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Abstract …….. 

The Self-healing Autonomous Sensing Network (SASNet) presents an advanced Wireless Sensor 
Network (WSN) that aims to enhance the effectiveness of mission operation in the contemporary 
military environment, by providing relevant and accurate situational awareness information. In 
order to achieve this objective, precise location information is required in SASNet.  In this report, 
we present the studies conducted in the SASNet project on cooperative localization algorithms for 
wireless sensor nodes. We have taken the cooperative localization approach following the 
recommendations of the survey study conducted last year, which identified that cooperative 
localization schemes can often produce accurate results using a very small number of anchor 
nodes or even no anchor nodes.    

The cooperative localization scheme adopted in this study computes a local map for each sensor 
node using all the available link metric constraints, and then merges the local maps into a global 
map where each node acquires its location coordinates. In the study, we examined the advanced 
techniques of non-linear data mapping for computing the local maps from the large data set of 
link constraints. In particular, we selected a non-linear mapping technique, the Curvilinear 
Component Analysis (CCA) from a class of highly efficient neural networks and applied it to 
WSN localization, proposing a novel cooperative localization scheme based on CCA. We studied 
CCA localization in comparison with another leading cooperative localization scheme, namely 
the MDS (Multi-Dimensional Scaling) map method.  

In the report, we first briefly review the related work on WSN localization and re-examine the 
pros and cons of the selected cooperative approach vs. other approaches, most notably the 
iterative approach using trilateration. We then describe the CCA algorithm for data non-linear 
mapping, and extend it to solve the problem of sensor node position estimation. A detailed 
elaboration of the proposed CCA-MAP localization scheme is given. The performance 
simulations of CCA-MAP are conducted using SASNet scenarios and their results are illustrated 
and compared with the MDS-MAP algorithm, which is a leading cooperative localization scheme 
published in the literature. From the simulation experiments, advantages and shortcomings of the 
CCA-MAP algorithm are analyzed. Further, we discuss the design considerations of the discussed 
cooperative localization algorithms to compare and examine their implementation feasibility. 
Finally, conclusions and recommendations from this study are presented.  
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Résumé …..... 

Le réseau de capteurs autonomes à rétablissement automatique (SASNet) présente un réseau de 
capteurs sans fil qui vise à rendre plus efficace l’exécution des missions à l'aide d’information 
situationnelle utile et précise, dans le contexte contemporain des opérations militaires. Pour 
atteindre cet objectif, il faut introduire des données précises de localisation dans SASNet. Dans ce 
rapport, nous présentons les études menées dans le cadre du projet SASNet sur les algorithmes de 
localisation coopérative pour les nœuds capteurs sans fil. Nous avons adopté l’approche de 
localisation coopérative en réaction aux recommandations présentées à la suite de l’étude menée 
l’année dernière, qui stipule que les schémas de localisation coopérative peuvent souvent produire 
des résultats précis, avec un petit nombre de nœuds ancres ou sans nœud ancre.    

Le schéma de localisation coopérative adopté dans le cadre de cette étude calcule une carte locale 
pour chaque nœud capteur à l’aide de toutes les contraintes de mesures de nœuds disponibles, 
pour ensuite fusionner les cartes locales dans une carte globale où chaque nœud capte ses 
coordonnées de localisation. Dans l’étude, nous avons examiné les techniques évoluées de 
mappage non linéaire de données pour calculer les cartes locales à partir du gros ensemble de 
données de contraintes de liens. Plus particulièrement, nous avons choisi une technique de 
mappage non linéaire, l’analyse de composants curviligne (Curvilinear Component Analysis 
(CCA)) dans une classe de réseaux neuronaux très efficaces, et nous l’avons appliqué à la 
localisation de réseau de capteurs sans fil, pour proposer un nouveau schéma de localisation 
coopérative fondé sur l’analyse de composants curviligne (Curvilinear Component Analysis 
(CCA)). Nous avons fait l’examen comparatif de la localisation d’analyse de composants 
curviligne (Curvilinear Component Analysis (CCA)), par rapport à un autre important schéma de 
localisation coopérative, notamment la méthode de mappage d’étalonnage multidimensionnel 
(Multidimensional Scaling (MDS)).  

Dans le rapport, nous examinons d’abord brièvement les travaux connexes sur la localisation des 
réseaux de capteurs sans fil et examinons à nouveau les avantages et désavantages de l’approche 
coopérative sélectionnée en comparaison aux autres approches, surtout l’approche itérative à 
l’aide de la trilatération. Nous décrivons ensuite l’algorithme d’analyse de composants curviligne 
(Curvilinear Component Analysis (CCA)) pour le mappage non linéaire de données, et nous 
l’utilisons pour régler le problème d’estimation de la position des nœuds capteurs. On présente 
une description détaillée du schéma de localisation CCA-MAP proposé. Les simulations du 
rendement de CCA-MAP sont menées à l’aide de scénarios SASNet et les résultats sont illustrés 
et comparés à l’algorithme MDS-MAP, qui constitue un important schéma de localisation 
coopérative publié dans la documentation. À partir des expériences de simulation, nous avons pu 
analyser les avantages et inconvénients de l’algorithme CCA-MAP. De plus, nous abordons les 
facteurs à considérer au niveau de la conception des algorithmes de localisation coopérative pour 
comparer et examiner la faisabilité de la mise en oeuvre. Finalement, nous présentons les 
conclusions et recommandations de cette étude. 
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Executive summary  

Localization in self-healing autonomous sensor networks 
(SASNet): Studies on cooperative localization of sensor nodes 
using distributed maps  

Li Li; DRDC Ottawa TR 2008-020; Defence R&D Canada – Ottawa; January 
2008. 

Introduction or background: The Self-healing Autonomous Sensing Network (SASNet) 
presents a tiered Wireless Sensor Network (WSN). SASNet aims to enhance the effectiveness of 
individuals, small teams and sub-units in the contemporary military operational environment, by 
providing them with relevant and accurate situational awareness information. To achieve this, 
accurate location information is indispensable in the SASNet. 

Two cooperative localization schemes are studied in this report, namely the MDS-MAP algorithm 
reported previously in the literature, and the new CCA-MAP algorithm that we have developed in 
the SASNet project. MDS (Multidimensional Scaling) and CCA (Curvilinear Component 
Analysis) are two different types of non-linear reduction methods. We have researched on the 
original CCA algorithm and devised an approach to apply it in the node position calculation. 
Extensive simulation studies were conducted on various SASNet scenarios employing MDS-
MAP and CCA-MAP to compare and evaluate their performance. Then a preliminary design 
analysis is given to address the implementation requirements and issues, comparing CCA-MAP 
and MDS-MAP. 

Results: In both MDS-MAP and CCA-MAP, each node computes a local map using MDS (in 
MDS-MAP) or CCA (in CCA-MAP) method. Then local maps are merged into a global map of 
the network in either 2D or 3D spaces. Both approaches produce fairly accurate position 
estimation results using none or a minimum number of anchor nodes. Comparing MDS-MAP and 
CCA-MAP, CCA-MAP generates more accurate position results in most of the SASNet 
deployment scenarios, especially when range measurements are available. Using ranging 
techniques to measure local distances between neighbouring nodes, CCA-MAP can contain the 
median error of the computed position to under 10%r (r is the average radio radius) or even under 
5%r. Without ranging capabilities in the network, the accuracy of CCA-MAP degrades, though it 
can still produce position information with an acceptable average error ratio in most of the tested 
scenarios. For random irregular shaped networks, both CCA-MAP and MDS-MAP may fail to 
contain the median position error to under10%r for the desirable low node connectivity levels 
using only the connectivity information. Though this type of the random network where the 
sensor nodes are scattered aimlessly without any care of their supposed positions, is not a viable 
deployment scenario for SASNet, such a network example is presented in the report to illustrate 
their difficulties in obtaining accurate node positions.  

The cooperative localization algorithm is often computational intensive. The cost of the CCA 
map computation is about O(n2) and MDS O(n3) given n nodes in the network map. Though the 
CCA data reduction method is rather efficient compared with other methods such as the MDS 
approach, the small size of the local map often diminishes the differences. In the studies where 
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our simulations were implemented in Matlab, we could not obtain sensible benchmarks of 
computing time expenses for the algorithms, as the loop execution of CCA-MAP has extremely 
poor performance in Matlab. We recommend porting of the implementation to a real 
programming platform using a practical programming language, e.g., C or C++, to evaluate the 
computational cost.  

The implementation issues also include requirements for memory and messaging. Our 
preliminary analysis estimated the memory and messaging cost for the CCA-MAP and the MDS-
MAP implementations. It has been found that the memory and messaging expense of CCA-MAP 
is comparable or less than that of MDS-MAP. 

Significance: In this report, we present the studies on localization of networked sensor nodes. We 
have taken the cooperative localization approach following the recommendations from the survey 
study that was conducted last year. Cooperative localization algorithms often produce more 
accurate results using fewer number of anchor nodes, compared with other types of localization 
schemes. In fact, cooperative algorithms considered in this report are anchor free schemes that 
would be able to localize the nodes in a WSN without using any anchor nodes. Cooperative 
localization schemes may support both range-based and range-free networking situations, where 
the distance measurements between nodes are available in the former scenarios but not in the 
latter. These properties are quite desirable for military WSNs. 

Future plans: In the future work, it would be required to identify the real computational cost of 
the CCA-MAP and MDS-MAP in the selected node platforms of SASNet, to determine which 
implementation option of the algorithm is viable. Experiments of the localization scheme on the 
selected node platforms need to be conducted for performance evaluation. A most suitable 
approach can then be selected considering the different resource capabilities of the SN and FN 
platforms. 
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Sommaire ..... 

Localization in self-healing autonomous sensor networks 
(SASNet): Studies on cooperative localization of sensor nodes 
using distributed maps  

Li Li; DRDC Ottawa TR 2008-020; R & D pour la défense Canada – Ottawa; 
Janvier 2008. 

Introduction ou contexte: Le réseau de capteurs autonomes à rétablissement automatique 
(SASNet) présente un réseau de capteurs sans fil à multiples niveaux. Le SASNet vise à rendre 
plus efficace les personnes, petites équipes et sous-unités dans le contexte contemporain des 
opérations militaires, en leur transmettant des données de localisation précises et pertinentes. Pour 
atteindre cet objectif, il faut introduire des données précises de localisation dans SASNet. 

Ce rapport examine deux schémas de localisation coopérative, notamment l’algorithme MDS-
MAP, mentionné auparavant dans la documentation, et le nouvel algorithme CCA-MAP que nous 
avons développé dans le cadre du projet SASNet. L’étalonnage multidimensionnel 
(Multidimensional Scaling (MDS)) et l’analyse de composants curviligne (Curvilinear 
Component Analysis (CCA)) constituent deux différents types de méthodes de réduction non-
linéaire. Nous avons fait des recherches sur l’algorithme d’analyse de composants curviligne 
(CCA) original et conçu une approche qui permet de l’appliquer au calcul de la position des 
noeuds. On a mené des études de simulation approfondies sur divers scénarios de SASNet à l’aide 
de MDS-MAP et CCA-MAP pour comparer et évaluer leur rendement. On a ensuite présenté une 
analyse d’étude préliminaire pour satisfaire aux exigences et régler les problèmes de mise en 
œuvre, en comparant CCA-MAP à MDS-MAP. 

Résultats: Dans le cas de MDS-MAP et CCA-MAP, nous appliquons des calculs de cartes 
locales et la fusion de cartes globales pour produire une carte du réseau, où chaque nœud fait 
l’acquisition de ses coordonnées dans des espaces 2D ou 3D. Les deux approches produisent des 
résultats d’estimation de la position relativement précis, à l’aide d’un nombre minimal de nœuds 
ancres ou sans nœud ancre. Dans le cadre d’une comparaison entre MDS-MAP et CCA-MAP, 
CCA-MAP produit des résultats de position plus précis dans la plupart des scénarios de 
déploiement du SASNet, surtout lorsque les mesures de distances sont disponibles. MDS-MAP 
présente des résultats acceptables dans certains cas. À l’aide de techniques de distance pour 
mesurer les distances locales entre les nœuds adjacents, CCA-MAP peut contenir l’erreur 
médiane de la position calculée à moins de 10%r (r représente le rayon moyen de portée radio) ou 
même à moins de 5%r. Si le réseau ne comporte pas de capacité d’évaluation de la distance, la 
précision de CCA-MAP se dégrade; il peut toutefois produire de l’information de localisation 
avec une marge d’erreur moyenne acceptable dans la plupart des scénarios mis à l’essai. Dans le 
cas des réseaux aléatoires de forme irrégulière, CCA-MAP et MDS-MAP ne comporteront 
possiblement pas d’erreur de la position médiane à moins de 10%r, pour les niveaux de faible 
connectivité des nœuds souhaitables, si on se limite à l’information de connectivité. Malgré le fait 
que nous indiquons dans ce rapport que ce type de réseau aléatoire, où les nœuds capteurs sont 
éparpillés de manière aléatoire sans se soucier de leurs positions présumées, ne constitue pas un 
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scénario de déploiement viable pour le SASNet, on présente un tel exemple de réseau dans le 
rapport pour démontrer les difficultés à obtenir des positions de nœuds précises.  

