Yale University
Department of Computer Science

M echanism Design for Policy Routing

Joan Feigenbaum? Rahul Sami?
Yale University MIT
Scott Shenker®

ICSI and U.C. Berkeley

YALEU/DCS/TR-1258
November 2003

This work was supported by the DoD University Research Initiative (URI) administered by the
Office of Naval Research under Grant NO0014-01-1-0795.

1Supported in part by ONR and NSF.
2Supported by ONR and NSF.
3Supported in part by NSF.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
NOV 2003 2. REPORT TYPE 00-00-2003 to 00-00-2003
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

M echanism Design for Policy Routing £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Yale University ,Department of Computer Science,New REPORT NUMBER
Haven,CT,06520-8285

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

TheBorder Gateway Protocol (BGP) for interdomain routing isdesigned to allow autonomous systems
(ASes) to express policy preferences over alternativeroutes. We model these preferencesasarising from an
AS sunderlying utility for each route and study the problem of finding a set of routes that maximizesthe
overall welfare (i.e,, thesum of all ASes' utilitiesfor their selected routes). We show that, if the utility
functionsareunrestricted, this problem is NP-hard even to approximate closely. We then study a natural
classof restricted utilities, next-hop preferences. We present a strategypr oof, polynomial-time computable
mechanism for welfare-maximizing routing over thisrestricted work on lowest-cost routing mechanism
design, this mechanism appearsto be incompatible with BGP and hence difficult to implement in the
context of the current internet. Our contributionsinclude a new complexity measurefor Internet
algorithms, the dynamic stability, which may be useful in other problem domains.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 15
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Mechanism Design for Policy Routing

Joan Feigenbaum* Rahul Sami' Scott Shenker?
Yale University MIT ICSI and U.C. Berkeley
feigenbaum@cs.yale.edu sami @csail.mit.edu shenker @icsi.berkeley.edu

Abstract

The Border Gateway Protocol (BGP) for interdomain routing is designed to allow autonomous sys-
tems (A Ses) to express policy preferences over alternative routes. We model these preferencesas arising
from an AS's underlying utility for each route and study the problem of finding a set of routes that
maximizes the overall welfare (i.e., the sum of all ASes' utilities for their selected routes).

We show that, if the utility functions are unrestricted, this problem is NP-hard even to approximate
closely. We then study a natural class of restricted utilities, next-hop preferences. We present a strat-
egyproof, polynomial-time computable mechanism for welfare-maximizing routing over this restricted
domain. However, we show that, in contrast to earlier work on lowest-cost routing mechanism design,
this mechanism appears to be incompatible with BGP and hence difficult to implement in the context of
the current internet. Our contributions include a new complexity measure for Internet algorithms, the
dynamic stability, which may be useful in other problem domains.

1 Introduction

The Internet is composed of many independently-managed subnetworks called domains or autonomous
systems (ASes). Thetask of discovering and selecting routes between these ASesis called interdomain rout-
ing. Currently, the only widely deployed protocol for interdomain routing is the Border Gateway Protocol
(BGP); through BGP, arouter can learn of routes from neighboring networks, select routes from the multiple
aternatives it may learn of, and advertise its selected routes to other networks.

In this scenario, one of the key decisions an AS must make is how to select a route from all the routes
it knows of to a particular destination. One frequently studied model has each AS look at some objective
metric over the routes, such as the number of ASesthe route passes through or the cost of aroute, and pick
the route which minimizesthis metric. In practice, however, ASeswant to select aroute based on many other
criteria, such as commercial relationships or perceived reliability. For example, it is common for an ASto
select aroute advertised by one of its customers over al other routes. Thus, BGP was explicitly designed
to alow ASes to apply their own routing policies to the route-selection and route-advertisement processes.
This feature of interdomain routing is referred to as policy-based routing or policy routing for short.

Another aspect of routing that has recently received attention is that of incentives. The participants in
the routing process— the ASes, in this case- are independent economic entities, each with its own goals.
Thus, they cannot be relied on to follow any specified policy, if they could profit by deviating from that
policy. Further, much of the information relevant to selecting good routes, such as costs or connectivity

Thiswork was supported by the DoD University Research Initiative (URI) administered by the Office of Naval Research under
Grant NO0014-01-1-0795.
*Supported in part by ONR and NSF.
tSupported by ONR and NSF.
tSupported in part by NSF.

information, is known privately to individual ASes; thus, even if there were a central authority capable of
enforcing a policy, it could not possibly detect strategic reporting of this information. This paper explores
the extent to which one can cope with these strategic issues in a computationally feasible manner.

