Little Rock, AK
Louisville, KY
Memphis, TN

Federal Reserve Bank of Minneapolis Helena, MT

Federal Reserve Bank of Kansas City Denver, CO
Oklahoma City, OK
Omaha, NE

Federal Reserve Bank of Dallas El Paso, TX
Houston, TX
San Antonio, TX

Federal Reserve Bank of San Francisco Los Angeles, CA
Portland, OR
Salt Lake City, UT
Seattle, WA
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3. The Federal Reserve routes batches of checks to the appropriate Federal Reserve
regional bank.

4. At the destination regional bank, the checks from the batches are distributed to the
appropriate member banks from where the funds will be drawn.

5. When the paying bank receives a check, it debits the appropriate customer account
at that bank.

6. Similarly, the Federal Reserve regional bank debits the bank assets for the value of
that check and transfers the funds to the original bank.

Information systems at each type of bank are involved at every stage of the check
clearing process. At the top level is the Federal Reserve and its information systems. The
Federal Reserve consolidated its data processing facilities from sites at each of the twelve
regional reserve banks to three data centers and two network operations centers in 1996.
The three data centers are located in East Rutherford, NJ, Dallas, TX, and Richmond, VA,
and the two network operations centers are in Richmond, VA and Chicago, IL. The Fed-
eral Reserve regional banks, not the commercial banks, deal with the processing facilities
to effect funds transfers [39].

The information system at the Federal Reserve responsible for payments services is
called Fedwire. Fedwire is one of the central applications operated by the Federal Reserve
at their primary processing data center, enabling member banks to transfer funds and make
wholesale payments [39]. Member banks access Fedwire and other central applications
using the Federal Reserve’s proprietary software, Fedline Station. The Fedline S
software links directly to Federal Reserve banks over leased lines; services pro
include funds transfer, buying and selling of annuities or treasury bonds, and making
volume, recurring payments via Automated Clearing House [39].

Information systems at commercial banks consist of a variety of applications. For
eral Reserve member banks, there are the systems required to access the Federal
service. For non-member banks, there are networked systems to communicate w
affiliated member bank. In addition to these systems, there are computing centers t
age assets and process transactions, complex database systems to maintain c
accounts, teller machines to provide customer access to services and funds, and so

Examples from the financial payments systems will be presented throughou
work. In addition, a large-scale model of some of these information systems will b
lized for experimentation later in this work.

2.3.2 Electric Power System Description

As the primary source of power throughout this country, the electric power industry
key critical infrastructure application domain. Electric power is generated, transm
and distributed by a complex system of power companies, utilities, brokers, and
chants. The electric power industry is the last major regulated energy industry i
United States, but currently a movement towards deregulation is greatly altering the
ner in which power is sold, distributed, and (to a lesser extent) transmitted [25].
work, however, will focus on the generation of electric power, a key function of the a
cation domain, and on the reliability of the electric power system.
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Despite the deregulation of the power industry, the safety and reliability of the electric
power system is regulated still by NERC, the North American Electric Reliability Coun-
cil. The mission of NERC is “to promote the reliability of the electricity supply for No
America” [57]. As such, the primary activities of NERC are to regulate the reliable op
tion of electric power systems in North America, establish policies for operation,
monitor compliance with those policies.

The electric power grid in North America comprises three interconnections—the 
ern Interconnection, Western Interconnection, and ERCOT Interconnection—as pic
in Figure 2 [57]. Interconnections are major networks of electrical power systems;
limited direct-current connections exist between the Interconnections. The relative 
tion of the Interconnections limits the trading of power from one region of the count
another, but also ensures that power failures in one portion of the country cannot c
outside of that particular Interconnection.

NERC consists of ten regional councils, or control regions, throughout the U
States, Canada, and Baja California Norte (Mexico) [57]. The members of the reg
councils represent all segments of the electric industry, including investor-owned uti
independent power producers, independent power marketers, electric cooperative
various government entities. Regional councils coordinate bulk power policies rega
reliability and service in their region [39]. The ten control regions are presented in Ta

Each control region contains some number of control areas (as shown also in Ta

Figure 2: Electric power grid Interconnections [57]
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Formally, a control area is “an electrical system bounded by tie-line metering and te
try” [57]. What this means is that each control area can monitor and control its powe
eration and alternating-current frequency in order to provide dependable electric po
customers. In addition, control areas balance actual and scheduled interchange of
with other control areas.

The electric power system is dependent on various information system eleme
ensure the proper functioning and reliability of the power grid. At the lowest le
SCADA (Supervisory Control And Data Acquisition) systems provide local level con
of power distribution, such as substations, feeder devices, and other distrib
elements [39]. Some of the functions provided by SCADA systems include remote s
visory control, data acquisition, alarm and event processing, energy accounting, an
management. SCADA systems report both normal activity and anomalous behav
power company information systems.

At the level of power companies and control area information systems, EMS (E
Management Systems) and DMS (Distribution Management Systems) programs p
many different functions related to power generation, transmission, and distribution
Some examples functions performed by EMS programs include power generatio
control, transmission control, network analysis, and contingency planning. DMS
grams typically provide display of real-time power network status, control of cir
breakers, and real-time power flow calculations [39].

A model of these information systems will be explored later in this work.

Table 2: NERC Control Regions

Control Regions Interconnection
Number of 

Control Areas

East Central Area Reliability Coordination Agreement 
(ECAR)

Eastern 17

Electric Reliability Council Of Texas (ERCOT) ERCOT 9

Florida Reliability Coordinating Council (FRCC) Eastern 12

Mid-Atlantic Area Council (MAAC) Eastern 1

Mid-America Interconnected Network (MAIN) Eastern 15

Mid-Continent Area Power Pool (MAPP) Eastern 15

Northeast Power Coordinating Council (NPCC) Eastern 5

Southeastern Electric Reliability Council Eastern 22

Southwest Power Pool Eastern 17

Western System Coordinating Council Western 30
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This chapter elaborates on the definition of survivability, then presents a motivating exam-
ple to help illustrate the issues involved in the provision of survivability for critical infor-
mation systems.

3.1 Definition of Survivability

Survivability with respect to information systems is a relatively new research area. As
such, the precise definition of survivability is still being debated, with a number of defini-
tions proposed [26], [28], [41]. An informal definition of survivability is “the ability [of 
system] to continue to provide service (possibly degraded or different) in a given o
ing environment when various events cause major damage to the system or its op
environment” [41]. This informal definition suggests a number of key points regardin
notion of survivability:
• Survivability is a system property, relating the level of service provided to the lev

damage present in the system and operating environment.
• A system must be capable of providing different levels of service. In a system fr

damage, the level of service should equate to full functionality. Different levels of
vice will correspond to varying subsets of functionality, where some functions th
system performs are obviously more critical than others [41].

• The events that cause major damage can range from failures to attacks to accid
is often difficult to determine immediately the cause of damage, e.g. whether da
is the result of an intentional security attack or random failures [28]. More importa
the effect of the event in terms of damage to the system and operating environm
the amount of damage is central to the level of service that a survivable system c
should provide.
Intuitively then, the notion of survivability involves a system providing full functio

ality when no damage is present and different subsets of “critical” functionality whe
system has been damaged, depending on the type and extent of the damage [41]. T
12
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beyond an intuitive notion of survivability to a precise definition would require a formal
specification of service levels, a formal specification of damage circumstances, and a
function relating the two specifications. These specifications describe a set of survivability
requirements: what must be achieved and not necessarily how a system would go about
achieving those requirements. These formal requirements constitute a precise survivability
specification [41].

It is not the goal of this research, however, to propose another definition of survivabil-
ity. It should be sufficient to have an informal but clear understanding of survivability
requirements for a particular system in order to address the provision of survivability.

3.2 Motivating Example

To illustrate better the problem of achieving survivability in a critical information system,
this section presents a motivating example using a hypothetical financial payments sys-
tem, first describing the system and then exploring its survivability requirements.

3.2.1 System Description

The United States financial payments system, upon which this survivability example is
based, is an exceedingly complex system of systems providing a wide array of services to
end users. Value transfer, the application explored in this example, is only one of those
services (albeit a key one). The system described in this section and the service provided
by this example system are highly simplified for the purposes of illustration. For a detailed
treatment of the U.S. financial payments system please refer to the text by Summers [76].

The architecture of the information system serving the payments system is roughly a
hierarchic, tree-like network as depicted in Figure 3. This model consists of four levels of
banks:
• At the top level of the system is the main processing center of the Federal Reserv

this model includes a single backup.
• The second level of the network consists of the twelve Federal Reserve regional 

which serve commercial bank customers in their respective regions.
• At the third level of the system are the approximately 9,500 commercial banks th

members of the Federal Reserve; these institutions (typically, large banks) ma
accounts with the Federal Reserve and can transfer value with other banks tha
accounts at the Federal Reserve.

• At the lowest layer are the remaining commercial banks that are not members 
Federal Reserve but must be affiliated with member banks in order to effect 
transfer [39].
Processing a retail payment (e.g., an individual check) in this system proceeds ro

as follows. At the lowest level, nodes accept checks for deposit, create an elec
description of the relevant information, and forward the details to the next level in
hierarchy. At the next level, payments from different banks are collected togethe
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batch and the details forwarded to the Federal Reserve system. Periodically throughout the
day the Federal Reserve transfers funds between accounts that it maintains for commercial
banks, thus making provision for funds to service the payments requested in the individual
checks. The funds are then disbursed through the system to the individual user accounts.
Large commercial payments can also originate electronically and are handled individually
as they arrive [38].

Again, this system is a gross simplification of the actual U.S. financial payments sys-
tem. For example, the Federal Reserve’s central processing site is in reality a set 
graphically separate facilities that serve as backup sites for one another. In addition
are commercial clearing houses that perform the same value transfer services as t
eral Reserve; in certain circumstances commercial banks will use these clearing hou
some of their check clearing transactions [39].

3.2.2 Survivability Requirements

Given this hypothetical description of a critical information system, this section now 
siders what must be done in order to achieve survivability.

Again, the informal definition of survivability is “the ability [of a system] to contin
to provide service (possibly degraded or different) in a given operating environment 
various events cause major damage to the system or its operating environment” [
follows then that in order to discuss the survivability requirements of a system, one
be able to describe the following information:

• The levels of service, including alternate and degraded service modes, that a

User Access To Services

Federal Reserve 
Regional Banks

Federal 
Reserve

Federal Reserve 
Member Banks

Other
Commercial

Banks

Figure 3: Example payments system architecture

Transactions
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• The operating environments of concern, i.e., the state of the system and its o

ing environment after various events cause damage
• A mapping from the operating environment to the desired level of service for

environment
Firstly then, one must consider and document all of the events and circumstanc

Table 3: Survivability requirements summary

Damage Level of Service

Multiple local 
banks fail (wide-
area power fail-
ure, wide-area 
environmental 
stress, common-
mode software 
failure).

On failure: Local banks cease service. Regional center starts minimal
user services (e.g., electronic funds transfer for selected major cus-
tomers only) and buffers transactions for local banks.

On repair: Local banks inform regional center as they are repaired and
resume normal service. Regional center transmits transaction back-
log, resumes transaction transmission, and terminates minimal user
services.

Security penetra-
tions of multiple 
local banks asso-
ciated with a sin-
gle commercial 
bank (coordi-
nated security 
attack).

On failure: Each local bank ceases service and disconnects itself from
the network when its local intrusion alarm is raised. Federal
Reserve suspends operations with commercial member bank under
attack and buffers all transactions for that bank.

On repair: Reset all nodes owned by commercial bank under attack.
All nodes change cryptographic keys and switch to aggressive
intrusion detection. System-wide restart of crucial services tempo-
rarily, then resume full service level.

Regional center 
primary site fails 
(power failure, 
hardware failure, 
software failure, 
operational error, 
environmental 
stress).

On failure: Primary site ceases service. Backup site starts service. All
connected nodes informed. All communications—up to Federa
system and down to branches—switched from primary to backup
Appropriate service selection made—full or reduced. Appropriate
switch selection made—instantaneous or delayed.

On repair: Primary site informs all connected nodes that it is repaired.
Primary site databases synchronized. Communications switched
Primary site resumes services in prescribed priority order. Backup
site ceases service.

Regional center 
primary and 
backup sites fail 
(wide-area power 
failure, common-
mode software 
failure, wide-area 
environmental 
stress, terrorism).

On failure: Primary and backup sites cease service. All connected
nodes informed. Previously identified local bank processing cente
designated as temporary replacement for regional facilities. All
services terminated at replacement facility, minimal regional ser-
vice started at replacement facility (e.g., account services for com
mercial and government clients only).

On repair: Regional service restarted by resuming applications in
sequence and resuming service to local banks in sequence with
an application. Minimal service on replacement facility terminated.
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could lead to a major loss or disruption of service. In practice, system engineers and
domain experts would conduct hazard analysis to determine the system vulnerabilities and
threats of concern. The probabilities of the various events could be determined and then
requirements analysis could be conducted.

Secondly, a complete survivability specification must document precisely the pre-
scribed level of system service for all of those circumstances of damage that the system is
required to handle. Hypothetical examples of the possible damage scenarios and their
high-level service responses for the simplified version of the payments system are shown
in Table 3. Included in the table are events ranging from the loss of multiple leaf nodes
(branch banks) to the loss of a critical node and its backup facilities. In Table 3, the first
column describes the damage and parenthetically gives possible causes for the event. In
the second column, prescribed levels of service for the damage circumstance are
described, including services during the damage event and after its repair.

Note that many low-level failures might occur that are not relevant to the survivability
specification because they do not affect the survivability of the system, in that they do not
cause major disruptions in the provision of service. For example, the failure of a single
commercial branch bank is not described in the survivability specification: while the fail-
ure of a local bank might be an inconvenience to customers of that particular bank, that
occurrence will not disrupt service to a significant portion of the nation and thus does not
impact the survivability of the system. (However, the occurrence of low-level failures
must be noted in order to detect widespread events and analyze for correlated events, such
as coordinated security attacks or common-mode software failures.)

For purposes of illustration, one particular damage scenario is examined in more detail
to explore further the survivability requirements in this system. The event used for illustra-
tion is the complete loss of the top-level node of the financial payment system—the
eral Reserve system’s main data center and its backup facilities. Using the h
simplified architecture of the payment system in this example, it is assumed that this
consists of a single processing entity with a single backup that maintains mirror i
databases. The actual Federal Reserve system utilizes a much more sophisticated
strategy, of course. The survivability requirements for this damage scenario are the f
ing:
• Damage: Federal Reserve main processing center and backup failures (common-mode

software failure, propagation of corrupt data, terrorism).
• On failure: Complete suspension of all payment services. Entire financial network

informed (member banks, other financial organizations, foreign banks, government
agencies). Previously identified Federal Reserve regional bank designated as tempo-
rary replacement for Federal Reserve facilities. All services terminated at replacement
facility, minimal payment service started at replacement facility (e.g., payment service
for federal agencies only). All major client nodes redirect communication.

• On repair: Payment system restarted by resuming applications in sequence and resum-
ing service to member banks in sequence within each application. Minimal service on
replacement facility terminated.
For this particular event, it is assumed that all processing ceases immediately. This is

actually the most benign damage circumstance that the system could experience at the top-
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level node. More serious events that could occur include undetected hardware failures in
which data was lost, a software failure that corrupted primary and backup databases, or an
operational failure in which primary data was lost.

The details of the survivability scenario described in this example are possible from
the computer science perspective, as are many others. What the banking community
requires in practice depends upon the many details and priorities that exist within that
domain and are probably far more elaborate than in this example. However, this example
does illustrate some of the issues that have to be considered in the provision of survivabil-
ity.

An important aspect of survivability that is omitted from this example is the need to
cope with multiple sequential damage events. It will be the case in many circumstances
that a situation gets worse over time; the effect to the end user will be continued degrada-
tion of the service that can be provided by the failing system. For example, a terrorist
attack on the physical equipment of a critical information system might proceed in a series
of stages. The attack might be detected initially during an early stage (although it is highly
unlikely that the detection process would be able to diagnose a cause in this case) and the
system would then take appropriate action. Subsequent failures of physical equipment
would have to be dealt with by a system that had already been reconfigured to deal with
the initial attack. This complicates the provision of survivability immensely.
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This chapter proposes the solution framework of fault tolerance for the provision of sur-
vivability in critical information systems. Fault tolerance is justified as the mechanism for
achieving survivability requirements, then the special class of faults that this research tar-
gets is described and the impact this has on the fault-tolerance activities of error detection
and error recovery is explored.

4.1 Solution Framework

The overarching goal in this work is to achieve survivability in critical information sys-
tems. It is important to note that there are often many mechanisms available for accom-
plishing the same goal. From the literature on dependability (survivability being one of the
dimensions of dependability), there are four means for providing dependable computing
systems: fault avoidance, fault tolerance, error removal, and error forecasting [14], [46]:
• Fault avoidance prevents the occurrence of faults by construction.
• Fault tolerance provides service complying with the specified function in spite of 

occurrence of faults.
• Fault removal minimizes the presence of faults by verification.
• Fault forecasting estimates the presence, creation, and consequences of faults by

uation.
This research explores the provision of survivability in critical information syst

using fault tolerance for a number of reasons. Firstly, these systems are too complex
large, and too heterogeneous for it to be possible to prevent the occurrence of al
during construction using fault avoidance; inevitably there will be faults present in 
systems (as in any complex software system). Similarly, fault removal alone cannot
ate the presence of all faults; systems such as these are too complex and large to 
fied completely and correctly. Fault forecasting would be difficult for much the s
reason. Finally, one of the major threats to survivability in these information syste
malicious security attacks. It is practically impossible to anticipate and prevent all o
18
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deliberate faults exploited by malicious security attacks, and therefore these faults cannot
be avoided: they must be tolerated, if at all possible [5]. Fault tolerance is the most prom-
ising mechanism for achieving survivability requirements.

Before proceeding with a discussion of fault tolerance, it is important to understand
the precise definitions of the terms fault, error, and failure [46]:
• A failure refers to an occurrence of the delivered service deviating from the spe

or expected service.
• An error is the cause of a failure: an error refers to the erroneous part of the s

state that leads to the failure.
• A fault is the cause of an error: the occurrence of a fault in the system manifests

as an error.
Given these definitions and fault tolerance as a solution framework, Anderson an

identified four phases to fault tolerance: error detection, damage assessment, state 
tion (error recovery), and continued service [7]:
• Error detection determines the presence of a fault by detecting an erroneous sta

component of the system.
• Damage assessment determines the extent of any damage to the system state ca

by the component failure and confines that damage to the extent possible.
• State restoration achieves recovery from the error by restoring the system to a w

defined and error-free state.
• Continued service for the system, in spite of the fault that has been identified, me

that either the fault must be repaired or the system must operate in some configu
where the effects of the fault no longer lead to an erroneous state.
As mentioned previously, the first two phases of fault tolerance constitute compr

sive error detection and the latter two phases constitute error recovery. Given fault
ance as a solution framework, it is important to consider in more detail the type
characteristics of the faults with which this research is concerned, as well as the 
this will have on the fault-tolerance activities of error detection and error recovery.

4.2 Faults and Fault Tolerance

Because the goal of this work is to enhance survivability, this research is concerne
the need to tolerate faults that directly compromise the survivability of a critical info
tion system. In general, these types of faults are those that affect significant fraction
network application, faults referred to as non-local. Thus, for example, a widesprea
power failure in which many application nodes are forced to terminate operation is a
local fault. The complete failure of a single node upon which many other nodes de
would also have a significant non-local effect and could be considered a non-local fa

Non-local faults have the important characteristic that they are usually non-
maskable—that is, their effects are so extensive that normal system service cannot be con-
tinued with the resources that remain, even if the system includes extensive
redundancy [9]. This work is not concerned with faults at the level of a single hardware or
software component, referred to as local faults. It is assumed that whenever possible local
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faults are dealt with by some mechanism that masks their effects. Thus synchronized, rep-
licated hardware components are assumed so that losses of single processors, storage
devices, communications links, and so on are masked by hardware redundancy [14]. If
necessary, more sophisticated techniques such as virtual synchrony can be used to ensure
that the application is unaffected by local failures [10].

Non-local faults might affect a related subset of nodes in a network application leading
to the idea that they can be regional. Thus, a fault affecting all the nodes in the banking
system in a given city or state would be regional, and an appropriate response to such a
fault might depend on the specific region that was affected. Similarly, a fault affecting all
the nodes within a particular administrative domain (independent of geographic location)
would be considered regional. It is also possible that the elements of a non-local fault
would manifest themselves over a period of time rather than instantly. This leads to the
notion of cascading or sequential faults in which application components fail in some
sequence over a possibly protracted period of time. Detecting and diagnosing such a situa-
tion correctly is a significant challenge. Handling these faults is also complicated because
the proper response will depend on the system state at the time of the fault.

As mentioned previously, tolerating a fault requires first that the effects of the fault be
detected—error detection—and second that the effects of the fault be dealt with—error
recovery [37]. Both error detection and error recovery have to be defined precisely
fault-tolerant system is to be built and operated correctly, and several issues arise i
ing with these activities.

4.2.1 Error Detection

Error detection for a non-local fault requires the collection of information about the 
of the application and analysis of that information. Analysis is required to permit a co
sion about the underlying fault to be made given a spectrum of specific information.

A key problem dealing with error detection in large distributed systems is defi
precisely what circumstances are of interest. Events will occur on a regular basis th
associated with faults that are either masked or of no interest. These events have to
tered and incorporated accurately in the detection of errors of interest. The possib
false positives, false negatives, and erroneous diagnosis is considerable. In a bank
tem, for example, it is likely that local power failures are masked routinely, yet if a s
of local failures occurs in a specific sequence, they could be part of a widespread, c
ing failure that needs to be addressed either regionally or nationally.

4.2.2 Error Recovery

Error recovery for non-local faults requires that the application be reconfigured follo
error detection. The goal of reconfiguration is to effect changes such as terminating
ifying, or moving certain running applications, and starting new applications. In a ban
application, for example, it might be necessary to terminate low priority services, su
on-line customer enquiry, and modify other services, such as limiting electronic f



CHAPTER 4. SOLUTION FRAMEWORK: FAULT TOLERANCE 21

tions

re that

sure

asure,
ign to
ified

ialized
odes,

 novel

plica-
 it is

 faults
ata.

very:
are

prior to
nd dis-
ystem
, there

edun-
plica-
at is
the
ivabil-
transfers to corporate customers.
Unless provision for reconfiguration is made in the design of the application, reconfig-

uration will be ad hoc at best and impossible at worst [28]. The provision for reconfigura-
tion in the application design has to be quite extensive in practice for three reasons:
• The number of fault types is likely to be large and each might require different ac

following error detection.
• It might be necessary to complete reconfiguration in bounded time so as to ensu

the replacement service is available in a timely manner.
• Reconfiguration of multiple application nodes might require coordination to en

consistent application behavior.
• Reconfiguration itself must not introduce new security vulnerabilities.

Just what is required to permit application reconfiguration depends, in large me
on the design of the application itself. Provision must be made in the application des
permit the service termination, initiation, and modification that is required by the spec
fault-tolerant behavior.

4.3 Solution Strategy

This research focuses on a special class of faults—non-local—that requires a spec
form of fault tolerance. Because non-local faults affect a large subset of application n
this impacts the activities of error detection and error recovery and necessitates
solution strategies for both.

Error detection for non-local faults requires extensive support for analysis of ap
tion state in order to recognize regional, cascading, and sequential faults. While
assumed that local faults can be detected and handled, detection of non-local
involves collection of low-level error detection data and critical examination of that d
The strategy for high-level error detection must provide for these capabilities.

Error recovery for non-local faults requires a non-masking approach to reco
application reconfiguration. In traditional fault-tolerant systems, faults typically 
masked: following restoration of the system state, continued service is the same as 
the fault [32]. (Please see the chapter on Related Work for a detailed presentation a
cussion.) Masking, however, depends on there being sufficient redundancy in the s
to continue to provide the same operation despite the effects of faults. In any system
are inevitably going to exist faults for which the system has not provided enough r
dancy to mask them [14]. In order to tolerate faults in a non-masking manner, an ap
tion must reconfigure the remaining resources to provide continued service th
different from that provided prior to the fault. Application reconfiguration provides 
mechanism by which alternate service can be provided by the system, and thus surv
ity can be achieved in those circumstances where the faults could not be masked.
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Overview of the Solution Approach
Given the solution framework of fault tolerance, the focus on non-local faults, and the
high-level strategy presented in the previous chapter, this chapter examines the require-
ments for a solution, explores principles that will dictate the shape of the solution, and pre-
sents an overview of the solution approach.

5.1 Solution Requirements

The characteristics of critical information systems described in Chapter 2 define the solu-
tion requirements used to evaluate this research:
• Scale. Perhaps the most important and defining element of these critical information

systems that must be accommodated is scale. Current information systems are already
large, wide-area, distributed systems, and the scale of future systems is likely to
increase further. The shear size in terms of number of nodes and links, hardware and
software elements, and different modes of functionality drives many elements of a
solution approach. The fault-tolerance solution should accommodate systems on the
order of thousands of computing nodes, as well as their relevant faults and responses.

• Heterogeneity. Another key characteristic that has great bearing on the solution
approach is the heterogeneity present in critical information systems. The wide range
of platforms, modes of functionality, services provided, and component criticality
makes the task of understanding and describing the system much more difficult. In
addition, the faults and responses specific to each type of node must be accommodated
by the fault-tolerance methodology.

• Complexity. The complexity of critical information systems derives in part from the
scale and heterogeneity of these systems, but it is also inherent in the architecture and
functionality of the systems themselves. The system complexity translates into com-
plexity in the fault-tolerance activities of error detection and error recovery. Reconfig-
uration of a complex system relies on precise description of that system, the faults of
interest, and the actions that must be performed in response to faults.
22
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• Performance. Given that most of these applications have performance requirements,
the fault-tolerance solution must respect and achieve those goals as much as possible
given the circumstances of the failure. This means in general that fault tolerance will
have to be achieved within time bounds dictated by the application. In addition, per-
formance-related aspects of errors, such as the timing of faults and detection time,
must be accommodated.
It is important to note that this research does not address specific issues arising from

COTS and legacy software, complex databases, and security concerns. The solution
approach should not preclude any efforts to handle these concerns, but these dimensions
of the solution requirements are not the focus of this work. In addition, while support for
varying communications structures (both circuit-switched and packet-switched networks)
is important, the solution approach should operate at a higher-level of abstraction, inde-
pendent of underlying communications mechanisms.

5.2 Solution Principles

The pertinent characteristics of the application domains, the solution requirements, and
the high-level solution strategy of application reconfiguration to tolerate non-local, cata-
strophic faults suggest three solution principles to guide this research:

• The use of formal specification
• Synthesis of implementation
• An implementation architecture enabling fault-tolerance activities
These solution principles are explored in the following subsections.

5.2.1 The Use of Formal Specification

The first principle of a solution approach for building fault-tolerant critical informat
systems is the use of formal specification. The use of formal specification derives fro
need to address the solution requirements presented previously. The size of curre
expected critical information systems, the variety and sophistication of the services
provide, and the complexity of the survivability requirements mean that an approa
fault tolerance that depends upon traditional development techniques is infeasible
but the simplest cases. The likelihood is that future systems will involve tens of thou
of nodes, have to tolerate dozens, perhaps hundreds, of different types of fault, and 
support applications that provide very elaborate user services. Programming error 
tion and recovery in such systems using conventional methods is quite impractical.

There are many advantages to working with specifications as opposed to implem
tions:
• First and foremost is the ability to specify solutions at a high level, thereby abstra

away to some extent the details of working with so many nodes, of so many diff
types, that provide so many different services. An implementation-based so
would require an inordinate amount of effort, dealing with such a wide variet
nodes, applications, errors, and recovery strategies at a lower level of detail.
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• Secondly, specifications provide the ability to reason about and analyze solution
higher level of abstraction [82]. Depending on the notation and degree of form
various forms of syntactic and semantic analysis are possible with specifications
viding the opportunity to ensure various dimensions of correctness be
implementation [27].

• Finally, if an implementation can be synthesized from a specification, this would a
fault-tolerance strategies to be investigated and changed relatively quickly: diff
fault-tolerance schemes and designs can be rapidly prototyped and explored u
specification-based approach.
As discussed in Chapter 4, to make a critical information system fault tolerant,

necessary to introduce mechanisms to recognize the errors of interest, maintain stat
mation about the system to the extent that it affects error detection and error recove
define the required error recovery responses from all relevant system states. Each o
activities should be specified clearly and correctly to facilitate design and implement
An important activity early in this research was precise definition of key specification
ments, followed by determination of appropriate notations for each of these sub-spe
tions, as well as integration of these specification components. The appropriate f
notations enable the requirements to be expressed naturally and facilitate various fo
syntactic and semantic analysis.

5.2.2 Synthesis of Implementation

The second desirable principle of a solution approach is that as much of the implem
tion as possible be generated from the specification. Again, synthesis of implemen
derives from the need to address the solution requirements, as well as being relate
use of formal specification. There are a number of advantages to being able to syn
implementation from formal specification:
• Firstly, synthesis allows the system builder to leverage off of the formalism o

specification notations, thus amortizing the cost and effort involved in the deve
ment of a formal specification [82].

• In addition, in terms of validation and verification effort, time and resources ca
spent on validating and verifying the specification and the synthesis mechani
rather than every version of the system implementation (where the cost of chang
ther along the software life cycle is more expensive).

• Finally, as mentioned previously, synthesis of implementations from formal spec
tion enables rapid prototyping of alternatives in fault-tolerance strategies and de
Rapid prototyping of synthesized implementations from formal specifications—w
out incurring much of the cost of development from scratch for every fault-toler
design—facilitates a risk-driven, spiral-model development process.
While as much of the implementation as possible should be generated from the 

specifications, there will be limitations on how much code can be generated, of c
Specification typically is concerned more with “what” needs to be done than “how” s
thing is to be done, thus there is inevitably a gap that must be resolved. Given th
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research will not be solving the general code generation problem, it will not be possible to
generate the entire implementation from a high-level, formal specification.

Synthesis involves a trade-off as well: the construction of a translator to generate
implementation components has the benefits mentioned above, but it forces some lower-
level design decisions to be resolved in order to fix the target implementation structure.
Given that the target for this translator is not general-purpose code though—the targ
set of fault tolerance-specific implementation components—this design trade-off i
necessarily a major issue.

The implementation components to be generated are code to help perform fault
ance. In terms of error detection, the various sequences of events that constitute hig
errors are being specified, so the translator should be able to generate code to effec
nition of those occurrences. In terms of error recovery, the specification outlines th
ticular activities an application must perform upon occurrence of system errors, s
translator should be able to generate code to prompt the application to respond or
figure under the appropriate circumstances, as well as coordinate that recovery.

5.2.3 An Implementation Architecture Enabling Fault-Tolerance Activities

The third and final solution principle is that the implementation architecture suppor
activities of fault tolerance addressed in this work: high-level error detection and co
nated error recovery. This solution principle derives from the solution strategy
addresses the requirements in the implementation architecture. There are also two
ent levels of the implementation architecture that must be addressed, the node lev
the system level. This subsection explores both activities at both levels of the implem
tion architecture.

Node-Level Architecture

The most obvious architectural requirement that must met at each node is that th
architecture support the provision of the various alternate or degraded service mode
ciated with each fault. The software that implements alternate service is provided by
cation or domain experts, and the details (functionality, performance, design, etc.) 
software are not part of the approach being outlined here. In practice, the organiza
the software that provides alternate or degraded service is not an issue either. The 
alternate modes could be implemented as cases within a single process or as sepa
cesses, as the designer chooses.

In order to support reconfiguration to an alternate service for error recovery at
node though, the node architecture must provide a certain set of capabilities, or se
These critical services provide the basic support needed for reconfiguration, and th
available with every process. Given a process that provides these critical service
fault-tolerance specification need not be concerned with the idiosyncrasies of indiv
process functionality. As an example of critical service, consider the obvious implem
tion requirement that some processes in a system undergoing reconfiguration fo
recovery will need to be started and others stopped. Thus, the critical services tha
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processes must provide are the ability to be started and the ability to be stopped, both in a
manner that safely preserves the process state in the context of the application. Neither of
these actions is trivial, in fact, and neither can be left entirely to the basic services of the
operating system.

Another critical service that each node must provide to support reconfiguration is the
ability to switch to an alternate mode of functionality, as specified by some parameter.
Often it will not be required that a process terminate completely and a new one start: the
same process can be designed to provide different modes of functionality and to support
switches between modes.

Processes that provide these critical services enabling recovery are called reconfig-
urable processes. An issue of concern with these reconfigurable processes is determining
the list of critical services that must be supported to enable reconfiguration. However, the
focus of the research is not concerned with any specific capability, such as checkpointing.
For example, reconfigurable processes should conceptually be capable of and prepared to
establish and discard recovery points, but this work will not demonstrate that particular
capability. Rather, this research will focus on other more general capabilities required for
reconfiguration. The critical services might be conceptually simple in many cases but this
simplicity is deceptive. Many application processes will include extensive functionality,
but this functionality does not necessarily accommodate services such as process suspen-
sion. Integration of critical service functionality with standard application functionality in
the reconfigurable process is also an issue.

In addition to the reconfigurable processes in the node architecture, there must be sup-
port for two interfaces: (1) to provide error detection information from the application, and
(2) to control the application and effect recovery. These interfaces to the application and
reconfigurable processes are explored as part of the node implementation architecture sup-
porting fault tolerance.

System-Level Architecture

The critical services provided by a reconfigurable process are implemented by the process
itself in the sense that the service is accessed by a remote procedure call (or similar), and a
mechanism internal to the process implements the service. The exact way in which the
implementation is provided will be system specific.

There will be certain error recovery activities, however, that require actions external to
the reconfigurable process(es). For example, when reconfiguring in response to some sys-
tem error, it might be required that two processes switch to their alternate services at the
same time. Another case occurs in coordinated checkpointing where the establishment of a
recovery line requires multiple processes to checkpoint in synchrony.

These services point to a set of capabilities required to coordinate and control the error
recovery activities of multiple reconfigurable processes, and thus these cannot be provided
as critical services within any single process. To provide these capabilities, a system-level
architectural component called the Coordinated Recovery Layer is introduced.

Again, determination of the error recovery services to be provided by the Coordinated
Recovery Layer is an issue in this work, as well as mechanisms for implementing those
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services. The Coordinated Recovery Layer focuses on general coordination capabilities,
such as inter-process synchronization and communication. While it is envisioned that the
Coordinated Recovery Layer will be an ideal place to implement functionality supporting
coordinated checkpointing and recovery lines, specific activities such as that are a major
area of study in their right and not the focus of this work.

In addition to the system-level construct for coordinating error recovery, a supplement
to the application in the system architecture is required to perform high-level error detec-
tion. This architectural supplement for error detection is called the Control System,
because this system effects control on the application through sensing of state and actuat-
ing of responses (much like a classical process control system). The introduction of a con-
trol system into critical applications has been studied previously [75]. This dissertation
focuses specifically on the issues involved in the use of a control system construct to per-
form high-level error detection and effect recovery.

5.3 Solution Overview

Many results have been achieved in survivability and related fields (as will be presented
later in the chapter on related work). However, existing technology does not address the
key characteristics of critical information systems and the focus on relevant fault types
that were discussed previously. This section describes a solution direction for fault toler-
ance in response to non-local, catastrophic faults in critical information systems. The solu-
tion direction is based on and extends previous work in the areas of fault tolerance, formal
specification techniques, and reconfigurable distributed systems.

As mentioned previously, this research does not address detection of and recovery
from local faults that affect a single hardware or software component. Error detection for
local faults is a rich research area in its own right, and it is assumed that existing mecha-
nisms will be in place to perform low-level error detection (e.g., intrusion detection sys-
tems for local security attacks). Similarly, it is assumed that recovery from all local faults
are dealt with by some mechanism that masks their effects, as discussed in Section 4.2.

This research addresses non-local, catastrophic faults through application reconfigura-
tion. Figure 4 presents an overview of the solution approach, called the RAPTOR (Recon-
figuring Application Programs To Optimize Recovery) System for fault tolerance. In order
to achieve this type of fault tolerance in critical information systems, the RAPTOR meth-
odology is a specification-based approach: a formal specification defines the fault-toler-
ance requirements, including descriptions of the fault-tolerant system, the faults with
which the system is concerned, and the application responses and reconfigurations in
response to those faults. The use of a formal specification enables a synthesizer, the Fault
Tolerance Translator, to generate portions of the implementation effecting high-level error
detection and error recovery. In addition to the specifications, input to the translator
includes a special type of process—a reconfigurable process—that supports the a
tion reconfigurations described in the specification. The implementation architecture
sists of these reconfigurable processes, the synthesized code produced by the trans
augment to the application—the Control System—that performs high-level error dete
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on are
and directs error recovery, and a support infrastructure—the Coordinated Rec
Layer—that provides services to the reconfigurable processes.

The major solution components and issues relating to each aspect of the soluti
described in subsequent dissertation chapters:
• Specification of Fault Tolerance. Chapter 7 explores the issues involved in specifying

fault-tolerance requirements. The RAPTOR specification consists of three components
to describe the different aspects of the problem: the system, high-level error detection,
and error recovery activities. The notations utilized for each specification component
and the structure of the various specifications are presented in this chapter.

• Synthesis of Fault-Tolerance Implementation Components. Chapter 8 explores the
issues involved in synthesis of implementation components to effect high-level error
detection and error recovery. The RAPTOR System provides a synthesizer to process
the formal specification notations, the Fault Tolerance Translator. The specific imple-
mentation components that are generated and the process by which the translator
achieves synthesis are presented in this chapter.

• Implementation: Node and System Architecture. Chapter 9 explores the issues
involved in an implementation architecture to support error detection and error recov-
ery. At the node level, each node must be constructed such that it supports reconfigura-
tion and incorporates the generated code to effect reconfiguration. At the system level,
a control system to perform high-level error detection augments the application archi-
tecture, and coordination and control services are provided to the reconfiguring nodes
by a global entity called the Coordinated Recovery Layer.
In addition to these chapters presenting the various aspects of the solution in more

detail, the next chapter (6) explores two systems built for problem investigation. These
preliminary solution approaches helped clarify the requirements of a solution and refined
the RAPTOR solution approach presented in the subsequent chapters.

Figure 4: Solution overview—RAPTOR System
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Problem Analysis
Given the solution requirements, principles, and overview presented in the previous chap-
ter, further analysis and investigation of the problem was required to refine the solution
approach. This chapter discusses those efforts and the lessons learned, and the resulting
solution attempts are presented in the appendices.

Throughout this chapter it is important to keep in mind that the solution approaches
presented are preliminary attempts, and not a part of the RAPTOR System that is the over-
all solution approach presented in this work. These preliminary attempts, referred to for
simplicity as STEP and PARS, investigate different aspects of the overall problem and
helped to refine the ideas for the final solution approach, but both are distinct from the
RAPTOR approach to fault tolerance (described subsequently in chapters seven through
nine). These preliminary approaches are included in order to demonstrate and investigate
issues in the problem of specifying and achieving fault tolerance.

6.1 Example System: 3-Node Banking Application and STEP

Because the solution strategy focuses on formal specification as the basis for the approach
to fault tolerance, the first set of investigative activities explored what needs to be speci-
fied and what notations could be used for those specification components. To illustrate
some of the issues that arise in specifying fault tolerance, consider an extremely simple
example that is part of a hypothetical financial network application.

6.1.1 Example Application

The system architecture, shown in Figure 5, consists of a 3-node network with one money-
center bank (N1), two branch banks (N2 and N3), and three databases (DB), one attached
to each node. There are two full-bandwidth communications links (L1 and L2) and two
low-bandwidth backup links (l1 and l2). There is also a low-bandwidth backup link
29
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between the two branch banks (l3). The intended functionality of this system is to imple-
ment a small-scale financial payments system, effecting value transfer between customer
accounts. In a system free of faults, the branch banks provide customer access (check
deposit facilities) and local information storage (customer accounts), while the money-
center bank provides branch bank asset management and routing capabilities for check
clearance.

The faults with which one would be concerned in a system of this type would be the
loss of a computing node’s hardware, the loss of an application program on a nod
loss of a database, the loss of a communications link, and so on. For each of th
would be necessary first to define the fault and then, for each fault, document wh
system is to do if the fault arises. In this system, for example, losing the money-c
bank would severely limit customer service since a branch bank would have to tak
major services using link l3 for communication. Loss of either of the full-bandwidth com
munications links would also drastically cut service since communication would ha
use a low-bandwidth link.

To implement a fault-tolerant system, the application must be constructed with f
ties to tolerate the effects of the particular faults of concern. In the system architectu
three low-bandwidth communications links provide alternate service in case of failur
the full-bandwidth communication links (L1 and L2) or the primary routing node (N1).
The applications themselves must also provide alternate services in case of certain
For example, while the primary functionality of the money-center bank N1 is to route
deposited checks for clearance and maintain the balances of each branch bank, ad
services that can be provided include buffering of check requests for a failed branch
or acceptance of checks for deposit if both branch banks can no longer provide th
vice. Similarly, the branch banks can be constructed to provide alternate service m
such as the buffering of check requests in case of failure at the money-center ba
buffering of low-priority check requests in case of failure of the full-bandwidth comm
cations link.

As mentioned previously, dealing with particular faults is only a small part of the p
lem. In practice, it is necessary to deal with fault sequences, e.g., the loss of a communica

N1

N2 N3

L1 L2

l1 l2

l3

Figure 5: Example fault-tolerant distributed system

DB

DB DB
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tions link when the system has already experienced the loss of a node. In a large
infrastructure network application, there are so many components that faults arising in
sequence are a distinct possibility merely on stochastic grounds. However, cascading fail-
ures, sequenced terrorist attacks, or coordinated security attacks all yield fault sequences
with faults that are potentially related, e.g., all links from a node are lost in some sequence
or all the nodes in a geographic region are lost.

6.1.2 Preliminary Specification Approach: STEP

Precise specification of fault tolerance in a critical information system is a complex under-
taking, requiring description of both the faults that must be handled and the reconfigura-
tions that the application performs in response to those faults. A specification of the
application reconfigurations first requires that the specification capture the relevant char-
acteristics of the application itself, including two primary components:

• The topology of the system and a description of the architecture and platform
• An abstraction of the services each node supplies to the system and the map

these services (including degraded and alternate services) to the platform
These two elements of the system description are necessary because a specific

reconfiguration requires description of an existing configuration and the changes t
configuration in those terms. The faults and responses comprise a portion of the fa
erance specification describing the necessary state changes from any acceptable
configuration to any other in terms of topology, functionality, and assignment of ser
to nodes in cases of the various faults of concern.

The various circumstances of interest can be described using a finite-state m
where each state is associated with a particular fault sequence. A finite-state machin
obvious abstraction for the states associated with errors, because errors (more pr
erroneous states) correspond to system states of interest. State changes caused 
become inputs to the finite-state machine causing transitions; thus, sets of tran
describe the fault sequences leading to each erroneous state. Finite-state machin
provide a systematic and familiar structuring mechanism for system state, fault sequ
and responses.

