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Abstract

Time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of the nitrogen molecule is used for the
measurement of temperature in atmospheric-pressure, near-adiabatic, hydrogen-air diffusion flames. The initial frequency-spread
dephasing rate of the Raman coherence induced by the ultrafast (�85 fs) Stokes and pump beams is used as a measure of gas-phase tem-
perature. This initial frequency-spread dephasing rate of the Raman coherence is completely independent of collisions and depends only
on the frequency spread of the Raman transitions at different temperatures. A simple theoretical model based on the assumption of
impulsive excitation of Raman coherence is used to extract temperatures from time-resolved fs-CARS experimental signals. The
extracted temperatures from fs-CARS signals are in excellent agreement with the theoretical temperatures calculated from an adiabatic
equilibrium calculation. The estimated absolute accuracy and the precision of the measurement technique are found to be ±40 K and
±50 K, respectively, over the temperature range 1500–2500 K.
� 2007 Elsevier B.V. All rights reserved.

PACS: 78.47.p; 39.30.+w; 42.65.Dr; 82.53.Kp; 33.20.Fb
1. Introduction

Coherent anti-Stokes Raman scattering (CARS) spec-
troscopy of nitrogen and hydrogen using nanosecond (ns)
lasers is widely employed for gas-phase temperature and
species-concentration measurements [1,2]. The nonlinear
interaction of the laser beams in ns-CARS generates a
coherent nonresonant four-wave-mixing (FWM) signal
along with the resonant CARS signal. Interpretation of
the signal is complicated by the interference between the
resonant and nonresonant signals. The nonresonant signal
sometimes limits the accuracy and degrades the sensitivity
of the technique [3]. Moreover, these measurements are
0030-4018/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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generally performed at low repetition rates (generally 10–
20 Hz) because of the unavailability of high-repetition-rate,
high-power ns lasers. This lack of temporal resolution hin-
ders the study of unsteady phenomena in reacting flows.

The use of femtosecond (fs) laser systems for CARS
spectroscopy has three significant potential advantages:
(1) reduction or elimination of the nonresonant contribu-
tion to the CARS signal when the probe beam is delayed
with respect to the pump beam, (2) reduction or elimina-
tion of the effects of collisions on the CARS signal, thereby
reducing modeling uncertainty and increasing signal-to-
noise ratio, and (3) the capability of generating signals at
rates of 1 kHz or greater. The reduction or elimination of
the nonresonant background and collisional effects will
greatly simplify the modeling of CARS spectra and
improve accuracy by eliminating the need for information

mailto:sroy@woh.rr.com
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concerning Raman linewidths. The advent of high-fidelity
picoseconds (ps) and fs lasers has revolutionized the field
of optical spectroscopy and enabled the development of
tabletop systems for laser machining, generation of X-rays,
extreme ultraviolet light, and attosecond optical pulses
[4–8].

Schematic diagrams of the CARS process and the
Raman-excitation processes with ns- and fs-lasers are
shown in Fig. 1. In CARS, the wavelengths of the pump
and Stokes beams are chosen such that the pump-Stokes
frequency difference matches a Raman resonance fre-
quency of the molecule. For the nitrogen molecule, the
Raman resonance frequency for the v00 = 0 to v 0 = 1 band
is approximately 2330 cm�1. This excitation process creates
a Raman coherence in the medium, resulting in a shifted
signal when the medium is probed by another laser beam.
In multiplex CARS using ns lasers, a narrowband pump
beam and a broadband Stokes beam are employed for
simultaneous excitation of numerous transitions in the
ro-vibrational Raman band of the molecule. As shown in
Fig. 1, in ns-CARS each pair of pump and Stokes frequen-
cies is resonant with only one transition. For fs-CARS,
however, multiple pump-Stokes pairs contribute to the
excitation of the same transition, thereby creating a signif-
icant Raman coherence in the medium [9,10] despite the
large frequency bandwidths of the pump and Stokes
beams. Numerous Raman transitions are excited with the
same phase when the pump and Stokes beams are nearly
Fourier transform-limited. This in-phase impulsive excita-
tion creates a very large coherence in the medium, which
then decays as a result of the slight frequency differences
between the neighboring transitions. This decay rate can
be used to determine the temperature [11].