L’algorithme de localisation coopérative est plutôt vorace en calcul. Le coût de calcul de 
l’analyse de composants curviligne (CCA) de la carte est d’environ O(n2) et d’étalonnage 
multidimensionnel (MDS) est de O(n3), s’il y a n nœuds dans la carte. Même si la méthode de 
réduction des données de l’analyse de composants curviligne (CCA) est moins vorace au niveau 
des calculs que la méthode d’étalonnage multidimensionnel (MDS), la petite taille de la carte 
locale réduit souvent les différences. Dans le cadre des études sur la mise en œuvre de simulations 
dans Matlab, il était impossible d’obtenir des références suffisamment importantes au sujet de la 
durée de calculs des algorithmes, puisque l’exécution en boucle de CCA-MAP a présenté un 
rendement médiocre dans Matlab. Nous recommandons le transfert de la mise en œuvre sur une 
véritable plate-forme de programmation à l’aide d’un langage de programmation pratique, p. ex., 
C ou C++, pour comparer les coûts de calcul.  

Les questions de mise en œuvre comprennent des besoins de mémoire, de messagerie et de calcul. 
La première option dégage les nœuds capteurs aux ressources limitées du calcul intensif de 
position, mais concentre le trafic de messages autour des nœuds de fusion. La deuxième option 
répartit le volume du trafic de messages; il impose toutefois la charge de calcul sur tous les nœuds 
capteurs, qui sont souvent très limités en matière de ressources. 

Importance: Dans ce rapport, nous présentons les études menées dans le cadre du projet SASNet 
sur la localisation de nœuds capteurs en réseau. Nous avons adopté l’approche de localisation 
coopérative en réaction aux recommandations présentées à la suite de l’étude menée l’année 
dernière. Les algorithmes de localisation coopérative peuvent souvent produire des résultats plus 
précis, avec un nombre inférieur de nœuds ancres, comparativement aux autres types de schémas 
de localisation. En réalité, les algorithmes de coopération examinés dans ce rapport constituent 
des schémas sans ancre en mesure de localiser les nœuds d’un réseau de capteurs sans fil sans 
utiliser de nœud ancre. Les schémas de localisation coopérative peuvent soutenir les situations de 
réseautage fondées ou non sur la distance, où les mesures de distances entre les nœuds sont 
offertes dans le premier scénario, sans toutefois être offertes dans le deuxième scénario. Ces 
caractéristiques sont grandement souhaitables dans le cadre du réseau de capteurs militaires. 

Perspectives: Dans le cadre de nos prochaines activités, il faudrait découvrir le coût de calcul 
réel de CCA-MAP et de MDS-MAP dans les plates-formes de nœuds sélectionnées de SASNet, 
pour déterminer laquelle des options de mise en œuvre d’algorithme est viable. Il faut faire des 
essais du schéma de localisation sur les plates-formes de nœuds sélectionnées, à des fins 
d’évaluation du rendement. On pourra ensuite choisir l’approche la plus appropriée, en tenant 
compte des différentes capacités de ressources des plates-formes de nœuds capteurs et de nœuds 
de fusion. 
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1 Introduction  

The Self-healing Autonomous Sensing Network (SASNet) is a Wireless Sensor Network (WSN) 
that aims to equip individuals, small teams and sub-units with relevant and accurate situational 
awareness information in the contemporary military operational environment. SASNet is 
envisioned to consist of a rapidly deployable large-scale sensor network where the 
complementary sensors are quickly emplaced such as by a person walking or riding in a vehicle. 
The sensor nodes after deployment will automatically discover each other and create the network 
in real time. The sensor nodes will then perform detection sharing of different types of sensing 
information to provide accurate situational awareness. Figure 1 depicts the architecture overview 
of SASNet.   

 

CF Tactical 
Command & Control
Headquarters can receive 
the fused data and query 
for information 

Fusion Centres
Users can receive a 
certain class of fused 
data and query for 
information

Fusion centres / gateways

Sensor Nodes
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Disposable small sensors

Low-power radio link

Low-latency, high-bandwidth link

Long-haul Communication

 

Figure 1: SASNet Architecture 

 

SASNet is a hierarchical network with multiple layers of hybrid communication nodes as shown 
in Fig. 1. At level one, i.e., the sensor level, large numbers of unattended sensor nodes (SN) 
collect sensing measurements and transmit the information towards fusion nodes (FN) and 
gateways. At the fusion level (i.e., level two), the fusion nodes (FN) collect, aggregate and fuse 
the information for its immediate users that can be mobile agents or other nodes in the network. 
FNs also further send the required information to the higher-level command and control 
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headquarters. For details of the networking protocols and data dissemination mechanism in the 
hierarchical SASNet, please refer to [2] [3].  

In the previous report of “Localization in Self-healing Autonomous Sensor Network (SASNet): 
Requirements, Design Considerations and Research Recommendations” [3], we have identified 
the requirements for node localization in SASNet that include to locate the static sensor nodes, 
and to locate and track the mobile agent node. This report studies the cooperative localization 
schemes to handle the first issue, i.e., to locate the static sensor nodes after their deployment. 
During the deployment of a SASNet system, some sensor nodes may be emplaced with known 
location coordinates obtained from either planning or GPS assistance. For example, a sensor node 
may be plugged into a GPS capable PDA to obtain its position coordinates on the spot right 
before its placement into its position. These nodes with known positions are the anchor nodes. 
Other rapidly deployed ad hoc sensor nodes that have no known coordinates will need to locate 
themselves in time to report readings associated with their location and to assist in tracking the 
mobile agents and targets. 

The requirements elaborated in [3] have defined the problem of sensor node localization and its 
solution requirements to support the SASNet deployment process. Particularly a localization 
scheme that can achieve high accuracy containing the average node position error within 10%-
20% of the radius (r) of the radio signal range (i.e., <10%r to 20%r) is of interest for scenarios of 
SASNet. The nature of the SASNet scenario demands a speedy deployment process. The cluttered 
and covered environment may cripple GPS while the fast deployment may not accommodate 
many nodes with planned locations. Thus, localization solutions that require many anchor nodes 
are not suitable [3]. Ranging measurements will be utilized to aim for high accurate distance 
readings applying spread spectrum or UWB technologies. However, distance measurements may 
not be relied on in all cases as complex terrain can impede the measurement accuracy. The 
localization solution of interest may assume thus the following characteristics: that it requires 
only a small number of anchor nodes to facilitate a rapid deployment process, and that it achieves 
a high level of position accuracy with or without the assistance of range measurements. 
Meanwhile, as pointed out in [3], because of the tiered architecture of SASNet, the resource 
constrains of the scanty sensor nodes have to be carefully considered. For example, messaging 
efficiency and computational efficiency of the localization algorithm are critical to preserve 
battery life of the small sensor nodes and to make the execution of the algorithm feasible. In [3], 
we selected the cooperative estimation algorithms to be the direction because of their better 
location estimate accuracy, and their often-small anchor node ratio requirements. In fact, the 
cooperative algorithms considered here are "anchor-free" localization schemes as they do not 
require any anchor nodes to derive the relative positions of the nodes, which are correct compared 
with the absolute position coordinates up to rotation, translation and reflection. In certain mission 
operations, relative position information can be sufficient. In other operations, if the location 
information needs to be used or compared with position information from other Cartesian 
coordinate system, only the minimum number (3 for 2D space) of anchor nodes would be 
required to perform the translation, rotation and reflection to attain the absolute position 
coordinates in the given Cartesian system.   

Various localization schemes have been proposed in the literature as reviewed in [3]. Localization 
algorithms based on Multidimensional Scaling (MDS) [9][10][44][45][48] assume a class of close 
examples of the cooperative approach for deriving sensor node locations, which can be computed 
in a distributed or centralized manner in either range-based or range-free conditions with 
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minimum anchor nodes requirements, e.g., at least 3 (or 4) anchor nodes in the 2D (or 3D) space. 
This class of algorithms also delivers higher node position accuracy (<20%r, r is the average 
radio signal radius) when compared with many other approaches. MDS is a non-linear mapping 
technique applying dimension reduction and data projection that transforms proximity 
information into a geometric embedding [50]. While preserving the distances between data points 
and reducing the data dimension from N to two (e.g., 2D space) or three (e.g., 3D space), MDS 
similar to other non-linear reduction algorithms, incurs fairly high computational cost of 

and suffers quite often from local minima. As pointed out in [9][10][44][48], MDS is 
often good at finding the right general layout of the network, but not the precise locations of 
nodes. In [9][10][44][48], a refinement step using least-square minimization over the results 
obtained from MDS was applied to achieve better location accuracy. Compared with MDS 
mapping, the refinement process introduces an even higher computing cost, making it in an order 
of magnitude slower than the mere MDS algorithm. For example, more than 50 seconds may be 
taken to refine a map of 300 nodes on a 2GHz Pentium powered laptop, compared to the MDS 
calculation in the first step that takes only less than a few seconds [10][44]. 

)(nO 3

3 2

MDS based algorithms can achieve higher accuracy using much fewer anchor nodes than other 
approaches because it applies cooperative localization rather than trilateration. Cooperative 
localization jointly utilizes as much as possible the connectivity and distance information among 
all the nodes, while trilateration type of approach often employs only the distance information 
between nodes and the anchor nodes. Thus the latter usually requires higher volume of anchor 
nodes to ensure that every node can hear (and measure its distance to) at least three anchor nodes.  

In studying cooperative localization approach such as MDS, we have compared various non-
linear reduction techniques that might be applicable for node position estimation. An efficient 
neural network namely the Curvilinear Component Analysis [43]] was found that offers very 
accurate data dimension reduction while preserving the distances between the data points during 
the data reduction process, at a computational cost that is the least among the various reduction 
methods. Compared with most non-linear reduction algorithms that have a computational cost at 

, e.g., MDS [50] and Sammon’s [52], CCA has its expense at . CCA is a self-
organized neural network performing vector quantization and non-linear projection for 
dimensionality reduction and representation of multidimensional data sets [43]. Unlike general 
neural networks, CCA preserves the distances between the data points of the input data space in 
the output data space, and exhibits much higher efficiency in its unfolding of the dimensions. The 
non-linear projection capability of CCA turns out to be similar in its goal to other nonlinear 
mapping methods, such as MDS [50]] and Sammon's nonlinear mapping (NLM) [52], in that it 
minimizes a cost function based on inter-point distances in both input and output spaces. 
However, CCA in several aspects exhibits advantages that may be very useful in node 
localization process. Firstly, CCA overcomes fairly well the local minima problem to achieve 
improved accuracy. Localization algorithms using CCA can achieve desired accuracy without 
using any additional refinement process as that which was used in the MDS based localization 
algorithms. Secondly, CCA is more computational efficient and thus delivers a much faster data 
mapping process compared with other optimization processes [58][59]. Thirdly, being a neural 
network, CCA has the learning capability that can accommodate addition of new nodes [43][58] 
without re-running through the computing process for all the nodes. Other non-linear mapping 
algorithms such as MDS and Sammons would need to re-compute the entire data set.    

)(nO )(nO
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We thus have selected the CCA data projection method and adapted it to the node localization 
process for wireless sensor networks. This report presents our studies and findings using the CCA 
algorithm to establish a cooperative localization scheme in SASNet. In the following, the CCA 
algorithm and our scheme to apply it in the sensor localization process are described in section 2. 
Section 2 also contains a brief overview of other localization schemes to provide the background 
information. In section 3, the performance studies of CCA and MDS for SASNet, and the 
comparisons between CCA and MDS based localization algorithms are presented. Practical 
design and implementation issues are discussed in section 4, followed by the conclusions and 
recommendations for future work in section 5.   
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2 Cooperative Localization Using CCA 

Before elaborating on the non-linear mapping algorithm of CCA and its application in node 
location estimation, we provide a short review on related localization approaches and clarify in 
general the advantages and shortcomings of the cooperative approach that was selected. For a 
more detailed survey of the state-of-art of WSN localization, please refer to our previous report 
[3].  

2.1 Related Work on WSN Localization 

Various sensor node localization schemes have been proposed in the literature [3][4][5][7]-[23], 
[24]-[38], [39][40][42], [44]-[49], [53]-[57]. Based on whether using absolute measurements of 
node distances or alignment angles in the localization algorithms, the solutions can be classified 
as range-based [33][13][14][12][55] and range-free [32][7][9][26][27]. While range-based 
schemes use the absolute measurements in solving the location coordinates, range-free ones do 
not. It is generally true that range-based solutions often produce finer resolution results when the 
range errors are kept small. More accurate ranging technologies such as UWB [34] are found to 
offer promising measurement results. On the other hand, ranging techniques are very environment 
dependent, e.g., indoor vs. outdoor, path obstacles and complex terrains, etc., and often entail 
additional hardware cost. When measurements are not accurate, range errors may also have 
extended impact when accumulated during the position calculations. It has been reported that in 
certain cases, a range-free scheme may even outperform its range-based counterpart in estimated 
position accuracy due to the accumulated measurement errors incurred in the range-based 
approach [20]. In SASNet, though the latest ranging technologies would be explored to generate 
as much as possible the accurate measurement results, a solution that can be flexibly applied in 
both range-based and range-free scenarios is taken as a more versatile preference. 