In addition to enumerating the states and associated state transitions associat
the faults that can arise, it is necessary to specify what has to be done on entry to ea
in order to continue to provide service. Thus, application-related actions have 
defined for each state transition, and the actions have to be tailored to both the initia
and the final state of the transition. Wide-area power failure has to be handled very 
ently if it occurs in a benign state versus when it occurs following a traumatic loss of
puting equipment perhaps associated with a terrorist attack.

A preliminary specification approach was designed in order to explore a specific
of fault tolerance for this example system. The approach, called STEP (Specificat
the Three-node Example Program), consists of three components, based on the pr
discussion:
• System Architecture Specification (SAS). This specification component describes the

system topology in terms of nodes and links.
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• Service-Platform Mapping Specification (SPMS). This specification component
relates the names of programs to the node names described in the SAS. The program
descriptions in the SPMS include the services that each program provides, including
alternate and degraded service modes.

• Error Recovery Specification (ERS). This specification component characterizes the
faults of interest and their requisite responses in the form of a finite-state machine.
The ERS uses the SAS and the SPMS to describe the different system configurations,

including active service modes, as states in the finite-state machine. Transitions are enu-
merated with faults and show the state transitions for each fault from every relevant state.
The actions associated with any given transition could be extensive because each action is
essentially a high-level program that implements the error recovery component of the full
system survivability specification. The full specification enumerates the different states
(system environments) that the system can be in, including the errors that must be detected
and handled. The ERS takes this list of system states and describes the action
reconfigurations—that must be performed when the system transitions from one en
ment to another.

6.1.3 Example STEP Specification

For this simple 3-node example, a prototype fault-tolerance specification was const
using the STEP approach to explore some of the issues involved in describing a fa
erant system. The specification can be found in Appendix A.

The first part of the specification is a description of the system itself. Two aspec
the application are described: the system architecture and the functionality (or ser
provided by the system components. The System Architecture Specification consis
listing of nodes (including attached databases) and connections (Section A.1). The
tionality of each system component in the Service-Platform Mapping Specification
listing of different services provided by each component of the system architec
including alternate services available in case of various system failures (Section
These two specifications providing system description are rudimentary but provide a
for specification of the various system states that arise in the event of failures.

In the STEP System Architecture Specification for this simple 3-node example, 
are eleven components that can fail: the three nodes, three databases, and fiv
between nodes. Failures in any of these components would lead to faults at the 
level; those faults would affect the service(s) provided by the particular compone
total, there are twenty-four services, some alternate or degraded, described in the
Service-Platform Mapping Specification. The money-center bank node provides five
sible services (including its database service), each branch bank node performs se
ferent services, and each link provides a single transmission service. In the comp
operational initial state, there are ten services among the three nodes, their databa
two primary links necessary to effect the fully-functional financial payments system.

The second part of the specification, the STEP Error Recovery Specification
description of the finite-state machine (Section A.3) and associated trans
(Section A.4) for the system and the fault sequences that are of concern. The initial s
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the finite-state machine consists of a list of the services that are operational in the case of a
fully functional application. Transitions from this initial state are caused by faults, which
manifest themselves as failures in one or more of the operational services. A high-level
description of the fault that causes each transition is contained in the state description. In
the finite-state machine transition section, a list of response activities is associated with
each transition to attempt reconfiguration for the continued provision of service, as well as
a list of activities to be undertaken upon repair of the fault.

In the example system, from the initial state there are eight possible faults causing
transitions to other states. From those eight single-fault states, there are seventy-nine pos-
sible states should another fault occur. The finite-state machine in Appendix A only
describes two sequential faults for this system, but it describes all possible two-fault
sequences. The complete finite-state machine enumerating all the states associated with
the various possible fault sequences would have hundreds of states, even for a simple
application system such as this.

6.1.4 Discussion

In order to help evaluate the STEP specifications for this example system, a model imple-
mentation was constructed using the specifications described above. The specification
provided a systematic structuring mechanism for the fault-tolerance requirements of the
example application when constructing implementation of this example system.

The difficulties in achieving survivability however, even in a system as simple as this
example application, are clear. The first challenge lies in describing the relevant parts of
the application, the system architecture and system functionality. Then, both the initial
configuration and the changes to the system configuration in terms of that system descrip-
tion must be specified. The problem with state explosion and the impracticality of attempt-
ing to describe the finite-state machine for a large network application is immediately
obvious from the complications in this trivial system.

As seen in the motivating example, even for a simple system a specification of fault
tolerance can become very large and unwieldy. Three observations can be made to deal
with the specification size and state explosion problems:
• The specification structure must consist of multiple sub-specifications for descr

the various components of the fault-tolerance solution, e.g. the relevant system c
teristics and the finite-state machine. These sub-specifications must be integra
describe the overall fault-tolerance solution, but the use of multiple sub-specifica
enables different notations to be utilized and optimized for the particular aspect 
solution being addressed.

• The specification notation must be enhanced to accommodate larger numb
nodes. One way of achieving this would be to introduce and integrate some fo
set-based notation to enable description and manipulation of large numbers of 
simultaneously.

• The specification itself must be constructed in such a way as to keep it manag
for example, portions of the system should be abstracted and consolidated into
objects in the specification, thus ensuring that the specification deals with and ma
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lates small numbers of objects regardless of how many actual nodes there are in the
system.
These observations concerning the 3-node example and the STEP preliminary specifi-

cation approach are helpful in development of a solution approach to fault tolerance in real
systems. Using the observations and experiences from the 3-node example, a second solu-
tion attempt, called PARS, was designed to specify and achieve fault tolerance.

6.2 Example System: PAR System

This section describes a solution attempt at specifying and achieving fault tolerance called
the PAR (Preliminary Attempt at RAPTOR) System. PAR expands on the STEP specifica-
tion notations presented in the previous section, while also providing a preliminary syn-
thesizer and simple implementation architecture.

Again, please note that the PAR System is not a part of the final solution approach, the
RAPTOR System, presented in subsequent chapters. The PAR System is a prototype solu-
tion attempt, presented to investigate in more detail the problem and requirements of a
solution.

This section describes the PAR solution approach first, then explores the specifications
and implementation of another example system, and concludes with a discussion of obser-
vations and experiences. Appendix B presents the PAR specification system and an exam-
ple application specification.

6.2.1 PAR Solution Approach

The PAR System focuses primarily on the specification notations necessary for describing
fault-tolerance requirements and activities. However, to help evaluate the utility of the
specification, a synthesizer was constructed that generates key code components from the
specifications and a simple implementation architecture was devised that incorporates the
synthesized code. All these aspects of the solution approach are discussed in this subsec-
tion.

PAR Specification Notation

The first issue in specifying fault tolerance is determining the particular components
required in a specification language. From the simple 3-node system described in the pre-
vious section, one can see that a finite-state machine must be constructed to specify (1) the
initial configuration of the system and (2) any reconfigurations required to recover from
system errors. This finite-state machine (contained previously in the Error Recovery Spec-
ification) consists of all possible states the system could be in given the system errors that
should be handled, and the activities to undertake on transition from one system state to
another. Two key aspects of the system must be described: the system architecture and the
services that the nodes of the system provide.

In addition to three specification components presented previously (SAS, SPMS, and
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ERS), another key component of the problem that must be specified in more detail is the
errors of interest and the manner in which they are to be detected. In that simple 3-node
system, there was no complexity to the errors: each error was the result of a component
failure and affected some set of application services. It was difficult to correlate failures
because there weren’t very many of them. In real systems, however, one must a
more than just low-level faults. The possibility of correlated low-level faults that indi
a more complex, non-local fault is very real, e.g., multiple, widespread local intru
detection alarms over some period of time pointing towards a coordinated security a
In order to describe these more complex, widespread, and non-local faults, another
fication component for error detection is required.

The PAR specification notation involves five major sub-specifications, three of w
are components (some enhanced) from the STEP approach. The structure of a PAR
fication is shown in Figure 6, and the components are the following:
• System Architecture Specification (SAS) describes the topology of the system and pl

form in terms of the computing nodes and parametric information for key node ch
teristics. Nodes are named and described additionally with node type and any
property information required, such as geographic region, hardware details, ope
system, software versions, and so on. In addition, the low-level events or error
can occur at nodes are defined.

• Service-Platform Mapping Specification (SPMS) relates the names of programs to t
node names described in the SAS. The program descriptions in the SPMS inclu
services that each program provides, including alternate and degraded service m

• System Interface Specification (SIS) defines major system objects—sets of nodes—
terms of the lower-level entities contained in the SAS and SPMS.

• Error Detection Specification (EDS) defines the overall systems states that are ass
ated with the various faults of interest, in terms of the low-level events (outlined i
SAS) and combinations of those events occurring in nodes or sets of nodes def
the SAS and SIS.

• Error Recovery Specification (ERS) defines the necessary state changes from 

Figure 6: Multi-level PAR specification structure

Error Detection
Specification

Error Recovery
Specification

System Architecture
Specification

System Interface
Specification Interfaces

Service-Platform Mapping
Specification
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acceptable system reconfiguration to any other in terms of topology, functionality, and
assignment of services to nodes. The structure of the ERS is that of a finite-state
machine, with transitions defined for occurrence of errors in the EDS.
Given the number of states that a large distributed system could enter as a result of the

manifestation of a sequence of faults, it is clear that some form of accumulation of states
or other simplification must be imposed if an approach even to specification of fault toler-
ance is to be tractable. The key to this simplification lies in the fact that many nodes in
large networks, even those providing critical infrastructure service, do not need to be dis-
tinguished for purposes of fault tolerance. In the banking application domain, for example,
it is clear that the loss of computing service at any single branch is both largely insignifi-
cant and largely independent of which branch is involved. Conversely, the loss of even one
of the main Federal Reserve computing or communications centers would impede the
financial system dramatically—some nodes are obviously much more critical than o
However, the loss of 10,000 branch banks (for example, because of a common-mod
ware error) would be extremely serious—even non-critical nodes have an impact if 
cient of them are lost at the same time.

To cope with the required accumulation of states, the overall specification is m
level, and the fifth element, the System Interface Specification, is added to the spe
tion approach. The SAS and the SPMS are declarative specifications, and in pract
contents of these specifications are databases of facts about the system architect
configuration. The EDS and ERS are algorithmic specifications—they describe 
rithms that have to be executed to perform error detection and error recovery respe
In principle, these algorithms can be written using the information contained in the
and SPMS. But it is precisely this approach that contributes to the state explosion in
ification. Working directly with the SAS and SPMS describing these systems lea
specifications that are just too big. For this reason, the SIS defines major system ob
sets of nodes—for manipulation in the EDS and ERS.

The overall structure of the ERS is that of a (traditional) finite-state machine that 
acterizes fault conditions as states (defined in the EDS using sets) and associates th
site responses to each fault with state transitions. The fault conditions of concern
given system are declared and described in the EDS. Arcs in the ERS finite-state m
are labeled with these fault conditions and show the state transitions for each faul
every relevant state. The actions associated with any given transition are in the ER
are extensive because each action is essentially a high-level program that impleme
error-recovery component of the full system fault-tolerance specification. The com
fault-tolerance specification documents the different states (system environments) th
system can be in, including the errors that must be detected and handled. The PAR 
cation notation’s ERS utilizes a notational construct designed to describe the finite
machine of the system through all relevant system errors. The notational construct 
finite-state machine enables brute-force description of all possible relevant failures
possible states as well as the responses to those failures.

In summary, a PAR specification consists of five components corresponding to th
sub-specifications outlined above. An example fragment of a PAR specification is s
in Figure 7. This example is incomplete and uses comments for simplicity, but it illus
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some of the material needed to define a wide-area coordinated security attack on the bank-
ing system and a hypothetical response that might be required.

PAR Translator

A translator was constructed for the PAR specification language that processes all five
sub-specification notations and generates C++ code for actuators of the nodes in the
implementation. This PAR Translator is constructed from a grammar with 73 productions
and 31 tokens (presented in Appendix B). It contains facilities for simple set enumeration

Figure 7: Skeleton PAR specification

PAR-SAS: -- System architecture specification
-- Every node, node type, and event declared; examples:
TYPE federal_reserve; TYPE money_center; TYPE branch
EVENT security_attack;

PAR-SPMS: -- Service platform mapping specification
FORALL branch -> customer_service,

local_payment;
FORALL money_center -> customer_account_management,

regional_payment;
FORALL federal_reserve -> member_bank_account_management,

national_payment;

PAR-SIS: -- System interface specification
-- Set declarations and definitions
SET FederalReserveBanks; SET MoneyCenterBanks; SET BranchBanks;
FederalReserveBanks = { frb1, frb2, frb3 }
MoneyCenterBanks = { i : NODE | money_center(i) }
BranchBanks = { i : NODE | branch(i) }

PAR-EDS: -- Error detection specification
-- declare and define this attack to be more than 50 branches or
-- all money centers or 1 Federal reserve bank detects an intrusion
ERROR CoordinatedAttack;
CoordinatedAttack =

{card(security_attack(BranchBanks)) > 50 } OR
{ FORALL i IN MoneyCenterBanks | security_attack(i) } OR
{ EXISTS i IN FederalReserveBanks | security_attack(i) }

PAR-ERS: -- Error recovery specification
CoordinatedAttack:

BranchBanks -> customer_service.terminate;
local_payment.terminate;
local_enquiry.start;

MoneyCenterBanks -> customer_account_management.terminate;
regional_payment.terminate;
commercial_account_management.start;

      FederalReserveBanks -> member_bank_account_management.terminate;
national_payment.limit;
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and composition, Boolean logic, and quantifiers. The translator generates code on a per-
node-type basis for all types declared in the System Architecture Specification.

The grammar for the PAR language parses a version of the PAR sub-specification lan-
guages in a particular order: SAS, SPMS, SIS, EDS, and ERS. In the SAS, all of the nodes
are declared first, followed by declarations of node types, properties, and events. Then, a
list of propositions states facts about the nodes, such as assigning types and properties to
nodes. In the SPMS, service names are assigned to the different node types. In the SIS, the
sets to be used are declared and then the sets are enumerated, using either explicit set dec-
laration or set composition across node type or property. In the EDS, the system errors are
declared and then described in terms of events in individual nodes or quantified across
sets. Finally, in the ERS, the finite-state machine is described using the errors declared in
the EDS, and the actions to be taken on state transitions are specified.

Implementation Architecture

The code generated by the PAR Translator is for actuators, the code components that
receive commands to reconfigure application nodes. The implementation architecture
must be constructed to accommodate and make use of the generated actuator code. Firstly,
the application nodes must support the various modes of functionality described in the
Service-Platform Mapping Specification. Then, integration of the actuators into applica-
tion nodes involves implementing the interface for receiving a command message to start
or stop a particular service and making the appropriate application call.

In order for the actuators to be utilized for error recovery, there must be a system-level
construct that sends the command messages to the actuator. As discussed in Chapter 5, the
augment to the application that performs high-level error detection and prompts error
recovery is the Control System. In the PAR implementation architecture, the Control Sys-
tem must be constructed by hand, but the specifications describe the actions that must be
performed to effect control.

6.2.2 Example Application

To explore the methodology presented in PAR System, a 103-node financial payments
system was constructed. A specification of the 103-node banking system was designed
using the five specifications notations of the PAR System, then the PAR Translator gener-
ate actuator code that was integrated into an implementation model of the 103-node sys-
tem.

The PAR specification of this system can be found in Appendix B (Section B.2). The
specification begins with the system description: each of the 103 bank nodes is declared
with a unique identifier in the System Architecture Specification. Then, three different
bank types, three events, and eight properties are declared, corresponding to geographic
regions. After the declarations, each bank node is assigned a bank type and geographic
region. In this system, the three bank types correspond to the different levels of the bank-
ing hierarchy: at the top level are Federal Reserve Bank nodes, in the middle are money-
center bank nodes, and at the bottom are branch bank nodes. In this example the Federal
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Reserve Bank has a primary node and two backups, then there are ten money-center banks
with nine branch banks each.

The Service-Platform Mapping Specification follows with an enumeration of the ser-
vices provided by each node type. Nodes of type federal_reserve contain seven services,
money_center nodes have twelve services, and branch type nodes provide eleven services.
Branch bank nodes provide check deposit facilities, a database service storing customer
accounts, and other services to route and service check requests; there are a total of eight
services in the normal operating mode and three alternate services. Money-center bank
nodes route check requests and responses, batch requests and responses to pass to the Fed-
eral Reserve, and maintain branch bank balances in their databases; eight of the twelve
services are utilized in the normal operating mode, while four are provided as alternate
services. Federal Reserve banks route batch requests and responses, as well as maintain
money-center bank balances using a database; only three services are necessary during
normal operation, and four alternate services are specified.

Next, the System Interface Specification declares the set objects of interest, and then
enumerates each of those sets. Some of the sets defined correspond to the different node
types: sets enumerate Federal Reserve banks, money-center banks, and branch banks. Sets
also are defined corresponding the different properties, such as geographic regions. Other
sets correspond to special characteristics such as whether a Federal Reserve bank is serv-
ing as a primary or backup. The sets can be enumerated either explicitly or using a set
composition format; the example specification utilizes both enumeration methods.

The Error Detection Specification declares and describes the different errors of con-
cern in the system. The errors are described using Boolean expressions consisting of set
operations on the previously declared events. For this example, four errors of concern are
defined: PrimaryFrbFailure, McbSecurityAttack, CoordinatedAttack, and Widespread-
PowerFailure.

Finally, the Error Recovery Specification explicitly enumerates the finite-state
machine for the system using the errors defined in the EDS, then describes the actions to
take on each transition in the state machine. Some of the errors are parameterized, with
either a set or node name, and this parameter is passed to the action definition. The action
definitions use the services defined in the SPMS to direct nodes and sets of nodes to
reconfigure for recovery from the system errors.

To explore the issues in synthesis, the PAR Translator processed the sample specifica-
tion of the 103-node financial payments application and generated actuator code. In order
to utilize this actuator code, application nodes for each of the bank types were imple-
mented, as well as a control system to monitor and effect control. Then, the actuator code
was integrated into application nodes, and a complete system was constructed, based on
the PAR specifications, that demonstrated various recovery activities.

6.2.3 Discussion

The specification and implementation of the 103-node example banking system yielded
many observations related to the PAR System:
• The System Architecture Specification for defining all the nodes in the system
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their pertinent characteristics is cumbersome for describing a system of any non-trivial
size in any detail. Because this information most certainly exists elsewhere already
(e.g., in databases), constructing an input filter to process that information directly
would be a simpler way to define the architecture and characteristics of the system.

• The Service-Platform Mapping Specification uses a simple naming mechanism
defining services; this could and probably should be augmented with more forma
inition of the functionality provided by each service.

• The Error Detection Specification should be utilized for synthesis of Control Sy
implementation components. The translator processes and stores the inform
related to error detection; this information could be utilized in the Control System
the appropriate target for code generation.
One particular specification problem that must be explored further in the motiv

example is the state explosion problem in the finite-state machine. The state exp
problem was eased by the introduction of sets into the specification: this enables the
state machine to refer to erroneous states and transitions involving multiple nodes,
than complicating the finite-state machine unnecessarily with transitions for one nod
time. However, the PAR specification notation does not address this problem direc
the description of the finite-state machine in the ERS: the description still requires ex
enumeration of all relevant transition sequences. There are a number of approach
can be employed to control the state explosion problem:
• The number of possible system states must be restricted—in systems this larg

complex, some forms of abstraction must be employed to keep the number of po
system states tractable.

• The number of sequential failures that can be tolerated must be restricted—ha
large numbers of sequential failures in the general case cannot be achieved in a
fication of considerable size.

• If a system can be constructed such that sequential failures are handled indepe
of the order or occurrence of previous failures, this simplifies the specification gre
In this case, the different failures that can occur in the system can be specifie
handled without additional structuring.
These three approaches all address the complexity of the system being des

rather than providing a specification solution to help manage that complexity. On th
hand, critical information systems are extremely complex systems (for a variety reason
as discussed in Chapter 2), and any ways of reducing the inherent complexity that m
handled should be employed if possible. The RAPTOR System, however, intro
mechanisms into the specification to help manage complexity and the state exp
problem. The next section discusses concepts for development of the RAPTOR Sys

6.3 Concepts for the RAPTOR System

The experiences from the solution attempts presented in this chapter, STEP and 
point to a more refined approach for the RAPTOR System. In particular, the ne
accommodate more complex, large-scale systems in specification points to the int
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tion of various forms of abstraction. In addition, an implementation architecture building
on the abstraction of the specification is discussed.

6.3.1 Specification and Abstraction

There are various forms of abstraction that can be introduced into the specification in
order to help manage complexity and state. The consideration of issues in the finite-state
machine description and state explosion problem when specifying these critical, large-
scale systems points towards the exploration of abstraction and hierarchy.

In the PAR System, the System Interface Specification enabled description of sets of
nodes, thus introducing an abstraction mechanism to allow definition of an object refer-
ring to multiple nodes simultaneously. Being able to refer to many nodes simultaneously,
such grouping nodes with certain characteristics such as common administrative domains
or geographic regions, can reduce the size and complexity of a specification. The hierar-
chic nature of many information systems leads to the notion of groupings of local nodes
according to various pieces of data. Sets of local nodes can be grouped to form regional
sets based on common data. Data on regional sets of nodes can be referenced at higher lev-
els of abstraction, larger groupings of nodes up to a system or global level. The hierarchi-
cal abstraction of data in a system enables management of complex system descriptions.

This hierarchical abstraction of system data can be applied to faults—i.e., events
error detection within the system as well. Events occurring at the local level can be
nized into a finite-state machine at local nodes to handle faults and manage state
lowest level of the system. Events can also be passed up (and down) a hierarchy o
state machines, so that a collection of local events can be recognized at the region
as a regional event, and regional events could be passed up further to recognize 
level events.

Finally, hierarchical abstraction also applies to responses to faults—actions—
system. Responses to local faults often occur only at the local level, but some loca
require regional activity, and vice versa. Similarly, regional recovery actions can s
times cause some global response to occur.

Figure 8 shows this notion of hierarchical abstraction, represented as occurrin
vertical direction. While the PAR System accommodated some form of abstracti
terms of data (grouping similar nodes), the provision for hierarchical abstraction thro
out the specification of fault tolerance helps manage complexity and state in the RA
specification method (discussed in the next chapter).

There is a second, complimentary form of abstraction required for specificatio
fault tolerance, as well. Represented in the horizontal direction in Figure 8, there is 
of information occurring from data to events to actions at each level of the hierarch
example, at the local level, data about the local node determines the events (faul
can occur at that level; then, the actions in response to those events are defined
local node. Similar abstractions occur at regional and system (or global) levels.

This second abstraction mechanism can be used to help control the state ex
problem. It should be possible to construct finite-state machines at the node or loca
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to control error detection and error recovery internally, and only pass data, events, or
actions up to the regional level in circumstances where the situation calls for that. Like-
wise, the system or global level state machine can be simplified by handling regional data,
events, and actions at the lower level whenever possible. This separation of conc
defining data, events, and actions in each level of the hierarchy—enables faults
described and handled at the appropriate level of interest, thus simplifying the spe
tions of fault tolerance in complex systems.

The introduction of these forms of abstraction into the RAPTOR System helps ma
complexity and state in the specifications and is discussed further in the next chapte

6.3.2 Implementation Architecture

The abstraction and hierarchy introduced for the RAPTOR specification structure p
towards a refined implementation architecture supporting fault-tolerance activities
introduction of hierarchic finite-state machine descriptions for data, events, and a
requires finite-state machines at the levels of concern (local, regional, global) to 
control at each level. This impacts the architecture of the Control System, requiring
detection and error recovery at various abstraction levels. Sensors at application
must still communicate event information to the Control System, but that event info
tion must reach the appropriate level of the finite-state machine hierarchy. Sim
finite-state machines in the Control System must communicate recovery actions 
appropriate application node actuators. These issues are discussed in more detail i
ter 9.
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Figure 8: Two directions of abstraction
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6.3.3 Summary

The experiences in specification of the 3-node example and construction of the PAR Sys-
tem contributed to a better understanding of issues involved in specification and imple-
mentation of fault tolerance. The next three chapters present the details of the RAPTOR
System, the solution approach to fault tolerance in critical information systems.



7

RAPTOR Specification
The preliminary investigation into solution directions presented in the previous chapter
refined the ideas and led to development of the RAPTOR specification system. This chap-
ter describes in detail the components, notations, and structure of a RAPTOR specification
for fault tolerance.

7.1 RAPTOR Specification Components and Notations

The preliminary specification attempt in the PAR System (Section 6.2.1) contained five
sub-specification components: the System Architecture Specification (SAS), Service-Plat-
form Mapping Specification (SPMS), System Interface Specification (SIS), Error Detec-
tion Specification (EDS), and Error Recovery Specification (ERS). The five components
were integrated using a single, custom-designed notation. The overall approach had its
shortcomings, as discussed previously (Section 6.2.3). The RAPTOR System presents a
more refined specification approach based on a better understanding of the problem and
requirements.

Firstly, while the five PAR specification components describe all the aspects of the
problem, in actuality there are only three distinct elements of the fault-tolerance specifica-
tion: (1) the system, (2) the errors to be detected, and (3) the responses to those errors. In
the first version of the specification approach, three different components comprise the
system description: the SAS, SPMS, and SIS. (The errors to be detected and the error
responses correspond one-to-one with the EDS and ERS, respectively.) While all three
specification components were required to describe different aspects of the fault-tolerant
system in that solution approach, an ideal solution would be a notational approach that
integrates the entire system description. With that in mind, the RAPTOR System for spec-
ification has only three components:

• System Specification
• Error Detection Specification
• Error Recovery Specification
44
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Secondly, each specification component in the RAPTOR System should utilize a nota-
tion best suited to that which is being specified. It is unreasonable to think that the same
notation used to describe application functionality—custom-designed or otherw
would be optimal for specifying a finite-state machine description of high-level errors
responses. The following subsections present the notations that the RAPTOR Syst
lizes for each of the three specification components.

7.1.1 System Specification

The first aspect of fault tolerance that must be specified is the system itself: its conf
tion, capabilities, state, and other pertinent characteristics. As stated previously, in o
specify the faults of concern, one must be able to refer to the component(s) of the s
in which the fault exists and those components affected by the fault. Similarly, in ord
specify recovery and reconfiguration activities in response to the faults of concer
configuration of the system must be known first and the parts of the system to be rec
ured must be outlined.

The items that should be included in a system description for the purposes of fau
erance include the following:

• Node types
• Pertinent node characteristics, such as hardware configurations, operating s

versions, software configurations, and other application-specific information
• Services provided by each node, including both normal and alternate function
• Relationships amongst nodes, including groupings of related nodes
For large, complex systems such as critical information systems, the system de

tion will result in an enormous specification. It is probably the case, though, that mu
this information is already known and being stored in various applications and data
for a variety of purposes. For example, system administrators track hardware and so
configurations throughout their networks. Similarly, monitoring software is often run
critical systems such as these to observe system state and ensure proper operation

The key capability in this context is to maintain all relevant aspects of the sy
description in an easily accessible location, using a flexible notation that facilitates s
fication of complex systems. The RAPTOR System utilizes an object-oriented datab
describe and store the pertinent characteristics of the system. An object-oriented da
provides both the notational and storage capabilities necessary for system specifica
database system of some sort is required simply to cope with the sheer volume of in
tion required to describe a critical information system; it is likely that some of the des
tions of relevant system characteristics already exist in databases. The primary adv
of an object-oriented database is that the language used for description provides en
lation, inheritance, and other abstraction mechanisms necessary for coping with lar
complex descriptions associated with critical information systems. The use of an o
oriented database language works well with object-oriented modeling techniques, 
are often employed during requirements and system analysis [12]. An object-ori
notation, such as that provided by object-oriented database definition languages, c
the necessary abstraction facilities to describe complex systems like critical inform
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Specifically, RAPTOR uses the POET object-oriented database [59] to provide the

required storage and notational facilities for the System Specification. Given that compar-
ison and evaluation of object-oriented databases was not a major objective in this work,
this particular object-oriented database was chosen for a number of pragmatic reasons:
• POET allows the specifier to use C++ as the database definition language, then

provides a preprocessor and compiler to generate its own database schemas a
base from the C++ class definition.

• The use of C++ as the database definition language is a major advantage, as t
guage is already familiar to many engineers and programmers and does not requ
specifier to learn the idiosyncrasies of another object-oriented notation.

• POET enables easy integration of database functionality into object-oriented ap
tions, using a variety of development environments [59].
The C++ class hierarchy used for system specification enables the multiple lev

abstraction to be easily described using encapsulation and inheritance. Additionally
trary relationships, not just hierarchical structures, can be specified using this desc
method. Finally, multiple abstraction hierarchies can be specified, allowing nod
belong to different groups based on general characteristics. For example, in the hyp
cal banking system from the previous chapter (Section 6.2.2), one abstraction hie
would correspond to banking relationships and administrative control, where b
banks are owned by their corresponding commercial money-center banks, and then
money-center banks are owned by the Federal Reserve Bank (this maps to the 
architecture). Another abstraction hierarchy could be created though to represent t
tribution of electric power, where power companies contain references to all the bank
they serve. Bank nodes would thus belong to both abstraction hierarchies.

7.1.2 Error Detection Specification

The second aspect of fault tolerance that must be specified are the errors to be d
Recall that the errors of concern in this work are not just local faults or simple ev
complex faults requiring correlation and combinations of events are a key concern
error detection specification must be able to describe complex combinations
sequences of events to detect high-level errors caused by non-local faults as well a
faults.

As shown in the previous chapter, the errors to be detected can be outlined and
nized into a finite-state machine. The finite-state machine is a natural description m
nism for detection of errors, because an error (more precisely, an erroneous
corresponds to a system state of interest. As the state changes, the events tha
changes become input to the finite-state machine in the form of events; error states
finite-state machine define the faults of interest that must then be handled and tolera

In complex, large-scale systems, however, a single finite-state machine to descr
overall system state would be impossibly difficult to manipulate, and at the same
would not take advantage of the natural abstraction levels within the system. The 
TOR Error Detection Specification revolves around a collection of communicating fi
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state machines for each node type or collections of nodes. The communicating finite-state
machines are organized into different levels or possibly hierarchically (see Figure 9),
though any arbitrary structure can be described. States are defined for each node type or
collection of nodes. Inputs to the finite-state machine that cause transitions from one state
to another are events that occur at the node level; these events are faults within nodes and
can be handled appropriately there much of the time. Additional inputs, however, are
events that are communicated between finite-state machines to detect more complex
faults. The network of finite-state machines works collectively to detect more significant
non-local faults (possibly sequential or catastrophic) through the composition of low-
level, local fault events.

For example, to detect a widespread, coordinated security attack, it is necessary to col-
lect events from multiple lower-level nodes, recognizing the simultaneous intrusion detec-
tion alarms triggered at those nodes. Similarly, a cascading software failure can be
detected by recognizing multiple software failure events occurring in the system in some
predefined sequence.

The specification of finite-state machines for the Error Detection Specification sug-
gests a state-based specification language. The mapping from finite-state machines to a
state-based specification language would facilitate description of the errors to be detected
as well as the overall node and system states. Ideally, the notation adopted for the specifi-
cation of error detection would be formal so as to permit various forms of analysis as well
as facilitate synthesis of implementation components.

RAPTOR uses the formal specification notation Z to describe the finite-state machines
for error detection [27]. Z is a mathematically rigorous language based on first-order pred-
icate logic and set theory that has been used for many years in the specification of com-
plex systems [13], [20]. For a detailed presentation of the Z formal specification notation,
please refer to texts by Diller [27] or Potter [60].

As a general-purpose, state-based specification language, Z enables communicating
finite-state machines to be defined formally and in a very straightforward manner. Z uses a
notational construct called a schema for the grouping of all relevant information in a state
description. Schemas are used for specifying both states and state transitions [27]. In the
RAPTOR Error Detection Specification, a Z state description schema is defined for each

Figure 9: Network of communicating finite-state machines
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finite-state machine, including any invariants and necessary state variables from the Sys-
tem Specification. Events for finite-state machines at each level of the abstraction hierar-
chy (node, region, or system) are declared as messages, and schemas for each event are
defined to specify that event’s effect on the state. Detailed examples of each of thes
cepts will be presented later in this chapter.

7.1.3 Error Recovery Specification

The third aspect of fault tolerance that must be specified is the set of recovery action
formed in response to errors. The Error Recovery Specification outlines the activit
undertake for each fault in the Error Detection Specification. Because faults corresp
the transitions in the finite-state machines, error recovery actions are defined for eac
sition.

As mentioned previously, the application must be constructed so as to provide f
error recovery actions required in response to the prescribed faults. The Error Re
Specification can refer to these actions in an abstract manner, for example, by def
set of messages that must be sent to application nodes corresponding to the re
actions. Thus, the specification defines a high-level “program” for each set of rec
activities in response to faults.

The Error Recovery Specification also uses Z to describe the set of actions perf
in response to each fault. These actions correspond to message definitions, and m
are possible outputs of the finite-state machines of the Error Detection Specification
messages specified in the ERS correspond to actual messages that will be sent to 
tion nodes in an operational fault-tolerant system.

7.2 RAPTOR Specification Structure

There are two parts to the structure of a RAPTOR specification: (1) the System Spe
tion utilizing the POET object-oriented database language and (2) the Error Det
Specification and Error Recovery Specifications written in the Z formal notation.

Throughout this section an example specification will be used to present details 
specification notations and structure. The example fragments are from the financia
ments system model, provided in its entirety in Appendix C. The system structure
node types are similar to the 103-node example system used in Section 6.2.2 (thou
scale of the system is much larger). One type of bank, a money-center bank, is pre
in the running example throughout this chapter and subsequent chapters. A money
bank is a mid-level bank in the financial payments system hierarchy: money-center 
are connected to the Federal Reserve Bank at the top of the hierarchy, while being r
sible for multiple branch banks lower in the hierarchy. Functionally, a money-center 
routes checks from its branch banks for settlement, maintains branch bank bal
batches checks destined for other money-center banks to pass to the Federal R
Bank, and processes batches of checks from the Federal Reserve Bank.
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7.2.1 System Specification

The System Specification is a collection of object-oriented class definitions written to
define the POET object-oriented database. The POET language is based on C++, supple-
mented by special keywords used by the POET preprocessor to construct the database
schemas. Otherwise, the class definitions can make use of inheritance and encapsulation
just as any C++ class definition. The class definitions consist of methods and member
variables, some of which can be references to other objects in the database.

Figure 10 shows the system specification for a money-center bank. The POET key-
word, persistent, precedes the class declaration in order for the POET preprocessor to rec-
ognize this class definition as part of the database definition. The MoneyCenterBank class
definition inherits off of the Bank class definition (not pictured here, but provided in
Appendix C). The Bank class definition encapsulates the methods and member variables
common to all types of bank objects, including those relating to bank names and unique
bank IDs. The attributes section of the class definition enables description of all the rele-
vant characteristics of a node or object; for the MoneyCenterBank object this includes
hardware and software platforms, but as many key elements as necessary can be included.

// Class definition
persistent class MoneyCenterBank : public Bank
{

public: // Constructors & destructor
MoneyCenterBank(const int bankId, const PtString& name);
virtual ~MoneyCenterBank();

public: // Services
void Print() const;

public: // Accessors (in base class Bank)

private: // Attributes
HardwarePlatform m_HardwarePlatform;
OperatingSystem m_OperatingSystem;
PowerCompany* m_PowerCompany;

public: // Pointers
FederalReserveBank* m_Frb;

public: // Sets
lset<BranchBank*> m_SetBbs;

public:
MoneyCenterBankFSM m_fsm;

};

Figure 10: Money-center bank system specification



CHAPTER 7. RAPTOR SPECIFICATION 50

id-
mathe-
/Eves
ves

er spec-
to the
es anal-

ction
ssfully
red in
pecifi-

ed in

sts of
inite-
s their
r). The
The next two member variables are examples of references to other database objects;
m_Frb points to the object in the database that refers to the parent of this money-center
bank in the banking hierarchy, while m_SetBbs is a POET set/container mechanism hold-
ing references to the database objects for branch banks connected to this money-center
bank. Finally, the last member variable refers to a finite-state machine class that can be
defined for this node type and included as part of its class definition.

In summary, the System Specification consists of class definitions describing nodes
and sets of nodes in the system. These descriptions include relevant characteristics and
relationships between objects in the system and can be as detailed as necessary for the
given application. The descriptions can later be instantiated and stored in the POET data-
base for usage in an operational system. Two complete examples of RAPTOR System
Specifications can be found in Appendix C (sections C.2.1 and C.3.1).

7.2.2 Error Detection and Error Recovery Specifications

Both the Error Detection and Error Recovery Specifications use the Z formal specification
language as their notation for describing the fault-tolerance activities. More specifically,
these two fault-tolerance descriptions utilize the Zeus system [77] for developing specifi-
cations with the Z notation. Zeus is a comprehensive toolset for Z that provides an inte-
grated editing and analysis environment through the use of the Adobe FrameMaker
document processor [1] and the Z/Eves theorem prover [68]. Because of the special char-
acters required in Z, previous support for specification in Z has required using either spe-
cialized character sets that provide no integration with other Z tools, or a text-based
LaTeX Z implementation [73] that is less readable than if one were able to see the actual Z
characters during construction of a specification. Zeus allows the specifier to work in an
intuitive, “WYSIWYG” environment, with the FrameMaker document processor prov
ing the special character set for Z just as it would any other character set (such as 
matical symbols). Zeus then also provides a back-end to communicate with the Z
tool, which provides type-checking and theorem proving for Z specifications [68]. Z/E
happens to use the LaTeX Z language definition, so Zeus processes the Framemak
ification and outputs the LaTeX translation to Z/Eves for processing, transparent 
user. Zeus then reports back to the user any output or error messages from the Z/Ev
ysis.

Given the use of Zeus (and therefore Z/Eves for type checking), the Error Dete
and Recovery Specifications will have a structure imposed in order that they succe
type check. At a minimum, this means that schemas and definitions must be decla
the order of their usage. Because I provide a translator to generate code from this s
cation, some additional structuring rules are imposed (these will be discuss
Chapter 8).

The structure of the RAPTOR Error Detection and Recovery Specifications consi
three types of files: (1) the declarations file, (2) the state descriptions file, and (3) f
state machine files. Figure 11 depicts the relationships between these files, as well a
usage by a synthesizer, the Fault Tolerance Translator (described in the next chapte
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composition of and relationships between each of these file types will be discussed in
detail in the next three subsections. Two complete examples of RAPTOR Error Detection
and Recovery Specifications can be found in Appendix C (sections C.2.2 and C.3.2).

Declarations File

A RAPTOR specification for error detection and error recovery begins with a file of decla-
rations. The first declarations will be given sets in Z, if any are required. Given sets are
much like undefined terms in geometry; they are sets that can be utilized throughout the
specification but require no further definition—it is assumed that the specifier and
understand what these sets signify.

The next section contains axiomatic descriptions. Axiomatic descriptions define addi
tional variables (and their types) that are global to the specification. The most imp
axiomatic description is the global definition of the Time variable. Schemas can use th
Time variable to specify any performance or timing-related operations. (The constru
of time used in this Z specification is suggested by Spivey [72].) Any other global 
ables required for a particular system can be specified as axiomatic descriptions.

Next in the declarations file are set definitions. Set definitions define the set name
members that will be used throughout the specification. Two very important set
required in the RAPTOR Error Detection and Recovery Specifications:
• SystemEvents. This set enumerates the events that can occur in the system, both local

and those recognized and communicated between finite-state machines.

UsesUses

Uses

Definitions File State Description File

Finite-State Machine
Files

(one per abstract
finite-state machine)

Fault
Tolerance
Translator

Figure 11: Files of a Z Error Detection and Recovery Specification
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• MessagesToApplication. This set enumerates the messages that can be sent to applica-
tion nodes in response to system errors or other events. This list of messages defines
the Error Recovery Specification. The enumerated messages correspond to the ser-
vices provided by the application nodes for recovery; the application must provide
recovery and reconfiguration code to respond to various events, and these message
definitions signify the possible responses of which the application is capable. Each
service is referred to by its corresponding message in this set, and nodes are signaled
to reconfigure to a new service by sending the corresponding message from the control
system to the node.
The final section in the declarations file is for two special schemas: OutputEvent and

OutputMessage. The OutputEvent schema defines the structure of events that are commu-
nicated between finite-state machines, and the OutputMessage schema defines the struc-
ture of messages sent to application nodes.

S 0RQH\&HQWHU%DQN)60

0\0FE � �
0\%EV � ~��
+RVW%EV � ~��
0\)UE � �
1RGHV'RZQ � 0FE1RGH6WDWHV
'E'RZQ � ERRO
$OHUW � ERRO
%DFNXS)UE � 0FE%DFNXS)UE6WDWHV
%EV8S � ~��
%EV'RZQ � ~��
%EV,G$ODUPV � ~��
%EV$ODUP7LPHV � VHT��
%E1RGH6WDWHV � 0FE%E1RGH6WDWHV
%E,G6WDWHV � 0FE%E,G6WDWHV
%E&RRUGLQDWHG$WWDFN � ERRO

+RVW%EV � 0\%EV
%EV8S � 0\%EV
%EV'RZQ � 0\%EV
%EV8S���%EV'RZQ  0\%EV
%EV,G$ODUPV � 0\%EV
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State Description File

The next file in the RAPTOR specification contains the schemas for the overall state
description. The state description file defines state schemas for the finite-state machine
abstractions for different node and set (object) types. The state schemas consists of vari-
ables defining the components of the state for each finite-state machine object. Addition-
ally, each state schema can contain propositions relating to the component members of the
state to facilitate understanding and analysis of the specification. Lastly, the overall system
state schema, which enumerates all the objects in the system, can be provided in this file
(though this is not a required element).

Figure 12 shows the abstract finite-state machine definition for a money-center bank.
The top half of the schema is the declarations section. Some of the declarations in this
schema are references to other banks, represented as integer IDs: MyMcb is this node’s ID
number, MyFrb is the Federal Reserve Bank parent ID, and MyBbs is a finite set of IDs for
the branch banks owned by this money-center bank. Other declared state variable
the status of this node: NodesDown, DbDown, and Alert (for response to intrusion detec
tion alarms). Other state variables track the state of related nodes; for example, BbsDown
and BbsIdAlarms hold sets of IDs for branch banks that have failed or experienced i
sion detection alarms, respectively. The bottom part of the schema, the predicate 
state, presents the state invariant.