Time-resolved fs-CARS has been used for the first time
by Leonhardt et al. to study the molecular beat phenomena
in liquid phase benzene, cyclohexane, and pyridine [12].
Hayden and Chandler [13] first used fs-CARS for investi-
gating the molecular vibrational dynamics of ground-state
gas-phase benzene and 1,3,5-hexatriene. Schmitt et al. [14]
used fs-CARS to study the ground- and excited-electronic-
state dynamics of iodine vapor. These studies demon-
Fig. 1. Coherent excitation process in ns- a

2

strated the potential for applying broad-bandwidth fs-
lasers for gas-phase spectroscopic studies. Previously, the
application of these lasers was thought to be of little value
because of the excitation of multiple transitions by the
broad laser pulses and the relatively inefficient coupling
of these broad pulses to an individual transition as com-
pared to the narrowband pulses more closely matched to
the linewidth of these transitions. Hayden and Chandler
[13] examined the dephasing of the coherence established
by the pump and Stokes beams during the first few ps after
the initial excitation and observed markedly different decay
rates for gas-phase benzene and 1,3,5-hexatriene. They
observed that the decay rate of the initial coherence was
much faster for 1,3,5-hexatriene than for benzene due to
dephasing of the initial orientation created by the laser
pulses. Unlike benzene, in 1,3,5-hexatriene the laser pulses
creates a superposition of spatially oriented, vibrationally
excited, rotational states that starts to change from the ini-
tial orientation due to the variation of rotational speeds of
different molecules in the ensemble. Recently our group
recognized that this initial dephasing rate during the first
few ps can be used as a measure of gas-phase temperature,
independent of any collisional influence [10,11].

The use of fs lasers for investigating the ultrafast dynam-
ics of isolated molecule was pioneered by Scherer et al. [15].
The work of Dantus et al. [16] for observing the molecular
vibration and rotational dynamics was also ground break-
ing in this regard. The work of Zewail’s group [15,16] was
based on pump-probe techniques where they prepared an
excited state with a pump beam and detected the laser-
induced fluorescence signal when excited by a delayed
probed beam; this is similar to the fs-CARS technique,
where the molecular coherence is prepared by the overlap-
ping pump and Stokes beam and is then probed by a
delayed probe beam. The review paper by Dantus [17] pro-
vides a comprehensive discussion of the coherent nonlinear
spectroscopy based on ultrafast lasers.

Lang et al. [18] used fs-CARS of the H2 molecule for
determining molecular parameters and gas-phase tempera-
ture from the time-resolved oscillatory pattern of the
Raman coherence following pump-Stokes excitation.
nd fs-laser-based CARS spectroscopy.
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Those parameters were determined from the width and the
relative heights of the recurrence peaks. Lang et al. [19] also
used the time-resolved N2 CARS signal for measuring tem-
perature by focusing on recurrence peaks at �320 ps or
longer; on this time-scale, understanding of the collisional
environment and the relaxation processes is essential for
accurate temperature measurements. fs-CARS has also
been used for measurements in a dense medium to investi-
gate rotational energy-transfer processes [20], for determin-
ing the concentration of ortho- and para-deuterium [21],
and for measuring single-shot temperature by probing the
hydrogen molecule using a chirped probe pulse [22]. More
recently, fs-CARS has been used for the detection of bacte-
rial spores in the presence of other molecules [23], for the
characterization of polymer thin films [24], and for back-
ground-free analysis of analytes trapped in aerogel pores
[25].

The objective of the current study is to apply the
time-resolved fs-CARS technique for temperature mea-
surements in high-temperature flames, based on the fre-
quency-spread dephasing rate after the initial impulsive
excitation of the Raman coherence in the N2 molecule by
fs pump and Stokes beams. In this study, temperature from
the time-resolved N2 CARS signal is extracted by means of
a simple theoretical model by concentrating on the signal
decay during the first few ps after the pump-Stokes excita-
tion. These decay results from the slight frequency mis-
matches between the neighboring Q-branch transitions
and is completely insensitive to collisions [11]. The accu-
racy and precision of the measurement technique are also
addressed.
Fig. 2. Schematic diagram

3

2. Experimental system

A schematic diagram of the experimental system is
shown in Fig. 2. The output of a 1-mJ, 1-kHz, 85-fs,
Ti:Sapphire regenerative amplifier (Model:Libra, Coher-
ent, Inc.) at 800 nm is used to pump an optical parametric
amplifier (OPA). Approximately 15% of the energy of the
regenerative amplifier is used as the Stokes beam, and the
remainder is used to pump the OPA. The laser beam from
the frequency-doubled OPA is centered at �675 nm, with
an approximate energy of 25 lJ/pulse. This beam is then
split equally to yield the pump and probe beams for the
CARS signal generation. The full-width-at-half-maxima
(FWHM) of the frequency spectra of the pump (probe)
and Stokes lasers were approximately 160 cm�1 and
220 cm�1, respectively. The timing of the probe beam with
respect to the pump and Stokes beams was varied for
acquisition of the probe-delay scans using a motorized
translation stage. A short-pass filter was used to block
the scattered light from the pump and probe beams, and
the CARS signal centered at 584 nm was detected with a
low-noise, high-bandwidth photodetector (10-MHz
Adjustable Photoreceiver, Model:2051, New Focus). The
signal was acquired using a lock-in amplifier, and each data
point was averaged over 300 laser shots. Measurements
were performed in an atmospheric-pressure, near-adiabatic
hydrogen-air flame stabilized over a Hencken burner. Tem-
perature was varied by changing the equivalence ratio (/)
of the flame (equivalence ratio is defined as the ratio of
actual fuel-to-air over fuel-to-air for the stoichiometric
condition [26]). The temperature of the flame stabilized
of fs-CARS system.
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over the Hencken burner increases with equivalence ratio
for / 6 1.0, after which it decreases due to incomplete
combustion of the fuel [27].