The algorithmic mechanism design approach, introduced by Nisan and Ronen [NRO1], was one of the
first works to address both incentives and computational complexity. Among other problems, Nisan and
Ronen studied a simple routing problem: Given a graph with a distinguished source node s, a distinguished
sink node ¢, and costs associated with each edge, find the lowest-cost path from s to ¢. The wrinkle in the
model isthat each edge can strategically lie about its cost. Nisan and Ronen showed how a central authority
can compute payments for each edge such that every edge's dominant strategy is to be honest about its cost,
yielding a strategyproof mechanism for this problem. Later, Hershberger and Suri [HS01] presented a more
efficient algorithm to compute the payments required by this mechanism. Archer and Tardos [AT02] studied
mechanisms to select a path that minimizes a metric from a broad class, not necessarily the sum of edge
costs; this too can be viewed as a variant of lowest-cost routing.

The mechanism-design approach was extended by Feigenbaum et al. [FPSS02], who sought lowest-
cost routing mechanisms in the context of interdomain routing. Their main contribution was to focus on
distributed mechanisms, thus adopting the distributed algorithmic mechanism design approach initiated by
Feigenbaum, Papadimitriou, and Shenker [FPS01]. Feigenbaum et al. [FPSS02] give a strategyproof mech-
anism for the lowest-cost routing problem, which can be computed by an efficient distributed algorithm.
Moreover, they show that this mechanism can be computed by a“BGP-based” agorithm, i.e., an algorithm
with similar data structures and communication patterns to BGP, that requires only modest increases in
communication and convergence time. Thus, the mechanism is *backward compatible” with BGP, which is
critical for any routing algorithm that must be implemented in the current Internet.

All the work on mechanism design for routing hasfocused on variants of lowest-cost routing. In practice,
this hastwo drawbacks: The cost model isoversimplified, and the requirement that all ASesuse alowest-cost
routing policy istoo restrictive. In this paper, we investigate whether the distributed al gorithmic mechanism
design approach can be extended to general policy routing. In essence, we look at interdomain routing at
a higher level of abstraction: We assume that source ASes have preferences over alternative routes to a
destination, but we do not model the causes of these preferences. Thus, in our initial model, an AS can
express any routing policy, provided that it is based on some underlying utility function— it need not arise
from the cost of the route but may take into account unspecified, subjective route attributes aswell. The goal
of the mechanism is to compute routes for every source-destination pair such that the overall welfare, i.e.,
the sum of all ASes’ utility for their selected routes, is maximized. The only constraint on the selected routes
isthat all routes to agiven destination must form atree; thisisavery natural constraint in the Internet, where
packet forwarding decisions are based only on the destination (not source and destination) of the packet.

Our first result is that, for general preferences, computing an optimal set of routes is NP-hard; it is even
NP-hard to compute a solution that approximates the optimum to within afactor of O (ni ~). We prove this
result by an approximability-preserving reduction from the Maximum Independent Set problem.

This leads us to consider arestricted class of utility functions, next-hop preferences. The restriction is
that an AS'sutility for aroute can only depend on the first hop along that route. This class of utility functions
captures preferences arising from customer/provider/peer relationships an AS might have with its neighbors.
These commercial relationships are a major motivation for alowing flexible policy routing in BGP, and so
this is an interesting class of preferences to study. We show that, for next-hop preferences, the welfare-
maximization problem reduces to finding a maximum-weight directed spanning tree to each destination and
is hence computable in polynomial time. We derive a strategyproof mechanism for this problem, and show
that it can also be computed in polynomial time.

We next ask whether it is possible to implement this mechanism with a distributed, BGP-based algo-
rithm. Unfortunately, we find that thisis not the case. In order to prove that a BGP-based implementation is

impractical, werefine the model of BGP-based computation given in [FPSS02] and show that any implemen-
tation of the welfare-maximizing policy-routing mechanism would be unacceptable, even on Internet-like
graphs with small numeric valuations, for two reasons. (1) The selected routes may be long, and hence the
routing algorithm may take along time to converge; and (2) Any change in any AS's utilities may require
communication to ©2(n) nodes, which defeats the rationale of using a path-vector protocol such as BGP.
Thus, we conclude that, unlike the lowest-cost routing mechanism of [FPSS02], this mechanism is not easy
to implement in the current Internet.