Finite-State Machine Files

Each of the remaining files in the RAPTOR specification describes an abstract finite
machine for a node type. The first section in these files is for declarations that are s
to this abstract finite-state machine. The next section in a finite-state machine spe
tion file contains initialization schemas. The first initialization schema sets the defaul
ues for the state schema upon initialization. Additional initialization schemas ca
defined for setting member variables to values other than their defaults. For exampl
sets declared in the state schema for an abstract finite-state machine will be initially
empty, but an additional initialization schema can be defined to add members to the

Following the initialization schemas in a finite-state machine specification file are
low-level event schemas, defining the changes in state upon occurrence of an event
ure. The key distinction between low-level events and high-level events is that low
events act directly upon the state in response to an event, whereas high-level 
require analysis of the state in order to detect their occurrence and then effect chan
the state (see Figure 13).

The low-level events that can be handled are defined by the SystemEvents se
definitions file. The schema name for each low-level event must be formed by pre-
ing “*Schema” to the name of the event being handled (where * can be any valid Z string).
These operation schemas define transitions for the particular finite-state machine
specified. There are three possible types of activities in these operation schemas:

• Effecting changes in the state schema for this particular finite-state machine
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• Generating messages to send to the application nodes in response to these e
• Generating event notifications to communicate to other finite-state machines
Figure 14 shows a low-level event schema for a money-center bank, describing

actions to take upon occurrence of a local intrusion detection alarm. In the first part o
operation schema are declarations of the state schemas that will be manipulated, in
the MoneyCenterBankFSM. In the second part of the schema are the actions taken 
occurrence of this event: first, the state variable Alert is set to true indicating this event ha
taken place, then both an OutputEvent and OutputMessage are defined. The OutputEvent
communicates to the parent FederalReserveBankFSM and the children BranchBankFSM
schemas that this money-center bank is on alert. The OutputMessage indicates that the
application node must be notified and initiate a new service, referred to as McbRaiseAlert.

The last section in a RAPTOR finite-state machine file describes high-level eve
the abstract finite-state machine. High-level events are those events that are cau
changes in state variables rather than incoming events, thus requiring analysis for
tion. That is the only difference between high-level events and low-level events (th
that they are not tied to specific input events). These schemas define transitions
finite-state machine just as before and the types of activities possible in these op
schemas are still the same. These operation schemas are denoted by the string “Condi-

FINITE-STATE MACHINE STATE

High-level
Event

schema

High-level
Event

schema

High-level
Event

schema

EVENTS

Analysis Operations

Low-level
Event

schema

Low-level
Event

schema

Low-level
Event

schema

Operations

Figure 13: Low-level versus high-level events
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Figure 15 shows a high-level event schema for a money-center bank, describing

actions to take upon occurrence of a coordinated security attack on the set of 
banks, defined here as when ten branch bank intrusion detection alarms have gon
the past sixty seconds. Again, the first part of this operation schema declares th
schemas affected. The second part of this schema begins with a proposition that
mines whether or not this schema comes into effect. In this case, there are three e
that must be checked:

• The state variable indicating whether a coordinated security attack is underw
• The number of elements in the sequence of branch bank alarm times (# repr

cardinality in Z)
• The time for the alarm ten previous in the sequence, and whether this tim

within the past sixty seconds
The proposition works as follows: if a coordinated security attack is not underway

if at least ten alarms have occurred, then the final condition checks for the time 
alarm ten back in the sequence (an ordered set in Z). If all three conditions are tru
indicates that a low-level event, a branch bank intrusion detection alarm, has just oc
that changed the state to satisfy the conditions for a coordinated security attack
actions to perform in this case are to modify the state variable indicating a coordi
security attack is underway and to notify the branch banks and Federal Reserve to
proper response there.

Another important class of events that can be specified in the Error Detection
Recovery Specifications is the set of events signifying recovery from a failure. Rec
events are treated no differently from failure events, and in the example specificati
the Appendix half of the schemas are recovery operations.

S 0FE6FKHPD/RFDO,G$ODUP2Q

Á0RQH\&HQWHU%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW

$OHUWq  7UXH
HYHQWQDPHq  0FE,G$ODUP2Q
HYHQWGHVWLQDWLRQq  0\%EV���^�0\)UE�`
HYHQWWLPHq  7LPH
PVJQDPHq  0VJ0FE5DLVH$OHUW
PVJGHVWLQDWLRQq  ^�0\0FE�`
PVJWLPHq  7LPH

Figure 14: Money-center bank intrusion detection alarm on event
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7.3 Summary

A RAPTOR specification of fault tolerance has three components: the System Specifica-
tion, the Error Detection Specification, and the Error Recovery Specification. The System
Specification utilizes an object-oriented database notation to describe the relevant system
and application characteristics, while the Error Detection and Recovery Specifications
outline fault-tolerance requirements using communicating abstract finite-state machines in
the formal specification notation Z.

The System Specification enables the following types of information to be specified:
• Node types
• Node identification information
• Relationships between nodes in the system
• Node properties (such as hardware platforms, software configurations, and 

bilities)
• Other relevant, arbitrary system characteristics and application properties
In addition, because the System Specification utilizes an object-oriented dat

notation for its description language, the specification can be stored and accessed
system operation.

The Error Detection Specification and Error Recovery Specification enable the
lowing types of information to be specified:

• Finite-state machines representing the possible states of nodes or sets of n
the system

• Events that can occur within the system (including low-level and high-level er
recovery from errors, and time-based events) that cause a change in the nod
or system state, thus signifying a transition in the abstract finite-state machin

6 0FE&RQGLWLRQ6FKHPD��$ODUPV,Q��6HFRQGV

Á0RQH\&HQWHU%DQN)60
Á2XWSXW(YHQW

�%E&RRUGLQDWHG$WWDFN� �)DOVH��µ����%EV$ODUP7LPHV�À�����µ
��%EV$ODUP7LPHV�����%EV$ODUP7LPHV�������À��7LPH�������
%E&RRUGLQDWHG$WWDFNq  7UXH
HYHQWQDPHq  0FE%E&RRUGLQDWHG$WWDFN
HYHQWGHVWLQDWLRQq  0\%EV���^�0\)UE�`
HYHQWWLPHq  7LPH

Figure 15: Money-center bank coordinated security attack event
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• Communication between finite-state machines, signifying events occurrin
nodes or sets of nodes that affect other finite-state machines in the system

• Messages to application nodes, representing commands to the applicatio
changes in service or reconfiguration in response to errors

• Responses to events, both low-level errors and high-level detected errors (a
as recovery from both types of error), in terms of changes in state, communic
with other finite-state machines, and messages to application nodes

It is important to note that because Z, a formal specification notation, is used fo
Error Detection and Recovery Specifications, these specifications are amenable to 
forms of analysis. The specifications were type-checked by the Z/Eves theorem pro
they are syntactically correct. In addition, other types of analysis are possible with Z/
such as proving that key properties hold in the specification, so the specification c
checked for other types of correctness.

The next chapter will take these formal specifications and describe the various s
sis activities possible for generation of implementation components.
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Given the formal notations and structure of the RAPTOR specifications presented in the
previous chapter, a key solution principle is to synthesize as much of the implementation
as possible from the specification. This chapter outlines the requirements of the applica-
tion and implementation architecture in order to enable generation and integration of syn-
thesized fault-tolerance code, then describes in detail the synthesis of implementation
components from the formal specifications.

Figure 16 depicts both the system architecture and a detailed breakout of an applica-
tion node together to show the implementation components synthesized by the RAPTOR
System. The generated code components are shaded and include the following:

• Control System augment (for effecting control with abstract finite-state machi
• System Specification database (for storing configuration information)
• Sensor code (for sending node-level error detection information from applic

nodes to the Control System)
• Actuator code (for receiving recovery commands at application nodes from

Control System)
• Event and action messages (for communication between application nodes a

Control System)
This chapter explains in detail each of these generated code components and t

cess of synthesis. This figure is referred to throughout the chapter when presenti
RAPTOR synthesis activities.

8.1 Application and Implementation Architecture Requirements

The RAPTOR specifications can be utilized in the implementation of a fault-toleran
tem given an appropriate application architecture and implementation environ
Before discussing the synthesis of implementation components, it is necessary to 
the implementation architecture into which the generated code will fit. This se
58
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describes the requirements of the application and the overall system structure into which
the RAPTOR methodology contributes generated code.

At the application-node level, there are three primary requirements that must be satis-
fied by the application in order to integrate RAPTOR synthesized code with the node
implementation:
1. The application must provide alternate functionality to support recovery.
2. The application must integrate that alternate functionality in a systematic manner to

facilitate reconfiguration to alternate functions when necessary.
3. The application must possess low-level error detection capabilities and provide that

error detection information for analysis.
While the provision of alternate services required for reconfiguration and recovery is

an obvious requirement (#1), the alternate functionality must be structured such that
reconfiguration and manipulation of system state is easily accomplished (#2). Regarding

P r o c e s s

P r o c e s s

P r o c e s s
A c t u a to r

S e n s o r
E v e n t s

A c t i o n s

CONTROL SYSTEM AUGMENT

Events Actions

APPLICATION NODE (detail)

Figure 16: System and node architecture together (synthesized components shaded)

APPLICATION NETWORK
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low-level error detection, this work does not address those capabilities as mentioned pre-
viously. However, the analysis of low-level error detection information is necessary in
order to determine the overall system state, therefore there must be an interface by which
the application can communicate that information (#3).

At the system level, the primary requirement for incorporating synthesized code is that
the application support an augment to the system architecture to perform high-level error
detection and coordinate recovery, the Control System (see Figure 17). Many critical sys-
tems are augmented with control system architectures to monitor and control processes,
utilizing sensors to detect problem conditions and actuators to effect responses to those
conditions. Research into control system architectures for critical information systems is
an issue that has been explored separately [75]. The architecture of a RAPTOR Control
System is not so much an issue, so long as the requirement of a control system augment is
satisfied.

8.2 Synthesis of Implementation

Given a reconfigurable application and a control system augment, the RAPTOR specifica-
tions can be utilized for synthesis of portions of the implementation that can integrated
into the application. The generation of the implementation components achieving fault tol-
erance leverages off of the development of a formal specification, in addition to yielding

APPLICATION NETWORK

Error
Recovery

Commands

CONTROL SYSTEM
AUGMENT

Figure 17: RAPTOR system architecture

Error
Detection

Signals
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the other benefits mentioned previously (in Section 5.1.2). The following subsections dis-
cuss the different areas of synthesis.

8.2.1 System Specification Synthesis

Because relevant characteristics are described in the System Specification using an object-
oriented notation associated with an object-oriented database, the system definition is in a
form usable by the application immediately. The POET object-oriented database provides
a preprocessor to generate database schemas for the database definition
automatically [59]. Then at run-time, the database can be instantiated and populated for
the given system. (Objects can be instantiated and populated in the database based on a
topology specification and additional configuration information.) Finally, during system
operation the populated database can be utilized by the Control System to monitor and
analyze the state of the system. (Use of the database at run-time though requires that the
object-oriented database provide some assurance of adequate performance and achieve
any distributed access requirements dictated by the Control System.)

The synthesized database for System Specification information is depicted in
Figure 16 by the shaded database symbol (three disks) attached to the Control System.

In the banking system example from the previous chapter, the System Specification
definition for a money-center bank (shown in Section 7.2.1) was utilized to define a data-
base schema for that object. Then during system operation, a database object was instanti-
ated for each money-center bank in the system, and the populated database was accessed
by Control System nodes to help monitor system state.

8.2.2 Error Detection and Recovery Specifications Synthesis

The RAPTOR specifications describing high-level error detection and error recovery are
utilized to generate code by processing them with the Fault Tolerance Translator. This sub-
section describes the translator, then the generated code components.

Fault Tolerance Translator

The Fault Tolerance Translator was constructed to synthesize code components from the
fault-tolerance specifications. The translator accepts as input the Z specifications for error
detection and recovery, and produces as output C++ code for various fault-tolerance com-
ponents. More specifically, the Fault Tolerance Translator processes the LaTeX Z output
of the Z/Eves theorem prover from the Zeus system, after the specifications have been
type-checked by Z/Eves. The grammar for the translator consists of approximately 90 pro-
duction rules and 40 tokens (the grammar can be found in Appendix C).

It is important to reiterate that the Fault Tolerance Translator recognizes only a subset
of Z: the Fault Tolerance Translator does not solve the general refinement problem. The
Fault Tolerance Translator also requires the Z specification to have a particular structure in
order for the error detection and recovery descriptions to be recognized. Given an appro-
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priately structured Z specification, the translator can synthesize fault-tolerance code, as
described in the next subsection.

Generated Code Components

The Fault Tolerance Translator generates a C++ class for each type of abstract finite-state
machine described in the specification. In addition, a header file with definitions of system
events, state enumerations, and application messages is synthesized from the specification
files. These abstract finite-state machines and system definitions are key components in

class MoneyCenterBankFSM
{

public: // Interface
MoneyCenterBankFSM();
virtual ~MoneyCenterBankFSM();
int ReceiveEvent(SystemEvents input_event, SystemInput input, 

cset<OutputMessage> *messages, cset<OutputEvent> *events, 
int Time);

ColorAssignments DisplayColor;

protected: // Data
unsigned int MyMcb;
cset<unsigned int> MyBbs;
cset<unsigned int> HostBbs;
unsigned int MyFrb;
McbNodeStates NodesDown;
bool DbDown;
bool Alert;
McbBackupFrbStates BackupFrb;
cset<unsigned int> BbsUp;
cset<unsigned int> BbsDown;
cset<unsigned int> BbsIdAlarms;
cset<unsigned int> BbsAlarmTimes;
McbBbNodeStates BbNodeStates;
McbBbIdStates BbIdStates;
bool BbCoordinatedAttack;

public: // init functions
void InitMoneyCenterBankFSM();
void InitMcbMyMcb(SystemInput input);
void InitMcbNewBb(SystemInput input);
void InitMcbNewHostBb(SystemInput input);
void InitMcbMyFrb(SystemInput input);

};

Figure 18: Generated money-center bank FSM class definition
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the Control System, thus in Figure 16 the Control System augment is shaded.
The member variables in the class definition for each finite-state machine are derived

primarily from the state schema for the finite-state machine. The methods generated for
each finite-state machine class are an empty constructor and destructor, initialization func-
tions (from the initialization schemas), and a handler for receiving system events (a func-
tion called ReceiveEvent).

Figure 18 shows the output of the Fault Tolerance Translator for the money-center
bank finite-state machine class. (The money-center bank Z state schema, from which most
of this code was generated, was shown in the previous chapter, and can be found again in
Appendix C.) In addition to the class methods described above, the member variables are
derived directly from the Z state schema: integer ID numbers refer to other banks, includ-
ing important sets of banks such as branch banks owned by this money-center bank (cset
is a POET-generated container class). Enumerated type and boolean variables describe
state variables for the finite-state machine, including those pertaining to node failure
(McbNodeStates NodesDown), database failure (bool DbDown), and intrusion detection
alarms (bool Alert). One final state variable, ColorAssignments DisplayColor, is generated
automatically to facilitate visualization of finite-state machine state.

The ReceiveEvent method is the central method in the abstract finite-state machine
class, as this is the function that effects transitions between states. The ReceiveEvent han-

int MoneyCenterBankFSM::ReceiveEvent(SystemEvents input_event, 
SystemInput input, OutputMessageCSet *messages, OutputEventCSet 
*events, int Time)
{

OutputMessage *msg;
OutputEvent *event;

switch(input_event)
{
case LocalIdAlarmOn:

{
Alert = True;
event = new OutputEvent;
event->name = McbIdAlarmOn;
event->destination = HostBbs;
event->destination.Append(MyFrb);
events->Insert(*event);
msg = new OutputMessage;
msg->name = MsgMcbRaiseAlert;
msg->destination.Append(MyMcb);
messages->Insert(*msg);
break;

}
case LocalIdAlarmOff:

// etc.

Figure 19: Generated money-center bank low-level event code
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dler is synthesized by creating a switch statement from all of the operation schemas for
processing low-level events. In addition, the high-level event schemas are used to generate
code to check for these conditions at the end of the ReceiveEvent handler and to manipu-
late the state as necessary. The input to this function is a single event from the Syste-
mEvents set defined in the specification, any additional node information related to the
incoming event, and the global time. The outputs of this function are a set of events to pass
to other finite-state machines as a result of this transition and a set of messages that can be
sent to the application node(s) manipulated by this finite-state machine in order to respond
to the event. This function also manipulates the state according to the relevant operation
schema corresponding to the input event.

Figure 19 shows the output of the Fault Tolerance Translator for the LocalIdAlarmOn
event in the ReceiveEvent function for the money-center bank finite-state machine. (The Z
operation schema for this particular event was shown in the previous chapter.) The param-
eters to the function comprise the inputs and outputs described previously. For this event,
first the member variable related to the intrusion detection alarm, Alert, is set. Then, an
event notification for the connected branch bank and Federal Reserve Bank finite-state
machines is generated, and a message to the money-center bank application node is gener-
ated.

At the end of the ReceiveEvent handler is code generated for recognition of and
response to high-level events. Figure 20 shows the output of the Fault Tolerance Transla-
tor for the 0FE&RQGLWLRQ6FKHPD��$ODUPV,Q��6HFRQGV high-level event schema (also
shown in the previous chapter). The proposition checking whether this event has occurred
is translated into the if clause. If the conditions are found to be true, then the state variable
relating to branch bank coordinated security attack is set and the appropriate event com-
municated to other finite-state machines.

Finally, at the node-level it is possible to generate shells for sensor and actuator code
based on the pre-defined low-level errors and application services. For the synthesized

// switch statement and other high-level event conditions above
if ((BbCoordinatedAttack == False) &&

 (BbsAlarmTimes.GetNum() >= 10) &&
 (RaptorSeqElem(&BbsAlarmTimes, ((BbsAlarmTimes.GetNum()) - 9))

>= (Time - 60)))
{

BbCoordinatedAttack = True;
event = new OutputEvent;
event->name = McbBbCoordinatedAttack;
event->destination = MyBbs;
event->destination.Append(MyFrb);
events->Insert(*event);

}

//etc.

Figure 20: Generated money-center bank high-level event code
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rom
sensor code, the messages to send the Control System upon occurrence of a low-level fail-
ure are defined in the Error Detection Specification. Sensors can be synthesized that gen-
erate these messages, and the integration task left with the node application code is tying
the message generation to the actual low-level error detection event. For the synthesized
actuator code, the messages that the Control System sends to the application are defined
by the Error Recovery Specification. Actuators can be synthesized to receive these mes-
sages, and the remaining integration task is to call the appropriate node application code
upon receipt of the notification message. The sensor and actuator components at the node
level in Figure 16 are shaded representing their synthesis, and the arrows for event and
action communication are shaded as well.

8.3 Summary

Each of the RAPTOR specifications is utilized to synthesize code components enabling
fault tolerance. The System Specification is processed by the POET preprocessor, while
the Error Detection and Recovery Specifications are utilized by the Fault Tolerance Trans-
lator. The following code components are synthesized from the specifications:
• Control System augment. The Fault Tolerance Translator generates code for the

abstract finite-state machines of the Control System. This code consists of a finite-
state machine class for each node or set of nodes of concern. The abstract finite-state
machines are a key components of the Control System, as they perform high-level
error detection and effect recovery activity in the application nodes.

• System Specification database. The POET object-oriented database processes the Sys-
tem Specification and produces a database for system configuration information. This
database can be accessed at run-time by Control System nodes to analyze relevant
configuration information during error detection and recovery.

• Sensor code. The Fault Tolerance Translator generates code for the application sensor,
though this code will need further instrumentation to tie low-level error detection
events to the proper sensor event message.

• Actuator code. The Fault Tolerance Translator generates code for the application actu-
ator. This code also requires further instrumentation to tie actuator action messages to
actual application response code.

• Event and action messages. The Fault Tolerance Translator generates the code to pro-
cess and receive event and action messages between Control System nodes and appli-
cation elements.
Code for all of the types of information described in the Error Detection and Error

Recovery Specifications (described in Chapter 7) can be generated by the Fault Tolerance
Translator, including code for the following:

• Finite-state machines
• System events (including both low-level and high-level errors, recovery f

errors, and time-based events)
• Communication between finite-state machines
• Messages to application nodes
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unica-

 these
• Responses to events in terms of changes in state, finite-state machine comm
tion, and application messages

The next chapter expands on the implementation architecture that incorporates
generated code components.
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The discussion of synthesis in the previous chapter introduced the RAPTOR implementa-
tion architecture at a high level. This chapter explores in more depth the implementation
architecture at both the node level and system level.

9.1 RAPTOR Node Architecture

The previous chapter outlined the node architecture with respect to the generated code
components. This section presents the node architecture in detail, first outlining the basic
principles and minimum requirements of the node-level architecture, then discussing
implementation details in the current RAPTOR system and possible enhancements.

9.1.1 Basic Principles

The previous chapter presented three requirements that must be satisfied by an application
node supporting RAPTOR fault tolerance:

• The provision of alternate functionality (for error recovery)
• The structuring of the application node to facilitate reconfiguration to alter

functionality
• The provision of error detection capabilities and information
These three application requirements basically ensure that an application progra

ports the low-level capabilities required for performing the fault-tolerance activitie
error detection and error recovery.

The three application requirements also point to the basic principles in structurin
node architecture. Given an application node that satisfies those three requiremen
node architecture can be constructed around that application program. There ar
minimal required elements in the node architecture to support fault-tolerance acti
(1) sensors, (2) actuators, and (3) reconfigurable processes. Sensors and actuato
67
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introduced in the previous chapter: these two components provide interfaces for manipula-
tion of the error detection and error recovery capabilities provided by the application,
respectively. This subsection will define in detail the capabilities and characteristics of
reconfigurable processes.

A reconfigurable process is a specialized type of application process that is used as the
building block for nodes in the RAPTOR System. Firstly, a reconfigurable process imple-
ments some aspect of required system functionality, just as any application process would.
Secondly, a reconfigurable processes satisfies the requirements of application programs
cited previously, basically providing low-level error detection and error recovery capabili-
ties that must be manipulated under the appropriate circumstances. The key specialization
of a reconfigurable process, though, is that reconfigurable processes support a set of criti-
cal services required for reconfiguration. These critical services provide the interface by
which a reconfigurable process can switch to an alternate service mode in a safe manner.

At a minimum, reconfigurable processes must provide two critical services in order to
effect reconfiguration: (1) the ability to stop current process functionality, and (2) the abil-
ity to start new process functionality. Stopping current process functionality must be
accomplished in such a manner as to preserve the state of the application safely. Achieving
this requirement is made simpler by the fact that a reconfigurable process does not have to
be stopped at any arbitrary point: a reconfigurable process can provide specific stopping
points so long as they are sufficiently frequent as to maintain reasonable response times to
reconfiguration requests, as dictated by the application domain. Starting new process func-
tionality requires access to relevant application state for the given reconfigurable process.

The composition of these two critical services, stopping and starting process function-
ality, provides the capability of switching to an alternate service mode (obviously, by stop-
ping the current function and starting an alternate function). So long as access to relevant
application state is provided to a reconfigurable process in whatever its mode of function-
ality, the reconfigurable process can be manipulated to achieve any form of application
service and then reconfigured to provide an alternate service.

To summarize, there are minimally three required elements of a node architecture to
enable fault tolerance:

• An interface to communicate error detection information, the sensor
• An interface to enable error recovery activities, the actuator
• A specialized application process that provides alternate modes of functiona

tolerate faults and a critical service interface by which the process can be ma
lated, the reconfigurable process

Thus, a critical information system will be a collection of reconfigurable proces
distributed on nodes, that cooperate in the normal way to implement normal appli
functionality. The basic application is constructed in a standard manner as a collec
processes, each of which is enhanced to support critical services to stop and start 
modes of application functionality. Each node is supplemented with a sensor to com
cate error detection information and an actuator to accept reconfiguration comm
Upon request for reconfiguration to effect error recovery, the reconfigurable process
manipulated to stop current functionality and start alternate functionality using the cr
service interface.
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9.1.2 RAPTOR Node Implementation

The basic RAPTOR application node has the three primary components just discussed, as
pictured in Figure 21: sensors, actuators, and reconfigurable processes. In addition to these
node-level components, two system-level entities are pictured: the Control System and the
Coordinated Recovery Layer. Sensors, actuators, and the Control System were introduced
in the previous chapter, as they are generated by the Fault Tolerance Translator (Section
8.2.2); this subsection introduces the Coordinated Recovery Layer (a detailed description
is provided later in this chapter). This subsection discusses implementation issues with
respect to sensors, actuators, and reconfigurable processes.

The code generated for a sensor consists of a set of messages that must be sent to the
Control System, communicating the occurrence of various low-level events or failures.
While the message generation sequences for the low-level events of interest can be gener-
ated by the Fault Tolerance Translator, these messages must be tied to the actual detection
of errors in the application. Communication must occur between the application code, i.e.,
reconfigurable processes, and sensor in order to notify the sensor of an error detection
event. This communication will depend upon the relationship between the sensor and
reconfigurable processes: if the sensor is a separate process, then message passing must
take place between the reconfigurable processes. However, it is possible to integrate the
sensor into a reconfigurable process; in this case a function call will suffice for communi-
cation.
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Figure 21: Node architecture (with reconfigurable processes)
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Similar issues arise in the implementation of an actuator. The Fault Tolerance Transla-
tor generates actuator code corresponding to the messages that will be received from the
Control System to initiate error recovery. Upon receiving a message, the actuator then
must make the appropriate calls to the reconfigurable process(es) in order to stop and start
modes of functionality. The actuator requires a message-passing interface to receive com-
munication from the Control System. Still, the actuator can either be integrated into a
reconfigurable process or be its own separate process; dependent on this design decision,
communication with reconfigurable processes will then take place through function calls
or message passing, respectively.

The implementation of a reconfigurable process must achieve the requirements for
error detection and error recovery already outlined. While these specialized processes can
reconfigure themselves when prompted, some recovery activities must be coordinated
across multiple application nodes and processes. Coordination is required when several
reconfigurable processes must switch to their alternate service modes at the same time, for
example. This requires support external to the reconfigurable processes, which is provided
in the form of a system-level construct called the Coordinated Recovery Layer. The Coor-
dinated Recovery Layer will be discussed in greater detail in the next section, but it is
important to note that the reconfigurable processes can access coordination services dur-
ing reconfiguration and recovery.

9.1.3 Enhanced Requirements

The node architecture in the current version of RAPTOR supports the fault-tolerance
activities of high-level error detection and error recovery as described in this chapter.
However, there could be enhanced requirements that require additional architectural sup-
port at the node level.

One such enhanced requirement, for example, is bounded response time to reconfigu-
ration requests. In the current RAPTOR node architecture, assurance cannot be provided
about response time to a reconfiguration request because no guarantees can be made con-
cerning the scheduling of processes or the processing of messages. If bounds on response
time or performance of the reconfiguration mechanism are concerns, the node architecture
must be enhanced to provide these guarantees.

There are a number of strategies and mechanisms that could be employed for provid-
ing bounded response times in the current node architecture. Firstly, the actuator would
have to be constructed as a high-priority process on the node. One mechanism that could
be used is an interrupt-driven actuator implementation. Messages received for the actuator
on a node could be tied to an interrupt, thus ensuring that the actuator process is scheduled
immediately upon receipt of a reconfiguration message from the Control System.

Then, the reconfigurable processes would have to be constructed such that they pro-
cess critical service messages from the actuator in bounded time. This would involve
either another interrupt mechanism or polling on the part of a reconfigurable process at a
guaranteed frequency. Both implementation strategies have issues of concern. With the
interrupt mechanism, the reconfigurable process would now have to be constructed to
accept critical service requests at any point: stopping a running process at any point is a
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complex undertaking when considering the consistency of the state being manipulated.
With the polling mechanism, a reconfigurable process would have to be scheduled fre-
quently enough such that it could poll for critical service requests from the actuator; in
addition, the frequency of polling would limit the amount of actual application processing
that could be accomplished before polling again for critical service requests. Both
approaches would require operating system support.

9.2 RAPTOR System Architecture

The previous chapter provided an overview of the RAPTOR system architecture with
respect to generated code components. This section discusses the system architecture in
greater detail, first outlining the basic principles and minimum requirements for the sys-
tem-level architecture, then presenting implementation details and possible enhancements.

9.2.1 Basic Principles

The previous chapter pointed out one requirement for support of fault tolerance at the sys-
tem-level: a control system augment to the application to perform high-level error detec-
tion and to initiate error recovery. As mentioned previously, a key component of a control
system is a network of communicating finite-state machines that perform analysis and cor-
relation of low-level event and error information in order to detect complex, non-local
faults, as well as prompt recovery through generation of application messages.

There is a second requirement at the system-level that was touched upon in the previ-
ous subsection: support for coordination between reconfigurable processes. The require-
ment for coordination between processes is clear; there will often be circumstances when
a switch to an alternate mode of functionality must occur in multiple nodes at the same
time. For example, the switch from communicating with a primary node to communicat-
ing with a backup node must be accomplished at roughly the same time in order for appli-
cation messages to be sent to the correct destination (primary or backup) and for that
destination to be prepared for those messages.

The requirement of support for this coordination at the system level is pragmatic. It is
possible that every reconfigurable process could be implemented with functionality to
enable coordination with certain other nodes in forseeable recovery circumstances. It
would seem more efficient, however, to implement the protocols for coordination once in
a system-level construct that would then provide these coordination services to all of the
reconfigurable processes, enabling coordination between arbitrary sets of nodes, upon
request. In large-scale systems, issues in implementation and distribution of this system-
level construct must be considered such that support for coordination does not become a
bottleneck.

In summary then, there are two requirements for system-level support of fault toler-
ance: (1) a control system to perform high-level error detection and initiate error recovery
activities, and (2) system-level support for coordination services between reconfiguring
nodes.
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9.2.2 RAPTOR System Implementation

The RAPTOR system architecture is pictured in Figure 22, including the two system-level
constructs in the RAPTOR implementation architecture: the RAPTOR Control System and
the Coordinated Recovery Layer.

RAPTOR Control System

The Control System consists of a set of communicating finite-state machines that perform
analysis and correlation of low-level event and error information in order to detect com-
plex, non-local faults. The Fault Tolerance Translator generates code for these finite-state
machines. In addition, the Control System can access a database of configuration informa-
tion, synthesized from the System Specification.

The implementation of a RAPTOR Control System involves construction of nodes that
support the activities of synthesized finite-state machines. In particular, the Control Sys-
tem implementation will receive error detection messages from the application node sen-
sors and must pass the relevant information to the appropriate finite-state machine. In
addition, the Control System implementation must generate system-specific messages to
application node actuators, given abstract instruction to generate messages in the finite-
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state machine code. (In other words, the finite-state machines will dictate a message to
send and a set of nodes for the destination, but the Control System implementation must
translate or adapt this instruction for the particular host and communication mechanism on
which the Control System is operating.)

It is important to note that the implementation architecture of the Control System is
independent of the network structure of the specified and generated finite-state machines.
For reasons of performance and security, the Control System will most likely be con-
structed to run on dedicated machines, separate from the application network that it moni-
tors (also known as the controlled system). The architecture of the Control System can be
optimized based on many factors: the Control System can run in a centralized environ-
ment or can itself be distributed. The network of finite-state machines will themselves be
distributed amongst Control System nodes, presumably optimized for efficient communi-
cation between finite-state machines and the application nodes being monitored.

Coordinated Recovery Layer

The Coordinated Recovery Layer provides error recovery services to reconfigurable pro-
cesses requiring the coordination and control of multiple processes. These error recovery
services will be provided in a largely application-independent manner; thus, a common
Coordinated Recovery Layer implementation could be used by multiple applications with
initial configuration achieved by generation parameters such as the target system topol-
ogy.

For the current version of RAPTOR, a simple, prototype Coordinated Recovery Layer
was implemented to coordinate reconfiguration activities for multiple nodes. The proto-
type Coordinated Recovery Layer utilizes a partial implementation of the two-phase com-
mit protocol to ensure coordinated commitment to reconfiguration activities between
multiple reconfigurable processes. The services of this Coordinated Recovery Layer are
implemented as a library available to all application nodes. The Control System dictates a
coordinator in the two-phase commit protocol for each recovery activity requiring Coordi-
nated Recovery Layer services. When the Control System initiates recovery activities
upon detection of an error of concern, it knows all the participants in the reconfiguration;
thus, the Control System can determine a key node in each recovery sequence and select
the appropriate coordinator for the commit protocol.

9.2.3 Enhanced Requirements

In terms of the implementation of the system architecture, the prototype Coordinated
Recovery Layer demonstrates feasibility of coordination services for application nodes.
Coordinated commitment is one basic service required by reconfiguring nodes, and the
two-phase commit protocol is but one implementation alternative for that service. It is cer-
tainly possible that different reconfiguration activities will require more sophisticated ser-
vices than coordinated commitment, or that another commitment protocol would be more
appropriate depending on the characteristics of the application domain in question.

One possible enhancement at the system-level is the introduction of a more efficient
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communication mechanism. In the current RAPTOR implementation, the Control System
communicates directly with nodes requiring reconfiguration. Direct, unicast communica-
tion with large numbers of nodes is not the most efficient communications protocol, espe-
cially (1) when the number of nodes requiring reconfiguration is very large and (2) if the
Control System is not distributed in such a way to make that communication efficient. An
intermediate communications paradigm could be introduced to make the distribution of
event information and recovery commands between a large number of application nodes
and the Control System more efficient. A communication paradigm that shows promise is
the publish/subscribe methodology for disseminating information between large numbers
of nodes [16]. Significant testing has been done with large numbers of nodes, and it has
been shown that data can be distributed in an efficient manner [17]. Using a publish/sub-
scribe system as a transport layer, reconfiguration commands could be published by Con-
trol System nodes and subscribed to by actuators, with the underlying publish/subscribe
network routing commands efficiently and automatically.

9.3 Summary

The RAPTOR implementation architecture consists of components at both the node level
and system level that enable fault tolerance. At the node level, sensors, actuators, and
reconfigurable processes provide low-level error detection information and error recovery
capabilities in a systematic application structure. At the system level, the Control System
performs analysis on error events in order to detect errors of concern and prompt the appli-
cation to recover or reconfigure appropriately. In addition, the Coordinated Recovery
Layer provides coordination services to application processes involved in reconfiguration.
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Evaluation Approach
This chapter outlines the evaluation methodology and presents the research questions with
which the solution approach is evaluated. In addition, the modelling and experimentation
system used as part of the evaluation approach is described.

10.1 Evaluation Approach

Ideally, evaluation of the solution approach would occur by running controlled experi-
ments on actual critical information systems. For a number of reasons this approach is
quite impossible. Firstly, access to critical information systems is highly restricted. In
most cases, these systems operate continuously, around the clock, year round, and cannot
be stopped for testing or experimentation; permission for access to particular information
systems often resides with different authoritative domains; and finally, the consequences
of failure in these systems are so extreme that they will not be changed under anything but
the most drastic circumstances (certainly not for experimental research). Secondly, run-
ning controlled experiments on systems this complex and this large is infeasible: it is
impossible to control all of the variables due to the size and complexity of these systems.
Also, it would be prohibitively expensive to conduct enough trials for any single experi-
ment to be statistically valid.

The approach to evaluation must proceed pragmatically. Given that experimentation
on actual critical information systems is not possible, representative models of these sys-
tems were constructed in two infrastructure application domains. These representative
models are derived from domain analysis, focusing on the relevant characteristics of these
systems outlined in the chapter on problem description (Chapter 2). The models will be
used for experimentation as part of the evaluation approach.

To guide the evaluation of this research, the next section presents research questions
relating the solution requirements to the major solution components.
75
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10.2 Key Research Questions

Each aspect of the solution must be evaluated with respect to the solution requirements
listed in Chapter 5. The major solution areas and their key components that must be con-
sidered during evaluation are the following:

• Specification
— System Specification
— Error Detection Specification
— Error Recovery Specification

• Synthesis
— Fault Tolerance Translator
— Database synthesis

• Implementation Architecture
— Sensor/Actuator implementations
— Reconfigurable process implementation
— Control System architecture
— Coordinated Recovery Layer

Evaluation will consist of a set of key questions relating the major solution are
each of the four solution requirements (presented in Section 5.2):

• Scale
• Heterogeneity
• Complexity
• Performance
As a baseline, evaluation can be thought of as a matrix of questions relating eac

tion requirement to each solution component, where applicable:

Can the given solution component of the RAPTOR System accommodate each solution
requirement of critical information systems?

The following is a more detailed set of research questions that will be used to ev
this research.

Scale

• Specification. Do the specification notations and methodology enable description of
large-scale systems, errors involving large numbers of nodes, and error recovery activ-
ities involving large numbers of nodes?

• Synthesis. Can the Fault Tolerance Translator generate sensor and actuator code for a
large-scale system and its associated control system? Can the database be synthesized
to accommodate a large-scale system?

• Implementation Architecture. Can the Control System monitor and effect control for a
large number of nodes? Can the Coordinated Recovery Layer accomplish coordination
between a large, distributed set of nodes?
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Heterogeneity

• Specification. Do the specification notations and methodology enable description of
heterogeneous nodes, the faults involving heterogeneous nodes, and the different types
of recovery response possible in those nodes?

• Synthesis. Can the Fault Tolerance Translator generate sensors and actuators for heter-
ogeneous nodes, as well as a control system to monitor and effect control for those
nodes? Can the synthesized database accommodate the descriptions of heterogeneous
nodes?

• Implementation Architecture. Does the reconfigurable process architecture provide a
feasible structuring mechanism for the different types of heterogeneous node? Can the
Control System monitor and effect control over heterogeneous nodes? Can the Coordi-
nated Recovery Layer provide coordination services for those heterogeneous node
types?

Complexity

• Specification. Do the specification notations and methodology enable description of
the complex functionality and architecture of critical information systems, as well as
the complex faults of concern and recovery responses?

• Synthesis. Can the Fault Tolerance Translator generate sensors and actuators for a
complex application, as well as its associated control system?

• Implementation Architecture. Can the Control System monitor and effect control in a
complex system? Can the Coordinated Recovery Layer support coordination activities
for complicated recovery responses?

Performance

• Specification. Do the specification notations and methodology enable description of
the performance-related aspects of the system, faults, and responses?

• Synthesis. Can the Fault Tolerance Translator generate code that supports the perfor-
mance-related aspects of a critical information system and its associated control sys-
tem?

• Implementation Architecture. Can reconfigurable process architecture support and
achieve application performance requirements during recovery and reconfiguration?
Can the Control System monitor and effect control in an efficient manner? Can the
Coordinated Recovery Layer provide coordination services within performance
bounds?
These key research questions will attempt to demonstrate, as a baseline, the feasibility

of the RAPTOR System in achieving fault tolerance in critical information systems. While
one cannot prove that the RAPTOR System will work for all critical infrastructure
domains, this work attempts to show that the RAPTOR approach is applicable to critical
information systems by addressing the aforementioned research questions using three
evaluation methods: (1) rigorous argument, (2) analysis, and (3) experimentation.
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The next section describes the system used for experimentation with critical informa-
tion system models.

10.3 RAPTOR Simulator

The Survivability Research Group in the Department of Computer Science at the Univer-
sity of Virginia has developed modelling and experimentation systems for research on crit-
ical information systems [74]. The current modelling system is called the RAPTOR
Simulator [69]. The RAPTOR Simulator provides a general network simulator with addi-
tional tools important for experimentation on critical infrastructure information systems.
These tools allow the user to model network faults such as security attacks, system fail-
ures, and a variety of other user-defined events [69].

The RAPTOR Simulator enables rapid construction of large, distributed models of
critical information systems by providing the following capabilities:

• A general message-passing infrastructure
• A mechanism for description and instantiation of arbitrary information sys

topologies
• A system for vulnerability definition and symptom injection
• A virtual time mechanism to enable measurement various phenomena
Figure 23 shows an overview of the RAPTOR Simulator environment. A RAPT

model is defined by describing the desired topology and implementing the desired appl
cation functionality. Based on the topology, the model is created using services fro
modelling system’s support libraries and using the application software provided b
model builder. Faults to which the model should be subject are defined and controlled 

Figure 23: RAPTOR Simulator environment
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user-defined fault script. During the execution of a model, these faults can be injected into
the model to indicate any event of interest to the user. Events might include security pene-
trations, hardware failures, etc. Any data of interest to the user can be collected and made
available to a separate process (possibly on a remote computer) for display and analysis.
Finally, since multiple independent models can be defined from separate topology specifi-
cations, complex systems of interdependent critical networks can be modelled [69].

The current version of the RAPTOR Simulator runs on the Windows 2000 platform
and is capable of running tens of thousands of Windows threads for modelling
purposes [40]. For this work, a single Windows thread is used to model each node, but the
assignment of nodes to threads in the RAPTOR Simulator is arbitrary and user-defined.
Threads are capable of simulating arbitrary application functionality and can be instru-
mented to respond appropriately to fault injection and experimental measurement.

It is important to note that while these models simulate application functionality, the
models themselves are actual concurrent systems, with all of the complexity inherent in
concurrent systems programming. Because every node is simulated by a separate thread in
these models, in a 10,000-node model there are actually 10,000 threads running, each with
its own memory and thread of control. All of the communication and synchronization
issues inherent to concurrent applications programming are present in these models, and,
very importantly, the issue of scale is not abstracted away. Thus, while evaluation of the
solution approach on a model is not necessarily ideal, these models are fairly accurate rep-
resentations of critical information systems in certain key dimensions, and thus suitable
for evaluation.

Two example critical information systems will be examined in detail to ensure that the
solution approach addresses the key concerns in two important application domains:
(1) banking and finance, and (2) the electric power system. Models of the financial pay-
ments system were constructed after meetings with information technology managers at
the Federal Reserve Automation Services in Richmond, VA. In addition, models of the
electric power grid were constructed after meetings with information technology manag-
ers at Virginia Power. (Though the final form of neither model was evaluated by domain
experts after construction.)
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Experiments and Analysis
This chapter describes in detail the systems built in two application domains using the
RAPTOR approach to fault tolerance. In addition, the experiments and analysis performed
using those systems are presented.

11.1 Financial Payments System Experiments

As part of evaluation of the solution approach, models of banking systems were built. This
section presents a 10,000-node financial payments system model, its specifications and
implementation, and experimental data from that system.

11.1.1 Scenario Description

The model of a financial payments network was constructed in order to demonstrate and
evaluate the capabilities of the RAPTOR System on a system resembling the United States
financial payments system. The banking network model consists of three types of bank
nodes, as described in Table 4. This model was constructed to be roughly the size of the
U.S. financial payments network in order to demonstrate the RAPTOR System on a realis-
tically-sized, large-scale critical information system; as such the application model con-
sists of approximately 10,000 nodes.

Given this application domain and structure, a control system augment to perform
high-level error detection and error recovery was designed. The control system consists of
a three-level hierarchy of finite-state machines corresponding to different levels of con-
trol: system level, regional level, and local level. The system-level finite-state machine
controls the Federal Reserve Bank and its backups and communicates with the regional
finite-state machines. The regional finite-state machines correspond to the administrative
hierarchy of the banking network and each controls a money-center bank, while being
connected to the system-level finite-state machine and local finite-state machines beneath
80
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it. The local finite-state machines monitor thirty-three branch banks each, so that three
local finite-state machines are connected to each regional finite-state machine.