3. Results and discussion

Time-resolved fs-CARS signals of nitrogen as a function
of probe pulse delay with respect to the pump beam at var-
ious equivalence ratios are shown in Fig. 3. The decay of
the Raman coherence during the first few ps after the initial
impulsive excitation by the nearly transform-limited pump
and Stokes laser pulses is the focus of our experiments. The
effects of collisions on this time scale are not important for
pressures less than 10 bar. It is evident from the figure that
the rate at which the signal decays increases with flame
equivalence ratio and temperature. The signal decays faster
with increasing temperature because of the contributions of
more transitions over a wider frequency range to the initial
Raman coherence. This results from redistribution of the
population to higher energy levels with increasing temper-
ature. The spectrally broad, nearly transform-limited pump
and Stokes pulses simultaneously excite all the transitions
accessible within the bandwidth, frequency pairs of the
lasers. The resulting coherence decay thereafter as a result
of the slight frequency mismatches between neighboring
transitions. The signal reaches a maximum value at a probe
delay of zero because of the contribution from both reso-
nant and nonresonant signals. In Fig. 3 all signals were
normalized to a peak intensity of 100 at time zero. The
oscillatory behavior of the signal is qualitatively similar
for temperatures in the range 1600–2400 K. The character-
istic frequency of the oscillations observed in Fig. 3 is
approximately 900 GHz, which corresponds to the beat fre-
quency between the v 0 = 1! v00 = 0 and v 0 = 2! v00 = 1
vibrational bands and also between the v 0 = 2! v00 = 1
and v 0 = 3! v00 = 2 vibrational bands.

Theoretical spectra of N2 CARS for three different
temperatures are shown in Fig. 4. These spectra were
calculated using the Sandia CARSFT code [28]. For
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temperatures less than 800 K, only the first vibrational
band appears, which results in a time-resolved signal
without oscillations during the first 10 ps after the initial
excitation, as shown in our previous work [11]. The first
hot-band (v 0 = 2! v00 = 1) begins to appear for tempera-
tures greater than 1000 K, and the second hot-band
(v 0 = 3! v00 = 2) appears at approximately 2000 K. The fre-
quency difference between the band heads is approximately
30 cm�1, as is evident in Fig. 4. This 30-cm�1 frequency dif-
ference corresponds to a 900 GHz in beat frequency.

Fig. 5 shows the fit between the theoretical and experi-
mental probe-delay scans for / = 0.5 and / = 1.0. The
best-fit theoretical probe-delay scans are used to extract
temperatures from experimental scans. The theoretical
modeling is discussed in detail by Lucht et al. [11]. The the-
oretical signal as a function of probe delay is calculated
using the following equation.

SðsÞ ¼
Z þ1

�1
Iprðt � sÞ½P resðtÞ þ P nresðtÞ�2dt

þ Background noise ð1Þ
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±100 K for / = 0.5 and / = 1.0. Scans are expanded versions of those show
respectively, when temperatures are varied by +50 K and +100 K. Fig. 6(c) an
temperatures are varied by �50 K and �100 K.
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where the resonant signal (Pres) is calculated as

P resðtÞ ¼ b
Z t

�1
Epðt0ÞEsðt0Þdt0

� �

�
X

i

DN i
dr
dX

� �
i

cosðxitÞ expð�CitÞ
� �

ð2Þ

In Eq. (2), Ep(t) and Es(t
0) are the time-dependent electric

fields of the pump and Stokes laser fields, respectively,
DNi is the difference in population between the excited
and ground levels of a transition, dr

dX

� 	
i

is the Raman cross
section (for a particular transition i), xi is the frequency of
the Raman transition, Ci is the coherence dephasing rate
due to collisions, which will only be significant for longer
time scales or higher pressures, and b is a scaling factor
used to match the experimental signal with the theoretical
spectrum. In Eq. (1), Ipr is the intensity of the probe beam,
and Pnres is the nonresonant polarization calculated as