The second important aspect of any localization scheme is its algorithm. Position computation 
often applies trilateration, triangulation, or multilateration [12]. In a straightforward way, direct 
reach of at least three anchor nodes is needed for a node to compute its location coordinates 
[12][14][26]. When computing the position using any of the above methods, algorithms often 
employ iterations [12][53], starting from the anchor nodes in the network and propagating to all 
other free nodes to calculate their positions. One of the problems of this approach is its low 
success ratio when the network connectivity level is not high or when not enough well-separated 
anchor nodes exist in the network. To localize all the nodes, these algorithms quite often would 
require that 20%-40% of the total nodes in the network be anchor nodes with average node 
connectivity level of about 10 or higher [7][27], unless anchor nodes can increase their signal 
range [26]. To solve the problem of demanding large numbers of anchor nodes, some approaches 
apply limited flooding to allow anchor nodes to be reached in multiple hops, and to use 
approximation of shortest distances over communication paths as the Euclidean distance [27]. 
However, such hop based distance approximation works rather poorly in anisotropic networks, 
introducing large position errors [7][27]. In many scenarios, they do not seem to significantly 
reduce the number of anchor nodes either [7][27]. High network connectivity levels required for 
the success of such algorithms also give rise to practical concerns, as dense neighbourhoods often 
severely impede radio network throughputs. In addition to the issues of large number of anchor 
nodes and high connectivity level, the accumulated location errors also need to be well dealt with 
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in this type of approach to maintain the accuracy of position estimates. Among such schemes, the 
one proposed in [53] reported one of the best results, where the position estimation error can be 
reduced to about 5%r in more than 6 iterations when the network connectivity level is about 16 
and 10% of its nodes are anchors.  

The cooperative localization schemes take a quite different approach, formulating the localization 
problem as joint estimation problems. Instead of using only the constraint between sensor nodes 
and anchor nodes, these solutions consider all constraints on inter-node distances and apply 
optimisation techniques to derive location coordinates. Algorithms based on rigidity theory are 
one kind of example [39] [56]. In [39], heuristics are employed to create a well-spread, fold-free 
graph layout that resembles the desired layout. Then a mass-spring model analogy is used to 
optimise the localization estimates using the minimum energy stage of the mass-spring model. 
Such an optimisation problem is NP-hard and would need further studies and proof on its 
convergence [39]. In [56], conditions for networks to be localizable using rigidity theory were 
investigated and a subclass of the grounded graphs were identified which can be computed 
efficiently. However, the focus was to find the network formation that can be computed. The 
overall performance of the algorithm for different network formations was not well reported. In 
[9][10][44][45][48] the node positions are calculated using the connectivity constraints applying 
multidimensional scaling (MDS). In [9][57], inter-node distance measurements are modelled as 
convex constraints, and then linear programming [9] and semi-definite programming (SDP) 
methods [57] were adopted to estimate the location of free nodes. These cooperative localization 
methods such as MDS and SDP are often quite powerful as they require a minimum number of 
anchor nodes and produce very accurate results. However, such algorithms are often 
computational intensive. In fact, it is doubtful if such algorithms can be executed on the mote 
sensor nodes [61], which is one type of the “disposable unattended sensor nodes” that might be 
applied in SASNet. Cooperative algorithms often tend to compute a map of a subnetwork or even 
the entire network rather than just the position of a single node during the process. Thus, the 
cooperative algorithm may be more suitable to be carried on the gateways or similarly powerful 
nodes rather than being executed on the small mote sensor node. 

Comparing cooperative algorithms and iterative trilateration based algorithms, cooperative 
algorithms in general deliver more accurate position estimates and require fewer anchor nodes. 
Using cooperative algorithms, there is little overhead for computing the coordinates in 3D space 
as compared to 2D space, which is a nice property that iterative triangulation-based localization 
methods do not have. On the other hand, cooperative algorithms are relatively computational 
intensive. These algorithms handle better large data set, i.e., more intended for computing the 
locations of many nodes instead of for one node. It is more suitable thus for these algorithms to be 
executed on selected gateway nodes, rather than on the severely resource-constrained motes. The 
iterative trilateration based algorithm may be less computational intensive. Iterative trilateration / 
multilateration algorithms entail calculations of a much smaller linear system on each node 
through propagation of location calculations in the network. With good error control schemes, 
such algorithm as well can be accurate though it may require more anchor nodes, higher node 
connectivity levels and several rounds of location propagation and calculations to complete. 
Iterative algorithms naturally assume a fully distributed execution, intending to be executed on 
motes, though practically such real “mote implementations” are yet to be found. Simulations 
reported in the literature often take laptops to perform the iterative algorithms. For small mote 
sensors, the computation and messaging expenses (e.g., message propagations of several rounds 
in the network) of iterative trilateration algorithms can also be of concern. 
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2.2 Cooperative Localization Using Non-linear Mapping 

2.2.1 Location Mapping Using MDS 

Cooperative localization algorithms derive node positions in a generated map given certain 
constraints specified among the nodes, e.g., the distances between node pairs. There are often two 
possible outcomes when solving the localization problem using cooperative localization 
approach. One is a relative map and the other is an absolute map of the nodes. The relative map 
and the absolute map are only different in their coordinate systems. A relative map can be 
transformed to the absolute map using translation, rotation and reflection to conform to the 
coordinate system used by the absolute map. To transform a relative map to an absolute map, 
anchor nodes are required (e.g., at least 3 anchor nodes in 2D space and 4 anchor nodes in 3D 
space). Some applications would require an absolute map while others need only the relative map. 

Non-linear mapping is one of the typical approaches used to resolve the non-linear constraints 
system. For instance, a distances matrix can be employed as a non-linear constraints system in a 
non-linear mapping solution to obtain the coordinates. One of the most popular cooperative 
localization schemes applies MDS non-linear mapping technique [9][10][44][45][48].    

In MDS localization scheme, the network is represented as an undirected graph with vertices V 
and edges E. The vertices correspond to the nodes, of which zero or more may be special nodes, 
called anchors, with known positions. For the range free case, the edges in the graph correspond 
to the connectivity information. For the range-based case with known distances to neighbours, the 
edges are associated with values corresponding to the estimated distances. It is assumed that all 
the nodes being considered in the positioning problem form a connected graph. If an outlying 
node is not within communications range of any other nodes, it is not in the map nor will it have 
an estimated position.  

The MDS localization algorithm is based on a well-established technique known as classical 
Multi-Dimensional Scaling (MDS). MDS has its origins in psychometrics and psychophysics. It 
is a set of data analysis techniques that display the structure of distance information data in a 
geometrical picture [50]. MDS starts with one or more matrices representing distances or 
similarities between objects and finds a placement of points in a low-dimensional space, usually 
two- or three-dimensional, where the distances between the points resemble the original 
similarities. MDS is often used as part of exploratory data analysis or information visualization. 
By visualizing objects as points in a low-dimensional space, the complexity in the original data 
matrix can often be reduced while preserving the essential information. Thus, when an N 
dimension distance matrix is scaled to two dimensions using MDS, the resulting two-dimensional 
data set represents the 2D coordinates of the N nodes.  

There are many types of MDS techniques, including metric MDS and nonmetric MDS, replicated 
MDS, weighted MDS, deterministic and probabilistic MDS. In classical metric MDS, proximities 
are treated as distances in a Euclidean space [51]. Analytical solutions are derived from the 
proximity matrix through singular value decomposition and provide the best low-rank 
approximation (e.g., 2D space) in the least squared error sense. In practice, the technique tolerates 
error gracefully, due to the over determined nature of the solution. Because classical metric MDS 
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has a closed-form solution, it can be performed more efficiently than other forms of MDS on 
large matrices. 

Classical MDS computes the coordinates X from a distance matrix D using singular value 
decomposition (SVD) on the double centered squared D. Double centering a matrix is subtracting 
the row and column means of the matrix from its elements, adding the grand mean, and 
multiplying it by -1/2. For a  P matrix of n points with m dimensions of each point, it can be 
shown that: 
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Let’s call the double centred matrix on the left-hand side of (1) B. Performing singular value 
decomposition on B gives us B = UVU’ and coordinates . To compute the coordinates 
of nodes from D, The two largest singular values and singular vectors of B for 2D networks and 
the three largest singular values and singular vectors of B for 3D networks are taken. There is 
little overhead for computing the coordinates in 3D space as compared to 2D space, which is a 
useful property of the non-linear data reduction method. Note that matrix B is positive semi-
definite, i.e., all its eigenvalues are real and non-negative, then the singular values and singular 
vectors coincide with the eigenvalues and eigenvectors.  

2/1UVX =

We briefly describe the MDS-MAP algorithms here. For details of MDS localization, please refer 
to [9][10][44][45][48]. In this report, MDS-MAP refers to the distributed MDS localization 
algorithm, without including any centralized versions, as we do not consider the centralize 
algorithm. The steps of MDS-MAP are as follows: 

1. For each node, neighbours within Rlm hops are involved in building its local map. The value 
of Rlm affects the amount of computation in building the local maps, as well as the quality. 
Often Rlm = 2 is used. 

2. Compute local maps for individual nodes. For each node, do the following: 

a. Compute shortest paths between all pairs of nodes in its local mapping range Rlm. The 
shortest path distances are used to construct the distance matrix for MDS. 

b. Apply MDS to the distance matrix and retain the first 2 (or 3) largest eigenvalues and 
eigenvectors to construct a 2D (or 3D) local map. The complexity of computing each 
local map is O(k3), where k is the average number of neighbours. Thus the 
complexity of computing n local maps is O(k3n), where n is the number of nodes. 
When computed in a distributed manner on each node in parallel, the computing 
complexity per node is O(k3). 

c. Refine the local map. Using the node coordinates in the MDS solution as the initial 
point, least squares minimization is performed to make the distances between nearby 
nodes match the measured ones. The computational expense of refinement is O(k3n). 
In the prototype implementation using Matlab, this refinement step is more 
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computationally expensive than MDS due to the poor performance of “loop” 
execution in Matlab. 

3. Merge local maps. Any node can be selected to perform the merge, though practically, certain 
nodes in the network that have more computing power or need to know positions of other 
nodes can be selected to construct the global map. Use a randomly selected starting node’s 
local map as the starting current map. Each time, the neighbour node whose local map shares 
the most nodes with the current map is selected to merge its local map into the current map. 
Two maps are merged using the coordinates of their common nodes. The best linear 
transformation (minimizing discrepancy errors) is computed to transform the coordinates of 
the common nodes in one map to those in the other map. To merge a new local map B into 
the current map A, a linear transformation (translation, reflection, orthogonal rotation, and 
scaling) is determined to ensure that the coordinates of the common nodes in map B after 
transformation are best conformed with those in current map A. That is, given the coordinates 
of common nodes in maps A and B as matrices and , the linear transformation  

delivers minimum sum of squared errors, i.e., 
AX X B (.)T

2
)(min ABT XXT − to merge map B into A. 

In section 4, we will experiment the map merge by using different starting nodes and different 
map merge orders to explore the impact of the merge order.  

The complexity of this step is O(k3n), where k is the average number of neighbours and n is 
the number of nodes. 

4. Refine the global map (optional). Using the node coordinates in the global map as the initial 
solution, least squares minimization is applied to make the distances between neighbouring 
nodes match the measured ones. 

This step costs O(n3) and is much more expensive than the other steps for large networks. 

5. Given sufficient anchor nodes (3 or more for 2D networks, 4 or more for 3D networks), 
transform the global map to an absolute map based on the absolute positions of anchors. For r 
anchors, the complexity of this step is O(r3 + n). 

2.2.2 Location Mapping Using CCA 

Before elaborating on our localization scheme applying Curvilinear Component Analysis (CCA), 
we first briefly discuss the non-linear data mapping method of CCA [43]. 

2.2.2.1 Non-linear Projection Using CCA 

Given N input vectors {  where each vector  is of n dimensions, CCA looks for N 
output vectors{ , where each  is of s dimensions (

}
}= y ns

Nixi ,...,1; = ix
Niyi ,...,1; i < ). Additionally, the 

distance between input vectors  and is preserved between output vectors and . That is, 

given the Euclidean distance between 's as: and the corresponding distance in 
the output spaceY

ix x y y
x =

),( yyd

j i j

i )( , jiij xxdX

jiij = , CCA pushes Y  to match  for every pair  while 
minimizing a cost function 

ij ijX ( )ji,

DRDC Ottawa TR 2008-020 9 
 

 
 
 



 
 

),()(
2
1 2

yijij
i ij

ij YFYXE λ−= ∑∑
≠

 (2)

Here  forms a  distance matrix of ijX NN × 2
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distance is taken, though CCA does not limit it to the Euclidean distance but allows any defined 
distance values; the same is true forY . is a weighing function, often bounded and 
monotonically decreasing in time (i.e., decreasing with each computing cycle). Decreasing 
exponential, sigmoid, or Lorentz functions are all suitable choices for F. We choose F as an 
exponential function for our experiments as shown in the next subsection.  
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In its minimization process of the cost function (2), CCA applies a different approach than most 
other methods (e.g., gradient descent methods) to improve the computing efficiency as described 
in [43]. Its update rule for each cycle is much simpler by pining one and moving all the other 

around. Only the distances from the node i to the other N-1 nodes need to be computed, 
instead of all the  distances in both the input and output spaces. This is different from 
other methods such as the stochastic gradient descent (

i

j

ii −∇≈∆ ) or the steepest gradient 
descent where one vector is moved every time according to the aggregated influence of every 
other . The update for each cycle in CCA is thus the following simple step: 
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YXYFty
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ij
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−
−=∆ ))(,()( λα  (3)

Here )(tα decreases with time similarly to usual stochastic gradient methods. For an adaptation 
cycle of all nodes (except i), the complexity is therefore only O(N) instead of O(N2) as in most 
other NLM algorithms. This not only converges the computation much faster, but also makes it 
more likely to eventually escape from local minima to reach a much deeper minimum as 
illustrated in [43]. 

2.2.2.3 Node Coordinates Projection 

We formulize the localization problem as the following: Given a distance matrix of N 
nodes, find the coordinates of all the nodes to achieve: 

)( NND ×

2

,
)(min ij

ji
ij pd −∑   for i,j=1,2,…N      (4)

where  
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dij is the measured/known distance between node i and j, and 

pij is the distance between node i and j computed using the calculated position coordinates of i 
and j.  