With the given banking application and control system in mind, a set of faults were
defined at each node and level of the abstraction hierarchy. For each bank node, the events
corresponding to local faults included the following: intrusion detection alarm, database
failure, power failure, and full node failure. More complex, high-level faults of concern
were also defined using combinations of these local faults, including coordinated security
attacks and common-mode software failures.

Finally, a set of application responses were defined for each of the prescribed faults.
Corresponding recovery events were defined for each local fault, some using masking
responses and others non-masking responses. Similarly, error recovery responses were
prescribed for the high-level faults of concern.

In practice, a systems engineer familiar with the application domain would determine
the faults of concern and appropriate responses for those faults. For purposes of experi-
mentation, reasonable faults and responses were defined based on domain analysis in
order to prove the feasibility of error detection and error recovery.

11.1.2 Scenario Specification

The RAPTOR specifications for the banking model are presented in their entirety in
Appendix C, Section C.2.

Table 4: Financial payments system model description

Bank Type
Number of 

Nodes
Description

Federal Reserve Bank 1 primary,
2 backup

Top level of the hierarchy; route batches of
check requests and responses between money-
center banks and maintain overall balances for
those money-center banks.

Money-center banks 100 Second, middle level of the hierarchy; batch
and relay requests for check service using
the Federal Reserve Bank, route requests
for check service to branch banks, and
maintain balances for branch banks
beneath them in the hierarchy.

Branch banks 9,900 Lowest level of the hierarchy; store and main-
tain customer account balances, accept
checks for deposit, and process requests for
check service from money-center banks.
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System Specification

The System Specification described each bank type as a class in the POET database. First
a base class for all banks was defined, including member variables for bank name and
unique bank ID number (to be used as a searchable index). Then the derived classes for
Federal Reserve, money-center, and branch banks were defined. Each bank contained ref-
erences to related banks, such as parent and sets of children banks. Finally, additional node
characteristics such as hardware platform, operating system, and power provider (com-
pany) were included in the database definitions.

Error Detection and Recovery Specifications

The Error Detection and Error Recovery Specifications written in Z consisted of five files,
including three files to model the abstract finite-state machines at the three levels of the
banking hierarchy (FederalReserveBankFSM, MoneyCenterBankFSM, Branch-
BankFSM). Each finite-state machine specification consisted of a state schema, initializa-
tion schemas, and a set of operation schemas to specify the transitions taken in the finite-
state machines on occurrence of faults. The BranchBankFSM specification consisted of
four initialization schemas, fifteen low-level event schemas, and four high-level event
schemas. The MoneyCenterBankFSM specification consisted of five initialization sche-
mas, nineteen low-level event schemas, and eight high-level event schemas. Finally, the
FederalReserveBankFSM specification consisted of four initialization schemas, eighteen
low-level event schemas, and five high-level event schemas.

The Error Recovery Specification consisted of a set of application messages defined in
Z, corresponding to application reconfigurations provided in response to faults. The
branch bank required eight messages to specify its services, the money-center bank
required ten messages, and the Federal Reserve bank required ten messages.

11.1.3 Scenario Implementation

Using the RAPTOR specifications, portions of the implementation were generated for the
payments system model. The finite-state machines abstractions written in Z were run
through the Fault Tolerance Translator to generate code for sensors, actuators, and control
system nodes. In addition, the generated file of system definitions was integrated into the
application model. The message definitions for application reconfiguration were used to
define response code in application nodes. Finally, the POET database was integrated with
the RAPTOR modelling system to enable control system nodes to store and access state
information pertaining to application nodes at run-time.

A complete model of the banking application and its control system supplement was
constructed after integration of the synthesized code. In order to visualize the running sys-
tem, a user interface was developed to represent the entire system and devised color codes
for each node to denote its current state. In addition, the application and control system
code were instrumented to communicate node state information to the user interface dur-
ing experimentation. Finally, to perform experiments with the model implementation, var-
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ious fault scripts were defined and run using the fault injection capabilities of the
RAPTOR Simulator. These experiments demonstrate the error detection and error recov-
ery capabilities of the RAPTOR System and are presented in the next subsection.

11.1.4 Experimentation

The first measure of the effectiveness of the RAPTOR System is the effect on overall sys-
tem performance in terms of service to the end user (the key component of survivability).
In the banking model, one measure of overall system performance is check throughput,
i.e., the number of checks cleared in a given time period.

Each banking experiment shows the number of transactions (checks processed) over
200,000 time ticks for three different data sets, labelled as the following in each graph:
• No failures. The first set of data is the number of transactions when no failures occur

in the system; this is the baseline for the experiments.
• No recovery. The second set of data is the number of transactions when a set of faults

is defined and injected into the system with no specialized recovery enabled.
• RAPTOR recovery. The third set of data is the number of transactions when the same

set of faults defined previously is injected into a version of the application that was
constructed using the RAPTOR System to tolerate faults.
For each experiment, the first 100,000 time ticks are not pictured. The banking system

is permitted to approach steady state during that time period. (Steady state in these experi-
ments would be one check transaction being serviced every ten time ticks, which is the
rate at which checks are deposited.)

In a system consisting of over 10,000 nodes, there are innumerable combinations of
faults that could be injected at various times, such that the total number of possible exper-
iments is infinite. From all the possible experiments, a representative set has been selected
to demonstrate the variety of errors that can be detected and some of the recovery
responses made possible with the RAPTOR System.

Experiment 1

The first experiment presented involves the failure of a critical node in the system, the
Federal Reserve Bank. The failure of this node is considered a non-local fault in the sys-
tem because the occurrence of this fault would impact all of the money-center bank nodes,
and in fact this fault would be catastrophic as most payments processing would cease
without the Federal Reserve Bank functionality. This node is so important that a hot-spare
backup (actually two) is provided in the banking model, just as in the actual financial pay-
ments system. The recovery response in the RAPTOR specification is to switch all pro-
cessing and have all money-center banks route communications to the backup. Figure 24
shows the data relating to this experiment, where the duration of the fault was from time
125,000 to 175,000. Note that the RAPTOR recovery and No failure data are almost identi-
cal because this fault is masked. While the response to this fault is relatively simple
because the system possesses the redundancy to mask the fault, in most cases redundancy
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is too expensive to provide for non-local faults (as will be seen in the next three experi-
ments). This experiment shows the ability of the RAPTOR System to accommodate mask-
ing fault tolerance though.

Experiment 1: FRB Failure

0

50

100

150

200

250

10
00

00

10
60

00

11
20

00

11
80

00

12
40

00

13
00

00

13
60

00

14
20

00

14
80

00

15
40

00

16
00

00

16
60

00

17
20

00

17
80

00

18
40

00

19
00

00

19
60

00

Time

N
u

m
b

er
 o

f 
T

ra
n

sa
ct

io
n

s

No failures No recovery RAPTOR recovery

Figure 24: Experiment 1 (Federal Reserve Bank node failure)

Experiment 1: FRB Failure (Average)
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Experiment 2

The second experiment presented involves the failure of 25% of the money-center banks

Experiment 2: 25% MCB Failure
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Figure 25: Experiment 2 (25% Money-center bank node failures)

Experiment 2: 25% MCB Failure (Average)
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in the system simultaneously. While the failure of one money-center bank is a non-local
fault because it affects all of the branch banks beneath it, the failure of 25% of the money-
center banks would have a significant impact on the level of service provided at the
national level. Such an event could occur as a result of a common-mode or cascading soft-

Experiment 3: FRB DB Failure
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Figure 26: Experiment 3 (Federal Reserve Bank database failure)

Experiment 3: FRB DB Failure (Average)
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ware failure, and the Control System could detect the cause in such circumstances through
analysis of configuration information for failed nodes in the database. The recovery
response for this fault in the RAPTOR specification is to designate a branch bank to serve
as a backup. The branch bank must then terminate all its local services and reconfigure to
its alternate functionality. Figure 25 shows the data relating to this experiment, where the
duration of the faults was from time 125,000 to 175,000. Note that this is a degraded ser-
vice mode because branch bank operations were terminated at those nodes serving as a
money-center backup, and the branch bank does not have the processing capacity to han-
dle all of the typical money-center bank workload. The level of service to the end user is
substantially higher than if no recovery actions were taken.

Experiment 3

The third experiment presented involves a database failure at the Federal Reserve Bank.
This is a non-local fault because it effectively halts processing for those money-center
banks beneath it requiring services. For this fault, however, a local, non-masking response
is to queue the transactions until the database becomes available again. One might imagine
circumstances where the duration of a non-local fault is not anticipated to be very long,
and in those cases a local response might be appropriate. Figure 26 shows the data relating
to this experiment, where the duration of the fault was from time 125,000 to 150,000.
After the fault has ended or been repaired, the queued transactions are processed over
time, and thus the increased transaction rates after time 150,000.

Experiment 4

The fourth experiment involves intrusion detection alarms at 10% of the branch banks.
The occurrence of an intrusion detection alarm at a single branch bank is not a concern to
the survivability of the system: the number of customers affected should one branch bank
be compromised is relatively small. However, if error detection analysis reveals an abun-
dance of simultaneous intrusion detection alarms, this could be evidence of a coordinated
security attack (where the amount and patterns of concern are defined by a systems engi-
neer) and should be treated as a non-local fault. The response in the banking model is to
simulate increase of the encryption strength in communications, thus slowing processing
slightly. Figure 27 shows the data relating to this experiment, where the duration of the
faults was from time 125,000 to 175,000. In this case, the processing rate for no response
to the fault (the No recovery line) is not affected because an intrusion detection alarm does
not inherently inhibit transaction processing. However, another catastrophic failure, such
as a widespread denial-of-service attack, could result if the system did not respond to a
high percentage of simultaneous intrusion detection alarms; this is shown in the simula-
tion data at time 150,000 where the coordinated security attacks have crippled the banking
network.
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Other Experiments

Note that these four experiments are but a small sample of the total number of experiments

Figure 27: Experiment 4 (10% Branch bank intrusion detection alarms)

Experiment 4: 10% BB ID Alarms
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Experiment 4: 10% BB ID Alarms (Average)
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bank

els of
cifica-
that were run and could be run using the banking system model and the RAPTOR Simula-
tor. Other non-local faults that could be detected and responded to include the following:

• Federal Reserve bank intrusion detection alarm(s)
• Money-center bank intrusion detection alarm(s)
• Common-mode software failures involving combinations of bank types
• Database corruption involving combinations of bank types
• Widespread power failures involving combinations of bank types
• Geographic failures (e.g., environmental disaster) involving combinations of 

types

11.2 Electric Power System Experiments

To continue evaluation of the solution approach in a second application domain, mod
the electric power system were built. This section presents the latest model, its spe
tions and implementation, and experimental data from that system.

Figure 28: NERC Control Regions and Control Areas [57]
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11.2.1 Scenario Description

The electric power system model focuses primarily on the power generation function and
the information systems associated with this function and its reliability.

The upper levels of the model topology correspond to the actual set of entities in the
United States electric power grid, as outlined in the NERC operating manual from January
2001 [57]. (See Figure 28 [57].) The model consists of three interconnections: (1) the
Eastern Interconnection, (2) the Western Interconnection, and (3) the ERCOT Intercon-

Table 5: Power system model description

Power Node Type
Number of 

Nodes
Description

Substation 2,574 SCADA system that reports the demand for
power to its parent power company.

Generating station 1,287 Information system that controls and reports
the supply of power being generated to its
parent power company.

Power company 429 Energy Management System (EMS) that
accepts data from substation and generator
SCADA systems, calculates the balance of
power, reports the surplus or deficit to its
parent control area, then balances supply and
demand with any interchange adjustment
accordingly.

Control Area 143 Another EMS that accepts power balances
from power companies, calculates and
reports the control area balance to its parent
control region, then redistributes any adjust-
ment accordingly.

Control Region 10 Information system that accepts power bal-
ances from its control areas, calculates and
reports the control region balance to its par-
ent interconnection, then redistributes any
adjustment accordingly.

Interconnection 3 Information system that accepts power bal-
ances from its control regions, calculates its
interconnection balance and swaps power
with other interconnections according to
demand, then redistributes power inter-
changes amongst its control regions accord-
ing to demand.
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nection. The three interconnections comprise ten control regions, as outlined in Table 2
(see Chapter 2). Finally, distributed amongst the ten control regions are 143 control areas,
represented by the small circles in Figure 28.

The lower levels of the model topology are an abstraction of the power grid in terms of
power companies, generating stations, and substations. Each control area is responsible
for three power companies, and each power company manages three generating facilities
and six major substations. The substations in the model signify demand for power, while
the generators represent power supply.

It is important to remember that the application model corresponds to the power grid
information systems, and not the actual generating and distribution infrastructure (though
information system failure does affect generation and distribution). As such, the function-
ality of each node type in the model is described in Table 5.

Given this application model, a control system to monitor these information system
nodes was constructed. The hierarchical control system corresponds roughly to the admin-
istrative and regulatory hierarchies in place in the electric power grid. In fact, two overlap-
ping control system hierarchies are modelled: one for general information system
monitoring and the other for intrusion and security monitoring. The first, corresponding to
the administrative hierarchy, consists of finite-state machines at each power company,
control area, and control region. The second, corresponding to the NERC hierarchy for
system security issues, consists of finite-state machines at each control area, control
region, and the National Infrastructure Protection Center (NIPC).

The low-level faults designed for the system are the following: intrusion detection
alarm, database failure, and full node failure. Complex, non-local faults for this model
include coordinated security attacks (detected by the NIPC finite-state machine), the loss
of significant generating power in a power company or control area, or the failure of key
control area or control region nodes. Responses are defined for each fault of concern,
including increased generation to compensate for power loss, local balancing functions,
and backup processing capacity.

11.2.2 Scenario Specification

The RAPTOR specifications for the electric power model are presented in their entirety in
Appendix C, Section C.3.

System Specification

The System Specification described the power company, control area, and control region
node types as classes in the POET database. Each class type contained member variables
for name, unique ID number (to be used as a searchable index), and references to related
power entities, such as parent control area or control region and monitored power compa-
nies. Additional characteristics such as hardware platform and operating system were
defined in the database.
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Error Detection and Recovery Specifications

The Error Detection and Error Recovery Specifications written in Z consisted of six files,
including four files to model the finite-state machines at the three levels of the electric
power system described above (ControlRegionFSM, ControlAreaFSM, PowerCom-
panyFSM), plus one additional finite-state machine to model the National Infrastructure
Protection Center (NipcFSM). Each finite-state machine specification consisted of a state
schema, initialization schemas, and a set of operation schemas to specify the transitions
taken in the finite-state machines on occurrence of faults. The PowerCompanyFSM speci-
fication consisted of five initialization schemas, eighteen low-level event schemas, and six
high-level event schemas. The ControlAreaFSM specification consisted of five initializa-
tion schemas, twenty low-level event schemas, and six high-level event schemas. The
ControlRegionFSM specification consisted of four initialization schemas and eight low-
level event schemas (no high-level event schemas). Finally, the NipcFSM specification
consisted of four initialization schemas, ten low-level event schemas, and six high-level
event schemas.

The Error Recovery Specification consisted of a set of application messages defined in
Z, corresponding to application reconfigurations provided in response to faults. The power
company required ten messages to specify its service modes, the control area required
eight messages, and the control region required six messages. The National Infrastructure
Protection Center did not have any alternate service modes, as it was strictly an analysis
and information processing control system node.

11.2.3 Scenario Implementation

The procedure for generation of the model implementation in the electric power system
was exactly as it was for the banking system (presented in Section 11.1.3). The reuse of
the Fault Tolerance Translator and POET database system for multiple application
domains is a significant advantage of the RAPTOR System.

A complete model of the electric power system and its control system supplement was
constructed after integration of the synthesized code. Again, for experimentation various
fault scripts were defined and run using the fault injection capabilities of the RAPTOR
Simulator. The experiments related to the power model are presented next.

11.2.4 Experimentation

Again, the first measure of the effectiveness of the RAPTOR System is the effect on over-
all system performance in terms of service to the end user. In the power model, one mea-
sure of overall system performance would be the supply of power to customers,
represented by substations in the model of the electric power system. Thus, a measure of
system performance (or lack of performance in this case) would be the number of power
outages experienced by substations.

Each power experiment shows the number of power outages over 1,000 time ticks for
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ntage.
When
three data sets, the same as described previously (Section 11.1.4):
• No failures. The first set of data is the number of power outages when no failures

occur in the system; this is the baseline for the experiments and all data points are zero.
• No recovery. The second set of data is the number of power outages when a set of

faults is defined and injected into the system with no specialized recovery enabled.
• RAPTOR recovery. The third set of data is the number of power outages when the

same set of faults defined previously is injected into a version of the application that
was constructed using the RAPTOR System to tolerate faults.
Again, a few representative experiments are presented next.

Experiment 5

The first power experiment (fifth overall) presented involves the failure of several critical
nodes in the power system, Control Region information systems. The failure of a Control
Region node is a non-local fault in the system because the occurrence of this fault would
impact all of the connected Control Area nodes. The loss of multiple Control Region
nodes, in this experiment half of them, would be quite severe in that power balancing
between other Control Regions and the Interconnections would suffer. In the case of this
fault, each Control Region node designates a Control Area with redundant processing
capacity to serve as a backup. The recovery response in the RAPTOR specification is to
switch all processing and have all connected Control Areas route communications to the
backup (a masking response). Figure 29 shows the data relating to this experiment, where
the duration of the fault was from time 250 to 750. Note that this fault was effectively
masked with the exception of the single time interval the system took to react. The remain-
der of the experiments demonstrate non-masking solutions.

Experiment 6

The sixth experiment presented involves the failure of database services at half of the mid-
level nodes in the power system, Control Area nodes. Loss of database capabilities
impacts the balancing function at the node. The alternate service provided for this fault is
a local response that enables rudimentary balancing between power companies to be per-
formed at the Control Area node. Figure 30 shows the data relating to this experiment,
where the duration of the fault was from time 250 to 750.

Experiment 7

The seventh experiment presented involves the failure of generator information systems in
two stages, first involving five percent and then ten percent of the generating stations. A
single generating station failure is a local fault that will not have a very big impact on the
overall system; as such it can be handled at a fairly low level, in this model at the level of
the parent power company. The recovery response to the loss of a generating station is to
boost power production at the other power companies’ generators by some perce
This does not mask the local fault but it does provide a degraded level of service. 



CHAPTER 11. EXPERIMENTS AND ANALYSIS 94
multiple generators at a power company fail, however, this becomes a concern at a higher
regional level. The response to this fault is to boost power production regionally, at the
other power companies within the Control Area, in order to compensate more for the fault.
Figure 31 shows the data relating to this experiment, where at time 250 five percent of the

Figure 29: Experiment 5 (50% Control Region node failures)
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Experiment 5: 50% CR Node Failures (Average)

0
10
20
30
40
50
60
70
80
90

100

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

Time

N
u

m
b

er
 o

f 
p

o
w

er
 o

u
ta

g
es

No failures No recovery RAPTOR recovery



CHAPTER 11. EXPERIMENTS AND ANALYSIS 95
power companies experienced the loss of a generating station and a local response pro-
vided a degraded level of service. At time 500, a cascading fault occurred with the loss of
a second generator within each previously affected power company, bringing the loss of
generating stations to ten percent. The regional recovery maintained a degraded level of

Figure 30: Experiment 6 (50% Control Area database failures)
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Experiment 6: 50% CA DB Failures (Average)
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service until the faults ceased at time 750.

Experiment 7: 5-10% Generator Failures
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Figure 31: Experiment 7 (5-10% Generator failures)

Experiment 7: 5-10% Generator Failures (Average)

0

50

100

150

200

250

300

350

400

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

Time

N
u

m
b

er
 o

f 
p

o
w

er
 o

u
ta

g
es

No failures No recovery RAPTOR recovery



CHAPTER 11. EXPERIMENTS AND ANALYSIS 97
Experiment 8

Finally, the eighth experiment presented involves the detection of and response to a coor-

Experiment 8: 10% PC ID Alarms
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Figure 32: Experiment 8 (10% Power company intrusion detection alarms)

Experiment 8: 10% PC ID Alarms (Average)
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dinated security attack on a total of ten percent of the power companies, indicated by
intrusion detection alarms at those nodes. Coordinated security attacks in the system are
detected by the node represented by the National Infrastructure Protection Center (NIPC).
However, in the system model only Control Areas and Control Regions are a part of that
control system hierarchy, thus the power companies first report their intrusion detection
alarms to their connected Control Area. Then, the Control Area reports a regional coordi-
nated security attack to NIPC when two-thirds of its power companies have experienced
intrusion detection alarms. Once NIPC detects a widespread coordinated security attack
against power companies, it signals the affected Control Areas to restrict communications,
thus taking a protective posture against further attacks. Figure 32 shows the data relating
to this experiment, where the duration of the faults (intrusion detection alarms) was from
time 250 to 750. As mentioned previously, an alarm does not inherently affect processing,
so the No recovery data is unaffected. However, if the fault is not correctly diagnosed and
addressed, a more significant, catastrophic event could take place, symbolized in this
experiment at time 500 as the widespread power failure as the result of the compromise of
power grid information systems.

Other Experiments

Again, these four experiments relating to the power system are a subset of the experiments
that were run and could be run using the RAPTOR Simulator. Other non-local faults that
could be detected and responded to in the power model include the following:

• Common-mode software failures involving combinations of power system nod
• Database corruption involving combinations of power system nodes
• Other coordinated security attack patterns involving combinations of power

tem nodes

11.3 Analysis

While overall system performance and other statistics can be determined empiricall
also possible to calculate analytically certain key variables. In particular, this sectio
cusses analysis of detection time and recovery time.

11.3.1 Analysis of Detection Time

One key measurement in the RAPTOR System is the amount of time it takes to de
error using the network of finite-state machines. The amount of time could be expres
terms of the number of messages that must be communicated between the applicat
the finite-state machines for analysis before detection of the error is accomplished.

For example, for a low-level error it takes one message to accomplish error dete
the message from the application node’s sensor to its control system node where th
level error is handled.

For high-level errors it often takes multiple low-level events to occur before the h
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level error can be detected. For example, a coordinated security attack might be defined as
five intrusion detection alarms over a certain period of time. The coordinated security
attack is not considered to have occurred until the fifth alarm; this fifth alarm, which will
be a low-level event at some node, is called the triggering event for a high-level error.

Another point to consider for high-level errors is that their detection is often not
accomplished at the finite-state machine where the local events comprising them occurs.
Again, take the example of a coordinated security attack: a regional coordinated security
attack might be defined as a certain number of local intrusion detection alarms. While the
local finite-state machines detect the local events (intrusion detection alarms), they com-
municate their occurrence to a regional finite-state machine in order for analysis and
detection of the regional, high-level error. This communication contributes to the detec-
tion time for high-level errors.

Let us define the following variables:
n = diameter of the control system network of finite-state machines
m = number of control system finite-state machines between where the triggering

event is handled and where the high-level event is recognized
Given these variables, calculation of the detection time in terms of message count is

straightforward. It always takes one message to communicate the triggering event from
the application sensor to the network of finite-state machines. Then, it takes m messages
between control system finite-state machines to recognize the high-level event, so the total
number of messages for error detection is (m + 1).

The upper bound on the number of messages for error detection is (n + 1). In the bank-
ing model the diameter of the network of finite-state machines was three, and in the power
model the diameter was four. So in both of these applications, for the control systems that
were constructed, detection of high-level errors required a relatively small number of mes-
sages.

11.3.2 Analysis of Recovery Time

Given the analysis presented for detection time, the analysis for error recovery proceeds in
a similar manner. One difference between detection and recovery is that there is a single
low-level event that triggers the occurrence of a high-level error, and therefore a single
message propagating through the network of finite-state machines for this phase of detec-
tion. For recovery, it is quite possible that the recovery response requires actions at multi-
ple application nodes, and therefore multiple messages propagating through the network
of finite-state machines. That circumstance is considered in turn.

First, for a local, low-level error that requires only a local response, after error detec-
tion it takes one additional message to accomplish error recovery: the message from the
control system node where the low-level error is handled to the application node’s ac
prompting recovery. Thus, the total number of messages to detect and recover 
local, low-level error is two.

For high-level errors, if a response is required at the application node where th
gering event occurred, then a message must propagate back through the network o
state machines. This requires m messages to return to the originating finite-state mach
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with an upper bound of n messages. Adding the one message from the originating finite-
state machine to the application node actuator, it requires (m + 1) messages for a recovery
response at the application node with the triggering low-level fault, with an upper bound
of (n + 1). In this case, the total number of messages to detect and recover from a high-
level error is 2 x (m + 1) with an upper bound of 2 x (n + 1).

It is often the case, though, that recovery responses are required at multiple application
nodes in the case of high-level errors. While it is impossible to analyze all possible recov-
ery scenarios, one plausible scenario is that a recovery response is required at all applica-
tion nodes controlled by particular finite-state machines. So, for the example of a regional
finite-state machine detecting a coordinated security attack at local nodes, if there are
c local finite-state machines and a application nodes controlled by those finite-state
machines, then the number of recovery messages is (m x c + c x a), where m = 1 in the
case of regional to local communication. In general, recovery from errors will require
more messages than detection of a high-level error from just the triggering event (though
this is obviously not a fair comparison because many more messages relating to the high-
level error could have been communicated prior to the triggering event).



12

Evaluation
This chapter addresses the research questions posed for evaluation (in Section 10.2). The
key research questions related the four solution requirements to the major solution compo-
nents. Those questions are now answered using the sets of experiments performed and the
analysis provided in the previous chapter, as well as the solution descriptions from chap-
ters seven through nine.

12.1 Scale

The issue of scale pervades each aspect of the solution, and as such was a major focus of
this research. The following subsections discuss how scale was addressed in each solution
component.

Specification

Do the specification notations and methodology enable description of large-scale systems,
errors involving large numbers of nodes, and error recovery activities involving large
numbers of nodes?

The System Specification enables description of large-scale systems through the
abstraction and encapsulation facilities of the object-oriented notation. The number of
nodes in a large-scale system is abstracted away by dealing with different node types and
groups of related nodes in the specification. Nodes of the same node type and other related
nodes can be grouped and treated similarly as sets, and the scale of the systems can be
accommodated so long as the number of node types remains tractable. For example, in the
banking model there are over 10,000 nodes, but only three distinct node types that must be
specified (specific nodes are further differentiated by the values of their member vari-
ables). In the power model, there are approximately 4,500 nodes but only six distinct node
types, thus simplifying the System Specification greatly.

The Error Detection Specification enables description of errors involving large num-
101
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bers of nodes again by abstracting the large numbers away using sets involving nodes of
similar types. When describing errors of interest, the large numbers of nodes can be
expressed either as specific numbers or in terms of set percentages, whatever is required
by the application expert. For example, a coordinated security attack could be defined
either as intrusion detection alarms at 990 branch banks or intrusion detection alarms at
10% of the branch banks. In addition, errors of interest can be structured and addressed at
different abstraction levels in finite-state machines as appropriate: locally, regionally, or
globally. Thus, in the banking model, a coordinated security attack on a single commercial
bank can be specified separately from a coordinated security attack on the entire banking
network, using abstraction to deal with only as many nodes as necessary when defining
faults in a large-scale system.

Similarly, the Error Recovery Specification enables description of error recovery
activities involving large numbers of nodes by grouping recovery responses according to
sets of related nodes, rather than requiring each node to be dealt with individually. Recov-
ery can be addressed at local, regional, and global levels—just like detection—in or
cope with the scale of these systems. In the electric power example, local rec
responses can be effected to handle the loss of generating power within a single
company. If, however, at a regional level (within a particular control area or co
region) there is a widespread loss of generating power, then a regional recovery re
can be initiated.

Synthesis

Can the Fault Tolerance Translator generate sensor and actuator code for a large-scale
system and its associated control system? Can the database be synthesized to accommo-
date a large-scale system?

The Fault Tolerance Translator can generate code for the Control System of a
scale system because code is generated for abstract finite-state machines of the 
System based on sets of related nodes rather than for each individual node. In the b
model there are three finite-state machines corresponding to the branch bank, mon
ter bank, and Federal Reserve Bank levels. In the power model there are four finit
machine types generated.

Similarly, sensors and actuators can be generated and implemented for large n
of nodes because sensors and actuators are the same for all nodes of a particular no
thus abstracting away the particulars of a large number of nodes.

The database can be synthesized to accommodate a large-scale system bec
System Specification describes the system in terms of distinct node types. The da
preprocessor can take this specification and then generate a database definition fo
node types. During system operation, the database can be instantiated with objects
or all of the nodes in a large-scale system; the database used for system descriptio
large numbers of objects efficiently [59]. Thus, the database can accommodate the c
uration information of a large-scale system.
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Implementation Architecture

Can the Control System monitor and effect control for a large number of nodes? Can the
Coordinated Recovery Layer accomplish coordination between a large, distributed set of
nodes?

The Control System can monitor and effect control for large-scale systems because the
finite-state machines in Control System nodes monitor sets of related nodes and detect
errors at different levels of abstraction. The Control System can also employ a distributed
architecture to monitor and effect control more efficiently in large-scale systems, balanc-
ing the cost of communication between abstract finite-state machines with the cost of
communication between the Control System and application nodes. In the power model,
the Control System is distributed across 583 threads, with separate nodes at each level of
control in the administrative hierarchy.

The node architecture consisting of sensors, actuators, and reconfigurable processes
also facilitates monitoring and control of large numbers of nodes by providing a system-
atic structure and uniform interface that the Control System can utilize to effect control in
all application nodes, as discussed in Section 9.1.

The Coordinated Recovery Layer can accommodate coordination in large-scale sys-
tems, between any set of distributed nodes, of any size. The Control System dictates the
set of nodes to be involved in a coordinated recovery operation, and the size and member-
ship of this set is arbitrary. In the banking model, for example, when a money-center bank
finite-state machine detects the failure of its money-center bank application node, the
Control System constructs a set of nodes consisting of the connected branch banks and the
Federal Reserve Bank in order to coordinate the switch over to a backup facility; the Coor-
dinated Recovery Layer uses this set when performing coordinated commitment. The size
of the set for this recovery response is 100 nodes, though other recovery responses could
involve larger sets of nodes.

Summary

In summary, the RAPTOR system addresses the requirement of scale from specification
through implementation. Both the banking and electric power models were large-scale
systems for which specifications were defined, code synthesized, and an implementation
constructed. The experiments presented in the previous chapter demonstrated the ability of
the RAPTOR implementation architecture to tolerate faults in large-scale systems. In addi-
tion, the faults of concern in some circumstances involved large numbers of nodes, and the
recovery responses to various faults involved large numbers of nodes.

12.2 Heterogeneity

Heterogeneity is another key characteristic of critical information systems that greatly
impacted the solution approach. The following subsections discuss how heterogeneity was
addressed in each solution component.
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Do the specification notations and methodology enable description of heterogeneous
nodes, the faults involving heterogeneous nodes, and the different types of recovery
response possible in those nodes?

The System Specification enables description of heterogeneous nodes using the
abstraction facilities of the object-oriented notation: each node type warrants its own class
description, then heterogeneity in each node type can be accomplished with parameteriza-
tion of member variables. For example, in the banking model there are the three different
node types, each with its own class definition, but the heterogeneity in hardware platform,
operating system, geographic location, and power company is represented with four mem-
ber variables that can be defined appropriately for each node. Any other arbitrary, relevant
node characteristics contributing to the heterogeneity in the system can be expressed using
other member variables.

The Error Detection Specification enables description of the variety of faults associ-
ated with heterogeneous nodes because different local and low-level faults can be associ-
ated with each node type in the abstract finite-state machine definitions. In the power
model, the power company finite-state machine monitors substation and generator infor-
mation systems in addition to their parent power company, and therefore the local faults
defined for this finite-state machine are different from those for other finite-state machine
types. Similarly, the Error Detection Specification permits arbitrary combinations of low-
level faults to be composed to define non-local and high-level faults involving heteroge-
neous nodes.

The Error Recovery Specification enables description of the variety of recovery
responses for heterogeneous nodes because different responses can be defined for both
low-level and high-level faults at each node type. This is a necessity, as different node
types perform different functions and therefore provide different alternate services. In the
banking system, the alternate service of queueing checks at a branch bank does not apply
at the Federal Reserve Bank, which does not deal with individual checks. The Error
Recovery Specification associates different messages with different heterogeneous node
types in order to define a variety of recovery responses.

Synthesis

Can the Fault Tolerance Translator generate sensors and actuators for heterogeneous
nodes, as well as a control system to monitor and effect control for those nodes? Can the
synthesized database accommodate the descriptions of heterogeneous nodes?

The synthesized database can accommodate the descriptions of heterogeneous nodes
by storing records for each relevant node, including its particular heterogeneous character-
istics. Database schemas were synthesized for the different node types, but that is only one
dimension of heterogeneity. The other dimensions of heterogeneity—hardware pla
operating system, geographic location, etc.—are addressed as member variables
database objects that are instantiated for each relevant node, as mentioned previou

The Fault Tolerance Translator can generate code for different types of heteroge
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node and the associated Control System because the abstract finite-state machines that
were specified on a per-node-type basis are synthesized for each node type. The Control
System finite-state machines then can access node characteristics in the configuration
database to handle heterogeneity in the nodes during error detection analysis.

Similarly, sensors and actuators can be generated and implemented for heterogeneous
nodes because they are generated for each node type, independent of the heterogeneity of
the nodes into which the sensors and actuators are integrated.

Implementation Architecture

Does the reconfigurable process architecture provide a feasible structuring mechanism for
the different types of heterogeneous node? Can the Control System monitor and effect con-
trol over heterogeneous nodes? Can the Coordinated Recovery Layer provide coordina-
tion services for those heterogeneous node types?

The reconfigurable process node architecture provides a feasible structuring mecha-
nism for different types of heterogeneous node because the requirements placed upon
reconfigurable processes merely supplement the different modes of functionality present
in heterogeneous nodes, as discussed in Section 9.1.1. In fact, the reconfigurable process
node architecture is an ideal structuring mechanism for heterogeneous nodes in the RAP-
TOR System, because alternate modes of functionality are structured systematically and
can be manipulated easily in reconfigurable processes, regardless of the degree of hetero-
geneity.

The Control System can monitor and effect control over heterogeneous nodes because
the heterogeneity is managed through a standard interface for control: sensors and actua-
tors. In addition, the Control System can access the database of system configuration as
part of analysis during high-level error detection. The database of system configuration
provides an organization for the heterogeneous characteristics of application nodes that
the Control System can utilize when necessary. For example, in the banking model, if a
large set of branch banks experience node failures in rapid succession, the Control System
can detect this and check the database for configuration information regarding the failed
nodes. If all of the nodes have the same operating system or hardware platform, it could be
evidence of a correlated fault and the Control System can act appropriately.

The Coordinated Recovery Layer can provide coordination services for heterogeneous
nodes because it has a platform-independent service interface. The coordinated commit-
ment service that was provided in both the banking and power models operates indepen-
dent of the heterogeneity of the nodes involved in the protocol.

Summary

In summary, the RAPTOR System addresses the requirement of heterogeneity from speci-
fication through implementation. The nodes in both the banking and electric power mod-
els were heterogeneous in terms of application services, local faults, recovery capabilities,
and other node characteristics. The specifications captured this heterogeneity amongst
nodes, in addition to heterogeneity in fault types and their recovery responses. Again,
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from these specifications, code was synthesized and an implementation constructed. The
experiments presented in the previous chapter demonstrated two heterogeneous systems
that were made to tolerate faults.

12.3 Complexity

The complexity associated with critical information systems also influences the compo-
nents of the solution approach. The following subsections discuss how complexity was
addressed in each solution component.

Specification

Do the specification notations and methodology enable description of the complex func-
tionality and architecture of critical information systems, as well as the complex faults of
concern and recovery responses?

The System Specification enables description of complex functionality and architec-
ture in critical information systems using abstraction, encapsulation, and inheritance in the
object-oriented notation. In the banking model, the use of inheritance simplifies the sys-
tem description by collecting the information common to all bank types into a parent Bank
class. In both models, the use of references enables description of complex, arbitrary rela-
tionships between nodes and node types, including sets of related nodes.

The Error Detection Specification enables description of complex faults of concern by
structuring fault descriptions according to a network of communicating finite-state
machines, as presented in Section 7.1.2. This allows local faults to be handled at the
appropriate level, which helps to manage complexity in error definition. The network of
abstract finite-state machines also facilitates description of non-local faults through com-
position of information using communication between finite-state machines. The Error
Detection Specification enables explicit description of event information to be communi-
cated, allowing the specifier to manage complexity in the analysis of non-local faults.
Finally, the use of the general state-based specification notation, Z, lets the specifier
describe the finite-state machines at whatever level of detail required, facilitating abstrac-
tion of the actual finite-state machine if necessary or desired to help cope with the problem
of state explosion.

The Error Recovery Specification enables description of complex recovery responses
through composition of recovery messages in the formal specification. To a certain extent,
the complexity of local recovery responses in application nodes is abstracted away by the
naming mechanism for alternate service modes. Complex recovery activities as a part of a
coordinated recovery response are still possible though, and the network of finite-state
machines helps control complexity here as well by structuring the responses at the appro-
priate level of abstraction.
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Synthesis

Can the Fault Tolerance Translator generate sensors and actuators for a complex appli-
cation, as well as its associated control system?

The Fault Tolerance Translator can generate a Control System for a complex applica-
tion because the finite-state machine network structure manages the complexity associated
with monitoring and control. Once the Error Detection and Error Recovery Specifications
describing the complex detection and recovery activities have been constructed, the Fault
Tolerance Translator can produce a Control System architecture in which the complexity
has been organized into a systematic and regular structure.

The Fault Tolerance Translator can also generate sensors and actuators for a complex
application because the generated code components have limited functionality and require
additional instrumentation to interface with the application. There is little complexity
associated with the operations performed by the sensors and actuators: the sensors gener-
ate messages to the Control System to notify of low-level event information, and the actu-
ators receive messages from the Control System commanding recovery activity. These
generated interface components hide the complex operations performed in the applica-
tions themselves.

Implementation Architecture

Can the Control System monitor and effect control in a complex system? Can the Coordi-
nated Recovery Layer support coordination activities for complicated recovery
responses?

The Control System can monitor and effect control in a complex system using the net-
work of finite-state machines specified for error detection and recovery and generated by
the Fault Tolerance Translator. As discussed previously, the complexity of control is
abstracted some by the finite-state machine network structure. In addition, the complexity
of control is dealt with by providing systematic interfaces to application nodes, sensors
and actuators.

The reconfigurable process architecture itself also helps manage the complexity of the
application and its control. Reconfigurable processes provide a good structuring mecha-
nism for the implementation of complex application nodes, because the alternate modes of
functionality can be structured systematically with standard interfaces to change service
modes.

The Coordinated Recovery Layer can support coordination activities for complicated
recovery responses using a coordinated commitment protocol. The recovery responses
included coordinated switch over to backup processing sites in both models, and coordi-
nated commitment was sufficient for this type of recovery.

Summary

In summary, the RAPTOR System addresses the requirement of complexity from specifi-
cation through implementation. Both the banking and electric power models involved
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complex systems for which System, Error Detection, and Error Recovery Specifications
were defined. The Fault Tolerance Translator processed those specifications and generated
code for the Control System, sensors, and actuators in those systems. Finally, the experi-
ments presented in the previous chapter demonstrated an implementation architecture for
both systems that tolerated faults. Both the faults of concern and the recovery responses in
certain circumstances were complex, involving different nodes, combinations of local
faults, and coordinated recovery responses.

12.4 Performance

Finally, performance-related issues in critical information systems were addressed by the
solution approach. The following subsections discuss performance issues in each solution
component.

Specification

Do the specification notations and methodology enable description of the performance-
related aspects of the system, faults, and responses?

The System Specification does not address performance requirements as a special case
in system description. The System Specification provides the capability to describe node
performance requirements as member variables and associated values, just as any other
node characteristic.

The Error Detection Specification includes the notion of time and thus faults of con-
cern that have performance or timing elements can be described. For example, in both
models, non-local faults such as “some number of intrusion detection alarms n over some
period of time t” for coordinated security attacks or “some period of time t between fail-
ures” for cascading failures can be described, as discussed in Section 7.2.2.

The Error Recovery Specification does not include specific mechanisms for desc
the performance elements of recovery responses, but recovery responses with d
performance characteristics can be defined separately and used accordingly. Beca
Error Recovery Specification utilizes a naming mechanism for recovery responses
node level, any performance-related aspects of recovery must be understood as pa
recovery definition.

Synthesis

Can the Fault Tolerance Translator generate code that supports the performance-related
aspects of a critical information system and its associated control system?

The Fault Tolerance Translator can generate code for the Control System that d
faults with performance-related characteristics, as described in the Error Detection 
fication. The Control Systems for both application models detect non-local faults 
timing characteristics, as presented in the last chapter.

The Fault Tolerance Translator generates sensor and actuator code for a critica
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mation system that are merely interfaces for error detection information and recovery
commands. As such, the generated code is efficient in that the extent of sensor functional-
ity is to generate messages based on low-level information, and the extent of actuator
functionality is to process command messages.

Implementation Architecture

Can reconfigurable process architecture support and achieve application performance
requirements during recovery and reconfiguration? Can the Control System monitor and
effect control in an efficient manner? Can the Coordinated Recovery Layer provide coor-
dination services within performance bounds?

The reconfigurable process architecture can support and achieve application perfor-
mance requirements during recovery and reconfiguration, given an appropriate node
architecture. Enhancements to the node architecture that would enable reconfiguration in
bounded time were discussed in Section 9.1.3.

The Control System can monitor and effect control in an efficient manner, because the
number of messages that must be exchanged to detect errors and prompt recovery are
bounded, as discussed in the Section 11.3. In addition, the Control System will run typi-
cally on dedicated machines apart from the application, thus the only processing required
of the Control System nodes involves message processing and the finite-state machine
processing, both of which can be executed efficiently.

The Coordinated Recovery Layer can provide coordination services with specific per-
formance characteristics. For example, the coordinated commitment protocol has specific
performance characteristics in terms of the number of messages required, based on the
number of nodes involved in the protocol.

Summary

In summary, the RAPTOR System addresses performance-related issues from specifica-
tion through implementation. In both the banking and electric power models, specifica-
tions of errors with timing characteristics were described, code synthesized, and an
implementation constructed. The RAPTOR implementation architecture and Control Sys-
tem detected and tolerated faults in an efficient manner using the network of abstract
finite-state machines, as shown in the experiments and analysis of the previous chapter.
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Developments in several technical fields can be exploited to help deal with the problem of
fault tolerance in distributed applications. This chapter reviews related work in the areas
of system-level approaches to fault tolerance, fault tolerance in wide-area networking
applications, reconfigurable distributed systems, and formal specification systems.