The rest of this paper is structured as follows: We formulate the welfare-maximizing policy-routing
problem in Section 2. In Section 3, we prove that, with arbitrary preferences, the problem is NP-hard,
even to approximate closely. We then turn to the next-hop preference model in Section 4. We design
a strategyproof, polynomial-time computable mechanism, the MDST mechanism, that maximizes welfare
in this model. In Section 5, we elaborate the BGP-based computation model and show that the MDST
mechanism is hard to implement in this model. Finally, in Section 6, we summarize and present some open
guestions. Portions of this work appeared in preliminary form in the second author’s PhD Thesis [Sam03].

2 The Palicy-Routing Problem

The network consists of n Autonomous Systems. For simplicity, wetreat each AS as an atomic entity; thus,
we model the network as a graph with nodes corresponding to the autonomous systems. The edges in this
graph correspond to BGP peering or transit relationships between ASes. We have adirected edge from node
a to node b if b advertises its routes to . In practice, the edges in this graph may vary with the destination
under consideration; however, we assume that these edges are identical for routes to any destination.

A route from anode i to anode j is simply adirected path, with no cycles, from i to j in the AS graph.
The routing problem in this network is as follows: For each pair of nhodes 7 and 7, we need to select asingle
route from : to 5. Further, we insist that the set of all routes to destination j forms atree rooted at ;. Thisis
anatural restriction when packets are routed one hop at atime (as opposed to being routed in an end-to-end
manner, e.g., source-routed). A candidate solution to the routing problem is thus a set of directed trees,
one for each destination. The trees for different destinations are independent of each other, and hence it is
possible to analyze the model for a single destination.

The basic difference between the lowest-cost routing problem and the policy-routing problem liesin the
source of preferences. In the former, the costs incurred by transit carriers result in their preferring routes
that do not pass through them; in the latter, ASes have differing preferences over aternative routes, and the
constraint that routes form atree leads to conflicts of interest. There are many reasons why ASes may have
real economic preferences for different routes. Two different routes from ¢ to 5 may lead to differing transit
costs, customer satisfaction, or service payments. In this paper, we assume that AS i's preferences among
the candidate solutions are dictated entirely by the route from ¢ to j in each solution, independent of the
routes from other nodes to ;. In a sense, thisis complementary to the lowest-cost routing model, in which
AS’s utility for atree depends only on the routes on which it was atransit node.

Specifically, we suppose that AS i's preferences for paths can be expressed as a utility function v :
P;j — R, where P;; is the union of all possible paths from : to j and the empty path L (which corresponds
to solutions in which there is no route from i to 7). Only the relative utilities are important, and so we can
normalize this function by requiring that «; (L) = 0. Further, we assume that, for any route F;; from to j,
ui(Pi;) > 0; in other words, having any route to j cannot be worse for 4 than having no route at all.

AS preferences are private information, and hence an AS may misreport its preferences, unlessitisgiven
appropriate incentives. These incentives are provided through a mechanism. Abstractly, a mechanism for
the routing problem for destination j takes as input the user utility profileu = (w, us, . .. , u,) and outputs
arouting tree T and a vector of paymentsp = (pi, ... ,pn), Where p; isthe amount of money paid to ;. We

use the notation u;(7") to denote i’s utility for its path to 5 in the tree T'. We assume that the utility functions
are quasilinear and thus can be expressed directly in terms of money. Then, ASi’s combined benefit from
the mechanism can be expressed as the sum (v;(T') + p;). A mechanism is strategyproof if the payments
are such that every AS i's dominant strategy is to truthfully report . In other words, strategyproofness
requires that, regardless of other ASes reported utility functions, each AS i maximizes the sum (4 (7T') + p;)
by reporting its true utility function v; to the mechanism.

The economic goal of this routing mechanism isto maximize the overall welfare, i.e., to choose arouting
tree T that maximizes W (T') = >, p u;(T'). We call this the welfare-maximizing routing problem.