If dij is taken as the distance matrix of the input data set and pij the distance matrix of the output 
data set, CCA then pushes (4) to a minimum as it minimizes the cost function in (2).  

As the only known data of these N nodes assumed here is their distance matrix 
, we take the distance matrix as both the input data set, i.e., 

 and the inter-vector distance matrix of the input data set, i.e., . 

Even though is not the real distance between vectors (i.e., the row vectors) in , the 
CCA algorithm, being a neural network, projects data points quite well given a defined distance 
matrix without requiring that it be the real Euclidean distance between the input data vectors.  

)()( NNijNN ×× )(dD = D
= DX =

D D

)( NN×

)()( NNNN Dx ×× )( NNij ×

)( NN× )( NN×

In this way, we have now in the input space N vectors { }Nixi ,...,1; =  each of N dimensions (i.e., 
n=N). The output data set contains N vectors each reduced to a dimension of 2 (or 3). Without 
losing the generality of applicability to both 2D and 3D spaces, we use a dimension of 2 in the 
following discussions. Thus the output data set is denoted as which is in fact the 2D 
coordinates matrix of the N nodes. It is worth noting that unlike other methods such as iterative 
trilateration, cooperative algorithms using NLM including MDS, CCA, etc. often incur very little 
extra cost computing positions in 3D space compared with that in 2D. This property makes the 
NLM based cooperative algorithm advantageous for real network deployments.  

)2( ×Ny

x

Our CCA algorithm consists of the following two simple steps to project node coordinates given 
their distance matrix: 

1. Set the initial output estimation of  using the mean values of the first two columns of the 

input data set , adjusted by a uniformly randomized standard deviation of the same 
column.  

)2( ×Ny

)( NN×

2. In each cycle, select node i and compute for each node j )( ij ≠  the new from the   

current value of using: 
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Here we selected )(),( t
Y
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ij e λλ
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= . Both )(tα and )(tλ decrease with time (i.e., along each 
computing cycle). In our experiments, the following function (equation (6)) is used to implement 
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(i.e., using να = and νλ = )(t in (6) below) α and )(tλ , though other similar functions can be 
selected instead: 
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where c is the number of total computing cycles, which is often also called the training length in 
CCA. We choose the following values in our experiments:  

5.0)0( =α , 100/)0()( αα =c , { } 3,...,,max)0( 21 ×= Nstdstd stdλ  and 01.0)( =cλ , where  is 
the standard deviation for the i

istd
th column of the input data set .  )( NN×D

The number of training cycles required is mainly related to the size of the input data set and also 
the "goodness", i.e., the accuracy of the distance matrix. The bigger the input data set, i.e., the 
larger the N, the fewer the cycles are required projecting the final output data. A more accurate 
distance matrix would also result in fewer cycles, as the cost function of (1) will decrease much 
faster towards the minimum. A maximum number (e.g., 100 is used in our experiments for 
computing local maps) may be assigned to the total cycles allowed in the algorithm. During the 
execution, if we have the cost function ε<E  (e.g., ε is averaged to about 10-5 in range-based 
cases in our experiments) before reaching the maximum number of cycles, the algorithm exits and 
the projected data form the final output data set.  

Though the above description applies CCA to the task of determining node locations, the distance 
matrix used as the input for the algorithm is often not available for large networks. Recently, 
Drineas et al. [47] have proposed algorithms for distance matrix reconstruction for sensor 
network localization using single value decomposition.  This may provide an option to obtain the 
distance matrix for the network. We however assume that the distance matrix of the network is 
unknown. Instead, a distributed map algorithm [44] is adapted in the scheme to compute the node 
coordinates in the network. 

2.2.2.4 Distributed Map Algorithm Using CCA 

Adopting steps similar to the distributed map algorithm of MDS-MAP [10], we propose an 
alternative distributed map algorithm, the CCA-MAP algorithm. For simplicity, in the rest of the 
paper, we use MDS-MAP to refer to the distributed MDS localization scheme, i.e., MDS-MAP(P) 
and MDS-MAP(P,R) [10][44] because only the distributed version of MDS-MAP is considered in 
this report.  

The CCA-MAP scheme similar to MDS-MAP builds local maps for each node in the network and 
then merges them together to form a global map. Differently from MDS-MAP, CCA is employed 
in computing the node coordinates in the local map.  

Each node computes its local map using only the local information. If accurate ranging capability 
is available in the network, local distance between each pair of neighbouring nodes is measured 
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and known. Otherwise, only connectivity information is applied to assign value 1 to the edge 
between each neighbouring pair of nodes. Then a distance matrix for all the nodes in the Rlm hop 
neighbourhood of node x can be constructed using the shortest distance matrix as the 
approximation. Instead of a fixed Rlm=2, as that used in MDS-MAP algorithms [10][44], Rlm may 
be set adjustable in CCA-MAP. CCA reduction technique can generate quite accurate results with 
a reasonably accurate distance matrix of a small size, for example, a distance matrix of 12  or 
bigger. Therefore, in the ranging based scenarios where the local distance measurements are 
known with a certain level of accuracy (e.g., 5% local distance measurement error), the one hop 
neighbourhood distance matrix of a certain size, e.g., size >12

12×

12× , not only is more accurate 
than the two hop distance matrix of approximation, but can also be computed faster using CCA to 
produce more accurate position estimates. In the range-free options, a bigger size of the distance 
matrix assists better in mapping to the node position coordinates using CCA. Thus in the range-
based option of the algorithm, for any given node, if its one hop neighbourhood has more than 12 
nodes, Rlm =1 may be chosen for improved performance. Otherwise, Rlm =2 is applied. In the 
range-free computations of the local map where the local distance matrix is particularly 
inaccurate using the hop count approximation, often Rlm =1 is only taken when the one hop 
neighbourhood expands to a much larger size of 30 or 40.    

The steps of CCA-MAP can be described as follows: 

1. For each node, neighbours within Rlm hops are included in building its local map. Compute the 
shortest distance matrix of the local map and take it as the approximate distance matrix LD. 

2. Each node applies the CCA algorithm, using the local distance matrix LD as both the input data 
set and the distance matrix of the input data set as described in the previous subsection. This 
generates the relative coordinates for each node in the local map of node x of its Rlm hop 
neighbourhood. The complexity of computing each local map is , where k is the average 
number of neighbours. Thus the complexity of computing n local maps is , where n is the 
total number of nodes in the network. In comparison, the cost of computing n local maps in MDS-
MAP is O(k

)(kO 2

2

)( 2k

)( nkO

3n). MDS-MAP then may apply a local refinement process on each local map, which 
has an additional computational cost of O(k3n). If local maps are computed in the distributed 
manner on each of the n nodes, the time complexity of local map computing is O . 

3. Merge local maps as described in the previous subsection for the MDS-MAP algorithm. The 
complexity of this step is O(k3n), where k is the average number of neighbours and n is the 
number of nodes. The cost here is same as that of MDS-MAP. After map merge, MDS-MAP may 
apply a global refinement process whose computational cost is O(n3), which tends to dominate 
overall computational complexity for large networks. Note that the refinement processes of MDS-
MAP for both the local maps in step 2 and the global map here are optional. We also have found 
that these extra refinement processes may not necessarily improve the node position estimate 
accuracy for many scenarios. 

4. Given sufficient anchor nodes (3 or more for 2D space and 4 or more for 3D space), transform 
the merged map to an absolute map based on the absolute positions of the anchor nodes. For r 
anchors, the complexity of this step is O(r3 + n). 
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In the CCA-MAP scheme, no refinement is applied because the results are often satisfactory 
without further optimization. 

The computing of the local map can be distributed at each local node, or can be carried out at 
more powerful gateway nodes of each cluster should the sensor network have a hierarchical 
structure to relieve the severely resource-limited sensor nodes from any of the computing and 
communication demands imposed by localization. The local maps can be merged in parallel in 
different parts of the network by selected nodes. There is no need for anchor nodes in merging the 
maps. When at least three anchor nodes are found in the merged map of a subnetwork, an 
absolute map of the subnetwork can be computed using the coordinates of the anchor nodes to 
obtain the absolute coordinate values of all the nodes in the map of the subnetwork. The options 
for the distribution of the algorithm computation and their related messaging requirements are 
discussed later in Section 4. 

14 DRDC Ottawa TR 2008-020 
 
 
 
 



 
 

3 Localization Experiments for SASNet Scenarios 

In this section, we apply MDS-MAP and CCA-MAP to SASNet deployment scenarios to evaluate 
the performance of the two localization schemes. 

3.1 Scenarios and Simulation Environments 

The key SASNet scenarios are defined in the SASNet requirement document [1] and the SASNet 
demonstration plan [2]. In the scenarios, ASNet is deployed to monitor perimeters, road 
conjunctions, and choke points and to provide early warning of enemy approaches. The 
deployment topology for different scenarios and other configuration parameters (e.g., network 
sizes) are discussed in the above two documents [1][2].  

In the scenarios for perimeter monitoring, full loop and partial loop protection deployment were 
specified in [1] with partial loop as the preferred option. The size of the network was specified at 
about 60 sensor nodes or more [1]. Too many sensor nodes are not favoured, as that would hinder 
the speedy deployment. For the perimeter-monitoring scenario, the C-shape network is selected 
for the experiments. 

For road conjunction monitoring, up to five different sections/cluster-groups may be deployed. 
Each of the sections assumes a network that may be modelled as either a rectangle or a square. 
The size of each section was specified at about 50-100 sensor nodes. Though the sections may be 
interconnected for communications, a map is required for each of the sections. Localization is 
thus performed separately for each section. This implies that each section has at least three anchor 
nodes of its own in order to generate an absolute map for the section. Different sections will not 
share the anchor nodes because anchor nodes over long distance will not deliver accurate distance 
measurements or position estimates. 

To monitor a choke point, a network of about 50 or more sensor nodes may be required as 
specified in [1]. The topology/shape of the deployed area can be modelled as a rectangle or a 
square or irregular. The scenarios of early warning provisioning often contains multiple network 
sections /cluster-groups. Each of these cluster groups is in fact quite similar to the other scenarios 
as described above. 

In summary, the following network configurations are selected in the experiments: the C-shape 
network as a partial loop of perimeter monitoring; the rectangle-shaped network for roadside and 
approach area monitoring; and the irregular (close to square) network for road conjunction and 
choke point monitoring. 

In summary, the following network configurations are selected in the experiments: the C-shape 
network as a partial loop of perimeter monitoring; the rectangle-shaped network for roadside and 
approach area monitoring; and the irregular (close to square) network for road conjunction and 
choke point monitoring. 
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In addition to the different sizes of the sensor networks and the different topologies / shapes of the 
network coverage, the sensor nodes may be randomly scattered, or more carefully planted during 
the deployment, corresponding to the random network and the grid network. In our experiments, 
it has been found that a random network often requires relatively higher average node 
connectivity levels to get connected. When connected, the node connectivity levels are often very 
unbalanced; with some nodes having a large number of neighbours and others a couple of 
connected links. Such a network is very vulnerable to failure and prone to network partitions if 
even a single link failure is incurred. Figure 2 below illustrates the connectivity of two network 
examples that cover the same area of 10 10× . Network (a) has nodes randomly scattered and (b) 
has nodes placed approximately along grids with about 10% node placement error. The random 
network (a) contains twice as many nodes as that in network (b) and has much unbalanced 
network connectivity. The random network in Figure 2 (a) only gets connected when the average 
node connectivity level reaches CL=8.39. It can be see in the Figure 2 (a) that while some nodes 
have only one or two links, other nodes have quite heavily populated neighbourhood. The 
network in Figure 2 (b) on the other hand gets fully connected at an average node connectivity 
level of CL=2.88. At CL=5.98 as shown in Figure 2 (b), the connected radio links are quite 
evenly distributed among all the nodes, creating no area that may be threatened by single point of 
failure. The performance of radio networks degrades when the node connectivity level is too high 
because of the crowded neighbourhood. The network is also very vulnerable when the node 
connectivity level is too low. Generally, the node connectivity at about CL=6 is preferred for 
better radio communications [18]. A network with very unbalanced node connectivity levels is 
not favoured. Therefore, though many claim and fancy the random scattering of sensor nodes in a 
WSN, a more practical approach would still require that the sensor node be placed with some care 
close to the desirable and required locations.  
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(a) Random network of 200 nodes -
Average node connectivity level CL=8.39
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(b) Grid network of 100 nodes -
 Average Connectivity Level CL= 5.98

Figure 2. Network connectivity comparison of random and grid networks 

However, the well-formed grid network often requires a somewhat lengthy deployment process 
depending how precisely the grid should be formed. To achieve a fairly fast deployment process 
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that can still establish a reasonably well-formed network, near grid placement of node with 
tolerable error on the placement positions may be one of the options. Thus in the experiments 
presented in this report, the grid like network is often selected. In these networks, each node is 
deployed to a grid point with the placement error uniformly distributed in the range of [-20%i, 
20%i], where i is the unit length. The random network cases are also thoroughly examined in our 
studies [4], though only a couple of random network examples will be covered here for the 
purpose of discussions of performance evaluations.    

We currently do not have yet the final decision on the number of sensor nodes that would be 
under the governance of one fusion node. In the map generation process using either MDS or 
CCA, there is no difference in the algorithm when computing the position of a sensor node or a 
fusion node. Where the algorithm should be implemented and executed on the other hand would 
be determined by the different capabilities of the different types of nodes. These implementation 
issues will be discussed in the next section.  