13.1 Fault Tolerance in Distributed Systems

Jalote presents an excellent framework for fault tolerance in distributed systems [37]. Jal-
ote structures the various services and approaches to fault tolerance into levels of abstrac-
tion. The layers, from highest to lowest, of a fault-tolerant distributed system according to
Jalote are shown in Figure 33. Each level of abstraction provides services for tolerating
faults, and in most cases there are many mechanisms and approaches for implementing the
given abstraction. At the lowest level of abstraction above the distributed system itself are
the building blocks of fault tolerance, including fail-stop processors, stable storage, reli-
able message delivery, and synchronized clocks. One level above that is another important
building block—reliable and atomic broadcast—different protocols provide diffe
guarantees with respect to reliability, ordering, and causality of broadcast communic
The levels above that provide the services upon which systems can be built to tolera
tain types of fault, including abstractions for atomic actions and processes and data
ient to low-level failures. Finally, the highest level of abstraction enables toleranc
design faults in the software itself.

13.2 Fault-Tolerant Systems

Given this framework for fault tolerance in distributed systems, many system-
approaches exist that provide various subsets of abstractions and services. This sub
110
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13.2.1 Cristian/Advanced Automation System

Cristian provided a survey of the issues involved in providing fault-tolerant distributed
systems [21]. He presented two requirements for a fault-tolerant system: 1) mask failures
when possible, and 2) ensure clearly specified failure semantics when masking is not pos-
sible. The majority of his work, however, dealt with the masking of failures.

An instantiation of Cristian’s fault tolerance concepts was used in the replaceme
Traffic Control (ATC) system, called the Advanced Automation System (AAS). The A
utilized Cristian’s fault-tolerant architecture [24]. Cristian described the primary req
ment of the air traffic control system as ultra-high availability and stated that the app
taken was to design a system that can automatically mask multiple concurrent com
failures.

The air traffic control system described by Cristian handled relatively low-level 
ures. Redundancy of components was utilized and managed in order to mask these
Cristian structured the fault-tolerant architecture using a “depends-on” hierarchy
modelled the system in terms of servers, services, and a “uses” relation. Redundan
used to mask both hardware and software failures at the highest level of abstracti
application level. Redundancy was managed by application software server groups

13.2.2 Birman/ISIS, Horus, and Ensemble

A work similar to that of Cristian is the “process-group-based computing model” 
sented by Birman. Birman introduced a toolkit called ISIS that contained system su
for process group membership, communication, and synchronization. ISIS balanced
off’s in closely synchronized distributed execution (which offers easy understanding
asynchronous execution (which achieves better performance through pipelined com

Fault-Tolerant Software

Process Resiliency

Data Resiliency

Atomic Actions

Consistent State Recovery

Reliable and Atomic Broadcast

Basic Building Blocks of Fault Tolerance

Distributed System

Figure 33: Levels of a fault-tolerant distributed system [37]
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cation) by providing the virtual synchrony approach to group communication. ISIS facili-
tated group-based programming by providing a software infrastructure to support process
group abstractions. Both Birman’s and Cristian’s work addressed a “process-group
computing model,” though Cristian’s AAS also provided strong real-time guaran
made possible by an environment with strict timing properties [10]. 

Work on ISIS proceeded in subsequent years resulting in another group comm
tions system, Horus. The primary benefit of Horus over ISIS was a flexible commu
tions architecture that can be varied at runtime to match the changing requirements
application and environment. Horus achieved this flexibility using a layered prot
architecture in which each module is responsible for a particular service [78]. Horu
worked with a system called Electra, which provided a CORBA-compliant interface t
process group abstraction in Horus [49]. Another system that built on top of Electr
Horus together, Piranha, provided high availability by supporting application monito
and management facilities [50].

Horus was succeeded by a new tool for building adaptive distributed progr
Ensemble. Ensemble further enabled application adaptation through a stackable p
architecture as well as system support for protocol switching. Performance improve
were also provided in Ensemble through protocol optimization and c
transformations [79].

An interesting note on ISIS, Horus, and Ensemble was that all three acknowledg
security threats to the process group architecture and each incorporated a security
tecture into its system [65], [66], [67].

13.2.3 Other System-level Approaches

Another example of fault tolerance that focuses on communication abstractions 
work of Schlichting, et al. The result of this work, a system called Coyote, supports c
figurable communication protocol stacks. The goals are similar to that of Horus
Ensemble, but Coyote generalizes the composition of microprotocol modules allo
non-hierarchical composition (Horus and Ensemble only support hierarchical com
tion). In addition, Horus and Ensemble are focusing primarily on group communic
services while Coyote supports a variety of high-level network protocols [9].

Many of the systems mentioned above focus on communication infrastructure
protocols for providing fault tolerance; another approach focuses on transactions 
tributed systems as the primary primitive for providing fault tolerance. One of the 
systems supporting transactions was Argus, developed at MIT. Argus was a program
language and support system that defined transactions on software modules, ensur
sistence and recoverability [11]. 

Another transaction-based system, Arjuna, was developed at the University of 
castle upon Tyne. Arjuna is an object-oriented programming system that provides a
actions on objects using C++ classes [71]. The atomic actions ensure that all ope
support the properties of serializability, failure atomicity, and permanence of effect.
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13.2.4 Discussion

A common thread through the approach taken to fault tolerance in all of these systems is
that faults are masked; each of these systems attempts to provide transparent masking of
failures when a fault arises. Masking requires redundancy, and not all faults can be
masked because it is not possible to build enough redundancy into a system to accommo-
date all faults in that way. Therefore, there will be a class of faults that these approaches to
fault tolerance cannot handle because there is insufficient redundancy to tolerate them by
masking.

Another interesting note is that these approaches tend to be communication-oriented.
This is understandable—masking fault tolerance is dependent on redundancy, and o
to managing redundancy is maintaining consistent views of the state across all red
entities. Supporting such a requirement within the communications framework—bui
guarantees into that framework—is a common approach to providing fault toleranc
communications is not the only aspect of the system that must be addressed for a c
hensive fault-tolerance strategy.

Finally, the scale of these systems tends not to be on the order of critical inform
systems. Fault tolerance is applied typically to relatively small-scale systems; c
information systems are many orders of magnitude larger than the distributed system
most of the previous work has addressed. In addition, the fault class of concern 
work described above is primarily local faults, dealing with single processor failures
limited redundancy. Local faults are not the fault model with which critical informa
systems and this research effort are concerned; non-local faults affecting significan
tions of the network, where the redundancy to mask the fault is not available, are the
this work addresses.

13.3 Fault Tolerance in Wide-area Network Systems

A few research efforts address fault tolerance in large-scale, wide-area network sy
In the WAFT project, Marzullo and Alvisi are concerned with the construction of fault
erant applications in wide-area networks. Experimental work has been done on th
system, a distributed computing solution for a high-energy physics project. The pr
goal of the WAFT project is to adapt replication strategies for large-scale distributed 
cations with dynamic (unpredictable) communication properties and a requireme
withstand security attacks. Nile was implemented on top of CORBA in C++ and Java
thrust of the work thus far is that active replication is too expensive and often unnec
for these wide-area network applications; Marzullo and Alvisi are looking to provide 
port for passive replication in a toolkit [4].

The Eternal system, developed by Melliar-Smith and Moser, is middleware that 
ates in a CORBA environment, below a CORBA ORB but on top of their Totem g
communication system. The primary goal is to provide transparent fault toleran
users [55].

Babaoglu and Schiper are addressing problems with scaling of conventional 
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technology. Their approach to providing fault tolerance in large-scale distributed systems
consists of distinguishing between different roles or levels for group membership and pro-
viding different service guarantees to each level [8].

Discussion

While the approaches discussed in this section accommodate systems of a larger scale,
many of the concerns raised previously still apply. These efforts still attempt to mask
faults using redundancy and are primarily communications-oriented. There is still a class
of faults that cannot be handled because there is insufficient redundancy.

13.4 Reconfigurable Distributed Systems

Given the body of literature on fault tolerance and the different services being provided at
each abstraction layer, many types of faults can be handled. However, the most serious
fault—the catastrophic, non-local fault—is not addressed by the previous related 
The previous approaches rely on having sufficient redundancy to cope with the fau
mask it; there are always going to be classes of faults for which this is not possibl
these faults, reconfiguration of the existing services on the remaining platform is req

Considerable work has been done on reconfigurable distributed systems. Some
work deals with reconfiguration for the purposes of evolution, as in the CONIC sys
While this work is relevant, it is not directly applicable because it is concerned with re
figuration that derives from the need to upgrade rather than cope with major faults
work has been done on reconfiguration for the purposes of fault tolerance. Both ty
research are discussed in this section.

13.4.1 Reconfiguration Supporting System Evolution

The initial context of the work by Kramer and Magee was dynamic configuration for
tributed systems, incrementally integrating and upgrading components for system 
tion. CONIC, a language and distributed support system, was developed to su
dynamic configuration. The language enabled specification of system configurati
well as change specifications, then the support system provided configuration to
build the system and manage the configuration [44].

More recently, they have modelled a distributed system in terms of processes an
nections, each process abstracted down to a state machine and passing message
processes (nodes) using the connections. One relevant finding of this work is that c
nents must migrate to a “quiescent state” before reconfiguration to ensure consi
through the reconfiguration; basically, a quiescent state entailed not being involved 
transactions. The focus remained on the incremental changes to a distributed syste
figuration for evolutionary purposes [45].

The successor to CONIC, Darwin, is a configuration language that separates pr
structure from algorithmic behavior [54]. Darwin utilizes a component- or object-ba
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approach to system structure in which components encapsulate behavior behind a well-
defined interface. Darwin is a declarative binding language that enables distributed pro-
grams to be constructed from hierarchically-structured specifications of component
instances and their interconnections [51].

13.4.2 Reconfiguration Supporting Fault Tolerance

Purtilo developed the Polylith Software Bus, a software interconnection system that pro-
vides a module interconnection language and interfacing facilities (software toolbus).
Basically, Polylith encapsulates all of the interfacing details for an application, where all
software components communicate with each other through the interfaces provided by the
Polylith software bus [63].

Hofmeister extended Purtilo’s work by building additional primitives into Polylith 
support of reconfigurable applications. Hofmeister studied the types of reconfigura
that are possible within applications and the requirements for supporting reconfigur
Hofmeister leveraged heavily off of Polylith’s interfacing and message-passing fac
in order to ensure state consistency during reconfiguration [35].

Welch and Purtilo have extended Hofmeister’s work in a particular applica
domain, Distributed Virtual Environments. They utilized Polylith and its reconfigura
extensions in a toolkit that helps to guide the programmer in deciding on proper rec
urations and implementations for these simulation applications [81].

13.4.3 Discussion

The research on reconfiguration for the purposes of evolution is interesting but of c
does not work on the same time scale as required for fault tolerance in critical inform
systems. Critical information systems have performance requirements that must s
met by a fault-tolerance mechanism; reconfiguration during evolution is not conce
with performance, in general.

The existing approaches to reconfiguration for the purposes of fault tolerance,
ever, do not accommodate systems on the scale of critical information systems. One
argue as well that these research efforts do not handle the complexity and heteroge
critical information systems.

13.5 Formal Specification

A major thrust of this work is the use of a specification-based approach to fault toler
There are many specification notations of varying degrees of formality, intende
describe various aspects of systems and their requirements. The two primary ele
described in RAPTOR specifications are an abstraction of the system itself and the
state machine description for fault tolerance, thus related research efforts in both s
specification and finite-state machine specification are discussed.
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13.5.1 System Specification

Many notations and methodologies exist for general-purpose, system specification. Most
specification notations focus on a particular aspect of the system being specified; for
example, functional versus non-functional requirements. Other specification systems con-
centrate on formalism and the ability to prove properties or animate the specification.

The systems with which we are concerned, critical information systems, are very large
and complex. The goal in specifying these systems is to capture the essential elements for
the purposes of tolerating faults, such as configuration, services, and other system proper-
ties.

The Unified Modeling Language (UML) is a very popular language for “specifyi
visualizing, constructing, and documenting the artifacts of software systems” [64]. U
is a standards-based modeling language derived from existing languages, such a
Booch, and OOSE. In addition, UML provides capabilities for business modeling
other non-software systems. UML is a visual modeling language that works particu
well with object-oriented and component-based systems [64].

UML and other modeling languages are designed to cope with complex system
in that respect are appropriate for system description in critical information systems.
in particular is a very broad language, many of whose features are not required f
work. The use of the POET object-oriented database language for system descrip
similar to other object-oriented modeling languages though, and provides the added
fit of integration with a database.

13.5.2 Finite-State Machine Specification

The second key aspect of these systems that must be specified are the fault-to
requirements, including the errors to be detected and the responses to those erro
Error Detection and Recovery Specifications centered around abstract finite-state m
definitions. Finite-state machines have been the center of many specification efforts

Perhaps the most well-known specification methodology for finite-state machin
Statecharts [33]. Statecharts are a formalism for hierarchical finite-state machines, 
mented in a software package called Statemate. Statecharts are basically finit
machines augmented with hierarchy, parallelism, and modularity.

An extension to Statecharts, Requirements State Machine Language (RSM
another finite-state machine-based methodology for specification [47]. RSML sh
common features with Statecharts such as superstates (the grouping of states), 
states (groupings of state machines), and state machine arrays. Enhancements in
included directed communication between state machines, identifier types (for trans
between states), and transition buses (for fully-interconnected states) [47].

Both Statecharts and RSML represent viable alternatives to the use of Z for 
machine specification. Both methods require explicit state-machine definition, enum
ing all transitions and states, as opposed to the abstract definition made possible in
eral-purpose specification language like Z. In addition, Z offers analysis benefits 
formal type checkers and theorem provers. Finally, the use of Z enabled a translato
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Conclusions
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This chapter concludes with a list of research contributions, explores topics for future
study, and summarizes the research.

14.1 Research Contributions

There are four primary contributions of this research:
• Focus on Application Reconfiguration for Non-Local, Catastrophic Faults. The first

contribution is a change in focus on the type of faults tolerated and the manner of han-
dling those faults. In most fault-tolerant systems, the focus is on local faults, and the
effects of those faults are masked. This work is concerned with non-local, catastrophic
faults, where large and/or critical portions of the system are affected by the fault. In
general, it is not possible to build sufficient redundancy into these systems to mask all
faults, but especially not for masking catastrophic faults, because of the cost. The
RAPTOR approach first enables description of these non-local faults in the formal
specification, then supports application reconfiguration—a non-masking reco
response—using RAPTOR’s application and system architecture.

• Specification-based Approach to Fault Tolerance. A second contribution of this work
is the first use of formal specification techniques and notations to explore and describe
fault tolerance in these critical information systems. The scale and complexity of most
of these systems motivates the need for a formal specification approach that enables
higher-level reasoning and abstraction of lower-level details in large-scale systems.
RAPTOR specifications describe the system, error detection requirements, and error
recovery activities using an object-oriented database language and the formal specifi-
cation notation Z. The notations utilized, having precise syntax and semantics, enable
various forms of analysis and further manipulation of the specifications. 

• Synthesis of Implementation Components for Fault Tolerance. Another contribution is
the construction of the Fault Tolerance Translator, which utilizes the formal specifica-
tions of fault tolerance to generate implementation components related to error detec-
118
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ion 
tion and error recovery. High-level error detection is performed by the Control System
augment to the application, and the abstract finite-state machines that perform error
detection are synthesized directly from their specifications. Error recovery is effected
through application actuators that accept commands from the synthesized Control Sys-
tem code and are themselves generated by the translator from the error recovery speci-
fication. In addition, a database of configuration information is synthesized from the
system specification.

• Implementation Architecture Supporting High-Level Error Detection and Applicat
Reconfiguration for Error Recovery. The final contribution of this research is a sys-
tematic structuring mechanism for high-level error detection and error recovery at the
node level and system level. At the node level, there are reconfigurable processes that
can be manipulated by Control System actuators to effect error recovery actions,
including application reconfiguration. At the system level, there is the Control System
for performing high-level error detection and coordinating error recovery, as well as
the Coordinated Recovery Layer providing coordination and control services to the
reconfigurable processes. These application structures facilitate an implementation of
fault tolerance by enabling a regular, systematic organization rather than the typical ad
hoc approach found in many systems.

14.2 Future Work

While the utility of the RAPTOR approach was successfully demonstrated on two case
study applications, further study is required to fully determine the strengths and shortcom-
ings of this approach in additional application domains. Moreover, the RAPTOR approach
should be applied to a fully-functional application, rather than large-scale models and sim-
ulations. Of course, the problems that were cited in the evaluation chapter would still
arise: it would require considerable resources to study actual critical information systems
of the appropriate scale and complexity, but it is an important step in evaluation, if at all
possible.

Another area for future study involves the linking of the fault-tolerance specification
to a more formal, quantitative notion of survivability. Knight and Sullivan have proposed
a formal definition of survivability based on probabilistic requirements for provision of
service levels that enables testing the survivability of a system based on its survivability
specification [41].

In terms of the specification notations, a more formal description of the application
services provided for recovery and reconfiguration could be explored for integration into
the RAPTOR specification. While it is unlikely that the entire application will be formally
specified, an opportunity exists for a more formal specification of the alternate application
functionality, rather than simply an enumeration of alternate services. This would then
enable further analysis of the specification with respect to the levels of continued service
and the interactions between alternate service modes. In addition, the use of Z for the
Error Recovery Specification would enable a straightforward integration of Z specifica-
tions for application reconfiguration services.
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An interesting capability of both the RAPTOR specification notations and RAPTOR
Simulator is the ability to model different critical information systems in the same specifi-
cation and resulting implementation. This provides the opportunity to study the interde-
pendencies between different infrastructure application domains and model how the
survivability of one system is impacted by other domains. For example, linking the bank-
ing and electric power models and simulating the effect of power system failures on the
banking infrastructure would be an immensely interesting exercise and offer great insight
into survivability at the level of a system of systems.

One related topic of research currently underway is the integration of reconfiguration
for the purposes of fault tolerance with mechanisms for more traditional configuration
management. A collaborative research effort with the University of Colorado is exploring
the similarities and differences in configuration management and application reconfigura-
tion, and a system to integrate both activities for the purposes of proactive and reactive
system posturing is being built.

Finally, the security and survivability of the survivability mechanism itself is a topic of
major concern. Current work at the University of Virginia addresses this topic, in part:
research into running and protecting trustworthy code on possibly untrustworthy plat-
forms is ongoing [80]. The integration of that research effort with this work is another area
of future study.

14.3 Summary

This dissertation presented an approach to enable fault tolerance for the provision of sur-
vivability in critical information systems. Specific characteristics of critical information
systems were described that make the requirement of achieving survivability a challenge,
and the framework of fault tolerance was proposed as the mechanism to provide a surviv-
able system. Then, the RAPTOR approach to fault tolerance was presented, a specifica-
tion-based methodology for expressing high-level error detection and error recovery
requirements for these systems, generating portions of the implementation specific to fault
tolerance, and integrating fault-tolerance code into a reconfigurable application. Finally,
the feasibility and utility of the RAPTOR approach was demonstrated for two significant
case study applications.
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This appendix provides the specification for a simple 3-node example, described in Chap-
ter 6 and utilized for initial problem analysis and investigation. The preliminary specifica-
tion notation utilized is called STEP (Specification of the Three-node Example Program).
The STEP notation presented in this appendix is strictly a throw-away prototype intended
to illustrate some of the issues in specifying fault tolerance. The STEP notation is not a
part of the final solution, the RAPTOR System.

The example system is a small-scale, simplified financial payments application, effect-
ing value transfer between customer accounts. The system consists of three nodes, two
branch banks and one money-center bank, and various connections between these nodes.
The branch banks provide customer access (check deposit facilities) and local information
storage (customer accounts), while the money-center bank maintains branch bank asset
balances and routes checks for clearance between the two branch banks.

The STEP approach consists of three components—the System Architecture S
cation, Service-Platform Mapping Specification, and Error Recovery Specification—
will be presented for the 3-node example in the following sections of this appendix.

A.1 System Architecture Specification

The system architecture is pictured in Figure 34. This specification component cons
a list of nodes (including attached databases) and connections. There are three no
five connections (primary and backup) between the various nodes.

Nodes
N1: money-center bank (MCB); attached database DB(N1)
N2: branch bank (BB); attached database DB(N2)
N3: branch bank (BB); attached database DB(N3)
127
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Connections
L1: full-bandwidth link between N1 and N2
L2: full-bandwidth link between N1 and N3
l1: low-bandwidth backup link between N1 and N2
l2: low-bandwidth backup link between N1 and N3
l3: low-bandwidth backup link between the two branch banks, N2 and N3

A.2 Service-Platform Mapping Specification

This specification component lists (names) the services that each node and connection
provides, including a brief description of each service.

Money-center bank N1
MCB1: Route requests
MCB2: Maintain branch total balances (DB service)
MCB3: Buffer requests for a branch bank (Alternate)
MCB4: Send buffered requests (Alternate)
MCB5: Accept requests from customers (Alternate)

Branch banks N2, N3
BB1: Accept requests from customers, routing to other branch bank if necessary
BB2: Accept requests from other branch banks
BB3: Process requests, maintaining customer balances (DB service)
BB4: Buffer requests to pass up (Alternate)
BB5: Send buffered requests (Alternate)
BB6: Send high-priority requests, queue others (Alternate)
BB7: Pass requests directly to branch bank (Alternate)

Full-bandwidth links L1, L2
FC1: Pass full bandwidth data over full connection

N1

N2 N3

L1 L2

l1 l2

l3

Figure 34: Example financial payments application

DB

DB DB
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Low-bandwidth backup links l1, l2
DC1: Pass limited bandwidth data over degraded connection

Low-bandwidth backup link l3
AC1: Pass limited bandwidth data over alternate connection

A.3 Error Recovery Specification

This specification component is a finite-state machine describing the system states and
transitions between those states.

System States

The initial state in the finite-state machine of this example banking system consists of all
the primary services operating.
S0: Initial state

N1: MCB1, MCB2
N2: BB1, BB2, BB3
N3: BB1, BB2, BB3
L1: FC1
L2: FC1

The first level of transitions from the initial state consists of a single fault occurring
from the initial state. There are eight such transitions leading to the following eight states:
S1, S2, S3, S4, S5, S6, S7, S8. The services after the transition include any alternate ser-
vices started as a result of application reconfiguration.
S1: Process failure - MCB1 (N1)

N1: MCB2
N2: BB1, BB2, BB3, BB4
N3: BB1, BB2, BB3, BB4
L1: FC1
L2: FC1

S2: Database failure - MCB2 (N1)
N1: MCB1, MCB3
N2: BB1, BB2, BB3
N3: BB1, BB2, BB3
L1: FC1
L2: FC1

S3: Full node failure - MCB1, MCB2 (N1)
N1: -
N2: BB1, BB2, BB3, BB7
N3: BB1, BB2, BB3, BB7
L1: FC1
L2: FC1
l3: AC1
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S4: Process failure - BB1 (either N2 or N3)
N1: MCB1, MCB2
N2: BB2, BB3
N3: BB1, BB2, BB3
L1: FC1
L2: FC1

S5: Process failure - BB2 (either N2 or N3)
N1: MCB1, MCB2, MCB3
N2: BB1, BB3
N3: BB1, BB2, BB3
L1: FC1
L2: FC1

S6: Database failure - BB3 (either N2 or N3)
N1: MCB1, MCB2, MCB3
N2: BB1, BB2, BB4
N3: BB1, BB2, BB3
L1: FC1
L2: FC1

S7: Full node failure - BB1, BB2, BB3 (either N2 or N3)
N1: MCB1, MCB2, MCB3
N2: -
N3: BB1, BB2, BB3
L1: FC1
L2: FC1

S8: Link failure - FC1 (either L1 or L2)
N1: MCB1, MCB2
N2: BB1, BB2, BB3, BB6
N3: BB1, BB2, BB3, BB6
L1: -
L2: FC1
l1: DC1

To handle a second sequential fault from the initial state, it is necessary to specify the
list of faults that can occur from each of the above states. Then, each fault would necessi-
tate another transition in the finite-state machine to a different state. The second level of
states in the finite-state machine and the fault that causes the transition to each state are
provided next, but the services after the transition are not listed here.
From State S1:

S10: Database failure - MCB2 (N1)
S11: Full node failure - MCB2 (N1)
S12: Process failure - BB1 (either N2 or N3)
S13: Process failure - BB2 (either N2 or N3)
S14: Database failure - BB3 (either N2 or N3)
S15: Process failure - BB4 (either N2 or N3)
S16: Full node failure - BB1, BB2, BB3, BB4 (either N2 or N3)
S17: Link failure - FC1 (either L1 or L2)

From State S2:
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S20: Database failure - MCB2 (N1)
S21: Process failure - MCB3 (N1)
S22: Full node failure - MCB2, MCB3 (N1)
S23: Process failure - BB1 (either N2 or N3)
S24: Process failure - BB2 (either N2 or N3)
S25: Database failure - BB3 (either N2 or N3)
S26: Full node failure - BB1, BB2, BB3 (either N2 or N3)
S27: Link failure - FC1 (either L1 or L2)

From State S3:
S30: Process failure - BB1 (either N2 or N3)
S31: Process failure - BB2 (either N2 or N3)
S32: Database failure - BB3 (either N2 or N3)
S33: Process failure - BB7 (either N2 or N3)
S34: Full node failure - BB1, BB2, BB3, BB7 (either N2 or N3)
S35: Link failure - FC1 (either L1 or L2)
S36: Link failure - AC1 (l3)

From State S4:
S40: Process failure - MCB1 (N1)
S41: Database failure - MCB2 (N1)
S42: Full node failure - MCB1, MCB2 (N1)
S43: Process failure - BB2 (same N2 or N3 as previous fault)
S44: Database failure - BB3 (same N2 or N3 as previous fault)
S45: Full node failure - BB2, BB3 (same N2 or N3 as previous fault)
S46: Process failure - BB1 (different N2 or N3 from previous fault)
S47: Process failure - BB2 (different N2 or N3 from previous fault)
S48: Database failure - BB3 (different N2 or N3 from previous fault)
S49: Full node failure - BB1, BB2, BB3 (different N2 or N3 from previous fault)
S4a: Link failure - FC1 (either L1 or L2)
S4b: Link failure - AC1 (l3)

From State S5:
S50: Process failure - MCB1 (N1)
S51: Database failure - MCB2 (N1)
S52: Process failure - MCB3 (N1)
S53: Full node failure - MCB1, MCB2, MCB3 (N1)
S54: Process failure - BB1 (same N2 or N3 as previous fault)
S55: Database failure - BB3 (same N2 or N3 as previous fault)
S56: Full node failure - BB1, BB3 (same N2 or N3 as previous fault)
S57: Process failure - BB1 (different N2 or N3 from previous fault)
S58: Process failure - BB2 (different N2 or N3 from previous fault)
S59: Database failure - BB3 (different N2 or N3 from previous fault)
S5a: Full node failure - BB1, BB2, BB3 (different N2 or N3 from previous fault)
S5b: Link failure - FC1 (either L1 or L2)

From State S6:
S60: Process failure - MCB1 (N1)
S61: Database failure - MCB2 (N1)
S62: Process failure - MCB3 (N1)
S63: Full node failure - MCB1, MCB2, MCB3 (N1)
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S64: Process failure - BB1 (same N2 or N3 as previous fault)
S65: Database failure - BB2 (same N2 or N3 as previous fault)
S66: Process failure - BB4 (same N2 or N3 as previous fault)
S67: Full node failure - BB1, BB2, BB4 (same N2 or N3 as previous fault)
S68: Process failure - BB1 (different N2 or N3 from previous fault)
S69: Process failure - BB2 (different N2 or N3 from previous fault)
S6a: Database failure - BB3 (different N2 or N3 from previous fault)
S6b: Full node failure - BB1, BB2, BB3 (different N2 or N3 from previous fault)
S6c: Link failure - FC1 (either L1 or L2)

From State S7:
S70: Process failure - MCB1 (N1)
S71: Database failure - MCB2 (N1)
S72: Process failure - MCB3 (N1)
S73: Full node failure - MCB1, MCB2, MCB3 (N1)
S74: Process failure - BB1 (different N2 or N3 from previous fault)
S75: Process failure - BB2 (different N2 or N3 from previous fault)
S76: Database failure - BB3 (different N2 or N3 from previous fault)
S77: Full node failure - BB1, BB2, BB3 (different N2 or N3 from previous fault)
S78: Link failure - FC1 (either L1 or L2)

From State S8:
S80: Process failure - MCB1 (N1)
S81: Database failure - MCB2 (N1)
S82: Full node failure - MCB1, MCB2 (N1)
S83: Process failure - BB1 (either N2 or N3)
S84: Process failure - BB2 (either N2 or N3)
S85: Database failure - BB3 (either N2 or N3)
S86: Process failure - BB6 (either N2 or N3)
S87: Full node failure - BB1, BB2, BB3, BB6 (either N2 or N3)
S88: Link failure - DC1 (same l1 or l2 that was started because of previous fault)
S89: Link failure - FC1 (different L1 or L2 from previous fault)

Finite-State Machine Transitions

The transitions from the initial state to the next state caused by a single fault are described
in this subsection. In the state descriptions above, the remaining services after the fault
and the alternate services that were started are already specified. These actions describe
the handling of the fault both in response to its occurrence and after the repair of that fault
(to return to the initial state):

• Transition S0 to S1:
Response: Start BB4 (both N2 and N3)
Repair: Start BB5 (both N2 and N3)

Stop BB4 (both N2 and N3)
Stop BB5 (when each queue empty)
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• Transition S0 to S2:
Response: Start MCB3
Repair: Start MCB4

Stop MCB3
Stop MCB4

• Transition S0 to S3:
Response: Start AC1

Start BB7 (both N2 and N3)
Repair: Stop BB7 (both N2 and N3)

Stop AC1
• Transition S0 to S4:

(No response)
• Transition S0 to S5:

Response: Start MCB3
Repair: Start MCB4

Stop MCB3
Stop MCB4 (when queue empty)

• Transition S0 to S6:
Response: Start MCB3

Start BB4 (for node N2 or N3 with fault)
Repair: Start MCB4

Stop MCB3
Stop MCB4 (when queue empty)
Stop MCB (for repaired node N2 or N3)

• Transition S0 to S7:
Response: Start MCB3
Repair: Start MCB4

Stop MCB3
Stop MCB4 (when queue empty)

• Transition S0 to S8:
Response: Start DC1 (for failed link L1 or L2)

Start BB6
Repair: Start BB5

Stop BB6
Stop BB5 (when queue empty)
Stop DC1 (for repaired link L1 or L2)

The transition activities for the second sequential fault are not provided here.



Appendix B: PAR System
This appendix provides the grammar for the PAR Translator and a PAR System specifica-
tion for a 103-node banking example, described in Chapter 6 and utilized for initial prob-
lem analysis and investigation. The PAR (Preliminary Approach to RAPTOR) System is a
preliminary approach to specifying and implementing fault tolerance. As in the previous
appendix, the PAR notation presented in this appendix is strictly a throw-away prototype
intended to illustrate some of the issues in specifying fault tolerance. The PAR System is
not a part of the final solution, the RAPTOR System.

The PAR System consists of five specification components: the System Architecture
Specification, Service-Platform Mapping Specification, System Interface Specification,
Error Detection Specification, and Error Recovery Specification. The PAR System also
provides a synthesizer, the PAR Translator, to process these specifications and generate
implementation components. The next section provides the grammar for that translator.

B.1 Grammar for the PAR Translator

The following is the YACC grammar for the PAR Translator.
%%

%token SAS
%token SPMS
%token SIS
%token EDS
%token ERS
%token NODE
%token <stringtype> NODE_NAME
%token TYPE
%token <stringtype> TYPE_NAME
%token PROP
%token <stringtype> PROP_NAME
%token EVENT
%token <stringtype> EVENT_NAME
134



APPENDIX B: PAR SYSTEM 135
%token SERVICE
%token <stringtype> SERVICE_NAME
%token SET
%token <stringtype> SET_NAME
%token <stringtype> SET_MEMBER
%token <stringtype> VAR
%token <stringtype> COMPONENT_TYPE
%token ERROR
%token <stringtype> ERROR_NAME
%token FAILURE
%token ARROW
%token FORALL
%token EXISTS
%token AND
%token OR
%token IN
%token <inttype> START
%token <inttype> STOP

%type <inttype> critical_service

%%

par_specification
: sas spms sis eds ers
  { printf("Parsed a PAR specification.\n"); }

sas
: SAS declaration_list propositions

declaration_list
: node_declarations
  { nodes.CompletedNodes(); }
| declaration_list type_declarations
  { nodes.CompletedTypes(); }
| declaration_list prop_declarations
  { nodes.CompletedProps(); }

node_declarations
: node_declaration
| node_declarations node_declaration

node_declaration
: NODE node_list

node_list
: NODE_NAME
  { nodes.AddNode($1); }
| node_list ’,’ NODE_NAME
  { nodes.AddNode($3); }

type_declarations
: type_declaration
| type_declarations type_declaration

type_declaration
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: TYPE TYPE_NAME
  { nodes.AddType($2); }

prop_declarations
: prop_declaration
| prop_declarations prop_declaration

prop_declaration
: PROP PROP_NAME
  { nodes.AddProp($2); }

propositions
: proposition
| propositions proposition

proposition
: TYPE_NAME ’(’ NODE_NAME ’)’ ’;’ 
  { nodes.SetNodeType($3, $1); }
| PROP_NAME ’(’ NODE_NAME ’)’ ’;’ 
  { nodes.SetNodeProp($3, $1); }

spms
: SPMS service_mappings
  { nodes.CompletedNodeServiceMapping(); }

service_mappings
: service_mapping
| service_mappings service_mapping

service_mapping
: single_node_service_mapping
| multiple_node_service_mapping

single_node_service_mapping
: NODE_NAME ARROW service_list ’;’
  { nodes.MapServicesToNode($1); }

multiple_node_service_mapping
: FORALL TYPE_NAME ARROW service_list ’;’
  { nodes.MapServicesToType($2); }

service_list
: SERVICE_NAME
  { nodes.AddService($1); }
| service_list ’,’ SERVICE_NAME
  { nodes.AddService($3); }

sis
: SIS set_declaration_list set_definitions

set_declaration_list
: set_declarations
  { nodes.CompletedSets(); }

set_declarations
: set_declaration
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| set_declarations set_declaration

set_declaration
: SET SET_NAME
  { nodes.AddSet($2); }

set_definitions
: set_definition
| set_definitions set_definition

set_definition
: SET_NAME ’=’ ’{’ set_list ’}’
  { nodes.SetSet($1); }
| SET_NAME ’=’ ’{’ set_iteration ’}’
  { nodes.SetSet($1); }

set_list
: SET_MEMBER
  { nodes.AddToTempSetList($1); }
| set_list ’,’ SET_MEMBER
  { nodes.AddToTempSetList($3); }

set_iteration
: VAR ’:’ COMPONENT_TYPE ’|’ PROP_NAME ’(’ VAR ’)’
  { nodes.AddPropToTempSet($5); }
| VAR ’:’ COMPONENT_TYPE ’|’ TYPE_NAME ’(’ VAR ’)’
  { nodes.AddTypeToTempSet($5); }

eds
: EDS error_declaration_list error_definitions

error_declaration_list
: error_declarations
  { nodes.CompletedErrors(); }

error_declarations
: error_declaration
| error_declarations error_declaration

error_declaration
: ERROR ERROR_NAME
  { nodes.AddError($2); }

error_definitions
: error_definition
| error_definitions error_definition

error_definition
: ERROR_NAME ’=’ conditions ’;’

conditions
: condition
| ’(’ condition ’)’
| conditions conjunction condition
| ’(’ conditions conjunction condition ’)’
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condition
: FAILURE ’(’ NODE_NAME ’.’ SERVICE_NAME ’)’
| EVENT_NAME ’(’ NODE_NAME ’)’
| ’(’ FORALL VAR IN SET_NAME ’|’ EVENT_NAME ’(’ VAR ’)’ ’)’
| ’(’ EXISTS VAR IN SET_NAME ’|’ EVENT_NAME ’(’ VAR ’)’ ’)’

conjunction
: AND
| OR

ers
: ERS error_activities

error_activities
: per_error_activities
| error_activities per_error_activities

per_error_activities
: ERROR_NAME ’:’ per_node_activities
  { nodes.CompletedResponse($1); }

per_node_activities
: per_node_responses
| per_node_activities per_node_responses

per_node_responses
: NODE_NAME ARROW response_list ’;’
  { nodes.CompletedNodeResponse($1); }
| SET_NAME ARROW response_list ’;’
  { nodes.CompletedSetResponse($1); }

response_list
: SERVICE_NAME ’.’ critical_service
  { nodes.AddResponse($1, $3); }
| response_list ’,’ SERVICE_NAME ’.’ critical_service
  { nodes.AddResponse($3, $5); }

critical_service
: START
  { $$ = CS_START; }
| STOP
  { $$ = CS_STOP; }

%%

B.2 Example Specification: 103-Node Banking System

The following is the PAR specification of fault tolerance for a 103-node banking system.