P nresðtÞ ¼ aEpðtÞEsðtÞ ð3Þ
where a is a nonresonant scaling factor. For each experi-
mental scan, the ratio a/b is varied to match the theoretical
0 1 2

0 1 2

b

d

0.1

1

10

100 φ=1.0
Best-Fit 2400K
Theory 2450K
Theory 2500K

C
A

R
S

 S
ig

na
l (

ar
b.

 u
ni

ts
)

Probe Delay (ps)

0.1

1

10

100 φ=1.0
Best-Fit 2400K
Theory 2350K
Theory 2300K

C
A

R
S

 S
ig

na
l (

ar
b.

 u
ni

ts
)

Probe Delay (ps)

ased on least-square fit) temperature values were changed by ±50 K and
n in Fig. 5. Fig. 6a and b show probe-delay scans / = 0.5 and / = 1.0,
d (d) show probe-delays scans for / = 0.5 and / = 1.0, respectively, when
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and experimental signal-decay rates. For the two equiva-
lence ratios shown in Fig. 5, adiabatic flame temperatures
are calculated to be 1642 K and 2382 K for / = 0.5 and
/ = 1.0, respectively, [26]. These measurements show very
good agreement between the adiabatic flame temperatures
and the temperatures extracted from the experimental
scans by least-square fitting with the calculated theoretical
time-resolved signal using Eq. (1). In Fig. 5, solid lines rep-
resent the theoretical best-fit signal and symbols represent
the experimental data points.

To address the temperature sensitivity of the measure-
ments, experimental scans shown in Fig. 5 were compared
with theoretical scans by varying the best-fit temperature
by ±50 K and ±100 K as shown in Fig. 6. Fig. 6a and b
show the expanded versions of the time-resolved scans
for / = 0.5 and / = 1.0 when the theoretical temperatures
were varied by +50 K and +100 K from the best-fit values;
Fig. 6c and d show the same scans when the theoretical
temperatures were changed by �50 K and �100 K from
the best-fit values. The clear mismatch between the experi-
mental and theoretical signals for temperatures adjusted by
50 K and 100 K from the best-fit value shows the sensitivity
of the current measurement technique is ±50 K. Changing
the temperature by ±25 K did not yield any perceptible
variation in the theoretical signal profiles.

To address the accuracy and precision of the proposed
measurement technique, the temperature extracted from
the experimental signals is compared with adiabatic flame
temperatures, as shown in Fig. 7. The extracted tempera-
tures are within 40 K of the adiabatic flame temperatures
for equivalence ratios ranging from 0.5 to 1.0. The system-
atic error in the measurements cannot be evaluated quanti-
tatively from these results, but appears to be much smaller
than random errors of approximately ±50 K. It might be
expected that systematic errors in fs-CARS will be reduced
compared to ns-CARS because collisions do not affect the
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fs-CARS signal in the first few ps after impulsive pump-
Stokes excitation. Consequently, no knowledge of Raman
linewidths is required to model the fs-CARS signal behav-
ior. For ns-CARS, on the other hand, accurate Raman-
linewidth data is required for temperature determination
[29]. The three sets of data points shown in Fig. 7 were
acquired on three different days spanning two weeks in
time. The standard deviation of the extracted temperatures
was approximately 50 K for an equivalence ratio of 1.0, but
the standard deviation was approximately 11 K for / = 0.5
and / = 0.8. These measurements suggest the accuracy and
precision of the measurement technique are within ±40 K
and ±50 K, respectively.

4. Conclusions

Temperatures ranging from 1500 K to 2400 K is mea-
sured using the time-resolved fs-CARS technique in atmo-
spheric-pressure, near-adiabatic, hydrogen-air diffusion
flames. In this study, wavelengths of the pump and the
Stokes beams are chosen to probe the vibrational transi-
tions of the N2 molecule. The initial decay of the Raman
coherence results from the slight frequency mismatches
among the transitions, excited by the broad pump and
Stokes beams. The rate of decay of the initial Raman
coherence was used as a measure of temperature. The fs-
CARS signals within the first few ps after pump-Stokes
excitation are free from collisional influence for pressures
less than 10 bar and, therefore, do not require any
knowledge of the collisional-relaxation processes for either
temperature or concentration measurements from experi-
mental signals. The temperatures extracted from the time-
resolved signals agreed very well with the adiabatic flame
temperatures for a range of equivalence ratios. The esti-
mated accuracy and precision of the measurement tech-
nique are within ±40 K and ±50 K, respectively. The
estimated systematic errors in the measurements are less
than ±50 K.
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