During the experiments, for each network type, the algorithms were run on multiple randomly 
generated network samples. Several sets of differently positioned anchor nodes are selected for 
each network sample to examine the effects of anchor nodes. Both range-based and range free 
options are tested. When using the range free option, hop count is used as the distance matrix 
between a pair of nodes as described before. In the range-based scenarios, the range is modelled 
as the actual distance combined with Gaussian noise. Thus, the range measured between 
neighbouring nodes is a random value drawn from a normal distribution with actual distance as 
the mean and a standard deviation of 5%.  

In the following discussions, MDS-MAP refers to the distributed MDS-MAP algorithm as 
indicated in the previous section. Though originally MDS-MAP includes the centralized version, 
we do not consider the centralized map algorithm in this project.  

3.2 C-shape Networks 

3.2.1 Network Experiment Parameters & Configurations 

A C-shape grid network of 79 nodes with node placement error uniformly distributed in the range 
of [-20%i, 20%i] is employed in this experiment. The network area consists of a 10 square 
with  set as the placement unit length.  Selecting anchor nodes at various positions in the 
network, both CCA-MAP and MDS-MAP schemes have been tested. The algorithms were run on 
multiple randomly generated network samples 

rr 10×
1=i

Figure 3 depicts the anchor node positions when 3 anchor nodes are deployed with known 
location coordinates in the network. Figure 4 and Figure 5 illustrate the different sets of anchor 
positions selected when 4 and 6 anchor nodes are deployed in the network. Experiments were 
conducted across C-shape network scenarios that consist of these different anchor sets of different 
numbers of anchor nodes. Multiple network samples of the C-shape network were generated. For 
each of the network samples, the algorithms were run using each of the anchor sets as shown here 
in the Figures. 
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Figure 3 C-shape network scenarios with three anchor nodes 
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Figure 4 C-shape network scenarios with 4 anchor nodes 
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In the algorithms of both CCA-MAP and MDS-MAP, local maps are computed first for each 
node. The local maps are then merged into a global map. Next the merged global map is 
translated/rotated into the absolute global map using the known coordinates of the anchor nodes. 
Each node acquires its coordinates in the global map. When merging the global map, the local 
map selected as the starting local map can be different. Often, the starting local map is randomly 
chosen. In the experiments, different local maps are tested as the starting merging map. Note that 
these are the nodes whose local maps are used as the starting map for merging. They are not 
necessarily the nodes that start executing the map merging. In fact, map merging can be carried 
on any node selected based on the computing power, communication bandwidth and other 
resource capabilities of the node. 
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Figure 5 C-shape network scenarios with 6 anchor nodes 

3.2.2 Experiment Results 

In the experiments of C-Shape grid networks, the network average connectivity level increases 
from CL=3.23 to CL=13.25, with radio range spanning from r=1.2i to r=2.65i. At the 
connectivity level lower than 3.23, the network is often partitioned.  

In range-based scenarios, with an average of 5% measurement error on local distance between 
each pair of neighbouring nodes, the median errors of the estimated coordinates are illustrated in 
Figure 6, which depicts the average error on computed coordinates as a function of the average 
connectivity level. For any given number of anchor nodes, e.g., the three-anchor node cases, the 
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average (median) performance result is taken from all the scenarios that consist of the different 
three-node anchor sets as presented in Figure 3. It is also computed with several different starting 
nodes. Therefore, degraded positioning results, from poorly positioned anchor sets, are also taken 
into account. This is the same for all the other cases of different anchor nodes discussed in this 
report.  

Both CCA-MAP and MDS-MAP perform fairly well in this network configuration. Employing 
CCA-MAP, at certain Connectivity Level (CL), e.g.,CL>5.2, using 3 anchor nodes, the median 
error can be contained to error<0.1r. MDS-MAP brings down the position median error to 
error<0.1r when CL>5.6, though the error may increase for certain CL values.  
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Figure 6 C-shape network of 79 nodes using range-based localization with 5% local distance 
measurement error 

 

It should be noted that although almost all localization schemes reported could show improved 
performance when the sensor network has a high connectivity level, a large number of 
neighbouring nodes may not be plausible in real deployments as it hampers the radio network 
throughput. Therefore we are not particularly interested in using high connectivity levels to 
produce better positioning results but are more concerned with the performance at reasonable 
connectivity levels.  Both MDS-MAP and CCA-MAP show the advantage of producing more 
accurate position estimates at relatively low connectivity levels compared with most of the 
existing methods. The CCA-MAP algorithm may be more stable at certain connectivity levels 
than the MDS-MAP in this network configuration.  

Increasing the number of anchor nodes may improve the performance, though not necessarily. 
First, this is because any further improvement to the already quite accurate estimate results 
generated by CCA-MAP is difficult. Secondly, further improvement requires “good” positions of 
the anchor nodes, not merely more of them. In the experiments running both CCA-MAP and 
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MDS-MAP algorithms, for three anchor nodes, anchor sets (4) and (5), as illustrated in Figure 3, 
deliver the best position median accuracy. For four anchor nodes scenarios, anchor sets (4) and 
(5), as shown in Figure 4, again perform the best among all the five different sets. For the 
scenarios using six anchor sets, anchor set (4) (Figure 5) renders better than others. When the 
number of anchor nodes is increased from 3 to 6, the differences in the results from different sets 
of the anchor nodes are diminished. That is, when there are 6 anchor nodes in the network, most 
of the anchor sets deliver similar results except the set (5) as depicted in Figure 5, which is worse 
than the rest of the cases. For the scenarios of using only three anchor nodes, anchor set (4) and 
(5) perform apparently better than the other sets. Figure 7 depicts the performance of the different 
anchor sets for range-based scenarios. The cases of 6 anchors are not plotted here as most of the 
anchor sets deliver similar results except set (5) as described above. The anchor set numbers used 
in the figures and in the discussions here are the same as those illustrated in Figure 3, Figure 4 
and Figure 5. 
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Figure 7 Performance of different anchor sets at different locations of the network 

The comparisons between CCA-MAP and MDS-MAP for range-based scenarios are illustrated in 
Figure 8. CCA-MAP generates better results at certain ranges of the average node connectivity 
levels. CCA-MAP and MDS-MAP produce most similar results round CL=6, where CCA-MAP 
outperforms MDS-MAP by around 1%-2%r in median position accuracy. When CL<6 and 
CL>7, CCA-MAP improved MDS-MAP from about 3%r to more than 10%r in median position 
estimate accuracy. 
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Figure 8 Comparison of CCA-MAP and MDS-MAP for range-based cases 

Using only the connectivity information in range-free scenarios, the localization results for the 
same set of random networks are presented in Figure 9. Without ranging capabilities, the 
performance is degraded as expected. Using 3 anchor nodes, CCA-MAP achieves median error of 
position estimation at 0.14r around connectivity level CL=5.1. Though the errors may fluctuate 
with increased CL, the median error stays at error<0.2r when CL>5. At CL>12.86 the median 
error comes down to error<0.10r.  
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Figure 9 C-shape network of 79 nodes using range-free localization 

22 DRDC Ottawa TR 2008-020 
 
 
 
 



 
 

Using the MDS-MAP algorithm with 3 anchor nodes, the median errors of position estimation 
come down to error<0.2r around connectivity level CL=5.74. Around CL=13.14, the median 
errors are brought down to error<0.1r. 

Increasing the number of anchors improves the results especially for low connectivity levels. 
Note that various anchor sets for the six anchor scenarios were selected that include some badly 
positioned anchor sets (e.g., set (5) and (6) as shown in Figure 5). This may explain why the 
average median errors of the scenarios that encompass six anchor nodes do not perform 
considerably better than the scenarios that have only three or four anchor nodes. In fact, when 
using only a small number of anchor nodes, adding a couple of more anchor nodes may not help 
with the performance. The positions of the anchor nodes can impact the estimated results. 

It can be observed that although a higher average node connectivity level does bring down the 
estimation errors, the results can fluctuate with the increased network connectivity level. With 
increased radio range and connectivity level, more nodes are included in the local map while 
more of them use the sum of the distances or hops over multiple hops to approximate their true 
distance. Thus when the radio radius increases from r to δ+r , the approximated local distance 
matrix may be actually less accurate at δ+r . However, a bigger matrix assists in the data 
reduction process to generate more accurate results due to the fact that more constraints are given 
in the matrix. These two factors combined together may result in a loss of accuracy when the 
matrix becomes too inaccurate and also the main trend of improved error ratios when the matrix 
is growing in size. This explains the local fluctuation of the results and the main trend of 
improvements with increased connectivity levels.  

Note that in the published literature, the results reported often show no fluctuation but “well 
behaved” curves. This is because the authors did not compute the results using small paced values 
of connectivity levels and thus fail to observe the local swinging effect of the results.  
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Figure 10 Comparisons of CCA-MAP and MDS-MAP for range free options 

The comparisons between CCA-MAP and MDS-MAP for range-free scenarios are presented in 
Figure 10. CCA-MAP performs better than MDS-MAP for certain connectivity levels from CL=5 
to CL=13 (about 3-4%r). For 5<CL<7, CCA-MAP improves MDS-MAP for about 4%r to 7%r 
most of the time. The difference between CCA-MAP and MDS-MAP decreases when the CL 
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increases. At CL>12, the different between CCA-MAP and MDS-MAP is diminished to about 
1%r and less. 

In range-free localization scenarios, the results are less accurate and fluctuate more. When using 3 
anchor nodes, CCA-MAP generates on average better results at CL>5 using anchor set (4) shown 
in Figure 3. Other anchor sets perform comparably except set (2) which is often worse than 
others. With four anchor nodes, CCA-MAP range free localization favours anchor set (4) and (5) 
as shown in Figure 4. The four anchor node set (2) is still worse in its performance compared with 
other sets. When using 6 anchor nodes, anchor set (4) as depicted in Figure 5 performs better, 
while anchor set (5) is ranked the worst among the six anchor sets. Anchor set (1) of six anchor 
nodes does not perform as well as others either.  

For MDS-MAP range free algorithms, when using three anchor nodes, anchor set (4) on average 
performs better than other sets. Anchor set (2) and (3) do not perform as well as other sets. Using 
four anchor nodes, anchor set (5), as show in Figure 4, generates on average better results. 
Anchor set (3) is worse than other sets most of the time. When using 6 anchor nodes, anchor set 
(5) is unstable in generating the results and performs considerably worse than other sets. Set (1) is 
also slightly worse (from 2%-6%r worse when CL>5) than other sets.    

When merging local maps into a global map, selecting a different local map as the starting map 
for the merge process does not seem to make any consistent significant difference in the results. 

3.3 Rectangle Networks 

3.3.1 Network Experiment Parameters & Configurations 

The network configurations in this subsection form a coverage area in the shape close to a 
rectangle. Such a long shaped sensor network may be deployed for monitoring roadside or other 
approach areas. In the experiment, we select a network area consisting of a rectangle to 
deploy 100 nodes to grid points with node placement error uniformed distributed in the range of 
[-20%i, 20%i], taking i=1 as placement unit. Figure 11 depicts such an example network. 
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Figure 11 A Rectangle network of 100 nodes 

Different anchor sets of different positions were selected for the localization simulations. In 
Figure 12, Figure 13 and Figure 14, network configurations with three, four and six anchor nodes 
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deployed to various locations are presented. As in the previous subsection for C-shape networks, 
all these cases, consisting of various anchor node positions, are computed to report their average 
performance as well as their performance deviations.  
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Figure 12 Rectangle network scenarios with three anchor nodes 
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Figure 13 Rectangle network scenarios with four anchor nodes 
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Figure 14 Rectangle network scenarios with six anchor nodes 

26 DRDC Ottawa TR 2008-020 
 
 
 
 



 
 

Please note that the diagrams in the figures (Figure 12, Figure 13 and Figure 14) were plotted to 
show the positions of the anchor nodes. Due to the space limitations, the sensor nodes look to be 
crowded together, though in the networks, they are well paced to form the coverage as described 
above. Please note that there is no corresponding relationship between the set numbering in 
scenarios consisting of different numbers of anchor nodes. For example, set (3) of three anchor 
nodes and set (3) of four anchor nodes may have no commonality in the anchor node positions. 
Thus, in the following discussions, one should not assume that set (3) of four anchor nodes 
perform better than set (3) of three anchor nodes. 

3.3.2 Experiment Results 

In the experiments of rectangle networks, the network average connectivity level increases from 
CL=3.26 to CL=14.12, with radio range spanning from r=1.2i to r=2.65i. 

In range-based scenarios, with an average of 5% measurement error on local distance between 
each pair of neighbouring nodes, the median errors of the estimated coordinates are illustrated in 
Figure 15 which depicts the average error on computed coordinates as a function of the average 
connectivity level. 
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Figure 15 Rectangle 100 node-network using range-based localization with 5% local distance 
measurement error 

Using CCA-MAP, at Connectivity Level CL>5.1, with 3 anchor nodes, the median error can be 
contained to error<0.1r. When CL>5.38, using only 3 anchor nodes, CCA-MAP can push down 
the average position median error to error<0.05r. MDS-MAP as well brings down the position 
median error to error<0.1r when CL>5.1, though the error remains between 0.05r<error<0.1r. 
Overall, using the range based method, both CCA-MAP and MDS-MAP perform well for this 
network configuration. 
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When using 3 anchor nodes in the network, in both CCA-MAP and MDS-MAP schemes, anchor 
set (1) as shown in Figure 12 on average performs the best, especially when CL>7. Anchor set 
(4), (5) and (6) generate less accurate results than others when CL>5 especially when using 
MDS-MAP. For example, using MDS-MAP anchor set (4) may produce 10%r more median 
errors on estimated coordinates than anchor set (1) when CL>8.  With the CCA-MAP algorithm, 
the difference between anchor set (4), (5) and the rest of the sets is not significant, e.g., about 1-
2%r. From CL=5 to CL=7, using 3 anchor nodes, anchor set 6 may generate reasonably good 
results for CCA-MAP as well. The comparisons of the results produced by different anchor sets 
are not plotted here because most of them are not significant and the differences hard to be 
depicted well. It should be understood that the average results here only demonstrate the average 
trend. For a specific deployment case, the particular topology will affect the results and should be 
simulated for evaluation. It is generally true that at lower connectivity levels, the anchor positions 
are more important to maintain a low error ratio.      