SYSTEM_ARCHITECTURE_SPECIFICATION

NODE frb1, frb2, frb3
NODE mcb100, mcb200, mcb300, mcb400, mcb500, mcb600, mcb700, mcb800, 
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mcb900, mcb1000
NODE bb101, bb102, bb103, bb104, bb105, bb106, bb107, bb108, bb109
NODE bb201, bb202, bb203, bb204, bb205, bb206, bb207, bb208, bb209
NODE bb301, bb302, bb303, bb304, bb305, bb306, bb307, bb308, bb309
NODE bb401, bb402, bb403, bb404, bb405, bb406, bb407, bb408, bb409
NODE bb501, bb502, bb503, bb504, bb505, bb506, bb507, bb508, bb509
NODE bb601, bb602, bb603, bb604, bb605, bb606, bb607, bb608, bb609
NODE bb701, bb702, bb703, bb704, bb705, bb706, bb707, bb708, bb709
NODE bb801, bb802, bb803, bb804, bb805, bb806, bb807, bb808, bb809
NODE bb901, bb902, bb903, bb904, bb905, bb906, bb907, bb908, bb909
NODE bb1001, bb1002, bb1003, bb1004, bb1005, bb1006, bb1007, bb1008, 

bb1009

TYPE federal_reserve
TYPE money_center
TYPE branch

PROP east_coast
PROP north_east
PROP south_east
PROP north_central
PROP south_central
PROP north_west
PROP south_west
PROP west_coast

EVENT security_attack
EVENT node_failure
EVENT power_failure

federal_reserve(frb1); federal_reserve(frb2); federal_reserve(frb3);
money_center(mcb100);
branch(bb101); branch(bb102); branch(bb103);
branch(bb104); branch(bb105); branch(bb106);
branch(bb107); branch(bb108); branch(bb109);
money_center(mcb200);
branch(bb201); branch(bb202); branch(bb203);
branch(bb204); branch(bb205); branch(bb206);
branch(bb207); branch(bb208); branch(bb209);
money_center(mcb300);
branch(bb301); branch(bb302); branch(bb303);
branch(bb304); branch(bb305); branch(bb306);
branch(bb307); branch(bb308); branch(bb309);
money_center(mcb400);
branch(bb401); branch(bb402); branch(bb403);
branch(bb404); branch(bb405); branch(bb406);
branch(bb407); branch(bb408); branch(bb409);
money_center(mcb500);
branch(bb501); branch(bb502); branch(bb503);
branch(bb504); branch(bb505); branch(bb506);
branch(bb507); branch(bb508); branch(bb509);
money_center(mcb600);
branch(bb601); branch(bb602); branch(bb603);
branch(bb604); branch(bb605); branch(bb606);
branch(bb607); branch(bb608); branch(bb609);
money_center(mcb700);
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branch(bb701); branch(bb702); branch(bb703);
branch(bb704); branch(bb705); branch(bb706);
branch(bb707); branch(bb708); branch(bb709);
money_center(mcb800);
branch(bb801); branch(bb802); branch(bb803);
branch(bb804); branch(bb805); branch(bb806);
branch(bb807); branch(bb808); branch(bb809);
money_center(mcb900);
branch(bb901); branch(bb902); branch(bb903);
branch(bb904); branch(bb905); branch(bb906);
branch(bb907); branch(bb908); branch(bb909);
money_center(mcb1000);
branch(bb1001); branch(bb1002); branch(bb1003);
branch(bb1004); branch(bb1005); branch(bb1006);
branch(bb1007); branch(bb1008); branch(bb1009);

east_coast(frb1); south_east(frb2); south_central(frb3);
east_coast(mcb100);
east_coast(bb101); east_coast(bb102); north_east(bb103);
south_east(bb104); north_central(bb105); south_central(bb106);
north_west(bb107); south_west(bb108); west_coast(bb109);
east_coast(mcb200);
east_coast(bb201); east_coast(bb202); north_east(bb203);
south_east(bb204); north_central(bb205); south_central(bb206);
north_west(bb207); south_west(bb208); west_coast(bb209);
north_east(mcb300);
east_coast(bb301); north_east(bb302); north_east(bb303);
south_east(bb304); north_central(bb305); south_central(bb306);
north_west(bb307); south_west(bb308); west_coast(bb309);
south_east(mcb400);
east_coast(bb401); north_east(bb402); south_east(bb403);
south_east(bb404); north_central(bb405); south_central(bb406);
north_west(bb407); south_west(bb408); west_coast(bb409);
north_central(mcb500);
east_coast(bb501); north_east(bb502); south_east(bb503);
north_central(bb504); north_central(bb505); south_central(bb506);
north_west(bb507); south_west(bb508); west_coast(bb509);
south_central(mcb600);
east_coast(bb601); north_east(bb602); south_east(bb603);
north_central(bb604); south_central(bb605); south_central(bb606);
north_west(bb607); south_west(bb608); west_coast(bb609);
south_central(mcb700);
east_coast(bb701); north_east(bb702); south_east(bb703);
north_central(bb704); south_central(bb705); south_central(bb706);
north_west(bb707); south_west(bb708); west_coast(bb709);
north_west(mcb800);
east_coast(bb801); north_east(bb802); south_east(bb803);
north_central(bb804); south_central(bb805); north_west(bb806);
north_west(bb807); south_west(bb808); west_coast(bb809);
south_west(mcb900);
east_coast(bb901); north_east(bb902); south_east(bb903);
north_central(bb904); south_central(bb905); north_west(bb906);
south_west(bb907); south_west(bb908); west_coast(bb909);
west_coast(mcb1000);
east_coast(bb1001); north_east(bb1002); south_east(bb1003);
north_central(bb1004); south_central(bb1005); north_west(bb1006);
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south_west(bb1007); west_coast(bb1008); west_coast(bb1009);

SERVICE_PLATFORM_MAPPING_SPECIFICATION

FORALL federal_reserve -> route_batch_requests, 
route_batch_responses, 
db_mc_balances, 
frb_actuator_alert_on, 
frb_actuator_alert_off,
frb_actuator_primary_frb_assignment, 
frb_actuator_system_shutdown;

FORALL money_center -> route_requests, 
route_responses,
db_branch_balances, 
batch_requests, 
send_batch_requests, 
process_batch_requests, 
send_batch_responses,
process_batch_responses,
mcb_actuator_alert_on, 
mcb_actuator_alert_off,
mcb_actuator_new_primary_frb, 
mcb_actuator_system_shutdown;

FORALL branch -> accept_requests, 
send_requests_up,
db_account_balances, 
receive_requests, 
process_requests,
send_responses_up, 
process_responses, 
send_responses_down,
bb_actuator_alert_on,
bb_actuator_alert_off,
bb_actuator_system_shutdown;

SYSTEM_INTERFACE_SPECIFICATION

SET FederalReserveBanks
SET MoneyCenterBanks
SET BranchBanks
SET PrimaryFederalReserve
SET FederalReserveBackups
SET EastCoastBanks
SET NorthEastBanks
SET SouthEastBanks
SET NorthCentralBanks
SET SouthCentralBanks
SET NorthWestBanks
SET SouthWestBanks
SET WestCoastBanks
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SET CitibankBanks
SET ChaseManhattanBanks

FederalReserveBanks = { frb1, frb2, frb3 }
MoneyCenterBanks = { i : NODE  |  money_center(i) }
BranchBanks = { i : NODE  |  branch(i) }
PrimaryFederalReserve = { frb1 }
FederalReserveBackups = { frb2, frb3 }
EastCoastBanks = { i : NODE  |  east_coast(i) }
NorthEastBanks = { i : NODE  |  north_east(i) }
SouthEastBanks = { i : NODE  |  south_east(i) }
NorthCentralBanks = { i : NODE  |  north_central(i) }
SouthCentralBanks = { i : NODE  |  south_central(i) }
NorthWestBanks = { i : NODE  |  north_west(i) }
SouthWestBanks = { i : NODE  |  south_west(i) }
WestCoastBanks = { i : NODE  |  west_coast(i) }
CitibankBanks = {mcb100, bb101, bb102, bb103, bb104,

 bb105, bb106, bb107, bb108, bb109}
ChaseManhattanBanks = {mcb200, bb201, bb202, bb203, bb204,

 bb205, bb206, bb207, bb208, bb209}

ERROR_DETECTION_SPECIFICATION

ERROR PrimaryFrbFailure
ERROR McbSecurityAttack
ERROR CoordinatedAttack
ERROR WidespreadPowerFailure

PrimaryFrbFailure =
(EXISTS i IN PrimaryFederalReserve | node_failure(i)
OR
power_failure(i));

McbSecurityAttack =
(EXISTS i IN MoneyCenterBanks  |  security_attack(i));

CoordinatedAttack  =  
( (EXISTS i IN FederalReserveBanks  |  security_attack(i))

AND
(EXISTS i IN MoneyCenterBanks  |  security_attack(i)))

OR
( FORALL i IN MoneyCenterBanks  |  security_attack(i));

WidespreadPowerFailure  =  
( FORALL i IN EastCoastBanks  |  power_failure(i))
OR
( FORALL i IN NorthEastBanks  |  power_failure(i))
OR
( FORALL i IN SouthEastBanks  |  power_failure(i))
OR
( FORALL i IN NorthCentralBanks  |  power_failure(i))
OR
( FORALL i IN SouthCentralBanks  |  power_failure(i))
OR
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( FORALL i IN NorthWestBanks  |  power_failure(i))
OR
( FORALL i IN SouthWestBanks  |  power_failure(i))
OR
( FORALL i IN WestCoastBanks  |  power_failure(i));

ERROR_RECOVERY_SPECIFICATION

PrimaryFrbFailure(NODE): action_1
PrimaryFrbFailure(NODE): action_1_1

PrimaryFrbFailure(NODE): action_1_1_1
McbSecurityAttack(NODE): action_1_1_2
CoordinatedAttack(): action_1_1_3
WidespreadPowerFailure(SET): action_1_1_4

McbSecurityAttack(NODE): action_1_2
PrimaryFrbFailure(NODE): action_1_2_1
McbSecurityAttack(NODE): action_1_2_2
CoordinatedAttack(): action_1_2_3
WidespreadPowerFailure(SET): action_1_2_4

CoordinatedAttack(): action_1_3
WidespreadPowerFailure(SET): action_1_4

PrimaryFrbFailure(NODE): action_1_4_1
McbSecurityAttack(NODE): action_1_4_2
CoordinatedAttack(): action_1_4_3
WidespreadPowerFailure(SET): action_1_4_4

McbSecurityAttack(NODE): action_2
PrimaryFrbFailure(NODE): action_2_1

PrimaryFrbFailure(NODE): action_2_1_1
McbSecurityAttack(NODE): action_2_1_2
CoordinatedAttack(): action_2_1_3
WidespreadPowerFailure(SET): action_2_1_4

McbSecurityAttack(NODE): action_2_2
PrimaryFrbFailure(NODE): action_2_2_1
McbSecurityAttack(NODE): action_2_2_2
CoordinatedAttack(): action_2_2_3
WidespreadPowerFailure(SET): action_2_2_4

CoordinatedAttack(): action_2_3
WidespreadPowerFailure(SET): action_2_4

PrimaryFrbFailure(NODE): action_2_4_1
McbSecurityAttack(NODE): action_2_4_2
CoordinatedAttack(): action_2_4_3
WidespreadPowerFailure(SET): action_2_4_4

CoordinatedAttack(): action_3

WidespreadPowerFailure(SET): action_4
PrimaryFrbFailure(NODE): action_4_1

PrimaryFrbFailure(NODE): action_4_1_1
McbSecurityAttack(NODE): action_4_1_2
CoordinatedAttack(): action_4_1_3
WidespreadPowerFailure(SET): action_4_1_4

McbSecurityAttack(NODE): action_4_2
PrimaryFrbFailure(NODE): action_4_2_1



APPENDIX B: PAR SYSTEM 144
McbSecurityAttack(NODE): action_4_2_2
CoordinatedAttack(): action_4_2_3
WidespreadPowerFailure(SET): action_4_2_4

CoordinatedAttack(): action_4_3
WidespreadPowerFailure(SET): action_4_4

PrimaryFrbFailure(NODE): action_4_4_1
McbSecurityAttack(NODE): action_4_4_2
CoordinatedAttack(): action_4_4_3
WidespreadPowerFailure(SET): action_4_4_4

action_1(NODE frb_num):
action_1_1(NODE frb_num):
action_1_2_1(NODE frb_num):
action_1_4_1(NODE frb_num):
action_2_1(NODE frb_num):
action_2_1_1(NODE frb_num):
action_2_2_1(NODE frb_num):
action_2_4_1(NODE frb_num):
action_4_1(NODE frb_num):
action_4_1_1(NODE frb_num):
action_4_2_1(NODE frb_num):
action_4_4_1(NODE frb_num):

frb_num -> shutdown();
REMOVE(FederalReserveBanks, frb_num);
REMOVE(PrimaryFederalReserve, frb_num);
FederalReserveBanks -> reconfig_frb_down(frb_num);

action_1_1_2(NODE mcb_num):
action_1_2(NODE mcb_num):
action_1_2_2(NODE mcb_num):
action_1_4_2(NODE mcb_num):
action_2(NODE mcb_num):
action_2_1_2(NODE mcb_num):
action_2_2(NODE mcb_num):
action_2_4_2(NODE mcb_num):
action_4_1_2(NODE mcb_num):
action_4_2(NODE mcb_num):
action_4_2_2(NODE mcb_num):
action_4_4_2(NODE mcb_num):

FederalReserveBanks -> raise_alert();
mcb_num -> reconfig_mcb_attacked(mcb_num);

action_1_1_1(NODE frb_num):
action_1_1_3():
action_1_2_3():
action_1_3():
action_1_4_3():
action_2_1_3():
action_2_2_2(NODE mcb_num):
action_2_2_3():
action_2_3():
action_2_4_3():
action_3():
action_4_1_3():
action_4_2_3():
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action_4_3():
action_4_4_3():

BranchBanks -> shutdown();
MoneyCenterBanks -> shutdown();
FederalReserveBanks -> shutdown();

action_1_1_4(SET region):
action_1_2_4(SET region):
action_1_4(SET region):
action_1_4_4(SET region):
action_2_1_4(SET region):
action_2_2_4(SET region):
action_2_4(SET region):
action_2_4_4(SET region):
action_4(SET region):
action_4_1_4(SET region):
action_4_2_4(SET region):
action_4_4(SET region):
action_4_4_4(SET region):

// if primary frb in region, promote another FRB
// if any mcbs in region, promote BBs in other region
switch(region)

case east_coast:
frb1 -> shutdown();
REMOVE(FederalReserveBanks, frb1);
FederalReserveBanks -> reconfig_frb_down(frb1);
mcb100 -> shutdown();
REMOVE(MoneyCenterBanks, mcb100);
bb103 -> promote_to_mcb();
ADD(MoneyCenterBanks, bb103);
CitibankBanks -> reconfig_mcb_down(mcb100, bb103);
mcb200 -> shutdown();
REMOVE(MoneyCenterBanks, mcb200);
bb203 -> promote_to_mcb();
ADD(MoneyCenterBanks, bb203);
ChaseManhattanBanks -> reconfig_mcb_down(mcb200,

bb203);
end_case;

end_switch;



Appendix C: RAPTOR System
cifica-
ovides
This appendix provides the grammar for the RAPTOR Fault Tolerance Translator, as well
as RAPTOR specifications for the two application models described in Chapter 11: the
financial payments model and the electric power model.

Each RAPTOR specification consists of two parts (described in detail in Chapter 7):
• System Specification, written in the POET database language (C++)
• Error Detection and Recovery Specifications, written in Z
The Fault Tolerance Translator processes the Error Detection and Recovery Spe

tion and generates fault-tolerance implementation components. The next section pr
the grammar for that translator.

C.1 Grammar for the RAPTOR Fault Tolerance Translator

The following is the YACC grammar for the RAPTOR Fault Tolerance Translator.
%%

%token Z_BEGIN
%token ZED
%token AX_DEF
%token SCHEMA
%token Z_EQUALS
%token DELTA
%token XI
%token NUM
%token NAT
%token WHERE
%token IMPLIES
%token DIV
%token POWERSET
%token FINSET
%token CARD
146
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%token UNION
%token INTERSECTION
%token SUBSETEQ
%token SUBSET
%token MEMBEROF
%token SETMINUS
%token EMPTYSET
%token P_FUN
%token NEQ
%token SEQ
%token LANGLE
%token RANGLE
%token CAT
%token Z_END
%token BRACE_OPEN
%token BRACE_CLOSE
%token SLASHES
%token LT
%token LTE
%token GT
%token GTE
%token LOR
%token LAND
%token <value> NUMBER
%token <symbol> ID

%type <name> type
%type <name> basic_type
%type <name> expr
%type <name> id_list
%type <symbol> schema_name

%%

z_spec
: spec_lines
  { printf("RAPTOR: GOT A COMPLETE Z SPECIFICATION.\n"); }
;

spec_lines
: spec_lines spec_line
| /* empty */
;

spec_line
: Z_BEGIN ’{’ ZED ’}’ ’[’ given_list ’]’ Z_END ’{’ ZED ’}’
  { completeGivenSets(); }
| Z_BEGIN ’{’ ZED ’}’ ID Z_EQUALS enum_list Z_END ’{’ ZED ’}’
  { completeSetDefn($5); }
| Z_BEGIN ’{’ AX_DEF ’}’ declarations Z_END ’{’ AX_DEF ’}’
  { completeAxiomDefn(); }
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| Z_BEGIN ’{’ AX_DEF ’}’ declarations WHERE conditions Z_END ’{’ 
AX_DEF ’}’

  { completeAxiomDefn(); }
| Z_BEGIN ’{’ SCHEMA ’}’ ’{’ schema_name ’}’ declarations Z_END ’{’ 

SCHEMA ’}’
  { completeSchema($6); }
| Z_BEGIN ’{’ SCHEMA ’}’ ’{’ schema_name ’}’ declarations WHERE 

conditions Z_END ’{’ SCHEMA ’}’
  { completeSchema($6); }
| Z_BEGIN ’{’ SCHEMA ’}’ ’{’ schema_name ’}’ declarations WHERE 

propositions Z_END ’{’ SCHEMA ’}’
  { completeSchema($6); }
| Z_BEGIN ’{’ SCHEMA ’}’ ’{’ schema_name ’}’ declarations WHERE 

conditions SLASHES propositions Z_END ’{’ SCHEMA ’}’
  { completeSchema($6); }
;

given_list
: given_list ’,’ ID
| ID
;

enum_list
: enum_list SLASHES ’|’ ID
  { completeIdOrder($4); }
| enum_list ’|’ ID
  { completeIdOrder($3); }
| ID 
  { completeIdOrder($1); }
;

schema_name
: ID
  { curr_schemaname = $1; }
;

declarations
: schema_decl SLASHES var_decls
| schema_decl
| var_decls
| /* empty */
;

schema_decl
: schema_modifier ID
  { curr_stateschema = $2; }
| ID
  { curr_stateschema = $1; }
;

schema_modifier
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: DELTA
| XI
;

var_decls
: var_decls SLASHES var_decl
| var_decl
;

var_decl
: ID ’:’ type
  { completeType($1, $3); }
| ID ’?’ ’:’ type
  { completeInputType($1, $4); }
;

type
: basic_type
  { $$ = $1; }
| POWERSET basic_type
  { $$ = declareSet($2); }
| FINSET basic_type
  { $$ = declareSet($2); }
| ID P_FUN type
  { $$ = $1->m_name; }
| BRACE_OPEN basic_type UNION basic_type BRACE_CLOSE
  { $$ = declareSet($2); }
| BRACE_OPEN basic_type UNION EMPTYSET BRACE_CLOSE
  { $$ = declareSet($2); }
;

basic_type
: NUM
  { $$ = NUM_STRING; }
| NAT
  { $$ = NAT_STRING; }
| ID
  { $$ = $1->m_name; }
;

conditions
: conditions SLASHES condition
| condition
;

condition
: expr
  { outputCondition($1); }
;

propositions
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: propositions SLASHES proposition
| proposition
;

proposition_list
: proposition_list LAND ’(’ proposition ’)’
| proposition_list LAND SLASHES ’(’ proposition ’)’
| ’(’ proposition ’)’
;

proposition
: ’(’ implication ’)’
| implication
| assignment
;

implication
: implication LOR SLASHES ’(’ implication_clause ’)’
  { addElseClause(); }
| implication LOR SLASHES implication_clause
  { addElseClause(); }
| ’(’ implication_clause ’)’
| implication_clause
;

implication_clause
: expr IMPLIES ’(’ proposition ’)’
  { assignImplication($1); }
| expr IMPLIES SLASHES ’(’ proposition ’)’
  { assignImplication($1); }
| expr IMPLIES ’(’ proposition_list ’)’
  { assignImplication($1); }
| expr IMPLIES SLASHES ’(’ proposition_list ’)’
  { assignImplication($1); }
;

assignment
: ID ’=’ expr
  { assignVariable($1, $3); }
;

expr
: ’(’ expr ’)’
  { $$ = setStringParens($2); }
| ’-’ expr %prec UMINUS
  { $$ = setStringMinusSign($2); }
| expr ’+’ expr
  { $$ = setStringTwoOperands($1, " + ", $3); }
| expr ’-’ expr
  { $$ = setStringTwoOperands($1, " - ", $3); }
| expr ’*’ expr
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  { $$ = setStringTwoOperands($1, " * ", $3); }
| expr DIV expr
  { $$ = setStringTwoOperands($1, " / ", $3); }
| expr LT expr
  { $$ = setStringTwoOperands($1, " < ", $3); }
| expr LTE expr
  { $$ = setStringTwoOperands($1, " <= ", $3); }
| expr GT expr
  { $$ = setStringTwoOperands($1, " > ", $3); }
| expr GTE expr
  { $$ = setStringTwoOperands($1, " >= ", $3); }
| expr LOR expr
  { $$ = setStringTwoOperands($1, " || ", $3); }
| expr LOR SLASHES expr
  { $$ = setStringTwoOperands($1, " || ", $4); }
| expr LAND expr
  { $$ = setStringTwoOperands($1, " && ", $3); }
| expr LAND SLASHES expr
  { $$ = setStringTwoOperands($1, " && ", $4); }
| expr UNION expr
  { $$ = setStringTwoOperands($1, UNION_STRING, $3); }
| expr INTERSECTION expr
  { $$ = setStringTwoOperands($1, INTER_STRING, $3); }
| expr SETMINUS expr
  { $$ = setStringTwoOperands($1, SETMI_STRING, $3); }
| expr SUBSETEQ expr
  { $$ = setStringTwoOperands($1, SUBEQ_STRING, $3); }
| expr MEMBEROF expr
  { $$ = setStringMemberOfSet($1, $3); }
| expr ’=’ expr
  { $$ = setStringBooleanQuery($1, " == ", $3); }
| expr NEQ expr
  { $$ = setStringBooleanQuery($1, " != ", $3); }
| ID
  { $$ = setVariable($1); }
| ID ’?’
  { $$ = setInputVariable($1); }
| CARD ID
  { $$ = setCardinality($2); }
| CARD ID ’?’
  { $$ = setInputCardinality($2); }
| NUMBER
  { $$ = setNumber($1); }
| EMPTYSET
  { $$ = EMPTYSET_STRING; }
| BRACE_OPEN id_list BRACE_CLOSE
  { $$ = setSetIdList($2); }
;

id_list
: id_list ’,’ ID ’?’
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  { $$ = setInputIdList($1, $3); }
| id_list ’,’ ID
  { $$ = setIdList($1, $3); }
| ID ’?’
  { $$ = setInputVariable($1); }
| ID
  { $$ = setVariable($1); }
;

%%

C.2 Example Specification: Financial Payments System

The next two subsections comprise the RAPTOR specification of fault tolerance for a
financial payments application model.

C.2.1 System Specification

This subsection provides the class definitions of the System Specification for the banking
model.

Bank Class

// Class definition
persistent class Bank
{
 public: // Constructors & destructor

Bank(const int bankId, const PtString& name);
virtual ~Bank();

 public: // Accessors
const int BankId() const;
const PtString& Name(void) const;
void SetName(const PtString& name);

 public:
bool NewObject;

 private:
int m_bankId;
PtString m_name;

useindex BankIdIndex;
};

// index definition
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indexdef BankIdIndex : Bank
{

m_bankId;
};

FederalReserveBank Class

// Class definition
persistent class FederalReserveBank : public Bank
{
 public: // Constructors & destructor

FederalReserveBank(const int bankId, const PtString& name);
virtual ~FederalReserveBank();

 public: // Services
void Print() const;

 public: // Accessors

 private: // Attributes
HardwarePlatform m_HardwarePlatform;
OperatingSystem m_OperatingSystem;
PowerCompany* m_PowerCompany;

 public: // Pointer

 public: // Set
lset<MoneyCenterBank*> m_SetMcbs;

 public:
FederalReserveBankFSM m_fsm;

};

// set definition
typedef lset<FederalReserveBank*> FederalReserveBankSet;

MoneyCenterBank Class

// Class definition
persistent class MoneyCenterBank : public Bank
{
 public: // Constructors & destructor

MoneyCenterBank(const int bankId, const PtString& name);
virtual ~MoneyCenterBank();

 public: // Services
void Print() const;
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 public: // Accessors

 private: // Attributes
HardwarePlatform m_HardwarePlatform;
OperatingSystem m_OperatingSystem;
PowerCompany* m_PowerCompany;

 public: // Pointer
FederalReserveBank* m_Frb;

 public: // Set
lset<BranchBank*> m_SetBbs;

 public:
MoneyCenterBankFSM m_fsm;

};

// set definition
typedef lset<MoneyCenterBank*> MoneyCenterBankSet;

BranchBank Class

// Class definition
persistent class BranchBank : public Bank
{
 public: // Constructor & destructor

BranchBank(const int bankId, const PtString& name);
virtual ~BranchBank();

 public: // Services
void Print() const;

 public: // Accessors

 private: // Attributes
HardwarePlatform m_HardwarePlatform;
OperatingSystem m_OperatingSystem;
PowerCompany* m_PowerCompany;

 public: // Pointers
MoneyCenterBank* m_Mcb;
PowerCompany* m_PowerCompany;

 public:
BranchBankFSM m_fsm;

};

// set definition
typedef lset<BranchBank*> BranchBankSet;
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C.2.2 Error Detection and Recovery Specifications

This subsection contains the fault-tolerance specifications for the banking model, orga-
nized according to file type.

Declarations File

Given Sets

Axiomatic Descriptions

Set Definitions

=
>%UDQFK%DQN��0RQH\&HQWHU%DQN��)HGHUDO5HVHUYH%DQN@

$
7LPH����

7LPH�!��

Z
ERRO��� �7UXH�_�)DOVH

Z
0FE1RGH6WDWHV��� �)DOVH0FE8S�_�'RZQ�0FE�_�$OO0FEV'RZQ

Z
0FE%DFNXS)UE6WDWHV��� �3ULPDU\)UE�
�����������������������������������_�����%DFNXS)UE��
�����������������������������������_�����%DFNXS)UE��
�����������������������������������_�����1R)UEV/HIW
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Z
0FE%E1RGH6WDWHV��� �%EV2N�_�%EV7KLUG'RZQ�_�%EV7ZR7KLUGV'RZQ

Z
0FE%E,G6WDWHV��� �%EV,G2N�_�%EV7KLUG$WWDFNHG�_�%EV7ZR7KLUGV$WWDFNHG

Z
)UE1RGH6WDWHV��� �)DOVH)UE8S�_�'RZQ�)UE�_�'RZQ�)UEV�_�$OO)UEV'RZQ



APPENDIX C: RAPTOR SYSTEM 157
Z
6\VWHP(YHQWV��� ��1XOO(YHQW
�����������������������_�����/RFDO6LWH)DLOXUH
�����������������������_�����/RFDO'E)DLOXUH
�����������������������_�����/RFDO3RZHU)DLOXUH
�����������������������_�����/RFDO,G$ODUP2Q
�����������������������_�����/RFDO6LWH5HSDLU
�����������������������_�����/RFDO'E5HSDLU
�����������������������_�����/RFDO3RZHU5HSDLU
�����������������������_�����/RFDO,G$ODUP2II
�����������������������_�����%E6LWH)DLOXUH
�����������������������_�����%E'E)DLOXUH
�����������������������_�����%E3RZHU)DLOXUH
�����������������������_�����%E,G$ODUP2Q
�����������������������_�����%E6LWH5HSDLU
�����������������������_�����%E'E5HSDLU
�����������������������_�����%E3RZHU5HSDLU
�����������������������_�����%E,G$ODUP2II
�����������������������_�����0FE6LWH)DLOXUH
�����������������������_�����0FE'E)DLOXUH
�����������������������_�����0FE3RZHU)DLOXUH
�����������������������_�����0FE,G$ODUP2Q
�����������������������_�����0FE6LWH5HSDLU
�����������������������_�����0FE'E5HSDLU
�����������������������_�����0FE3RZHU5HSDLU
�����������������������_�����0FE,G$ODUP2II
�����������������������_�����0FE%EV)DLOXUHV
�����������������������_�����0FE%EV5HFRYHU\
�����������������������_�����0FE%EV,G$ODUPV2Q
�����������������������_�����0FE%EV,G$ODUPV2II
�����������������������_�����0FE%E&RRUGLQDWHG$WWDFN
�����������������������_�����0FE%E1R&RRUGLQDWHG$WWDFN
�����������������������_�����0FE%E'E)DLOXUH
�����������������������_�����0FE%E'E5HSDLU
�����������������������_�����)UE6LWH)DLOXUH
�����������������������_�����)UE3RZHU)DLOXUH
�����������������������_�����)UE,G$ODUP2Q
�����������������������_�����)UE6LWH5HSDLU
�����������������������_�����)UE3RZHU5HSDLU
�����������������������_�����)UE,G$ODUP2II
�����������������������_�����6\VWHP6KXWGRZQ
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=
0HVVDJHV7R$SSOLFDWLRQ��� �1XOO%E0HVVDJH
���������������������������������������_����0VJ%E4XHXH&KHFNV
���������������������������������������_����0VJ%E5DLVH$OHUW
���������������������������������������_����0VJ%E6ZLWFK7R1HZ0FE
���������������������������������������_����0VJ%E%HFRPH%DFNXS0FE
���������������������������������������_����0VJ%E6KXWGRZQ
���������������������������������������_����0VJ%E8Q4XHXH&KHFNV
���������������������������������������_����0VJ%E/RZHU$OHUW
���������������������������������������_����0VJ%E6WRS%HLQJ%DFNXS0FE
���������������������������������������_����1XOO0FE0HVVDJH
���������������������������������������_����0VJ0FE4XHXH&KHFNV
���������������������������������������_����0VJ0FE5DLVH$OHUW
���������������������������������������_����0VJ0FE6ZLWFK7R%DFNXS)UE
���������������������������������������_����0VJ0FE6ZLWFK%DFN)URP%DFNXS)UE�
���������������������������������������_����0VJ0FE$FFHSW&KHFN5HTXHVWV
���������������������������������������_����0VJ0FE&KDQJH.H\V
���������������������������������������_����0VJ0FE8Q4XHXH&KHFNV
���������������������������������������_����0VJ0FE/RZHU$OHUW
���������������������������������������_����0VJ0FE6WRS$FFHSWLQJ&KHFN5HTXHVWV
���������������������������������������_����0VJ0FE6KXWGRZQ
���������������������������������������_����1XOO)UE0HVVDJH
���������������������������������������_����0VJ)UE6ZLWFK7R%DFNXS
���������������������������������������_����0VJ)UE4XHXH%DWFKHV
���������������������������������������_����0VJ)UE5DLVH$OHUW
���������������������������������������_����0VJ)UE'E6QDSVKRW
���������������������������������������_����0VJ)UE6ZLWFK%DFN)URP%DFNXS
���������������������������������������_����0VJ)UE8Q4XHXH%DWFKHV
���������������������������������������_����0VJ)UE/RZHU$OHUW
���������������������������������������_����0VJ)UE6KXWGRZQ
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Schema Definitions

6 2XWSXW(YHQW

HYHQWQDPH���6\VWHP(YHQWV
HYHQWGHVWLQDWLRQ���~��
HYHQWWLPH����

HYHQWQDPH���1XOO(YHQW
HYHQWGHVWLQDWLRQ����
HYHQWWLPH����

6 2XWSXW0HVVDJH

PVJQDPH���0HVVDJHV7R$SSOLFDWLRQ
PVJGHVWLQDWLRQ���~��
PVJWLPH����

PVJGHVWLQDWLRQ����
PVJWLPH����
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State Description File

State Schemas

S %UDQFK%DQN)60

0\%EV���~��
0\0FE����
%EV8S���~��
%EV'RZQ���~��
%EV'EV'RZQ���~��
%EV,G$ODUPV���~��
%EV$ODUP7LPHV���VHT��
$OHUW$OO)URP0FE���ERRO
$OHUW$OO)URP%EV���ERRO
7LPH$OHUW���ERRO
%DFNXS0FE���ERRO
%H%DFNXS0FE����
+RVW%E����

%EV8S���0\%EV
%EV'RZQ���0\%EV
%EV8S���%EV'RZQ� �0\%EV
%EV'EV'RZQ���0\%EV
%EV,G$ODUPV���0\%EV
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S 0RQH\&HQWHU%DQN)60

0\0FE����
0\%EV���~��
+RVW%EV���~��
0\)UE����
1RGHV'RZQ���0FE1RGH6WDWHV
'E'RZQ���ERRO
$OHUW���ERRO
%DFNXS)UE���0FE%DFNXS)UE6WDWHV
%EV8S���~��
%EV'RZQ���~��
%EV,G$ODUPV���~��
%EV$ODUP7LPHV���VHT��
%E1RGH6WDWHV���0FE%E1RGH6WDWHV
%E,G6WDWHV���0FE%E,G6WDWHV
%E&RRUGLQDWHG$WWDFN���ERRO

+RVW%EV���0\%EV
%EV8S���0\%EV
%EV'RZQ���0\%EV
%EV8S���%EV'RZQ� �0\%EV
%EV,G$ODUPV���0\%EV



APPENDIX C: RAPTOR SYSTEM 162
System State Schema

S )HGHUDO5HVHUYH%DQN)60

0\)UEV���~��
3ULPDU\)UE����
0\0FEV���~��
1RGHV'RZQ���)UE1RGH6WDWHV
'E'RZQ���ERRO
$OHUW���ERRO
)UEV8S���~��
)UEV'RZQ���~��
0FEV8S���~��
0FEV'RZQ���~��
0FEV,G$ODUPV���~��
0FE%EV'RZQ���~��
0FE%EV,G$ODUPV���~��
%EV&RUUXSW'E���~��
0FEV&RUUXSW'E���~��
+DOI0FEV,G$ODUPV���ERRO

3ULPDU\)UE���0\)UEV
)UEV8S���0\)UEV
)UEV'RZQ���0\)UEV
)UEV8S���)UEV'RZQ� �0\)UEV
0FEV8S���0\0FEV
0FEV'RZQ���0\0FEV
0FEV8S���0FEV'RZQ� �0\0FEV
0FEV,G$ODUPV���0\0FEV
0FE%EV'RZQ���0\0FEV
0FE%EV,G$ODUPV���0\0FEV

S %DQNLQJ6\VWHP)60

$OO%UDQFK%DQNV���}�%UDQFK%DQN)60
$OO0RQH\&HQWHU%DQNV���}�0RQH\&HQWHU%DQN)60
$OO)HGHUDO5HVHUYH%DQNV���)HGHUDO5HVHUYH%DQN)60

��$OO%UDQFK%DQNV�!���$OO0RQH\&HQWHU%DQNV
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Finite-State Machine File: BranchBankFSM

Initialization Schemas

S ,QLW%UDQFK%DQN)60

%UDQFK%DQN)60

0\%EV� ��
0\0FE� ��
%EV8S� ��
%EV'RZQ ��
%EV'EV'RZQ� ��
%EV,G$ODUPV� ��
%EV$ODUP7LPHV� �«�¬
$OHUW$OO)URP0FE� �)DOVH
$OHUW$OO)URP%EV� �)DOVH
7LPH$OHUW� �)DOVH
%DFNXS0FE� �)DOVH
%H%DFNXS0FE� ��
+RVW%E� ��

6 ,QLW%E1HZ%E

Á%UDQFK%DQN)60
EELG"����

0\%EVq� �0\%EV���^�EELG"�`
%EV8Sq� �%EV8S���^�EELG"�`

6 ,QLW%E0\0FE

Á%UDQFK%DQN)60
PFELG"����

0\0FEq� �PFELG"
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Event Schemas (Low-Level/Basic Events)

Local site failure and repair:

6 ,QLW%E+RVW%E

Á%UDQFK%DQN)60
KRVWLG"����

+RVW%Eq� �KRVWLG"

S %E6FKHPD/RFDO6LWH)DLOXUH

Á%UDQFK%DQN)60
Á2XWSXW(YHQW
EEGRZQ"����

%EV'RZQq� �%EV'RZQ���^�EEGRZQ"�`
%EV8Sq� �%EV8S�?�^�EEGRZQ"�`
HYHQWQDPHq� �%E6LWH)DLOXUH
HYHQWGHVWLQDWLRQq� �^�0\0FE�`
HYHQWWLPHq� �7LPH

S %E6FKHPD/RFDO6LWH5HSDLU

Á%UDQFK%DQN)60
Á2XWSXW(YHQW
EEXS"����

%EV'RZQq� �%EV'RZQ�?�^�EEXS"�`
%EV8Sq� �%EV8S���^�EEXS"�`
HYHQWQDPHq� �%E6LWH5HSDLU
HYHQWGHVWLQDWLRQq� �^�0\0FE�`
HYHQWWLPHq� �7LPH
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Local database failure and repair:

Local power failure and repair:

S %E6FKHPD/RFDO'E)DLOXUH

Á%UDQFK%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW
EEGEGRZQ"����

%EV'EV'RZQq�� �%EV'EV'RZQ���^�EEGEGRZQ"�`
PVJQDPHq� �0VJ%E4XHXH&KHFNV
PVJGHVWLQDWLRQq� �^�EEGEGRZQ"�`
PVJWLPHq� �7LPH
HYHQWQDPHq� �%E'E)DLOXUH
HYHQWGHVWLQDWLRQq� �^�0\0FE�`
HYHQWWLPHq� �7LPH

S %E6FKHPD/RFDO'E5HSDLU

Á%UDQFK%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW
EEGEXS"����

%EV'EV'RZQq� �%EV'EV'RZQ�?�^�EEGEXS"�`
PVJQDPHq� �0VJ%E8Q4XHXH&KHFNV
PVJGHVWLQDWLRQq� �^�EEGEXS"�`
PVJWLPHq� �7LPH
HYHQWQDPHq� �%E'E5HSDLU
HYHQWGHVWLQDWLRQq� �^�0\0FE�`
HYHQWWLPHq� �7LPH

S %E6FKHPD/RFDO3RZHU)DLOXUH

Á%UDQFK%DQN)60
Á2XWSXW(YHQW
EEGRZQ"����

%EV'RZQq� �%EV'RZQ���^�EEGRZQ"�`
%EV8Sq� �%EV8S�?�^�EEGRZQ"�`
HYHQWQDPHq� �%E3RZHU)DLOXUH
HYHQWGHVWLQDWLRQq� �^�0\0FE�`
HYHQWWLPHq� �7LPH
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Local intrusion detection alarm going on and off:

S %E6FKHPD/RFDO3RZHU5HSDLU

Á%UDQFK%DQN)60
Á2XWSXW(YHQW
EEXS"����

%EV'RZQq� �%EV'RZQ�?�^�EEXS"�`
%EV8Sq� �%EV8S���^�EEXS"�`
HYHQWQDPHq� �%E3RZHU5HSDLU
HYHQWGHVWLQDWLRQq� �^�0\0FE�`
HYHQWWLPHq� �7LPH

S %E6FKHPD/RFDO,G$ODUP2Q

Á%UDQFK%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW
EELGDODUPRQ"����

%EV,G$ODUPVq� �%EV,G$ODUPV���^�EELGDODUPRQ"�`
%EV$ODUP7LPHVq� �%EV$ODUP7LPHV�¦�«�7LPH�¬
PVJQDPHq� �0VJ%E5DLVH$OHUW
PVJGHVWLQDWLRQq� �^�EELGDODUPRQ"�`
PVJWLPHq� �7LPH
HYHQWQDPHq� �%E,G$ODUP2Q
HYHQWGHVWLQDWLRQq� �^�0\0FE�`
HYHQWWLPHq� �7LPH

S %E6FKHPD/RFDO,G$ODUP2II

Á%UDQFK%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW
EELGDODUPRII"����

%EV,G$ODUPVq� �%EV,G$ODUPV�?�^�EELGDODUPRII"�`
PVJQDPHq� �0VJ%E/RZHU$OHUW
PVJGHVWLQDWLRQq� �^�EELGDODUPRII"�`
PVJWLPHq� �7LPH
HYHQWQDPHq� �%E,G$ODUP2II
HYHQWGHVWLQDWLRQq� �^�0\0FE�`
HYHQWWLPHq� �7LPH
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Money Center Bank site failure and repair:

S %E6FKHPD0FE6LWH)DLOXUH

Á%UDQFK%DQN)60
Á2XWSXW0HVVDJH

%DFNXS0FEq� �7UXH
%H%DFNXS0FEq� �0\0FE����
��+RVW%E� ��0\0FE�������·��PVJQDPHq� �0VJ%E%HFRPH%DFNXS0FE��
��+RVW%E����0\0FE�������·��PVJQDPHq� �0VJ%E6ZLWFK7R1HZ0FE��
PVJGHVWLQDWLRQq� �^�+RVW%E�`
PVJWLPHq� �7LPH
PVJQDPHq� �0VJ%E6ZLWFK7R1HZ0FE
PVJGHVWLQDWLRQq� �%EV8S�?�^�+RVW%E�`
PVJWLPHq� �7LPH

S %E6FKHPD0FE6LWH5HSDLU

Á%UDQFK%DQN)60
Á2XWSXW0HVVDJH

%DFNXS0FEq� �)DOVH
%H%DFNXS0FEq� ��
��+RVW%E� ��0\0FE�������·�
���PVJQDPHq� �0VJ%E6WRS%HLQJ%DFNXS0FE��µ
��PVJGHVWLQDWLRQq� �^�+RVW%E�`��µ��PVJWLPHq� �7LPH���
PVJQDPHq� �0VJ%E6ZLWFK7R1HZ0FE
PVJGHVWLQDWLRQq� �%EV8S���^�+RVW%E�`
PVJWLPHq� �7LPH
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Money Center Bank power failure and repair:

Money Center Bank intrustion detection alarm going on and off:

S %E6FKHPD0FE3RZHU)DLOXUH

Á%UDQFK%DQN)60
Á2XWSXW0HVVDJH

%DFNXS0FEq� �7UXH
%H%DFNXS0FEq� �0\0FE����
��+RVW%E� ��0\0FE�������·��PVJQDPHq� �0VJ%E%HFRPH%DFNXS0FE��
��+RVW%E����0\0FE�������·��PVJQDPHq� �0VJ%E6ZLWFK7R1HZ0FE��
PVJGHVWLQDWLRQq� �^�+RVW%E�`
PVJWLPHq� �7LPH
PVJQDPHq� �0VJ%E6ZLWFK7R1HZ0FE
PVJGHVWLQDWLRQq� �%EV8S�?�^�+RVW%E�`
PVJWLPHq� �7LPH

S %E6FKHPD0FE3RZHU5HSDLU

Á%UDQFK%DQN)60
Á2XWSXW0HVVDJH

%DFNXS0FEq� �)DOVH
%H%DFNXS0FEq� ��
�+RVW%E� ��0\0FE�������·
���PVJQDPHq� �0VJ%E6WRS%HLQJ%DFNXS0FE��µ
��PVJGHVWLQDWLRQq� �^�+RVW%E�`��µ��PVJWLPHq� �7LPH��
PVJQDPHq� �0VJ%E6ZLWFK7R1HZ0FE
PVJGHVWLQDWLRQq� �%EV8S���^�+RVW%E�`
PVJWLPHq� �7LPH

S %E6FKHPD0FE,G$ODUP2Q

Á%UDQFK%DQN)60
Á2XWSXW0HVVDJH

$OHUW$OO)URP0FEq� �7UXH
PVJQDPHq� �0VJ%E5DLVH$OHUW
PVJGHVWLQDWLRQq� �0\%EV
PVJWLPHq� �7LPH
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System shutting down:

Event Schemas (High-level Events)

Half of these Branch Bank intrusion detection alarms going on and off:

6 %E6FKHPD0FE,G$ODUP2II

Á%UDQFK%DQN)60
Á2XWSXW0HVVDJH

$OHUW$OO)URP0FEq� �)DOVH
PVJQDPHq� �0VJ%E/RZHU$OHUW
PVJGHVWLQDWLRQq� �0\%EV
PVJWLPHq� �7LPH

S %E6FKHPD6\VWHP6KXWGRZQ

Â%UDQFK%DQN)60
Á2XWSXW0HVVDJH

PVJQDPHq� �0VJ%E6KXWGRZQ
PVJGHVWLQDWLRQq� �0\%EV
PVJWLPHq� �7LPH

6 %E&RQGLWLRQ6FKHPD+DOI,G$ODUPV2Q

Á%UDQFK%DQN)60
Á2XWSXW0HVVDJH

�$OHUW$OO)URP%EV� �)DOVH��µ����%EV,G$ODUPV�À����0\%EV�?GLY����
$OHUW$OO)URP%EVq� �7UXH
PVJQDPHq� �0VJ%E5DLVH$OHUW
PVJGHVWLQDWLRQq� �0\%EV
PVJWLPHq� �7LPH
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5 Branch bank intrusion detection alarms have gone off in the past 30 seconds, then not:

6 %E&RQGLWLRQ6FKHPD+DOI,G$ODUPV2II

Á%UDQFK%DQN)60
Á2XWSXW0HVVDJH

�$OHUW$OO)URP%EV� �7UXH��µ����%EV,G$ODUPV������0\%EV�?GLY����
$OHUW$OO)URP%EVq� �)DOVH
PVJQDPHq� �0VJ%E/RZHU$OHUW
PVJGHVWLQDWLRQq� �0\%EV
PVJWLPHq� �7LPH

6 %E&RQGLWLRQ6FKHPD�$ODUPV,Q��6HFRQGV

Á%UDQFK%DQN)60
Á2XWSXW0HVVDJH

�7LPH$OHUW� �)DOVH��µ����%EV$ODUP7LPHV�À����µ�
��%EV$ODUP7LPHV�����%EV$ODUP7LPHV�������À��7LPH�������
7LPH$OHUWq� �7UXH
PVJQDPHq� �0VJ%E5DLVH$OHUW
PVJGHVWLQDWLRQq� �0\%EV
PVJWLPHq� �7LPH

6 %E&RQGLWLRQ6FKHPD1R�$ODUPV,Q��6HFRQGV

Á%UDQFK%DQN)60
Á2XWSXW0HVVDJH

�7LPH$OHUW� �7UXH��µ
��%EV$ODUP7LPHV�����%EV$ODUP7LPHV����������7LPH�������
7LPH$OHUWq� �)DOVH
PVJQDPHq� �0VJ%E/RZHU$OHUW
PVJGHVWLQDWLRQq� �0\%EV
PVJWLPHq� �7LPH



APPENDIX C: RAPTOR SYSTEM 171
Finite-State Machine File: MoneyCenterBankFSM

Initialization Schemas

S ,QLW0RQH\&HQWHU%DQN)60

0RQH\&HQWHU%DQN)60

0\0FE� ��
0\%EV� ��
+RVW%EV� ��
0\)UE� ��
1RGHV'RZQ� �)DOVH0FE8S
'E'RZQ� �)DOVH
$OHUW� �)DOVH
%DFNXS)UE� �3ULPDU\)UE
%EV8S� ��
%EV'RZQ� ��
%EV,G$ODUPV� ��
%EV$ODUP7LPHV� �«�¬
%E1RGH6WDWHV� �%EV2N
%E,G6WDWHV� �%EV,G2N
%E&RRUGLQDWHG$WWDFN� �)DOVH

6 ,QLW0FE0\0FE

Á0RQH\&HQWHU%DQN)60
PFELG"����

0\0FEq� �PFELG"

6 ,QLW0FE1HZ%E

Á0RQH\&HQWHU%DQN)60
EELG"����

0\%EVq� �0\%EV���^�EELG"�`
%EV8Sq� �%EV8S���^�EELG"�`
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Event Schemas (Low-Level/Basic Events)

Local site failure and repair:

6 ,QLW0FE1HZ+RVW%E

Á0RQH\&HQWHU%DQN)60
EELG"����

+RVW%EVq� �+RVW%EVq���^�EELG"�`

6 ,QLW0FE0\)UE

Á0RQH\&HQWHU%DQN)60
IUELG"����

0\)UEq� �IUELG"