Deploying four anchor nodes in the network, we tested some outlier positions for the anchor 
nodes so as to cluster them at only one side of the network, as shown in Figure 13. Using MDS-
MAP, anchor set (4) performs better while anchor set (6) and (7) are worse than others. The 
difference between anchor set (6) and anchor set (4) can be more than 20%r when CL<7 and 
about 2%-7%r when CL>7. Using CCA-MAP, in addition to anchor set (4), set (3) also performs 
well. Anchor set (6) and (7) are ranked worst. Here the difference between anchor set (6) and 
anchor set (4) can be more than 20%r when CL<7 and about 1%-5%r when CL>7.  
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Figure 16 Comparison between CCA-MAP and MDS-MAP for rectangle network of 100 nodes: 
local distance measured with 5% error 

Having six anchor nodes in the network, CCA-MAP does not generate major differences in the 
results obtained using different anchor sets. When 4<CL<6, set (5) and (6) may not perform well 
(about 4-7%r worse). When CL>6, set (5) and (1) may have a few “bad” points, though the 
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difference is not significant (about 2%r).  MDS-MAP scheme in this case also ranks set (5) as the 
worst in average (about 2%r worse). At 6<CL<8, anchor set (1) may have a few “bad” points of 
about 3%r worse than set (3) and set (4), while set (6) may generate 3%-4%r more error ratio at 
CL>13. 

Figure 16 illustrates the comparisons between CCA-MAP and MDS-MAP for the rectangle 
network scenario in range-based scenarios. Compared with MDS-MAP, CCA-MAP may deliver 
about 4%-5%r accuracy improvements when CL>4. 

The performance results from the range-free method using both CCA-MAP and MDS-MAP are 
presented in Figure 17. Without ranging information, rectangle networks become challenging for 
MDS-MAP. Though it may achieve a median error ratio <20%r for some connectivity levels, the 
results fluctuate bouncing around 20%-40%r or even higher. The results from CCA-MAP also 
fluctuate with median error between 10%-30%r, mostly under 20%r, from CL=5.08 to 
CL=12.88. At CL>12.88, the median error ratio is contained mostly as error< 10%r.  

The long shape of the rectangle network is more challenging than square shaped networks for 
distributed map algorithms. One reason is because of the special grid like structure where the 
nodes lying at diagonally adjacent intersections always bring errors when adding hop distances to 
approximate the true distance between the two nodes. This is actually true for most grid types of 
network. Additionally, for rectangle networks, the linear topology adds up the distance matrix 
errors along certain directions rather than possibly cancel them as in a more regular square type 
shape that expands to all directions. 

4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Connectivity Level

M
ed

ia
n 

E
rro

r (
r)

CCA-MAP

 

 

4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Connectivity Level

M
ed

ia
n 

E
rro

r (
r)

MDS-MAP

 

 
3 anchors
4 anchors
6 anchors

3 anchors
4 anchors
6 anchors

 

Figure 17 Rectangle network localization using connectivity information only 

Figure 18 illustrates the differences between CCA-MAP and MDS-MAP in range-free scenarios. 
CCA-MAP can outperform MDS-MAP for about 10-20%r in certain CL ranges and about 3-8%r 
around 5<CL<7. 
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Figure 18 Comparison of CCA-MAP and MDS-MAP: rectangle network & range-free 

In range-free scenarios, when using only 3 anchor nodes, anchor set (1) performs well at CL>5 in 
both CCA-MAP and MDS-MAP algorithms, while set (4) is worse than other sets most of the 
time. The difference between results from set (1) and set (4) can be 20%r at certain CL.  
Deploying 4 anchor nodes as shown in Figure 13 for both CCA-MAP and MDS-MAP, anchor set 
(4) and also (3) perform relatively better and are more stable than other sets at CL>4. Set (6) and 
set (7) are on average the worst in the performance ranks. In the scenarios of 6 anchor nodes, on 
average anchor set (4) performs better than other sets. Using 6 anchor nodes, anchor sets (5) and 
(6) are least accurate. Anchor set (1) also can have bad spike error points. In the scenarios, the 
difference between results generated by anchor set (4) and a less accurate anchor set, set (5), for 
example, can be more than 10%r.   

3.4 Area Surveillance Networks 

3.4.1 Network Experiment Parameters & Configurations 

We selected an irregular type of network that is close to the shape of a rectangle but not strictly a 
rectangle.  This type of network intends to model the SASNet scenarios of road junction or choke 
point monitoring. Figure 19 below plots a sample network of this type where nodes are spaced but 
with jitters assuming terrain obstacles or other conditions. Though both CCA-MAP and MDS-
MAP were tested before [10][4] showing good performance for squared grid type networks, the 
network not strictly square in shape, nor really grid in node placement may be closer to the real 
scenario. 
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Figure 19 An Irregular Network of 80 Nodes 

Figure 20 and Figure 21illustrate the scenarios where each consists of three or four anchor nodes 
deployed at different positions. As for the previous network types, CCA-MAP and MDS-MAP 
algorithms are applied to compute location estimates for each of these scenarios across multiple 
network samples to obtain the performance measurements.  
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Figure 20 Irregular network scenarios with three anchor nodes 
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Figure 21 Irregular network scenarios with four anchor nodes 

3.4.2 Experiment Results 

In the experiments of irregular networks, the network average connectivity level increases from 
CL=4.28 to CL=17, with radio range spanning from r=1.2i to r=2.65i.  

Knowing local distance with 5%r average measurement error, both CCA-MAP and MDS-MAP 
algorithms deliver good position accuracy for this type of irregular networks. Figure 22 below 
illustrates the median error of the estimated node coordinates using only three anchor nodes. 
Applying CCA-MAP, at CL>4.43, the median error is contained within 10%r. At CL>5, the 
median error is brought down to <5%r. At CL>10, the median error is under 1%r. The results 
generated by MDS-MAP are about 1%-2%r less accurate than those generated by CCA-MAP. 
We do not display plots of results generated by using more anchor nodes as the accuracy level 
produced by only three anchor nodes is quite satisfactory.  

Among the different 3 anchor sets as shown in Figure 20, anchor set (1) performs well in both 
CCA-MAP and MDS-MAP algorithms using the range-based method, as illustrated in Figure 23. 
Anchor set 5 appears to be the least accurate set in both CCA-MAP and MDS-MAP 
computations. Using CCA-MAP, anchor set 4 may have a more stable performance than using 
MDS-MAP. However, the differences are mostly not significant being around only 1%-2%r.   
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Figure 22 Irregular networks with 80 nodes: range-based options 
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Figure 23 Performance for irregular network works using range-based method with 3 anchor 
nodes 

Without range measurements, CCA-MAP and MDS-MAP project the node position coordinates 
using only the connectivity information. The accuracy of the estimates is deteriorated as expected. 
The results also fluctuate along different node connectivity levels. Employing CCA-MAP, the 
position median error may be brought down to around 10%r when CL>6.28. When CL>8.2, the 
median error is consistently under 10%r approaching 5%r.   
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Figure 24 Performance of Irregular networks: range-free cases 

Applying the MDS-MAP algorithm, the results fluctuate more with the increased connectivity 
levels, especially when the node average connectivity is at 5.8<CL<12.9. Results from the MDS-
MAP algorithm are about 2%-4%r less accurate than those generated by CCA-MAP when 
5.8<CL<12.9, as shown in Figure 25.  

Comparing different sets of anchor nodes, in range free scenarios, anchor set (1) in Figure 20 of 
three anchors and set (1) in Figure 21 of four anchors perform relatively consistently and well 
across different connectivity levels. Other anchor sets all have spikes of error surges at certain 
connectivity levels. Increasing the number of anchor nodes or the network connectivity level 
mitigates the differences between the results generated by different anchor nodes.  
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Figure 25 Performance comparison of CCA-MAP and MDS-MAP for range free cases 
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3.5 Random Networks 

3.5.1 Network Experiment Parameters & Configurations 
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Figure 26 Random partial loop network of 60 nodes 

Though random networks may not be practical in SASNet field deployment, we still cover it 
briefly here to present a more complete set of different network scenarios. More thorough studies 
on localization of nodes in random network configurations applying MDS-MAP and CCA-MAP 
can be found in [10]][4]]. We select in particular the network configuration of a partial loop as 
show in Figure 26. Different from the C-shape type of network, the partial loop network takes a 
longer shape rather than a complete symmetric square area. This places extra challenge in 
addition to the fact that the nodes are randomly placed. Figure 27, Figure 28 and Figure 29 
illustrate the scenarios of different anchor sets selected for the experiments. 
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Figure 27 Partial loop network of 60 nodes: 3 anchor scenarios 
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Figure 28 Partial loop network of 60 nodes: 4 anchor scenarios 
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Figure 29 Partial loop network of 60 nodes:6  anchor scenarios 
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3.5.2 Experiment Results 

In the experiments of partial loop networks, the network average connectivity level increases 
from CL=5.27 to CL=21, with radio radius spanning from r=1.0i to r=2.65i.  
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Figure 30 Range based localization with 5% of local distance measurement error 

Knowing local distance with 5% of measurement error, the location estimation results are 
presented in Figure 30. The CCA-MAP algorithm can contain the position estimate error within 
10%r at CL>10 and within about 5%r at CL>12.56 using 3 anchor nodes. The MDS-MAP 
algorithm can also bring the median error down to <10%r at CL>16. Using 3 and 4 anchor nodes 
in CCA-MAP, anchor sets (1) and (4) perform better at lower CL (CL<8) region, while set (5) is 
the worst. In MDS-MAP, set (1) performs better than other sets. Set (4) does not perform as well 
as in CCA-MAP.  

Without any ranging capabilities, both CCA-MAP and MDS-MAP have difficulties in delivering 
the estimation accuracy under10%r. The results are presented in Figure 31. The results from both 
algorithms are fluctuating and unstable. Using 3 anchor nodes, CCA-MAP generates position 
estimates with about 30%r median error. Deploying 6 anchor nodes, both MDS-MAP and CCA-
MAP produce results of having median errors at about 25-30%r.  

For partial loop random networks, if using only connectivity information, neither CCA-MAP nor 
MDS-MAP delivers the required position estimation accuracy. In fact, even for the uniform 
square shaped random networks, it was found in our previous studies [4]][5]] that the range free 
CCA-MAP and MDS-MAP method could hardly bring the median error down to <10%r when 
using 3-5 anchor nodes at CL<20. 
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Figure 31 Partial loop random network: range-free cases 

 

3.6 Issues and Analysis 

3.6.1 Parameters and Computing Cost 

As demonstrated in the previous subsections, accurate position estimation results may be 
achieved using CCA-MAP and MDS-MAP for many different scenarios using only a minimum 
number of anchor nodes. However, the computational cost of such cooperative algorithms is a 
major concern requiring further investigations and careful assessment.  

The following observations were made through the experiments of the two different map 
algorithms on various network scenarios. 

CCA-MAP may achieve better accuracy than MDS-MAP in mapping node positions for many 
different scenarios. The CCA algorithm used in CCA-MAP has a much stronger minimization 
process explicitly targeting the cost function of the distance matrix, compared with the classic 
MDS algorithm used in MDS-MAP which adopts the eigenvector approximation of coordinates. 
Thus, CCA-MAP can be more accurate than MDS-MAP.  

Though the CCA reduction algorithm has a smaller computational cost than the MDS reduction, 
(O(N2) vs. O(N3)), there is hardly much difference in the computing complexity of local maps as 
the local maps are all very small. In fact, as the MDS solution has a closed form and CCA does 
not, CCA may be made to run multiple times to search for a better point projection because every 
run can deliver a different set of outputs. This benefits the algorithm in attaining better mapping 
accuracy. The disadvantage is that retry increases considerably the computation time. The small 
size of the local map distance matrix also requests a relatively large cycle value for CCA (e.g., 
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100 was used in our experiments). It is expected that CCA local map computation would not be 
much lighter than MDS local map computing, if not "heavier". The refinement process used in 
MDS-MAP would exceed the computing expense of CCA-MAP as the refinement process is a 
minimization process which is less efficient than CCA. The refinement process also needs to be 
applied on the global map to produce better results, which is very expensive due to the size of the 
global maps. CCA is only applied to the local map thus has no cost surge for a large network size. 

We did not observe significant improvement brought by the refinement process in the MDS-MAP 
algorithm for the network configurations and the connectivity levels of our interest.  

The execution time of local maps using CCA-MAP varies for different scenarios. The real factors 
influencing the execution cost come from the input data matrix of the approximated distance 
matrix of local maps. A smaller accurate distance matrix would take less time to compute than a 
bigger inaccurate distance matrix. If too small, the distance matrix makes it harder to map 
accurately the output points. Then it may also increase the computational expenses with increased 
loop cycles. The matrix size and the cycle values can be tuned for CCA algorithm to handle 
different network configurations using the most suitable settings.  

Due to the poor performance of “loop” executions in Matlab, the time benchmark of CCA 
algorithms cannot reflect the real time expense should it be implemented in a real system. During 
the experiments, using the range-based option, the average time for computing each local map 
using CCA-MAP ranges from 0.2sec to 1 sec, except in the irregular network scenarios where the 
local map computing time averages between 0.5sec to 1.5sec. Increasing the connectivity level 
thus the size of the local distance matrix would extend the computing time temporarily for a few 
CL levels but not always. This is because when the connectivity level is higher the distance 
matrix will be bigger and more accurate which in turn speeds up the CCA mapping process. So at 
higher CL, the average computing time tends to decrease.  

In range-free cases, the approximated distance matrix is much less accurate and thus extends 
sharply the time of CCA mapping. In average, it takes from 0.2sec to 3.7sec to compute each 
local map. Increasing the connectivity level in range-free cases almost always prolongs the 
execution time, as the bigger matrix here is usually not more accurate.  

In the current implementation of CCA-MAP and MDS-MAP algorithms in Matlab, MDS-MAP 
can execute much faster than CCA-MAP because of the poor loop execution performance 
encountered by CCA-MAP. "Loop" execution in Matlab has extremely poor performance, thus 
"loops should be avoided at all cost" in Matlab programming. MDS-MAP implementation has 
avoided using loops by invoking the eigenvector/eigenvalue decomposition function offered by 
Matlab. CCA-MAP on the other hand runs in cycles to minimize the cost function. CCA uses the 
results from the previous loop to compute the results for the current loop. Due to its sequential 
computing process, we have not yet been able to vectorize the CCA algorithm to avoid using 
loops in Matlab. In fact, the CCA algorithm is about loops. Therefore, CCA execution in Matlab 
may be much slower than if using a compiler based language on a real node platform.  

The time batch marking obtained from Matlab simulation cannot well serve to determine the cost 
of CCA-MAP execution in a platform using a real implementation programming language such as 
C. One of our next steps is to port CCA-MAP to C to identify the execution cost of CCA-MAP.  
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In the next section, we will further analyze the implementation requirements and the 
computational costs comparing between CCA-MAP and MDS-MAP schemes. 

3.6.2 Effects of Range Errors 

Increasing the range errors often degrades the position estimation results. Larger range error in 
local distance measurements causes the distance matrix of the local map to lose its accuracy. The 
sensitivity of a localization scheme to various range errors should be understood. In the 
experiments presented so far, the range measured between neighbouring nodes is modeled as a 
random value drawn from a normal distribution with actual distance as the mean and a standard 
deviation of 5%. Here, we increase the error deviation from 5% to 50%. We took the rectangle 
network of size deployed with 100 nodes. Figure 32 shows the effects of increased range 
errors on the localization results produced by CCA-MAP, compared with those by MDS-MAP. 
When the range error increases, so do the errors on the node position estimates generated by both 
methods. In general CCA-MAP sustains its performance advantage under the increased range 
errors compared with MDS-MAP. This is because that CCA in its non-linear unfolding and 
mapping process has a tendency to converge towards the real distance matrix, even though the 
real distance matrix is unknown. When the range error becomes very large, e.g., more than 50%, 
the accuracy of the CCA-MAP algorithm may reduce sharply as CCA-MAP in general prefers an 
accurate distance matrix. MDS-MAP on the other hand may tolerate a vastly erroneous distance 
matrix better than CCA-MAP, as MDS approximates the positions rather than optimizing 
precisely to the distance. 
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Figure 32 Effects of range errors on the position estimations of rectangle network  
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Figure 33 Error effects on local map computing time of CCA-MAP 

For CCA-MAP, a less accurate distance matrix may increase the local map computing time. The 
computing time for a local map is illustrated in Figure 33 when the range error increases from 5% 
to 50%. It can be seen that the computing time surges when error variance is at 10%. Then the 
computing time stabilizes without much further increase.  
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4 Design Considerations for SASNet Localization 
Scheme 

In addition to the localization algorithm, which is the focus of this report, the implementation of a 
localization scheme involves many other issues. These issues are addressed briefly in this section 
to capture the options that we currently have.  

4.1 Distribution of Algorithm Implementation 
The first issue we describe here is the location for executing the localization scheme. Different 
localization algorithms would prefer different places to carry out the computations employing the 
required protocols and messaging among the nodes involved. 

The cooperative algorithms, including MDS-MAP and CCA-MAP that have been discussed here, 
is quite different from other iterative algorithms as reviewed in Section 2. As indicated there, 
iterative algorithms are naturally distributed and intended to execute on each of the sensor nodes. 
In iterative schemes, through message propagation, the locations are calculated over each node 
across the network. The cooperative algorithm often computes the map of the subnetwork or of 
even the entire network. Thus the cooperative algorithm can be carried out on gateway nodes. 
Though cooperative algorithms may also be executed in a fully distributed manner on each sensor 
node to compute each local map, and to merge the local maps at each different node [45], the 
computational cost may be of concern. We will further look into the computational cost in terms 
of memory and execution in the next subsection. The distribution of the localization scheme and 
the required messaging are examined here first. The messaging requirements are the same for the 
MDS-MAP and CCA-MAP algorithms.   

4.1.1 Cooperative Localization Scheme on FN 

SASNet exhibits the two tiered network architecture as shown in Figure 1. The FN (Fusion Node) 
has more computing and communication resources, and also maintains a fairly complete view of 
all the SN (Sensor Nodes) under its domain including their location information; it may be thus a 
viable option to implement localization computation completely or partially on FN to relieve the 
severely resource limited SN from the overhead of location estimation. We call this approach here 
the distributed gateway implementation. In Figure 34 such an approach to implement the 
cooperative localization in SASNet is depicted. 
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Figure 34 Message flows for gateway/FN implementation 

Flow descriptions: 

1-4: SN (level 1 Sensor Node) sends one hop link metrics to its FN. The flows do not show 
necessarily the routing path or message ordering. An efficient forwarding method will be 
used as determined by routing to reach FN. Anchor nodes report also their coordinates in 
addition to link metrics.  

5: Local maps are computed and merged 

6: Send computed maps to the FN that does the global merge. Alternative flow is described in 
the text below in this subsection.  

7: Merge and translate maps. At least three anchor nodes found. Map coordinates are 
translated to obtain absolute positions. 

8: Disseminate location coordinates to corresponding FN.  

9-12: Disseminate location information to SNs in the cluster. The flows do not show 
necessarily the routing path or message ordering. Efficient broadcast can be applied to reach 
SNs as determined by routing. 

An apparent concern for such an implementation would be the overhead on and around FN. FN 
may be overloaded by messaging and computation requirements, and limited by the battery 
power. Multi-hop communications are involved in this scheme with traffic concentrating along 
the paths towards the FN. On the other hand, in SASNet architecture, each SN is already required 
to send messages to FN and receive from FN during the network formation process, as well as to 
keep the FN fully aware of its local information. Thus, in step 1-4 as depicted in Figure 34, 
localization may utilize the network formation messages which are already required by the 
networking layer.  
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In step 1-4, each SN sends to FN the following: the node ID’s of all the nodes in its local map, 
and the link distance to each of its one hop neighbour nodes if a ranging technique is used to 
obtain the measurement. FN, after receiving from all the reported SNs in the cluster computes the 
local map for each of the nodes in the cluster. FN may need to query the border nodes (or other 
FN) of its cluster for their two hop neighbour link distance estimates if certain nodes are not in 
the local FN’s cluster. Querying another FN is possible as the node ID shows which FN the SN 
belongs to. Messaging between FNs may also be more effective using the level-2 communication 
link of higher bandwidth, compared with messaging between SNs or between the FN and SN. A 
simplified alternative may employ the FN to compute one map for its entire cluster. This would 
leave FN a much smaller computation task by using a larger approximated distance matrix. Such 
a distance matrix includes distances estimated over multiple hops, which may not be accurate. 
However, if the deployed sensor network is grid like and all the nodes are within a small number 
of hops apart (e.g., all nodes are within 3 hops from a center node X), the approximated distance 
matrix may still deliver results meeting the requirements.  

After computing all the local maps, FN communicates to other FNs to merge the maps. There 
may be two options here. In the first option, as with the steps 5 and 6 shown in Figure 34, only a 
certain FN does the global map merge. All other FNs simply send their local maps or the merged 
cluster map to this FN. Sending cluster maps incurs a shorter message but leaves fewer 
alternatives for the merging FN to merge the map. For a merged cluster map, the data includes the 
node ID and coordinates of each node in the cluster map. Note that this map also has nodes that 
belong to other clusters but are included in the local map of certain nodes in the local cluster.  

Alternatively, each FN will be responsible to merge and translate its own cluster maps. Then the 
FN would check its cluster map, identify the “foreign” nodes that belong to other clusters and 
identify the FN X that owns the most “foreign nodes” in its map. The FN X will be contacted and 
its map fetched to do the merge. Until 3 anchor nodes are found in the FN’s current map, the 
absolute coordinates are obtained for all the nodes in its cluster as well as for some foreign nodes 
in the merged map. This alternative may result in more map information sent among the FNs at 
level 2, though it may alleviate the traffic concentration around a certain FN that does the global 
map merge compared to the first option. At any point, if three anchor nodes are in the merged 
map, the map is translated to obtain the absolute coordinates. FN then sends to each SN its 
coordinates or in addition, the local map of a certain sub-neighbourhood to the SN if required. All 
location computation and map manipulations are performed on FNs. 

The advantage of this approach is that it prevents SN from heavy localization computing. 
Messaging between SN and FN, or between FN and FN may already be required for other 
purposes thus communication overhead may not be significant. Even without anchor nodes or 
further map merge among the FN nodes, each FN would have at least a relative map of its own 
domain. Global, individual and cluster based location information can all be obtained at different 
levels.   

We may compare this option with the one where each SN computes its local map using CCA, 
illustrated in Figure 35. 
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Figure 35 Message flows for gateway/FN implementation with local map computing on SNs 

Flow descriptions: 

1: Each SN computes its local MAP. An SN needs to send message to certain neighbour X 
asking the distance between node X and Y where Y is also a neighbour of SN but not 
necessarily a neighbour of X.  

2-5: SN sends local map to its FN. The flows do not show necessarily the routing path or 
message ordering. Efficient forwarding method will be used as determined by routing to 
reach FN. Anchor nodes also sends to FN indicating itself having the true coordinates.  

6: Local maps are merged on each FN 

7: Send maps to the FN that does the global merge. Alternative flow is described in the text 
below in this section.  

8: Merge maps. At least three anchor nodes found. Map coordinates are translated to obtain 
absolute positions. 

9: Disseminate location coordinates to corresponding FN.  

10-13: Disseminate location information to SNs in the cluster. The flows do not show 
necessarily the routing path or message ordering. Efficient broadcast can be applied to reach 
SNs as determined by routing. 

In this option, the messages sent in step 2-5 from SN’s to FN include only the node ID’s of the 
nodes in the local map and the coordinates of these nodes. Similar to what was described earlier 
for the previous approach, the FN does the merge of the local maps (step 6), or alternatively, it 
may not even merge the local maps. Then the FN can send the merged map (or the received local 
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maps) to another FN that is supposed to do the global map merge (step 7, 8). After the global map 
is obtained, the coordinates of each node can be sent to corresponding FN’s then to SN’s.  

This approach distributes the local map coordinates computations over all the SN’s that may 
improve the efficiency of the computing and messaging. The feasibility of doing so needs to be 
investigated, because an SN may not be able to execute the CCA algorithm due to resource 
constraints on its CPU, memory and battery power. 

In both of the above two options, given N sensor nodes in the network, about 2N or more 
messages may be needed. The second option requires extra messages between the SNs in the first 
step, compared with the first option.   

We denote the number of required messages for this distributed gateway implementation where 
the localization executes on the FN as: δθδθ ++×=+×++× pNpNpN 2

5

.  

pN × - The messages from N SN to FN reporting neighbourhood and local distance 
measurements if any; p denotes the average path length between the SN and its FN. Often ≤p  
holds. Aggregation of messages from SN to FN may effectively reduce the message volume here. 
We may piggyback on the routing messages so that these extra messages are not required at all. 

θ  - The messages between the FNs for map merge. Such messages are transmitted over high 
capacity links at tier two between FNs.  

pN ×  - The messages sent from the FN nodes conveying the location coordinates. Assume one 
separated message is sent to each of the N SN here, though multicast can effectively reduce this 
message volume. We may piggyback on the routing messages so that these extra messages are 
note required at all. 

The δ element includes the messages between SNs when the local maps are computed on the 
SNs as in the second option described above.  