S 0FE6FKHPD/RFDO6LWH)DLOXUH

Á0RQH\&HQWHU%DQN)60
Á2XWSXW(YHQW

���1RGHV'RZQ� �)DOVH0FE8S��·��1RGHV'RZQq� �'RZQ�0FE���¶
����1RGHV'RZQ� �'RZQ�0FE��·��1RGHV'RZQq� �$OO0FEV'RZQ���
HYHQWQDPHq� �0FE6LWH)DLOXUH
HYHQWGHVWLQDWLRQq� �+RVW%EV���^�0\)UE�`
HYHQWWLPHq� �7LPH

S 0FE6FKHPD/RFDO6LWH5HSDLU

Á0RQH\&HQWHU%DQN)60
Á2XWSXW(YHQW

���1RGHV'RZQ� �$OO0FEV'RZQ��·��1RGHV'RZQq� �'RZQ�0FE���¶
���1RGHV'RZQ� �'RZQ�0FE��·��1RGHV'RZQq� �)DOVH0FE8S���
HYHQWQDPHq� �0FE6LWH5HSDLU
HYHQWGHVWLQDWLRQq� �+RVW%EV���^�0\)UE�`
HYHQWWLPHq� �7LPH
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Local database failure and repair:

Local power failure and repair:

S 0FE6FKHPD/RFDO'E)DLOXUH

Á0RQH\&HQWHU%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW

'E'RZQq� �7UXH
PVJQDPHq� �0VJ0FE4XHXH&KHFNV
PVJGHVWLQDWLRQq� �^�0\0FE�`
PVJWLPHq� �7LPH
HYHQWQDPHq� �0FE'E)DLOXUH
HYHQWGHVWLQDWLRQq� �^�0\)UE�`
HYHQWWLPHq� �7LPH

S 0FE6FKHPD/RFDO'E5HSDLU

Á0RQH\&HQWHU%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW

'E'RZQq� �)DOVH
PVJQDPHq� �0VJ0FE8Q4XHXH&KHFNV
PVJGHVWLQDWLRQq� �^�0\0FE�`
PVJWLPHq� �7LPH
HYHQWQDPHq� �0FE'E5HSDLU
HYHQWGHVWLQDWLRQq� �^�0\)UE�`
HYHQWWLPHq� �7LPH

S 0FE6FKHPD/RFDO3RZHU)DLOXUH

Á0RQH\&HQWHU%DQN)60
Á2XWSXW(YHQW

���1RGHV'RZQ� �)DOVH0FE8S��·��1RGHV'RZQq� �'RZQ�0FE���¶
���1RGHV'RZQ� �'RZQ�0FE��·��1RGHV'RZQq� �$OO0FEV'RZQ���
HYHQWQDPHq� �0FE3RZHU)DLOXUH
HYHQWGHVWLQDWLRQq� �+RVW%EV���^�0\)UE�`
HYHQWWLPHq� �7LPH
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Local intrusion detection alarm going on and off:

S 0FE6FKHPD/RFDO3RZHU5HSDLU

Á0RQH\&HQWHU%DQN)60
Á2XWSXW(YHQW

���1RGHV'RZQ� �$OO0FEV'RZQ��·��1RGHV'RZQq� �'RZQ�0FE���¶
���1RGHV'RZQ� �'RZQ�0FE��·��1RGHV'RZQq� �)DOVH0FE8S���
HYHQWQDPHq� �0FE3RZHU5HSDLU
HYHQWGHVWLQDWLRQq� �+RVW%EV���^�0\)UE�`
HYHQWWLPHq� �7LPH

S 0FE6FKHPD/RFDO,G$ODUP2Q

Á0RQH\&HQWHU%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW

$OHUWq� �7UXH
HYHQWQDPHq� �0FE,G$ODUP2Q
HYHQWGHVWLQDWLRQq� �+RVW%EV���^�0\)UE�`
HYHQWWLPHq� �7LPH
PVJQDPHq� �0VJ0FE5DLVH$OHUW
PVJGHVWLQDWLRQq� �^�0\0FE�`
PVJWLPHq� �7LPH

S 0FE6FKHPD/RFDO,G$ODUP2II

Á0RQH\&HQWHU%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW

$OHUWq� �)DOVH
HYHQWQDPHq� �0FE,G$ODUP2II
HYHQWGHVWLQDWLRQq� �+RVW%EV���^�0\)UE�`
HYHQWWLPHq� �7LPH
PVJQDPHq� �0VJ0FE/RZHU$OHUW
PVJGHVWLQDWLRQq� �^�0\0FE�`
PVJWLPHq� �7LPH
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Federal Reserve Bank site failure and repair:

Federal Reserve Bank power failure and repair:

S 0FE6FKHPD)UE6LWH)DLOXUH

Á0RQH\&HQWHU%DQN)60
Á2XWSXW0HVVDJH

���%DFNXS)UE� �3ULPDU\)UE��·��%DFNXS)UEq� �%DFNXS)UE����¶
���%DFNXS)UE� �%DFNXS)UE���·��%DFNXS)UEq� �%DFNXS)UE����¶
���%DFNXS)UE� �%DFNXS)UE���·��%DFNXS)UEq� �1R)UEV/HIW���
PVJQDPHq� �0VJ0FE6ZLWFK7R%DFNXS)UE
PVJGHVWLQDWLRQq� �^�0\0FE�`
PVJWLPHq� �7LPH

S 0FE6FKHPD)UE6LWH5HSDLU

Á0RQH\&HQWHU%DQN)60
Á2XWSXW0HVVDJH

���%DFNXS)UE� �1R)UEV/HIW��·��%DFNXS)UEq� �%DFNXS)UE����¶
���%DFNXS)UE� �%DFNXS)UE���·��%DFNXS)UEq� �%DFNXS)UE����¶
���%DFNXS)UE� �%DFNXS)UE���·��%DFNXS)UEq� �3ULPDU\)UE���
PVJQDPHq� �0VJ0FE6ZLWFK%DFN)URP%DFNXS)UE
PVJGHVWLQDWLRQq� �^�0\0FE�`
PVJWLPHq� �7LPH

S 0FE6FKHPD)UE3RZHU)DLOXUH

Á0RQH\&HQWHU%DQN)60
Á2XWSXW0HVVDJH

���%DFNXS)UE� �3ULPDU\)UE��·��%DFNXS)UEq� �%DFNXS)UE����¶
���%DFNXS)UE� �%DFNXS)UE���·��%DFNXS)UEq� �%DFNXS)UE����¶
���%DFNXS)UE� �%DFNXS)UE���·��%DFNXS)UEq� �1R)UEV/HIW���
PVJQDPHq� �0VJ0FE6ZLWFK7R%DFNXS)UE
PVJGHVWLQDWLRQq� �^�0\0FE�`
PVJWLPHq� �7LPH
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Federal Reserve Bank intrusion detection alarm going on and off:

Branch Bank site failure and repair:

S 0FE6FKHPD)UE3RZHU5HSDLU

Á0RQH\&HQWHU%DQN)60
Á2XWSXW0HVVDJH

���%DFNXS)UE� �1R)UEV/HIW��·��%DFNXS)UEq� �%DFNXS)UE����¶
���%DFNXS)UE� �%DFNXS)UE���·��%DFNXS)UEq� �%DFNXS)UE����¶
���%DFNXS)UE� �%DFNXS)UE���·��%DFNXS)UEq� �3ULPDU\)UE���
PVJQDPHq� �0VJ0FE6ZLWFK%DFN)URP%DFNXS)UE
PVJGHVWLQDWLRQq� �^�0\0FE�`
PVJWLPHq� �7LPH

S 0FE6FKHPD)UE,G$ODUP2Q

Á0RQH\&HQWHU%DQN)60
Á2XWSXW0HVVDJH

$OHUWq� �7UXH
PVJQDPHq� �0VJ0FE5DLVH$OHUW
PVJGHVWLQDWLRQq� �^�0\0FE�`
PVJWLPHq� �7LPH

S 0FE6FKHPD)UE,G$ODUP2II

Á0RQH\&HQWHU%DQN)60
Á2XWSXW0HVVDJH

$OHUWq� �)DOVH
PVJQDPHq� �0VJ0FE/RZHU$OHUW
PVJGHVWLQDWLRQq� �^�0\0FE�`
PVJWLPHq� �7LPH

S 0FE6FKHPD%E6LWH)DLOXUH

Á0RQH\&HQWHU%DQN)60
EEGRZQ"����

%EV'RZQq� �%EV'RZQ���^�EEGRZQ"�`
%EV8Sq� �%EV8S�?�^�EEGRZQ"�`
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Branch Bank power failure and repair:

Branch Bank database failure and repair:

S 0FE6FKHPD%E6LWH5HSDLU

Á0RQH\&HQWHU%DQN)60
EEXS"����

%EV'RZQq� �%EV'RZQ�?�^�EEXS"�`
%EV8Sq� �%EV8S���^�EEXS"�`

S 0FE6FKHPD%E3RZHU)DLOXUH

Á0RQH\&HQWHU%DQN)60
EEGRZQ"����

%EV'RZQq� �%EV'RZQ���^�EEGRZQ"�`
%EV8Sq� �%EV8S�?�^�EEGRZQ"�`

S 0FE6FKHPD%E3RZHU5HSDLU

Á0RQH\&HQWHU%DQN)60
EEXS"����

%EV'RZQq� �%EV'RZQ�?�^�EEXS"�`
%EV8Sq� �%EV8S���^�EEXS"�`

S 0FE6FKHPD%E'E)DLOXUH

Á0RQH\&HQWHU%DQN)60
Á2XWSXW(YHQW
EEGEGRZQ"����

HYHQWQDPHq� �0FE%E'E)DLOXUH
HYHQWGHVWLQDWLRQq� �^�0\)UE�`
HYHQWWLPHq� �7LPH
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Branch Bank intrusion detection alarm going on and off:

System shutting down:

6 0FE6FKHPD%E'E5HSDLU

Á0RQH\&HQWHU%DQN)60
Á2XWSXW(YHQW
EEGEXS"����

HYHQWQDPHq� �0FE%E'E5HSDLU
HYHQWGHVWLQDWLRQq� �^�0\)UE�`
HYHQWWLPHq� �7LPH

S 0FE6FKHPD%E,G$ODUP2Q

Á0RQH\&HQWHU%DQN)60
EELGDODUPRQ"����

%EV,G$ODUPVq� �%EV,G$ODUPV���^�EELGDODUPRQ"�`
%EV$ODUP7LPHVq� �%EV$ODUP7LPHV�¦�«�7LPH�¬

6 0FE6FKHPD%E,G$ODUP2II

Á0RQH\&HQWHU%DQN)60
EELGDODUPRII"����

%EV,G$ODUPVq� �%EV,G$ODUPV���^�EELGDODUPRII"�`

S 0FE6FKHPD6\VWHP6KXWGRZQ

Â0RQH\&HQWHU%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW

PVJQDPHq� �0VJ0FE6KXWGRZQ
PVJGHVWLQDWLRQq� �^�0\0FE�`
PVJWLPHq� �7LPH
HYHQWQDPHq� �6\VWHP6KXWGRZQ
HYHQWGHVWLQDWLRQq� �+RVW%EV
HYHQWWLPHq� �7LPH
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Event Schemas (High-level Events)

One-third and two-thirds of these Branch Banks have failed and recovered:

6 0FE&RQGLWLRQ6FKHPD%EV7KLUG'RZQ

Á0RQH\&HQWHU%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW

��%E1RGH6WDWHV� �%EV2N��µ����%EV'RZQ�À����0\%EV�?GLY������¶
���%E1RGH6WDWHV� �%EV7ZR7KLUGV'RZQ��µ�
������%EV'RZQ������
����0\%EV��?GLY�����
��%E1RGH6WDWHV� �%EV2N��·�
����PVJQDPHq� �0VJ0FE$FFHSW&KHFN5HTXHVWV��µ�
�����PVJGHVWLQDWLRQq� �^�0\0FE�`��µ
�����PVJWLPHq� �7LPH���
��%E1RGH6WDWHV� �%EV7ZR7KLUGV'RZQ��·
����HYHQWQDPHq� �0FE%EV5HFRYHU\��µ
�����HYHQWGHVWLQDWLRQq� �^�0\)UE�`��µ
�����HYHQWWLPHq� �7LPH���
%E1RGH6WDWHVq� �%EV7KLUG'RZQ

6 0FE&RQGLWLRQ6FKHPD%EV7ZR7KLUGV'RZQ

Á0RQH\&HQWHU%DQN)60
Á2XWSXW(YHQW

�%E1RGH6WDWHV� �%EV7KLUG'RZQ��µ����%EV'RZQ�À����
����0\%EV��?GLY����
%E1RGH6WDWHVq� �%EV7ZR7KLUGV'RZQ
HYHQWQDPHq� �0FE%EV)DLOXUHV
HYHQWGHVWLQDWLRQq� �^�0\)UE�`
HYHQWWLPHq� �7LPH

6 0FE&RQGLWLRQ6FKHPD%EV'RZQ5HFRYHUHG

Á0RQH\&HQWHU%DQN)60
Á2XWSXW0HVVDJH

�%E1RGH6WDWHV� �%EV7KLUG'RZQ��µ����%EV'RZQ������0\%EV�?GLY����
%E1RGH6WDWHVq� �%EV2N
PVJQDPHq� �0VJ0FE6WRS$FFHSWLQJ&KHFN5HTXHVWV
PVJGHVWLQDWLRQq� �^�0\0FE�`
PVJWLPHq� �7LPH
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One-third and two-thirds of these Branch Banks have been attacked and recovered:

6 0FE&RQGLWLRQ6FKHPD%EV7KLUG$WWDFNHG

Á0RQH\&HQWHU%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW

��%E,G6WDWHV� �%EV,G2N��µ����%EV,G$ODUPV�À����0\%EV�?GLY������¶
���%E,G6WDWHV� �%EV7ZR7KLUGV$WWDFNHG��µ�
������%EV,G$ODUPV������
����0\%EV�?GLY������
�%E,G6WDWHV� �%EV,G2N��·�
���PVJQDPHq� �0VJ0FE5DLVH$OHUW��µ��PVJGHVWLQDWLRQq� �^�0\0FE�`��µ
����PVJWLPHq� �7LPH��
�%E,G6WDWHV� �%EV7ZR7KLUGV$WWDFNHG��·
���HYHQWQDPHq� �0FE%EV,G$ODUPV2II��µ��HYHQWGHVWLQDWLRQq� �^�0\)UE�`��µ
����HYHQWWLPHq� �7LPH��
%E,G6WDWHVq� �%EV7KLUG$WWDFNHG

6 0FE&RQGLWLRQ6FKHPD%EV7ZR7KLUGV$WWDFNHG

Á0RQH\&HQWHU%DQN)60
Á2XWSXW(YHQW

�%E,G6WDWHV� �%EV7KLUG$WWDFNHG��µ�
����%EV,G$ODUPV�À����
����0\%EV��?GLY����
%E,G6WDWHVq� �%EV7ZR7KLUGV$WWDFNHG
HYHQWQDPHq� �0FE%EV,G$ODUPV2Q
HYHQWGHVWLQDWLRQq� �^�0\)UE�`
HYHQWWLPHq� �7LPH

6 0FE&RQGLWLRQ6FKHPD%EV$WWDFNHG5HFRYHUHG

Á0RQH\&HQWHU%DQN)60
Á2XWSXW0HVVDJH

�%E,G6WDWHV� �%EV7KLUG$WWDFNHG��µ����%EV,G$ODUPV������0\%EV�?GLY����
%E,G6WDWHVq� �%EV,G2N
PVJQDPHq� �0VJ0FE/RZHU$OHUW
PVJGHVWLQDWLRQq� �^�0\0FE�`
PVJWLPHq� �7LPH
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10 Branch banks intrusion detection alarms have gone on in the past 60 seconds, then off:

6 0FE&RQGLWLRQ6FKHPD��$ODUPV,Q��6HFRQGV

Á0RQH\&HQWHU%DQN)60
Á2XWSXW(YHQW

�%E&RRUGLQDWHG$WWDFN� �)DOVH��µ����%EV$ODUP7LPHV�À�����µ
��%EV$ODUP7LPHV�����%EV$ODUP7LPHV�������À��7LPH�������
%E&RRUGLQDWHG$WWDFNq� �7UXH
HYHQWQDPHq� �0FE%E&RRUGLQDWHG$WWDFN
HYHQWGHVWLQDWLRQq� �0\%EV���^�0\)UE�`
HYHQWWLPHq� �7LPH

6 0FE&RQGLWLRQ6FKHPD��$ODUPV1RW,Q��6HFRQGV

Á0RQH\&HQWHU%DQN)60
Á2XWSXW(YHQW

�%E&RRUGLQDWHG$WWDFN� �7UXH��µ
��%EV$ODUP7LPHV�����%EV$ODUP7LPHV����������7LPH�������
%E&RRUGLQDWHG$WWDFNq� �)DOVH
HYHQWQDPHq� �0FE%E1R&RRUGLQDWHG$WWDFN
HYHQWGHVWLQDWLRQq� �0\%EV���^�0\)UE�`
HYHQWWLPHq� �7LPH
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Finite-State Machine File: FederalReserveBankFSM

Initialization Schemas

S ,QLW)HGHUDO5HVHUYH%DQN)60

)HGHUDO5HVHUYH%DQN)60

0\)UEV� ��
3ULPDU\)UE� ��
0\0FEV� ��
1RGHV'RZQ� �)DOVH)UE8S
'E'RZQ� �)DOVH
$OHUW� �)DOVH
)UEV8S� ��
)UEV'RZQ� ��
0FEV8S� ��
0FEV'RZQ� ��
0FEV,G$ODUPV� ��
0FE%EV'RZQ� ��
0FE%EV,G$ODUPV� ��
%EV&RUUXSW'E� ��
0FEV&RUUXSW'E� ��
+DOI0FEV,G$ODUPV� �)DOVH

6 ,QLW)UE1HZ)UE

Á)HGHUDO5HVHUYH%DQN)60
IUELG"����

0\)UEVq� �0\)UEV���^�IUELG"�`
)UEV8Sq� �)UEV8S���^�IUELG"�`

6 ,QLW)UE3ULPDU\)UE

Á)HGHUDO5HVHUYH%DQN)60
IUELG"����

3ULPDU\)UEq� �IUELG"
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Event Schemas (Low-Level/Basic Events)

Local site failure and repair:

6 ,QLW)UE1HZ0FE

Á)HGHUDO5HVHUYH%DQN)60
PFELG"����

0\0FEVq� �0\0FEV���^�PFELG"�`
0FEV8Sq� �0FEV8S���^�PFELG"�`

S )UE6FKHPD/RFDO6LWH)DLOXUH

Á)HGHUDO5HVHUYH%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW
IUEGRZQ"����

���1RGHV'RZQ� �)DOVH)UE8S��·��1RGHV'RZQq� �'RZQ�)UE���¶
����1RGHV'RZQ� �'RZQ�)UE��·��1RGHV'RZQq� �'RZQ�)UEV���¶
����1RGHV'RZQ� �'RZQ�)UEV��·�
������1RGHV'RZQq� �$OO)UEV'RZQ��µ��PVJQDPHq� �0VJ)UE6KXWGRZQ��µ
�������PVJGHVWLQDWLRQq� �)UEV8S��µ��PVJWLPHq� �7LPH����
)UEV8Sq� �)UEV8S�?�^�IUEGRZQ"�`
)UEV'RZQq� �)UEV'RZQ���^�IUEGRZQ"�`
����IUEGRZQ"� �3ULPDU\)UE��µ���3ULPDU\)UE��������)UEV8S���·
������3ULPDU\)UEq� �3ULPDU\)UE������µ�
�������PVJQDPHq� �0VJ)UE6ZLWFK7R%DFNXS��µ
�������PVJGHVWLQDWLRQq� �)UEV8S��µ��PVJWLPHq� �7LPH����¶
����IUEGRZQ"� �3ULPDU\)UE��µ���3ULPDU\)UE��������)UEV8S���·
�����3ULPDU\)UEq� �3ULPDU\)UE������µ�
�����PVJQDPHq� �0VJ)UE6ZLWFK7R%DFNXS��µ��PVJGHVWLQDWLRQq� �)UEV8S��µ
�����PVJWLPHq� �7LPH����
HYHQWQDPHq� �)UE6LWH)DLOXUH
HYHQWGHVWLQDWLRQq� �0\0FEV
HYHQWWLPHq� �7LPH
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Local database failure and repair:

S )UE6FKHPD/RFDO6LWH5HSDLU

Á)HGHUDO5HVHUYH%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW
IUEXS"����

���1RGHV'RZQ� �'RZQ�)UEV��·��1RGHV'RZQq� �'RZQ�)UE���¶
����1RGHV'RZQ� �'RZQ�)UE��·��1RGHV'RZQq� �)DOVH)UE8S���
)UEV8Sq� �)UEV8S���^�IUEXS"�`
)UEV'RZQq� �)UEV'RZQ�?�^�IUEXS"�`
��3ULPDU\)UE�!�IUEXS"��·�
����3ULPDU\)UEq� �IUEXS"��µ�
�����PVJQDPHq� �0VJ)UE6ZLWFK%DFN)URP%DFNXS��µ�
�����PVJGHVWLQDWLRQq� �)UEV8S��µ��PVJWLPHq� �7LPH���
HYHQWQDPHq� �)UE6LWH5HSDLU
HYHQWGHVWLQDWLRQq� �0\0FEV
HYHQWWLPHq� �7LPH

S )UE6FKHPD/RFDO'E)DLOXUH

Á)HGHUDO5HVHUYH%DQN)60
Á2XWSXW0HVVDJH

'E'RZQq� �7UXH
PVJQDPHq� �0VJ)UE4XHXH%DWFKHV
PVJGHVWLQDWLRQq� �^�3ULPDU\)UE�`
PVJWLPHq� �7LPH

S )UE6FKHPD/RFDO'E5HSDLU

Á)HGHUDO5HVHUYH%DQN)60
Á2XWSXW0HVVDJH

'E'RZQq� �)DOVH
PVJQDPHq� �0VJ)UE8Q4XHXH%DWFKHV
PVJGHVWLQDWLRQq� �^�3ULPDU\)UE�`
PVJWLPHq� �7LPH
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Local power failure and repair:

S )UE6FKHPD/RFDO3RZHU)DLOXUH

Á)HGHUDO5HVHUYH%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW
IUEGRZQ"����

��1RGHV'RZQ� �)DOVH)UE8S��·��1RGHV'RZQq� �'RZQ�)UE���¶
����1RGHV'RZQ� �'RZQ�)UE��·��1RGHV'RZQq� �'RZQ�)UEV���¶
����1RGHV'RZQ� �'RZQ�)UEV��·�
������1RGHV'RZQq� �$OO)UEV'RZQ��µ��PVJQDPHq� �0VJ)UE6KXWGRZQ��µ
�������PVJGHVWLQDWLRQq� �)UEV8S��µ��PVJWLPHq� �7LPH���
)UEV8Sq� �)UEV8S�?�^�IUEGRZQ"�`
)UEV'RZQq� �)UEV'RZQ���^�IUEGRZQ"�`
����IUEGRZQ"� �3ULPDU\)UE��µ���3ULPDU\)UE��������)UEV8S���·
������3ULPDU\)UEq� �3ULPDU\)UE������µ�
�������PVJQDPHq� �0VJ)UE6ZLWFK7R%DFNXS��µ
�������PVJGHVWLQDWLRQq� �)UEV8S��µ��PVJWLPHq� �7LPH����¶
�����IUEGRZQ"� �3ULPDU\)UE��µ���3ULPDU\)UE��������)UEV8S���·
�����3ULPDU\)UEq� �3ULPDU\)UE������µ�
�����PVJQDPHq� �0VJ)UE6ZLWFK7R%DFNXS��µ��PVJGHVWLQDWLRQq� �)UEV8S��µ
�����PVJWLPHq� �7LPH����
HYHQWQDPHq� �)UE3RZHU)DLOXUH
HYHQWGHVWLQDWLRQq� �0\0FEV
HYHQWWLPHq� �7LPH
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Local intrusion detection alarm going on and off:

S )UE6FKHPD/RFDO3RZHU5HSDLU

Á)HGHUDO5HVHUYH%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW
IUEXS"����

���1RGHV'RZQ� �'RZQ�)UEV��·��1RGHV'RZQq� �'RZQ�)UE���¶
����1RGHV'RZQ� �'RZQ�)UE��·��1RGHV'RZQq� �)DOVH)UE8S���
)UEV8Sq� �)UEV8S���^�IUEXS"�`
)UEV'RZQq� �)UEV'RZQ�?�^�IUEXS"�`
��3ULPDU\)UE�!�IUEXS"��·�
����3ULPDU\)UEq� �IUEXS"��µ�
�����PVJQDPHq� �0VJ)UE6ZLWFK%DFN)URP%DFNXS��µ�
�����PVJGHVWLQDWLRQq� �)UEV8S��µ��PVJWLPHq� �7LPH���
HYHQWQDPHq� �)UE3RZHU5HSDLU
HYHQWGHVWLQDWLRQq� �0\0FEV
HYHQWWLPHq� �7LPH

S )UE6FKHPD/RFDO,G$ODUP2Q

Á)HGHUDO5HVHUYH%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW

$OHUWq� �7UXH
PVJQDPHq� �0VJ)UE5DLVH$OHUW
PVJGHVWLQDWLRQq� �)UEV8S
PVJWLPHq� �7LPH
HYHQWQDPHq� �)UE,G$ODUP2Q
HYHQWGHVWLQDWLRQq� �0\0FEV
HYHQWWLPHq� �7LPH
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Money Center Bank site failure and repair:

Money Center Bank power failure and repair:

S )UE6FKHPD/RFDO,G$ODUP2II

Á)HGHUDO5HVHUYH%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW

$OHUWq� �)DOVH
PVJQDPHq� �0VJ)UE/RZHU$OHUW
PVJGHVWLQDWLRQq� �)UEV8S
PVJWLPHq� �7LPH
HYHQWQDPHq� �)UE,G$ODUP2II
HYHQWGHVWLQDWLRQq� �0\0FEV
HYHQWWLPHq� �7LPH

S )UE6FKHPD0FE6LWH)DLOXUH

Á)HGHUDO5HVHUYH%DQN)60
PFEGRZQ"����

0FEV'RZQq� �0FEV'RZQ���^�PFEGRZQ"�`
0FEV8Sq� �0FEV8S�?�^�PFEGRZQ"�`
0FEV8Sq� �0FEV8S���^��PFEGRZQ"������`

S )UE6FKHPD0FE6LWH5HSDLU

Á)HGHUDO5HVHUYH%DQN)60
PFEXS"����

0FEV'RZQq� �0FEV'RZQ�?�^�PFEXS"�`
0FEV8Sq� �0FEV8S���^�PFEXS"�`
0FEV8Sq� �0FEV8S�?�^��PFEXS"������`

S )UE6FKHPD0FE3RZHU)DLOXUH

Á)HGHUDO5HVHUYH%DQN)60
PFEGRZQ"����

0FEV'RZQq� �0FEV'RZQ���^�PFEGRZQ"�`
0FEV8Sq� �0FEV8S�?�^�PFEGRZQ"�`
0FEV8Sq� �0FEV8S���^��PFEGRZQ"������`
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Money Center Bank intrusion detection alarm going on and off:

Branch Bank database failure and repair:

S )UE6FKHPD0FE3RZHU5HSDLU

Á)HGHUDO5HVHUYH%DQN)60
PFEXS"����

0FEV'RZQq� �0FEV'RZQ�?�^�PFEXS"�`
0FEV8Sq� �0FEV8S���^�PFEXS"�`
0FEV8Sq� �0FEV8S�?�^��PFEXS"������`

S )UE6FKHPD0FE,G$ODUP2Q

Á)HGHUDO5HVHUYH%DQN)60
PFELGDODUPRQ"����

0FEV,G$ODUPVq� �0FEV,G$ODUPV���^�PFELGDODUPRQ"�`

S )UE6FKHPD0FE,G$ODUP2II

Á)HGHUDO5HVHUYH%DQN)60
PFELGDODUPRII"����

0FEV,G$ODUPVq� �0FEV,G$ODUPV�?�^�PFELGDODUPRII"�`

S )UE6FKHPD0FE%E'E)DLOXUH

Á)HGHUDO5HVHUYH%DQN)60
EEGEGRZQ"����

%EV&RUUXSW'Eq� �%EV&RUUXSW'E���^�EEGEGRZQ"�`

6 )UE6FKHPD0FE%E'E5HSDLU

Á)HGHUDO5HVHUYH%DQN)60
EEGEXS"����

%EV&RUUXSW'Eq� �%EV&RUUXSW'E�?�^�EEGEXS"�`
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Money Center Bank database failure and repair:

High-Level Events

Half of the Money Center Banks have failed:

6 )UE6FKHPD0FE'E)DLOXUH

Á)HGHUDO5HVHUYH%DQN)60
PFEGEGRZQ"����

0FEV&RUUXSW'Eq� �0FEV&RUUXSW'E���^�PFEGEGRZQ"�`

S )UE6FKHPD0FE'E5HSDLU

Á)HGHUDO5HVHUYH%DQN)60
PFEGEXS"����

0FEV&RUUXSW'Eq� �0FEV&RUUXSW'E�?�^�PFEGEXS"�`

6 )UE&RQGLWLRQ6FKHPD+DOI0FEV'RZQ

Á)HGHUDO5HVHUYH%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW

���0FEV'RZQ�À����0\0FEV�?GLY����
PVJQDPHq� �0VJ)UE6KXWGRZQ
PVJGHVWLQDWLRQq� �0\)UEV
PVJWLPHq� �7LPH
HYHQWQDPHq� �6\VWHP6KXWGRZQ
HYHQWGHVWLQDWLRQq� �0\0FEV
HYHQWWLPHq� �7LPH
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Half of the Money Center Banks have intrusion detection alarms going on and off:

6 )UE&RQGLWLRQ6FKHPD+DOI0FEV,G$ODUPV2Q

Á)HGHUDO5HVHUYH%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW

���0FEV,G$ODUPV�À����0\0FEV�?GLY�����µ��+DOI0FEV,G$ODUPV� �)DOVH�
+DOI0FEV,G$ODUPVq� �7UXH
PVJQDPHq� �0VJ)UE5DLVH$OHUW
PVJGHVWLQDWLRQq� �0\)UEV
PVJWLPHq� �7LPH
HYHQWQDPHq� �)UE,G$ODUP2Q
HYHQWGHVWLQDWLRQq� �0\0FEV
HYHQWWLPHq� �7LPH

6 )UE&RQGLWLRQ6FKHPD+DOI0FE,G$ODUPV2II

Á)HGHUDO5HVHUYH%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW

���0FEV,G$ODUPV������0\0FEV�?GLY�����µ��+DOI0FEV,G$ODUPV� �7UXH�
+DOI0FEV,G$ODUPVq� �)DOVH
PVJQDPHq� �0VJ)UE/RZHU$OHUW
PVJGHVWLQDWLRQq� �0\)UEV
PVJWLPHq� �7LPH
HYHQWQDPHq� �)UE,G$ODUP2II
HYHQWGHVWLQDWLRQq� �0\0FEV
HYHQWWLPHq� �7LPH
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Half of the Money Center Banks have two-thirds of their Branch Banks down:

Half of the Money Center Banks have two-thirds of their Branch Banks intrusion detec-
tions alarms on:

6 )UE&RQGLWLRQ6FKHPD+DOI0FE%EV'RZQ

Á)HGHUDO5HVHUYH%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW

���0FE%EV'RZQ�À����0\0FEV�?GLY����
PVJQDPHq� �0VJ)UE6KXWGRZQ
PVJGHVWLQDWLRQq� �0\)UEV
PVJWLPHq� �7LPH
HYHQWQDPHq� �6\VWHP6KXWGRZQ
HYHQWGHVWLQDWLRQq� �0\0FEV
HYHQWWLPHq� �7LPH

6 )UE&RQGLWLRQ6FKHPD+DOI0FE%EV,G$ODUPV

Á)HGHUDO5HVHUYH%DQN)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW

���0FE%EV,G$ODUPV�À����0\0FEV�?GLY����
PVJQDPHq� �0VJ)UE6KXWGRZQ
PVJGHVWLQDWLRQq� �0\)UEV
PVJWLPHq� �7LPH
HYHQWQDPHq� �6\VWHP6KXWGRZQ
HYHQWGHVWLQDWLRQq� �0\0FEV
HYHQWWLPHq� �7LPH
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C.3 Example Specification: Electric Power System

The next two subsections comprise the RAPTOR specification of fault tolerance for an
electric power application model.

C.3.1 System Specification

This subsection provides the class definitions of the System Specification for the electric
power model.

PowerCompany Class

// Class definition
persistent class PowerCompany
{
 public: // Constructors & destructor

PowerCompany(const int pcId, const PtString& name);
virtual ~PowerCompany();

 public: // Services
void Print() const;

 public: // Accessors
const int pcId() const;
const PtString& Name(void) const;
void SetName(const PtString& name);

 private: // Attributes
int m_pcId;
PtString m_name;
HardwarePlatform m_HardwarePlatform;
OperatingSystem m_OperatingSystem;

 public: // Pointers
ControlArea* m_controlArea;

 public:
bool NewObject;
PowerCompanyFSM m_fsm;

 private: // Index
useindex PcIdIndex;

};

// index definition
indexdef PcIdIndex : PowerCompany
{
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m_pcId;
};

// set definition
typedef lset<PowerCompany*> PowerCompanySet;

ControlArea Class

// Class definition
persistent class ControlArea
{
 public: // Constructors & destructor

ControlArea(const int caId, const PtString& name);
virtual ~ControlArea();

 public: // Services
void Print() const;

 public: // Accessors
const int caId() const;
const PtString& Name(void) const;
void SetName(const PtString& name);

 private: // Attributes
int m_caId;
PtString m_name;
HardwarePlatform m_HardwarePlatform;
OperatingSystem m_OperatingSystem;

 public: // Pointers
ControlRegion* m_controlRegion;

 public: // Set
lset<PowerCompany*> m_powerCompanies;

 public:
bool NewObject;
ControlAreaFSM m_fsm;

 private: // Index
useindex CaIdIndex;

};

// index definition
indexdef CaIdIndex : ControlArea
{

m_caId;
};
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// set definition
typedef lset<ControlArea*> ControlAreaSet;

ControlRegion Class

// Class definition
persistent class ControlRegion
{
 public: // Constructors & destructor

ControlRegion(const int crId, const PtString& name);
virtual ~ControlRegion();

 public: // Services
void Print() const;

 public: // Accessors
const int crId() const;
const PtString& Name(void) const;
void SetName(const PtString& name);

 private: // Attributes
int m_crId;
PtString m_name;
HardwarePlatform m_HardwarePlatform;
OperatingSystem m_OperatingSystem;

 public: // Set
lset<ControlArea*> m_controlAreas;

 public:
bool NewObject;
ControlRegionFSM m_fsm;

 private: // Index
useindex CrIdIndex;

};

// index definition
indexdef CrIdIndex : ControlRegion
{

m_crId;
};

// set definition
typedef lset<ControlRegion*> ControlRegionSet;
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C.3.2 Error Detection and Recovery Specifications

This subsection contains the fault-tolerance specifications for the power model, organized
according to file type.

Declarations File

Given Sets

Axiomatic Descriptions

Set Definitions

=
>*HQHUDWRU��6XEVWDWLRQ��3RZHU&RPSDQ\��&RQWURO$UHD��&RQWURO5HJLRQ��
,QWHUFRQQHFWLRQ@

$
7LPH����

7LPH�!��

Z
ERRO��� �7UXH�_�)DOVH

Z
6\VWHP(YHQWV��� ��1XOO(YHQW
�����������������������_�����/RFDO6LWH)DLOXUH
�����������������������_�����/RFDO6LWH5HSDLU
�����������������������_�����/RFDO'E)DLOXUH
�����������������������_�����/RFDO'E5HSDLU
�����������������������_�����/RFDO,G$ODUP2Q
�����������������������_�����/RFDO,G$ODUP2II
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Z
_�����3F6LWH)DLOXUH

�����������������������_�����3F6LWH5HSDLU
�����������������������_�����3F,G$ODUP2Q

_�����3F,G$ODUP2II
�����������������������_�����*HQ6LWH)DLOXUH
�����������������������_�����*HQ6LWH5HSDLU
�����������������������_�����6XE6LWH)DLOXUH
�����������������������_�����6XE6LWH5HSDLU
�����������������������_�����*HQ,G$ODUP2Q

_�����*HQ,G$ODUP2II
�����������������������_�����6XE,G$ODUP2Q
�����������������������_�����6XE,G$ODUP2II
�����������������������_�����&D6LWH)DLOXUH
�����������������������_�����&D6LWH5HSDLU
�����������������������_�����&D,G$ODUP2Q
�����������������������_�����&D,G$ODUP2II
�����������������������_�����3F7ZR7KLUGV*HQV'RZQ
�����������������������_�����3F/HVV7ZR7KLUGV*HQV'RZQ
�����������������������_�����3F$OO*HQV,G$ODUPV
�����������������������_�����3F1RW$OO*HQV,G$ODUPV
�����������������������_�����3F+DOI6XEV,G$ODUPV
�����������������������_�����3F/HVV+DOI6XEV,G$ODUPV
�����������������������_�����&D3F7ZR7KLUGV*HQV'RZQ
�����������������������_�����&D3F/HVV7ZR7KLUGV*HQV'RZQ
�����������������������_�����&U6LWH)DLOXUH
�����������������������_�����&U6LWH5HSDLU
�����������������������_�����&U,G$ODUP2Q
�����������������������_�����&U,G$ODUP2II
�����������������������_�����&D7ZR7KLUGV3F,G$ODUPV
�����������������������_�����&D/HVV7ZR7KLUGV3F,G$ODUPV
�����������������������_�����&D7ZR7KLUGV3FV:LWK*HQV,G$ODUPV
�����������������������_�����&D/HVV7ZR7KLUGV3FV:LWK*HQV,G$ODUPV
�����������������������_�����&D$OO3FV:LWK6XEV,G$ODUPV
�����������������������_�����&D1RW$OO3FV:LWK6XEV,G$ODUPV
�����������������������_�����1LSF&U&RRUGLQDWHG$WWDFN
�����������������������_�����1LSF1RW&U&RRUGLQDWHG$WWDFN
�����������������������_�����1LSF&D&RRUGLQDWHG$WWDFN
�����������������������_�����1LSF1RW&D&RRUGLQDWHG$WWDFN
�����������������������_�����1LSF3F&RRUGLQDWHG$WWDFN
�����������������������_�����1LSF1RW3F&RRUGLQDWHG$WWDFN
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Schema Structures

=
0HVVDJHV7R$SSOLFDWLRQ��� �1XOO0HVVDJH
���������������������������������������_����0VJ3F6ZLWFK7R%DFNXS3F
���������������������������������������_����0VJ3F6ZLWFK%DFN)URP%DFNXS3F
���������������������������������������_����0VJ3F/RFDO%DODQFLQJ
���������������������������������������_����0VJ3F1RUPDO%DODQFLQJ
���������������������������������������_����0VJ3F5DLVH$OHUW
���������������������������������������_����0VJ3F/RZHU$OHUW
���������������������������������������_����0VJ3F*HQ0RUH3RZHU
���������������������������������������_����0VJ3F*HQ/HVV3RZHU
���������������������������������������_����0VJ3F6ZLWFK7R%DFNXS&D
���������������������������������������_����0VJ3F6ZLWFK%DFN)URP%DFNXS&D
���������������������������������������_����0VJ&D/RFDO%DODQFLQJ
���������������������������������������_����0VJ&D1RUPDO%DODQFLQJ
���������������������������������������_����0VJ&D5DLVH$OHUW
���������������������������������������_����0VJ&D/RZHU$OHUW
���������������������������������������_����0VJ&D6ZLWFK7R%DFNXS3F
���������������������������������������_����0VJ&D6ZLWFK%DFN)URP%DFNXS3F
���������������������������������������_����0VJ&D6ZLWFK7R%DFNXS&U
���������������������������������������_����0VJ&D6ZLWFK%DFN)URP%DFNXS&U
���������������������������������������_����0VJ&U/RFDO%DODQFLQJ
���������������������������������������_����0VJ&U1RUPDO%DODQFLQJ
���������������������������������������_����0VJ&U5DLVH$OHUW
���������������������������������������_����0VJ&U/RZHU$OHUW
���������������������������������������_����0VJ&U6ZLWFK7R%DFNXS&D
���������������������������������������_����0VJ&U6ZLWFK%DFN)URP%DFNXS&D

6 2XWSXW(YHQW

HYHQWQDPH���6\VWHP(YHQWV
HYHQWGHVWLQDWLRQ���~��
HYHQWWLPH����

HYHQWQDPH���1XOO(YHQW
HYHQWGHVWLQDWLRQ����
HYHQWWLPH����
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6 2XWSXW0HVVDJH

PVJQDPH���0HVVDJHV7R$SSOLFDWLRQ
PVJGHVWLQDWLRQ���~��
PVJWLPH����

PVJGHVWLQDWLRQ����
PVJWLPH����
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State Description File

State Schemas

S 3RZHU&RPSDQ\)60

0\3F����
0\&RQWURO$UHD����
0\*HQV���~��
0\6XEV���~��
*HQV8S���~��
*HQV'RZQ���~��
6XEV8S���~��
6XEV'RZQ���~��
1RGH'RZQ���ERRO
'E'RZQ���ERRO
,G$ODUP���ERRO
*HQ,G$ODUPV���~��
6XE,G$ODUPV���~��
6XE,G$ODUP7LPHV���VHT��
$OHUW$OO)URP&D���ERRO
7ZR7KLUGV*HQV'RZQ���ERRO
$OO*HQV,G$ODUPV���ERRO
+DOI6XEV,G$ODUPV,Q��6HFRQGV���ERRO

*HQV8S���0\*HQV
*HQV'RZQ���0\*HQV
*HQV8S���*HQV'RZQ� �0\*HQV
6XEV8S���0\6XEV
6XEV'RZQ���0\6XEV
6XEV8S���6XEV'RZQ� �0\6XEV
*HQ,G$ODUPV���0\*HQV
6XE,G$ODUPV���0\6XEV
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S &RQWURO$UHD)60

0\&D����
0\&RQWURO5HJLRQ����
1LSF����
0\3FV���~��
3FV8S���~��
3FV'RZQ���~��
1RGH'RZQ���ERRO
'E'RZQ���ERRO
,G$ODUP���ERRO
3F,G$ODUPV���~��
$OHUW$OO)URP&U���ERRO
3FV:LWK*HQV'RZQ���~��
3FV:LWK*HQV,G$ODUPV���~��
3FV:LWK6XEV,G$ODUPV���~��
7ZR7KLUGV3F,G$ODUPV���ERRO
7ZR7KLUGV3FV:LWK*HQV,G$ODUPV���ERRO
$OO3FV:LWK6XEV,G$ODUPV���ERRO