4.1.2 Fully Distributed Cooperative Localization 

A yet even more distributed implementation of CCA-MAP, the fully distributed approach can be 
devised [45]. In this approach, every node including SN and FN computes their own local map. 
Then a selected starting node, e.g., an anchor node queries all its neighbour nodes of the node IDs 
included in their own local maps. The starting node, which we name here the current node CN, 
would select the node Nx such that the local map of Nx and the local map of CN share the most 
number of common nodes. CN sends its local map to node Nx . Node Nx merges the received map 
with its own map and then becomes the current node CN. The new CN then selects a new node Nx 
from its “neighbour” nodes as described before by checking common nodes in its current map and 
other nodes’ local maps, excluding the nodes that have already acted as CN. This merging process 
propagates in the network until the map is merged at the last node in the network. This approach 
requires each node to compute its local map and merge its local map into the global map. To 
merge the map for a network of N nodes, N-1 messages will be sent with the data size of a 
growing map. The data size is N coordinates (2N or 3N) maximum. Message size can be of 
concern in this option as it grows. A large number of messages may be required for the node CN 
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to select the node Nx. These messages are sent acquiring the node ID’s included in other node’s 
local map so that Nx can be identified. With the growth of the current map, messages across 
multiple hops will be needed as the node that is sought after may not be one hop away from the 
CN. Different options can be considered here to minimize the messaging. One option is to have a 
few nodes in the network that have the list of node IDs in all the local maps of all the nodes. Then 
the CN only needs to query one of such archived nodes to find the next Nx. Other options [45] 
proposed include to always select Nx among the neighbours of CN or if none is found, to simply 
forward the current map to one of the neighbours that is most likely to find a Nx.  

Local messages in addition are required for each node to reach the two hop neighbour nodes, 
acquiring their link metrics and their distance approximation to other nodes. This may partially 
reuse the local routing keep-alive messages, with some additional parameters to query distances if 
needed.    

The number of messages required in the fully distributed implementation may be denoted as 
')1()1( pNN ×−+×−+ ϕδ .  

δ - The sages exchanged for computing local maps on the SNs, often far fewer than the number 
of nodes covered in the local map as most information already known from routing messages.  

ϕ×− )1(N  -  The message needed to discovery which node can be selected as the next node in 
the map merge. Each node needs in average ϕ  message to find the next merging node.  

')1( pN ×−  - The messages used to pass the currently merged map from the first node all the 
way to the last node to complete the map merge, where p’ is often “1” or quite small.  

4.1.3 Iterative Localization 

Since iterative localization often executes in a fully distributed manner, it would be interesting to 
compare the fully distributed cooperative algorithm with the iterative implementation. For 
iterative algorithms, the general messaging process of the iterative localization algorithm is 
presented in Figure 36 below for comparison.  
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Figure 36 Messaging in iterative localization 

 
Flow Descriptions: 
Phase 1(P1) – Initialization from anchor nodes  
1.1-1.6: Anchor node 1 broadcasts its coordinates. The flows do not illustrate necessarily the 
message route. Efficient broadcast or limited flooding will be used to control the flows.  
2.1-2.6: Anchor node 2 broadcasts its coordinates. The flows do not illustrate necessarily the 
message route. Efficient broadcast or limited flooding will be used to control the flows. 
3.1-3.6: Anchor node 3 broadcasts its coordinates. The flows do not illustrate necessarily the 
message route. Efficient broadcast or limited flooding will be used to control the flows. 
There is no ordering imposed on the above messages. That is, anchor 1 is not necessarily 
sending its message first.  
Phase 2(P2) – Iterative Localization 
4: Each node upon gathering distance information of up to at least three nodes with known 
coordinates computes its location and estimates the position error. Always tries to find the 
best possible result using the known locations with least predicated error in computing.  
5: Each node sends to its one-hop neighbours its calculated position and estimated error if 
the calculated position is estimated more accurately than last time.  
Flow 4 and 5 are carried on each node repeatedly until position calculations stabilize. This 
may require 6 or more rounds.   

If comparing Figure 36 with Figure 34 and Figure 35 of cooperative localization schemes, 
iterative localization may incur local messages with smaller message size (coordinates of 
a single node). The message needed may be denoted as ×+× .  
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NK × - K anchor nodes broadcast location coordinates to all the N nodes in the network using 
flooding. If using efficient broadcast instead of flooding, this message amount can be reduced. 

lN ×  - Each sensor node send to its neighbour nodes about its currently computed coordinates in 
l iterations.  

In cooperative localization, fewer messages may be sent with concentrated direction and 
larger message size (local map and merged map both encompass information of multiple 
nodes).  The following Table 1 summarizes the above preliminary analysis on the message 
requirements. 
 

Table 1: Estimated Message Requirements 

Approaches Distributed FN 
gateway cooperative 

Fully distributed 
cooperative 

Iterative (fully 
distributed) 

Messages δθ ++× pN2  
')1(

)1(
pN

N
×−+
×−+ ϕδ

 
lNNK ×+×  

Notions N : total number of 
SN 

p: average path from 
the SN to its FN 

θ : message 
exchanged between 
FNs over tier 2 high 
capacity links 

δ : message required 
for computing local 
map, often far smaller 
than the local map 
size 

N : total number of SN 

' : average path length 
when passing merged 
maps 

p

δ : message required 
for computing local 
map, often far smaller 
than the local map size 

ϕ : average messages 
needed by each node to 
find the next node for 
map merge. 

K : number of 
anchor nodes 

N : total number of 
nodes 

l : number of 
iterations required  

Comments ;0≥δ  pN ×2 may 
be eliminated by 
piggybacking on 
routing messages 

0>δ ; '  often “1” or 
close to “1” 

p 6≥l often 
required; 

can be 
reduced by using 
efficient broadcast 
(e.g., MPR 
forwarding) 

NK ×
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At this stage, we have not yet decided on the details of the platforms of SN and FN. 
Though impossible to judge the capability of the SN node at a detailed level, an analysis 
of the CCA implementation complexity will assist us later in making the decisions. In the 
next subsection, we analyze the implementation complexity of the CCA algorithm. 

4.2 CCA Implementation Analysis 

4.2.1 Memory Usage 

A preliminary analysis of major memory usage for implementing CCA localization 
scheme is presented here. The analysis here is based only on our current understanding of 
the options and will be updated while we refine the SASNet architecture and design 
options.  

The memory usage for the computation of each local map using CCA: 
 Distance matrix of local map. Given the local map size of K, the distance matrix is 

KKD ×= . As K(i,j)=K(j,i), the required memory need to at least hold 2K /2 
entries. (Note: these estimates are preliminary and will be updated when more 
information is gathered.) During our experiments, for a grid network with node 
connectivity level around 14, we have observed 40max <K . Normally, network 
should have a smaller node connectivity level which would result in smaller K. 
Random networks on the other hand can have a much higher at the same 
connectivity level.  

maxK

 Coordinates of nodes in the local map. Given K nodes in the local map, it requires 
memory to hold  items, where d is the dimension of 2 (2D space) or 3 (3D 
space). Because each cycle manipulates the results from its previous cycle, two of 
such arrays may be needed.  

dK ×

 In each cycle, K-1 new inter-node distance values need to be computed and held. 
This memory is reused in each computing cycle. We also take K-1 distance values 
from the distance matrix D for comparison. It may require memory for these K-1 
entries taken out of D, though it may not be at all necessary depending on the 
implementation.  

4.2.2 Computing Complexity 

During the CCA computation, the following operations, mostly mathematical are 
executed in each cycle.  

 Compute K-1 distance values between K nodes. This involves computing of square 
root. 

 Computing of the weighing function. We used exponential function in Matlab 
experiments. Simpler functions of the bubble function for example may be used 
instead. An option is to pre-compute the function and pre-assign the values that 
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should be used during looping of cycles. The disadvantage of such an option is the 
memory consumption to store the pre-computed values.  

4.3 MDS Implementation Analysis 

In this subsection, we analyze the implementation requirements for MDS-MAP for comparison. 
To implement the MDS localization scheme, a local map for each node in the network needs to be 
computed using the MDS data reduction algorithm. 

4.3.1 Memory Usage 

MDS performs singular value decomposition on the distance matrix. The memory usage for the 
computation of each local map using MDS may include the following: 

 Distance matrix of local map. Given the local map size of K, the distance matrix is 
KKD ×= . As K(i,j)=K(j,i), the required memory need to at least hold 2K /2 

entries. In MDS algorithm, each node covers its two hop neighbours in its local map. 
During our experiments, for a grid network with node connectivity level around 14, 
we have observed . Normally, network should have a smaller node 
connectivity level which would result in smaller K.  

65max <K

 Because MDS-MAP takes two-hop neighbourhood to form local map, so the average 
size of the local map is larger than that of CCA-MAP. As an example, for the 
irregular network of 64 nodes used in our experiment, at CL=14, the MDS local map 
has an average size of 39.3 and the CCA local map 20.3.  

 Coordinates of nodes in the local map. Given K nodes in the local map, it requires 
memory to hold  items, where d is the dimension of 2 (2D space) or 3 (3D 
space).  

dK ×

 To perform singular value decomposition, eigenvalues and eigenvectors need to be 
kept. This would require matrix of 3×K and 33×  as only the first three items are 
selected. Sorting of the eigenvalues may require a few more arrays of small sizes 
which won’t be significant.  

At this stage, we have not searched for the best way to compute the eigenvalues and eigenvectors 
for the distance matrix of the local map on either SN or FN, until we make decisions on the 
platforms of these nodes. Therefore, the memory size required for the computing steps of 
eigenvalues and eigenvectors is not estimated here. 

4.3.2 Computing Complexity 

MDS location mapping performs singular value decomposition on the approximated distance 
matrix D. For the squared distance matrix, this is to compute the eigenvalues and eigenvectors of 
D. Often one can compute all the eigenvalues of matrix D by solving the equation det (D - λI) = 
0, where I is the unit matrix. This system has a degree of K and K eigenvalues. In the algorithm, 
we only need the first 3 for position estimation. The solution to such as system may resort to the 
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least square optimization problem. The practical implementation for solving eigenvalues depends 
on the selected node platform, its computing capabilities and the math function libraries it offers. 
MDS requires a suitable solution for computing eigenvalues and eigenvectors on the selected 
platform.  

The Table 2 below summarizes the above preliminary analysis on computing requirements. 

 

Table 2 Estimated Computing Requirements 

Approaches Local Map Computing in CCA-
MAP 

Local Map Computing in MDS-
MAP 

Memory 
)1(22

2

2

−+×+ KdKK  δ+×+×+ dddKK
2

2

 

Notions K: local map size 

d: Dimension required (d=2 or 
d=3) 

K: local map size 

d: Dimension required (d=2 or d=3) 

δ : extra memory required when 
computing singular value 
decomposition 

Computing Square root; weighted function 
(e.g., exponential function) 

SVD computing 

Complexity )( 2KO  )( 3KO  

4.4 Map Merging 

Either CCA-MAP or MDS-MAP would need to merge local maps together into the global map. If 
the local maps are merged on a selected gateway node such as FN, m local maps need to be 
stored on FN during the merge process, where m is the number of nodes in the cluster 
(subnetwork). Assuming k nodes contained in each local map, coordinates of mk nodes (e.g., 2mk) 
need to be stored for local maps. A copy of the resulting current map is needed where the size of 
the current map grows into m during the merging process. If the map merging is done on each 
node in a fully distributed manner, a copy of the current map needs to be stored in addition to the 
local map of the local node during the process. The current map grows into size N where N is the 
number of all the nodes in the network (i.e., global map). CCA-MAP and MDS-MAP apply the 
same map merging process. Thus there is little difference in terms of implementation here.  
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5 Conclusions 

In this report, we have presented our study of the localization solution options for SASNet, a Self-
healing Autonomous Sensor Network for support of military operations. Particularly, the 
cooperative localization schemes were examined as recommended from our previous studies on 
WSN localization for SASNet. The cooperative localization scheme delivers highly accurate 
position estimate results using “zero” or a minimum number of anchor nodes. 

We have found a class of non-linear reduction methods using efficient neural network techniques, 
namely the Curvilinear Component Analysis (CCA) that can map node positions based on the 
distance matrix with a high level of accuracy and relatively low computational cost. Applying the 
CCA data reduction method, we devised the CCA-MAP algorithm, a distributed cooperative 
localization scheme generating location maps for WSN.  

Taking SASNet deployment scenarios, we compared the performance measurements of CCA-
MAP and MDS-MAP in calculating node positions for these scenarios, using both range-based 
and range free options. In all the network configurations simulated where ranging capability is 
employed, at relatively low network connectivity levels, the CCA-MAP algorithm can achieve 
accurate node position estimates with an average error of less than 10%r, using a minimum 
number of anchor nodes. Using connectivity information only, CCA-MAP can also contain the 
position estimation error within 20%r in all the network configurations tested. We have found 
that CCA-MAP delivers better position accuracy compared with MDS-MAP. We have also 
studied the effect of anchor node positions. At relatively low connectivity levels, anchor node 
positions affect the position estimation results. Merely increasing a small number of anchor nodes 
may not improve the accuracy. At high connectivity levels, the differences between different 
anchor node positions start to diminish. Increasing the number of anchor nodes also decrease the 
differences generated by different anchor positions.   

Through the scenario studies, we have found that random networks of irregular shape such as a 
“narrow C” with scattered nodes poses the challenge for both CCA-MAP and MDS-MAP. In fact, 
both CCA-MAP and MDS-MAP achieve much better results compared with other schemes 
reported for such anisotropic networks. The only known solution to this type of network would 
require a large number of anchor nodes in the network. 

The drawback of cooperative algorithms investigated in this study would be their computational 
complexity, if implemented on each of the sensor node. This is a possible pitfall for the CCA-
MAP scheme, especially in the range-free scenarios when the distance information is not 
available but approximated by the network connectivity information. We have elaborated the 
different implementation options for CCA-MAP, conducted the analysis of its implementation 
requirements and compared it with other related approaches such as the MDS-MAP and the 
iterative localization scheme.  

The computational cost of CCA-MAP is not fully determined yet until it is implemented in C or 
another real platform programming language. If the computational cost of CCA-MAP can be 
handled by the selected platform, CCA-MAP is a quite viable solution that delivers accurate 
position estimates using a minimum number of anchor nodes.  
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