3FV8S���0\3FV
3FV'RZQ���0\3FV
3FV8S���3FV'RZQ� �0\3FV
3F,G$ODUPV���0\3FV

S &RQWURO5HJLRQ)60

0\&U����
1LSF����
0\&DV���~��
&DV8S���~��
&DV'RZQ���~��
1RGH'RZQ���ERRO
'E'RZQ���ERRO
,G$ODUP���ERRO

&DV8S���0\&DV
&DV'RZQ���0\&DV
&DV8S���&DV'RZQ� �0\&DV



APPENDIX C: RAPTOR SYSTEM 201
System State Schema

6 1LSF)60

0\1LSF����
$OO&UV���~��
$OO&DV��~��
&UV,G$ODUPV���~��
&DV,G$ODUPV���~��
&DV3FV,G$ODUPV���~��
&DV*HQV,G$ODUPV���~��
&DV6XEV,G$ODUPV���~��
&U&RRUGLQDWHG$WWDFN���ERRO
&D&RRUGLQDWHG$WWDFN���ERRO
3F&RRUGLQDWHG$WWDFN���ERRO

&UV,G$ODUPV���$OO&UV
&DV,G$ODUPV���$OO&DV
&DV3FV,G$ODUPV���$OO&DV
&DV*HQV,G$ODUPV���$OO&DV
&DV6XEV,G$ODUPV���$OO&DV

S 3RZHU6\VWHP

$OO3RZHU&RPSDQLHV���}�3RZHU&RPSDQ\)60
$OO&RQWURO$UHDV���}�&RQWURO$UHD)60
$OO&RQWURO5HJLRQV���}�&RQWURO5HJLRQ)60
1LSF���1LSF)60

��$OO3RZHU&RPSDQLHV�!���$OO&RQWURO$UHDV
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Finite-State Machine File: PowerCompanyFSM

Initialization Schemas

S ,QLW3RZHU&RPSDQ\)60

3RZHU&RPSDQ\)60

0\3F� ��
0\&RQWURO$UHD� ��
0\*HQV� ��
0\6XEV� ��
*HQV8S� ��
*HQV'RZQ ��
6XEV8S� ��
6XEV'RZQ� ��
1RGH'RZQ� �)DOVH
'E'RZQ� �)DOVH
,G$ODUP� �)DOVH
*HQ,G$ODUPV� ��
6XE,G$ODUPV� ��
6XE,G$ODUP7LPHV� �«�¬
$OHUW$OO)URP&D� �)DOVH
7ZR7KLUGV*HQV'RZQ� �)DOVH
$OO*HQV,G$ODUPV� �)DOVH
+DOI6XEV,G$ODUPV,Q��6HFRQGV� �)DOVH

6 ,QLW3F0\3F

Á3RZHU&RPSDQ\)60
SFLG"����

0\3Fq� �SFLG"

6 ,QLW3F0\&RQWURO$UHD

Á3RZHU&RPSDQ\)60
FDLG"����

0\&RQWURO$UHDq� �FDLG"
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Event Schemas (Low-Level/Basic Events)

Local site failure and repair:

6 ,QLW3F1HZ*HQ

Á3RZHU&RPSDQ\)60
JHQLG"����

0\*HQVq� �0\*HQV���^�JHQLG"�`
*HQV8Sq� �*HQV8S���^�JHQLG"�`

6 ,QLW3F1HZ6XE

Á3RZHU&RPSDQ\)60
VXELG"����

0\6XEVq� �0\6XEV���^�VXELG"�`
6XEV8Sq� �6XEV8S���^�VXELG"�`

S 3F6FKHPD/RFDO6LWH)DLOXUH

Á3RZHU&RPSDQ\)60
Á2XWSXW(YHQW
Á2XWSXW0HVVDJH

1RGH'RZQq� �7UXH
HYHQWQDPHq� �3F6LWH)DLOXUH
HYHQWGHVWLQDWLRQq� �^�0\&RQWURO$UHD�`
HYHQWWLPHq� �7LPH
PVJQDPHq� �0VJ3F6ZLWFK7R%DFNXS3F
PVJGHVWLQDWLRQq� �0\*HQV���0\6XEV
PVJWLPHq� �7LPH
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Local database failure and repair:

S 3F6FKHPD/RFDO6LWH5HSDLU

Á3RZHU&RPSDQ\)60
Á2XWSXW(YHQW
Á2XWSXW0HVVDJH

1RGH'RZQq� �)DOVH
HYHQWQDPHq� �3F6LWH5HSDLU
HYHQWGHVWLQDWLRQq� �^�0\&RQWURO$UHD�`
HYHQWWLPHq� �7LPH
PVJQDPHq� �0VJ3F6ZLWFK%DFN)URP%DFNXS3F
PVJGHVWLQDWLRQq� �0\*HQV���0\6XEV
PVJWLPHq� �7LPH

S 3F6FKHPD/RFDO'E)DLOXUH

Á3RZHU&RPSDQ\)60
Á2XWSXW0HVVDJH

'E'RZQq�� �7UXH
PVJQDPHq� �0VJ3F/RFDO%DODQFLQJ
PVJGHVWLQDWLRQq� �^�0\3F�`
PVJWLPHq� �7LPH

S 3F6FKHPD/RFDO'E5HSDLU

Á3RZHU&RPSDQ\)60
Á2XWSXW0HVVDJH

'E'RZQq� �)DOVH
PVJQDPHq� �0VJ3F1RUPDO%DODQFLQJ
PVJGHVWLQDWLRQq� �^�0\3F�`
PVJWLPHq� �7LPH
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Local intrustion detection alarm going on and off:

Generator site failure and repair:

S 3F6FKHPD/RFDO,G$ODUP2Q

Á3RZHU&RPSDQ\)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW

,G$ODUPq� �7UXH
PVJQDPHq� �0VJ3F5DLVH$OHUW
PVJGHVWLQDWLRQq� �^�0\3F�`
PVJWLPHq� �7LPH
HYHQWQDPHq� �3F,G$ODUP2Q
HYHQWGHVWLQDWLRQq� �^�0\&RQWURO$UHD�`
HYHQWWLPHq� �7LPH

S 3F6FKHPD/RFDO,G$ODUP2II

Á3RZHU&RPSDQ\)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW
EELGDODUPRII"����

,G$ODUPq� �)DOVH
PVJQDPHq� �0VJ3F/RZHU$OHUW
PVJGHVWLQDWLRQq� �^�0\3F�`
PVJWLPHq� �7LPH
HYHQWQDPHq� �3F,G$ODUP2II
HYHQWGHVWLQDWLRQq� �^�0\&RQWURO$UHD�`
HYHQWWLPHq� �7LPH

6 3F6FKHPD*HQ6LWH)DLOXUH

Á3RZHU&RPSDQ\)60
Á2XWSXW0HVVDJH
JHQLG"����

*HQV'RZQq� �*HQV'RZQ���^�JHQLG"�`
*HQV8Sq� �*HQV8S�?�^�JHQLG"�`
PVJQDPHq� �0VJ3F*HQ0RUH3RZHU
PVJGHVWLQDWLRQq� �*HQV8Sq
PVJWLPHq� �7LPH
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Substation site failure and repair:

Generator intrusion detection alarm going on and off:

6 3F6FKHPD*HQ6LWH5HSDLU

Á3RZHU&RPSDQ\)60
Á2XWSXW0HVVDJH
JHQLG"����

PVJQDPHq� �0VJ3F*HQ/HVV3RZHU
PVJGHVWLQDWLRQq� �*HQV8S
PVJWLPHq� �7LPH
*HQV8Sq� �*HQV8S���^�JHQLG"�`
*HQV'RZQq� �*HQV'RZQ�?�^�JHQLG"�`

6 3F6FKHPD6XE6LWH)DLOXUH

Á3RZHU&RPSDQ\)60
VXELG"����

6XEV'RZQq� �6XEV'RZQ���^�VXELG"�`
6XEV8Sq� �6XEV8S�?�^�VXELG"�`

6 3F6FKHPD6XE6LWH5HSDLU

Á3RZHU&RPSDQ\)60
VXELG"����

6XEV8Sq� �6XEV8S���^�VXELG"�`
6XEV'RZQq� �6XEV'RZQ�?�^�VXELG"�`

6 3F6FKHPD*HQ,G$ODUP2Q

Á3RZHU&RPSDQ\)60
JHQLG"����

*HQ,G$ODUPVq� �*HQ,G$ODUPV���^�JHQLG"�`

6 3F6FKHPD*HQ,G$ODUP2II

Á3RZHU&RPSDQ\)60
JHQLG"����

*HQ,G$ODUPVq� �*HQ,G$ODUPV�?�^�JHQLG"�`
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Substation intrusion detection alarm going on and off:

Control Area site failure and repair:

6 3F6FKHPD6XE,G$ODUP2Q

Á3RZHU&RPSDQ\)60
VXELG"����

6XE,G$ODUPVq� �6XE,G$ODUPV�?�^�VXELG"�`
6XE,G$ODUP7LPHVq� �6XE,G$ODUP7LPHV�¦�«�7LPH�¬

6 3F6FKHPD6XE,G$ODUP2II

Á3RZHU&RPSDQ\)60
VXELG"����

6XE,G$ODUPVq� �6XE,G$ODUPV�?�^�VXELG"�`

S 3F6FKHPD&D6LWH)DLOXUH

Á3RZHU&RPSDQ\)60
Á2XWSXW0HVVDJH

PVJQDPHq� �0VJ3F6ZLWFK7R%DFNXS&D
PVJGHVWLQDWLRQq� �^�0\3F�`
PVJWLPHq� �7LPH

S 3F6FKHPD&D6LWH5HSDLU

Á3RZHU&RPSDQ\)60
Á2XWSXW0HVVDJH

PVJQDPHq� �0VJ3F6ZLWFK%DFN)URP%DFNXS&D
PVJGHVWLQDWLRQq� �^�0\3F�`
PVJWLPHq� �7LPH
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:

Control Area intrustion detection alarm going on and off:

Control area’s power company has two-thirds of its generators failed and recovered

S 3F6FKHPD&D,G$ODUP2Q

Á3RZHU&RPSDQ\)60
Á2XWSXW0HVVDJH

$OHUW$OO)URP&Dq� �7UXH
PVJQDPHq� �0VJ3F5DLVH$OHUW
PVJGHVWLQDWLRQq� �^�0\3F�`
PVJWLPHq� �7LPH

6 3F6FKHPD&D,G$ODUP2II

Á3RZHU&RPSDQ\)60
Á2XWSXW0HVVDJH

$OHUW$OO)URP&Dq� �)DOVH
PVJQDPHq� �0VJ3F/RZHU$OHUW
PVJGHVWLQDWLRQq� �^�0\3F�`
PVJWLPHq� �7LPH

6 3F6FKHPD&D3F7ZR7KLUGV*HQV'RZQ

Á3RZHU&RPSDQ\)60
Á2XWSXW0HVVDJH

PVJQDPHq� �0VJ3F*HQ0RUH3RZHU
PVJGHVWLQDWLRQq� �0\*HQV
PVJWLPHq� �7LPH

6 3F6FKHPD&D3F/HVV7ZR7KLUGV*HQV'RZQ

Á3RZHU&RPSDQ\)60
Á2XWSXW0HVVDJH

PVJQDPHq� �0VJ3F*HQ/HVV3RZHU
PVJGHVWLQDWLRQq� �0\*HQV
PVJWLPHq� �7LPH
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Event Schemas (High-level Events)

Two thirds of the generators for this power company have failed and recovered:

All the generators for this power company have had intrusion detection alarms going on 
and off:

6 3F&RQGLWLRQ6FKHPD7ZR7KLUGV*HQV'RZQ

Á3RZHU&RPSDQ\)60
Á2XWSXW(YHQW

���*HQV'RZQ� ����µ��7ZR7KLUGV*HQV'RZQ� �)DOVH�
7ZR7KLUGV*HQV'RZQq� �7UXH
HYHQWQDPHq� �3F7ZR7KLUGV*HQV'RZQ
HYHQWGHVWLQDWLRQq� �^�0\&RQWURO$UHD�`
HYHQWWLPHq� �7LPH

6 3F&RQGLWLRQ6FKHPD/HVV7ZR7KLUGV*HQV'RZQ

Á3RZHU&RPSDQ\)60
Á2XWSXW(YHQW

���*HQV'RZQ������µ��7ZR7KLUGV*HQV'RZQ� �7UXH�
7ZR7KLUGV*HQV'RZQq� �)DOVH
HYHQWQDPHq� �3F/HVV7ZR7KLUGV*HQV'RZQ
HYHQWGHVWLQDWLRQq� �^�0\&RQWURO$UHD�`
HYHQWWLPHq� �7LPH

6 3F&RQGLWLRQ6FKHPD$OO*HQV,G$ODUPV

Á3RZHU&RPSDQ\)60
Á2XWSXW(YHQW

���*HQ,G$ODUPV� ���0\*HQV�
$OO*HQV,G$ODUPVq� �7UXH
HYHQWQDPHq� �3F$OO*HQV,G$ODUPV
HYHQWGHVWLQDWLRQq� �^�0\&RQWURO$UHD�`
HYHQWWLPHq� �7LPH
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Half the substations for this power company have had intrusion detection alarms go on 
and off in the past 60 seconds:

6 3F&RQGLWLRQ6FKHPD1RW$OO*HQV,G$ODUPV

Á3RZHU&RPSDQ\)60
Á2XWSXW(YHQW

���*HQ,G$ODUPV�����0\*HQV��µ��$OO*HQV,G$ODUPV� �7UXH�
$OO*HQV,G$ODUPVq� �)DOVH
HYHQWQDPHq� �3F1RW$OO*HQV,G$ODUPV
HYHQWGHVWLQDWLRQq� �^�0\&RQWURO$UHD�`
HYHQWWLPHq� �7LPH

6 3F&RQGLWLRQ6FKHPD+DOI6XEV,G$ODUPV,Q��6HFRQGV

Á3RZHU&RPSDQ\)60
Á2XWSXW(YHQW

�6XE,G$ODUP7LPHV�����6XE,G$ODUP7LPHV�������À��7LPH��������µ
��+DOI6XEV,G$ODUPV,Q��6HFRQGV� �)DOVH��µ������6XE,G$ODUP7LPHV��À���
+DOI6XEV,G$ODUPV,Q��6HFRQGVq� �7UXH
HYHQWQDPHq� �3F+DOI6XEV,G$ODUPV
HYHQWGHVWLQDWLRQq� �^�0\&RQWURO$UHD�`
HYHQWWLPHq� �7LPH

6 3F&RQGLWLRQ6FKHPD/HVV+DOI6XEV,G$ODUPV,Q��6HFRQGV

Á3RZHU&RPSDQ\)60
Á2XWSXW(YHQW

�6XE,G$ODUP7LPHV�����6XE,G$ODUP7LPHV����������7LPH��������µ
��+DOI6XEV,G$ODUPV,Q��6HFRQGV� �7UXH�
+DOI6XEV,G$ODUPV,Q��6HFRQGVq� �)DOVH
HYHQWQDPHq� �3F/HVV+DOI6XEV,G$ODUPV
HYHQWGHVWLQDWLRQq� �^�0\&RQWURO$UHD�`
HYHQWWLPHq� �7LPH
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Finite-State Machine File: ControlAreaFSM

Initialization Schemas

S ,QLW&RQWURO$UHD)60

&RQWURO$UHD)60

0\&D� ��
0\&RQWURO5HJLRQ� ��
1LSF� ��
0\3FV� ��
3FV8S� ��
3FV'RZQ� ��
1RGH'RZQ� �)DOVH
'E'RZQ� �)DOVH
,G$ODUP� �)DOVH
3F,G$ODUPV� ��
$OHUW$OO)URP&U� �)DOVH
3FV:LWK*HQV'RZQ� ��
3FV:LWK*HQV,G$ODUPV� ��
3FV:LWK6XEV,G$ODUPV� ��
7ZR7KLUGV3F,G$ODUPV� �)DOVH
7ZR7KLUGV3FV:LWK*HQV,G$ODUPV� �)DOVH
$OO3FV:LWK6XEV,G$ODUPV� �)DOVH

6 ,QLW&D0\&D

Á&RQWURO$UHD)60
FDLG"����

0\&Dq� �FDLG"

6 ,QLW&D0\&U

Á&RQWURO$UHD)60
FULG"����

0\&RQWURO5HJLRQq� �FULG"
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Event Schemas (Low-Level/Basic Events)

Local site failure and repair:

6 ,QLW&D1LSF

Á&RQWURO$UHD)60
QLSFLG"����

1LSFq� �QLSFLG"

6 ,QLW&D1HZ3F

Á&RQWURO$UHD)60
SFLG"����

0\3FVq� �0\3FV���^�SFLG"�`
3FV8Sq� �3FV8S���^�SFLG"�`

S &D6FKHPD/RFDO6LWH)DLOXUH

Á&RQWURO$UHD)60
Á2XWSXW(YHQW

1RGH'RZQq� �7UXH
HYHQWQDPHq� �&D6LWH)DLOXUH
HYHQWGHVWLQDWLRQq� �0\3FV���^�0\&RQWURO5HJLRQ�`
HYHQWWLPHq� �7LPH

S &D6FKHPD/RFDO6LWH5HSDLU

Á&RQWURO$UHD)60
Á2XWSXW(YHQW

1RGH'RZQq� �)DOVH
HYHQWQDPHq� �&D6LWH5HSDLU
HYHQWGHVWLQDWLRQq� �0\3FV���^�0\&RQWURO5HJLRQ�`
HYHQWWLPHq� �7LPH
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Local database failure and repair:

Local intrusion detection alarm going on and off:

S &D6FKHPD/RFDO'E)DLOXUH

Á&RQWURO$UHD)60
Á2XWSXW0HVVDJH

'E'RZQq� �7UXH
PVJQDPHq� �0VJ&D/RFDO%DODQFLQJ
PVJGHVWLQDWLRQq� �^�0\&D�`
PVJWLPHq� �7LPH

S &D6FKHPD/RFDO'E5HSDLU

Á&RQWURO$UHD)60
Á2XWSXW0HVVDJH

'E'RZQq� �)DOVH
PVJQDPHq� �0VJ&D1RUPDO%DODQFLQJ
PVJGHVWLQDWLRQq� �^�0\&D�`
PVJWLPHq� �7LPH

S &D6FKHPD/RFDO,G$ODUP2Q

Á&RQWURO$UHD)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW

,G$ODUPq� �7UXH
PVJQDPHq� �0VJ&D5DLVH$OHUW
PVJGHVWLQDWLRQq� �^�0\&D�`
PVJWLPHq� �7LPH
HYHQWQDPHq� �&D,G$ODUP2Q
HYHQWGHVWLQDWLRQq� �0\3FV���^�1LSF�`
HYHQWWLPHq� �7LPH
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Power company site failure and repair:

S &D6FKHPD/RFDO,G$ODUP2II

Á&RQWURO$UHD)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW

,G$ODUPq� �)DOVH
PVJQDPHq� �0VJ&D/RZHU$OHUW
PVJGHVWLQDWLRQq� �^�0\&D�`
PVJWLPHq� �7LPH
HYHQWQDPHq� �&D,G$ODUP2II
HYHQWGHVWLQDWLRQq� �0\3FV���^�1LSF�`
HYHQWWLPHq� �7LPH

6 &D6FKHPD3F6LWH)DLOXUH

Á&RQWURO$UHD)60
Á2XWSXW0HVVDJH
SFLG"����

3FV'RZQq� �3FV'RZQ���^�SFLG"�`
3FV8Sq� �3FV8S�?�^�SFLG"�`
PVJQDPHq� �0VJ&D6ZLWFK7R%DFNXS3F
PVJGHVWLQDWLRQq� �^�0\&D�`
PVJWLPHq� �7LPH

6 &D6FKHPD3F6LWH5HSDLU

Á&RQWURO$UHD)60
Á2XWSXW0HVVDJH
SFLG"����

3FV8Sq� �3FV8S���^�SFLG"�`
3FV'RZQq� �3FV'RZQ�?�^�SFLG"�`
PVJQDPHq� �0VJ&D6ZLWFK%DFN)URP%DFNXS3F
PVJGHVWLQDWLRQq� �^�0\&D�`
PVJWLPHq� �7LPH
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Power company intrusion detection alarm going on and off:

Power company with two-thirds of its generators down and recovered:

6 &D6FKHPD3F,G$ODUP2Q

Á&RQWURO$UHD)60
SFLG"����

3F,G$ODUPVq� �3F,G$ODUPV���^�SFLG"�`

6 &D6FKHPD3F,G$ODUP2II

Á&RQWURO$UHD)60
SFLG"����

3F,G$ODUPVq� �3F,G$ODUPV�?�^�SFLG"�`

6 &D6FKHPD3F7ZR7KLUGV*HQV'RZQ

Á&RQWURO$UHD)60
Á2XWSXW(YHQW
SFLG"����

3FV:LWK*HQV'RZQq� �3FV:LWK*HQV'RZQ���^�SFLG"�`
HYHQWQDPHq� �&D3F7ZR7KLUGV*HQV'RZQ
HYHQWGHVWLQDWLRQq� �0\3FV�?�3FV:LWK*HQV'RZQq
HYHQWWLPHq� �7LPH

6 &D6FKHPD3F/HVV7ZR7KLUGV*HQV'RZQ

Á&RQWURO$UHD)60
Á2XWSXW(YHQW
SFLG"����

HYHQWQDPHq� �&D3F/HVV7ZR7KLUGV*HQV'RZQ
HYHQWGHVWLQDWLRQq� �0\3FV�?�3FV:LWK*HQV'RZQ
HYHQWWLPHq� �7LPH
3FV:LWK*HQV'RZQq� �3FV:LWK*HQV'RZQ�?�^�SFLG"�`
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f:
Power company with all its generators’ intrusion detection alarms going on and off:

Power company with half its substations’ intrusion detection alarms going on and of

Control region site failure and repair:

6 &D6FKHPD3F$OO*HQV,G$ODUPV

Á&RQWURO$UHD)60
SFLG"����

3FV:LWK*HQV,G$ODUPVq� �3FV:LWK*HQV,G$ODUPV���^�SFLG"�`

6 &D6FKHPD3F1RW$OO*HQV,G$ODUPV

Á&RQWURO$UHD)60
SFLG"����

3FV:LWK*HQV,G$ODUPVq� �3FV:LWK*HQV,G$ODUPV�?�^�SFLG"�`

6 &D6FKHPD3F+DOI6XEV,G$ODUPV

Á&RQWURO$UHD)60
SFLG"����

3FV:LWK6XEV,G$ODUPVq� �3FV:LWK6XEV,G$ODUPV���^�SFLG"�`

6 &D6FKHPD3F/HVV+DOI6XEV,G$ODUPV

Á&RQWURO$UHD)60
SFLG"����

3FV:LWK6XEV,G$ODUPVq� �3FV:LWK6XEV,G$ODUPV�?�^�SFLG"�`

S &D6FKHPD&U6LWH)DLOXUH

Á&RQWURO$UHD)60
Á2XWSXW0HVVDJH

PVJQDPHq� �0VJ&D6ZLWFK7R%DFNXS&U
PVJGHVWLQDWLRQq� �^�0\&D�`
PVJWLPHq� �7LPH
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Control region intrusion detection alarm going on and off:

Event Schemas (High-level Events)

Two-thirds of the power companies have intrusion detection alarms going on and off:

S &D6FKHPD&U6LWH5HSDLU

Á&RQWURO$UHD)60
Á2XWSXW0HVVDJH

PVJQDPHq� �0VJ&D6ZLWFK%DFN)URP%DFNXS&U
PVJGHVWLQDWLRQq� �^�0\&D�`
PVJWLPHq� �7LPH

S &D6FKHPD&U,G$ODUP2Q

Á&RQWURO$UHD)60
Á2XWSXW0HVVDJH

$OHUW$OO)URP&Uq� �7UXH
PVJQDPHq� �0VJ&D5DLVH$OHUW
PVJGHVWLQDWLRQq� �^�0\&D�`
PVJWLPHq� �7LPH

S &D6FKHPD&U,G$ODUP2II

Á&RQWURO$UHD)60
Á2XWSXW0HVVDJH

$OHUW$OO)URP&Uq� �)DOVH
PVJQDPHq� �0VJ&D/RZHU$OHUW
PVJGHVWLQDWLRQq� �^�0\&D�`
PVJWLPHq� �7LPH

6 &D&RQGLWLRQ6FKHPD7ZR7KLUGV3F,G$ODUPV

Á&RQWURO$UHD)60
Á2XWSXW(YHQW

���3F,G$ODUPV� ����µ��7ZR7KLUGV3F,G$ODUPV� �)DOVH�
7ZR7KLUGV3F,G$ODUPVq� �7UXH
HYHQWQDPHq� �&D7ZR7KLUGV3F,G$ODUPV
HYHQWGHVWLQDWLRQq� �^�1LSF�`
HYHQWWLPHq� �7LPH
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 on 
Two-thirds power companies have their generators’ intrusion detection alarms going
and off:

6 &D&RQGLWLRQ6FKHPD/HVV7ZR7KLUGV3F,G$ODUPV

Á&RQWURO$UHD)60
Á2XWSXW(YHQW

���3F,G$ODUPV������µ��7ZR7KLUGV3F,G$ODUPV� �7UXH�
7ZR7KLUGV3F,G$ODUPVq� �)DOVH
HYHQWQDPHq� �&D/HVV7ZR7KLUGV3F,G$ODUPV
HYHQWGHVWLQDWLRQq� �^�1LSF�`
HYHQWWLPHq� �7LPH

6 &D&RQGLWLRQ6FKHPD7ZR7KLUGV3FV:LWK*HQV,G$ODUPV

Á&RQWURO$UHD)60
Á2XWSXW(YHQW

���3FV:LWK*HQV,G$ODUPV� ����µ��7ZR7KLUGV3FV:LWK*HQV,G$ODUPV� �)DOVH�
7ZR7KLUGV3FV:LWK*HQV,G$ODUPV� �7UXH
HYHQWQDPHq� �&D7ZR7KLUGV3FV:LWK*HQV,G$ODUPV
HYHQWGHVWLQDWLRQq� �^�1LSF�`
HYHQWWLPHq� �7LPH

6 &D&RQGLWLRQ6FKHPD/HVV7ZR7KLUGV3FV:LWK*HQV,G$ODUPV

Á&RQWURO$UHD)60
Á2XWSXW(YHQW

���3FV:LWK*HQV,G$ODUPV������µ��7ZR7KLUGV3FV:LWK*HQV,G$ODUPV� 7UXH�
7ZR7KLUGV3FV:LWK*HQV,G$ODUPV� �)DOVH
HYHQWQDPHq� �&D/HVV7ZR7KLUGV3FV:LWK*HQV,G$ODUPV
HYHQWGHVWLQDWLRQq� �^�1LSF�`
HYHQWWLPHq� �7LPH
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 off:
All power companies have their substations’ intrusion detection alarms going on and

Finite-State Machine File: ControlRegionFSM

Initialization Schemas

6 &D&RQGLWLRQ6FKHPD$OO3FV:LWK6XEV,G$ODUPV

Á&RQWURO$UHD)60
Á2XWSXW(YHQW

���3FV:LWK6XEV,G$ODUPV� ���0\3FV�
$OO3FV:LWK6XEV,G$ODUPV� �7UXH
HYHQWQDPHq� �&D$OO3FV:LWK6XEV,G$ODUPV
HYHQWGHVWLQDWLRQq� �^�1LSF�`
HYHQWWLPHq� �7LPH

6 &D&RQGLWLRQ6FKHPD1RW$OO3FV:LWK6XEV,G$ODUPV

Á&RQWURO$UHD)60
Á2XWSXW(YHQW

���3FV:LWK6XEV,G$ODUPV�����0\3FV��µ��$OO3FV:LWK6XEV,G$ODUPV� 7UXH�
$OO3FV:LWK6XEV,G$ODUPV� �)DOVH
HYHQWQDPHq� �&D1RW$OO3FV:LWK6XEV,G$ODUPV
HYHQWGHVWLQDWLRQq� �^�1LSF�`
HYHQWWLPHq� �7LPH

S ,QLW&RQWURO5HJLRQ)60

&RQWURO5HJLRQ)60

0\&U� ��
1LSF� ��
0\&DV� ��
&DV8S� ��
&DV'RZQ� ��
1RGH'RZQ� �)DOVH
'E'RZQ� �)DOVH
,G$ODUP� �)DOVH
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Event Schemas (Low-Level/Basic Events)

Local site failure and repair:

6 ,QLW&U0\&U

Á&RQWURO5HJLRQ)60
FULG"����

0\&Uq� �FULG"

6 ,QLW&U1LSF

Á&RQWURO5HJLRQ)60
QLSFLG"����

1LSFq� �QLSFLG"

6 ,QLW&U1HZ&D

Á&RQWURO5HJLRQ)60
FDLG"����

0\&DVq� �0\&DV���^�FDLG"�`
&DV8Sq� �&DV8S���^�FDLG"�`

S &U6FKHPD/RFDO6LWH)DLOXUH

Á&RQWURO5HJLRQ)60
Á2XWSXW(YHQW

1RGH'RZQq� �7UXH
HYHQWQDPHq� �&U6LWH)DLOXUH
HYHQWGHVWLQDWLRQq� �0\&DV
HYHQWWLPHq� �7LPH
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Local database failure and repair:

S &U6FKHPD/RFDO6LWH5HSDLU

Á&RQWURO5HJLRQ)60
Á2XWSXW(YHQW

1RGH'RZQq� �)DOVH
HYHQWQDPHq� �&U6LWH5HSDLU
HYHQWGHVWLQDWLRQq� �0\&DV
HYHQWWLPHq� �7LPH

S &U6FKHPD/RFDO'E)DLOXUH

Á&RQWURO5HJLRQ)60
Á2XWSXW0HVVDJH

'E'RZQq� �7UXH
PVJQDPHq� �0VJ&U/RFDO%DODQFLQJ
PVJGHVWLQDWLRQq� �^�0\&U�`
PVJWLPHq� �7LPH

S &U6FKHPD/RFDO'E5HSDLU

Á&RQWURO5HJLRQ)60
Á2XWSXW0HVVDJH

'E'RZQq� �)DOVH
PVJQDPHq� �0VJ&U1RUPDO%DODQFLQJ
PVJGHVWLQDWLRQq� �^�0\&U�`
PVJWLPHq� �7LPH
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Local intrusion detection alarm going on and off:

Control area site failure and repair:

S &U6FKHPD/RFDO,G$ODUP2Q

Á&RQWURO5HJLRQ)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW

,G$ODUPq� �7UXH
PVJQDPHq� �0VJ&U5DLVH$OHUW
PVJGHVWLQDWLRQq� �^�0\&U�`
PVJWLPHq� �7LPH
HYHQWQDPHq� �&U,G$ODUP2Q
HYHQWGHVWLQDWLRQq� �0\&DV���^�1LSF�`
HYHQWWLPHq� �7LPH

S &U6FKHPD/RFDO,G$ODUP2II

Á&RQWURO5HJLRQ)60
Á2XWSXW0HVVDJH
Á2XWSXW(YHQW

,G$ODUPq� �)DOVH
PVJQDPHq� �0VJ&U/RZHU$OHUW
PVJGHVWLQDWLRQq� �^�0\&U�`
PVJWLPHq� �7LPH
HYHQWQDPHq� �&U,G$ODUP2II
HYHQWGHVWLQDWLRQq� �0\&DV���^�1LSF�`
HYHQWWLPHq� �7LPH

6 &U6FKHPD&D6LWH)DLOXUH

Á&RQWURO5HJLRQ)60
Á2XWSXW0HVVDJH
FDLG"����

&DV'RZQq� �&DV'RZQ���^�FDLG"�`
&DV8Sq� �&DV8S�?�^�FDLG"�`
PVJQDPHq� �0VJ&U6ZLWFK7R%DFNXS&D
PVJGHVWLQDWLRQq� �^�0\&U�`
PVJWLPHq� �7LPH
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Finite-State Machine File: NipcFSM

Initialization Schemas

6 &U6FKHPD&D6LWH5HSDLU

Á&RQWURO5HJLRQ)60
Á2XWSXW0HVVDJH
FDLG"����

&DV8Sq� �&DV8S���^�FDLG"�`
&DV'RZQq� �&DV'RZQ�?�^�FDLG"�`
PVJQDPHq� �0VJ&U6ZLWFK%DFN)URP%DFNXS&D
PVJGHVWLQDWLRQq� �^�0\&U�`
PVJWLPHq� �7LPH

S ,QLW1LSF)60

1LSF)60

0\1LSF� ��
$OO&UV� ��
$OO&DV� ��
&UV,G$ODUPV� ��
&DV,G$ODUPV� ��
&DV3FV,G$ODUPV� ��
&DV*HQV,G$ODUPV� ��
&DV6XEV,G$ODUPV� ��
&U&RRUGLQDWHG$WWDFN� �)DOVH
&D&RRUGLQDWHG$WWDFN� �)DOVH
3F&RRUGLQDWHG$WWDFN� �)DOVH

6 ,QLW1LSF0\1LSF

Á1LSF)60
QLSFLG"����

0\1LSFq� �QLSFLG"
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Event Schemas (Low-Level/Basic Events)

Control region intrusion detection alarm going on and off:

Control area intrusion detection alarms going on and off:

6 ,QLW1LSF1HZ&D

Á1LSF)60
FDLG"����

$OO&DVq� �$OO&DV���^�FDLG"�`

6 ,QLW1LSF1HZ&U

Á1LSF)60
FULG"����

$OO&UVq� �$OO&UV���^�FULG"�`

6 1LSF6FKHPD&U,G$ODUP2Q

Á1LSF)60
FULG"����

&UV,G$ODUPVq� �&UV,G$ODUPV���^�FULG"�`

6 1LSF6FKHPD&U,G$ODUP2II

Á1LSF)60
FULG"����

&UV,G$ODUPVq� �&UV,G$ODUPV�?�^�FULG"�`

6 1LSF6FKHPD&D,G$ODUP2Q

Á1LSF)60
FDLG"����

&DV,G$ODUPVq� �&DV,G$ODUPV���^�FDLG"�`



APPENDIX C: RAPTOR SYSTEM 225

ff:

ff:
Control area power companies’ intrusion detection alarms going on and off:

Control area power companies’ generator intrusion detection alarms going on and o

Control area power companies’ substation intrusion detection alarms going on and o

6 1LSF6FKHPD&D,G$ODUP2II

Á1LSF)60
FDLG"����

&DV,G$ODUPVq� �&DV,G$ODUPV�?�^�FDLG"�`

6 1LSF6FKHPD&D7ZR7KLUGV3F,G$ODUPV

Á1LSF)60
FDLG"����

&DV3FV,G$ODUPVq� �&DV3FV,G$ODUPV���^�FDLG"�`

6 1LSF6FKHPD&D/HVV7ZR7KLUGV3F,G$ODUPV

Á1LSF)60
FDLG"����

&DV3FV,G$ODUPVq� �&DV3FV,G$ODUPV�?�^�FDLG"�`

6 1LSF6FKHPD&D7ZR7KLUGV3FV:LWK*HQV,G$ODUPV

Á1LSF)60
FDLG"����

&DV*HQV,G$ODUPVq� �&DV*HQV,G$ODUPV���^�FDLG"�`

6 1LSF6FKHPD&D/HVV7ZR7KLUGV3FV:LWK*HQV,G$ODUPV

Á1LSF)60
FDLG"����

&DV*HQV,G$ODUPVq� �&DV*HQV,G$ODUPV�?�^�FDLG"�`

6 1LSF6FKHPD&D$OO3FV:LWK6XEV,G$ODUPV

Á1LSF)60
FDLG"����

&DV6XEV,G$ODUPVq� �&DV6XEV,G$ODUPV���^�FDLG"�`
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Event Schemas (High-level Events)

Control region coordinated security attack on and off:

Control area coordinated security attack on and off:

6 1LSF6FKHPD&D1RW$OO3FV:LWK6XEV,G$ODUPV

Á1LSF)60
FDLG"����

&DV6XEV,G$ODUPVq� �&DV6XEV,G$ODUPV�?�^�FDLG"�`

6 1LSF&RQGLWLRQ6FKHPD&U&RRUGLQDWHG$WWDFN

Á1LSF)60
Á2XWSXW(YHQW

���&UV,G$ODUPV�À����µ��&U&RRUGLQDWHG$WWDFN� �)DOVH�
&U&RRUGLQDWHG$WWDFNq� �7UXH
HYHQWQDPH� �1LSF&U&RRUGLQDWHG$WWDFN
HYHQWGHVWLQDWLRQ� �$OO&UV
HYHQWWLPH� �7LPH

6 1LSF&RQGLWLRQ6FKHPD1RW&U&RRUGLQDWHG$WWDFN

Á1LSF)60
Á2XWSXW(YHQW

���&UV,G$ODUPV������µ��&U&RRUGLQDWHG$WWDFN� �7UXH�
&U&RRUGLQDWHG$WWDFNq� �)DOVH
HYHQWQDPH� �1LSF1RW&U&RRUGLQDWHG$WWDFN
HYHQWGHVWLQDWLRQ� �$OO&UV
HYHQWWLPH� �7LPH

6 1LSF&RQGLWLRQ6FKHPD&D&RRUGLQDWHG$WWDFN

Á1LSF)60
Á2XWSXW(YHQW

���&DV,G$ODUPV�À�����µ��&D&RRUGLQDWHG$WWDFN� �)DOVH�
&D&RRUGLQDWHG$WWDFNq� �7UXH
HYHQWQDPH� �1LSF&D&RRUGLQDWHG$WWDFN
HYHQWGHVWLQDWLRQ� �$OO&DV
HYHQWWLPH� �7LPH


	Fault Tolerance in
	Critical Information Systems
	Critical Information Systems
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Critical Information Systems
	2.1 Critical Infrastructure Applications
	2.2 Critical Information Systems
	2.2.1 General Characteristics
	2.2.2 Future Characteristics

	2.3 Example Application Domains
	2.3.1 Financial Payments System Description
	2.3.2 Electric Power System Description


	Survivability
	3.1 Definition of Survivability
	3.2 Motivating Example
	3.2.1 System Description
	3.2.2 Survivability Requirements


	Solution Framework: Fault Tolerance
	4.1 Solution Framework
	4.2 Faults and Fault Tolerance
	4.2.1 Error Detection
	4.2.2 Error Recovery

	4.3 Solution Strategy

	Overview of the Solution Approach
	5.1 Solution Requirements
	5.2 Solution Principles
	5.2.1 The Use of Formal Specification
	5.2.2 Synthesis of Implementation
	5.2.3 An Implementation Architecture Enabling Fault-Tolerance Activities
	Node-Level Architecture
	System-Level Architecture


	5.3 Solution Overview

	Problem Analysis
	6.1 Example System: 3-Node Banking Application and STEP
	6.1.1 Example Application
	6.1.2 Preliminary Specification Approach: STEP
	6.1.3 Example STEP Specification
	6.1.4 Discussion

	6.2 Example System: PAR System
	6.2.1 PAR Solution Approach
	PAR Specification Notation
	PAR Translator
	Implementation Architecture

	6.2.2 Example Application
	6.2.3 Discussion

	6.3 Concepts for the RAPTOR System
	6.3.1 Specification and Abstraction
	6.3.2 Implementation Architecture
	6.3.3 Summary


	RAPTOR Specification
	7.1 RAPTOR Specification Components and Notations
	7.1.1 System Specification
	7.1.2 Error Detection Specification
	7.1.3 Error Recovery Specification

	7.2 RAPTOR Specification Structure
	7.2.1 System Specification
	7.2.2 Error Detection and Error Recovery Specifications
	Declarations File
	State Description File
	Finite-State Machine Files


	7.3 Summary

	RAPTOR Synthesis
	8.1 Application and Implementation Architecture Requirements
	8.2 Synthesis of Implementation
	8.2.1 System Specification Synthesis
	8.2.2 Error Detection and Recovery Specifications Synthesis
	Fault Tolerance Translator
	Generated Code Components


	8.3 Summary

	RAPTOR Implementation Architecture
	9.1 RAPTOR Node Architecture
	9.1.1 Basic Principles
	9.1.2 RAPTOR Node Implementation
	9.1.3 Enhanced Requirements

	9.2 RAPTOR System Architecture
	9.2.1 Basic Principles
	9.2.2 RAPTOR System Implementation
	RAPTOR Control System
	Coordinated Recovery Layer

	9.2.3 Enhanced Requirements

	9.3 Summary

	Evaluation Approach
	10.1 Evaluation Approach
	10.2 Key Research Questions
	Scale
	Heterogeneity
	Complexity
	Performance

	10.3 RAPTOR Simulator

	Experiments and Analysis
	11.1 Financial Payments System Experiments
	11.1.1 Scenario Description
	11.1.2 Scenario Specification
	System Specification
	Error Detection and Recovery Specifications

	11.1.3 Scenario Implementation
	11.1.4 Experimentation
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Other Experiments


	11.2 Electric Power System Experiments
	11.2.1 Scenario Description
	11.2.2 Scenario Specification
	System Specification
	Error Detection and Recovery Specifications

	11.2.3 Scenario Implementation
	11.2.4 Experimentation
	Experiment 5
	Experiment 6
	Experiment 7
	Experiment 8
	Other Experiments


	11.3 Analysis
	11.3.1 Analysis of Detection Time
	11.3.2 Analysis of Recovery Time


	Evaluation
	12.1 Scale
	Specification
	Synthesis
	Implementation Architecture
	Summary

	12.2 Heterogeneity
	Specification
	Synthesis
	Implementation Architecture
	Summary

	12.3 Complexity
	Specification
	Synthesis
	Implementation Architecture
	Summary

	12.4 Performance
	Specification
	Synthesis
	Implementation Architecture
	Summary


	Related Work
	13.1 Fault Tolerance in Distributed Systems
	13.2 Fault-Tolerant Systems
	13.2.1 Cristian/Advanced Automation System
	13.2.2 Birman/ISIS, Horus, and Ensemble
	13.2.3 Other System-level Approaches
	13.2.4 Discussion

	13.3 Fault Tolerance in Wide-area Network Systems
	Discussion

	13.4 Reconfigurable Distributed Systems
	13.4.1 Reconfiguration Supporting System Evolution
	13.4.2 Reconfiguration Supporting Fault Tolerance
	13.4.3 Discussion

	13.5 Formal Specification
	13.5.1 System Specification
	13.5.2 Finite-State Machine Specification


	Conclusions
	14.1 Research Contributions
	14.2 Future Work
	14.3 Summary

	Bibliography
	Appendix A: 3-Node Example/STEP
	A.1 System Architecture Specification
	A.2 Service-Platform Mapping Specification
	A.3 Error Recovery Specification
	System States
	Finite-State Machine Transitions


	Appendix B: PAR System
	B.1 Grammar for the PAR Translator
	B.2 Example Specification: 103-Node Banking System

	Appendix C: RAPTOR System
	C.1 Grammar for the RAPTOR Fault Tolerance Translator
	C.2 Example Specification: Financial Payments System
	C.3 Example Specification: Electric Power System