3 NP-hardness of the general problem

In this section, we show that the general form of the welfare-maximizing routing problem stated in Section 2
is not tractable. We will focus on computing routes to a single destination only. BGP essentially computes
routes to different destinations in parallel, and so it is sufficient to consider the single-destination case.
Moreover, our results show that apolicy-routing mechanism is hard to compute, even for asingle destination.
It follows afortiori that it is hard to compute the mechanism when al destinations are considered (although
the complexity may not grow by afactor of n).

An instance of the routing problem we are considering is as follows. We are given a directed graph G,
with a distinguished destination node j. Each node 7 is associated with aset § of allowed paths' from i to
7 in G and autility function v; : S; — R>o.

We now show that, for the very general class of utility functions defined in Section 2, it is NP-hard to
compute atree that maximizes the overall welfare. We prove this result by areduction from the Independent
Sat problem: Given agraph G with vertices N, find a largest subset S of NV such that no two verticesin S
have an edge between them. This problem is known to be NP-hard [Kar72]; in fact, it is even NP-hard to
approximate the size of the largest independent set to within afactor of e [Has99].

Given aninstance G = (N, E) of the Independent Set problem, we construct an instance of the welfare-
maximizing routing problem. The construction of the network H isillustrated in Figure 1. For each vertex v
in N, we have aterminal vertex ¢, in H. In addition, for each edge e = (v, v2) in E, we add three vertices
e, ev?, and e to H. We also add directed edges frome to €’ and e'2. Finally, we add a special destination
vertex 5 to H. Wethen choose an arbitrary order for theedgesin E. For avertex vin N, leta,es, ... ,¢; be
the edges incident on v in G, in that order. We add the directed edges (4,,€1), (e}, €2), ... (e]_, &), (€],)
to H.

In this manner, we construct a directed path

PU = (t’UaEl)a (517611})7 (611}762)7- = 7(El76§])7 (6?7])

for each terminal vertex ¢,. Now, welet S;, = {P,}, and u;, (P,) = 1, for each such vertex. For a
nonterminal vertex e corresponding to an edge e = (v, v2) in G, welet Sz = {P,,, P,,}, where P, isthe
suffix of P,, frometo j, and P, isthe suffix of P,, frometo j. Welet uz(P,,) = uz(P,,) = 0. Similarly,
for avertex of the form e, welet S.. contain only the suffix of P, from e” to j, and let eV’s utility for this
path be 0.

1There may be an exponentially high number of paths from i to j in the graph (and, indeed, in the Internet). Thus, it might seem
that even describing the AS utility functions completely is a hopeless task. However, it is possible that an AS's utility function can
be described with polynomial amounts of space. We include a set of allowed paths in the problem description simply to provide
one such representation: A path P;; implicitly has utility 0 if it isnot in the allowed set. The NP-hardness reduction in this section
shows that, even when all ASes have utility functions that can be expressed concisely using this representation, it is NP-hard to find
a welfare-maximizing routing tree. Any other concise representation of utility functions with small support would suffice for the
reduction described here.

Figure 1. Reduction from Independent Set. The path P, is shown in bold.

Lemmal Given an instance G = (N, E) of the Independent Set problem, let (H,{S}, {ui(-)}) bean
instance of the welfare-maximizing routing problem constructed as described above. Let T be an optimal
routing tree for this problem. Then, the following conditions hold:

(i). For any vertices v;,v9 € N such that (v, v2) isan edgein G, at most one of ¢,, and ¢,, has a path
tojinT*.

(ii). If S C N isanindependent set, then W (T*) > |S].

Proof: (i) Let e bethe edge (v, vs). If ¢,, hasapath to j, it must be the path F,,. The vertex € lies on this
path, and hence the unique path from to j in 7" must pass through €', not 2. It then follows that the
path P,, isnot contained in 7, and hence there is no path from ¢,, to j in T*.

(i) No two verticesin S have any edge in common; hence, if v, v2 € S, the paths P,, and P,, are digoint.
Thus, the union of paths P, for all v € S formsatree T'(S). Further, we note that W (T'(S)) = |S|. T* is
optimal, and hence W (T™) > |S|. O

Corollary 1 If S isa maximum independent set in G, then T'(S) is an optimal routing tree. Conversely, if
T* isan optimal routing tree, then S = {v|t, hasa path to j in 7%} is a maximum independent set in G.

O

Finally, we observe that this reduction implies that even an approximately optimal routing treeis hard to
find: If 7 isan approximately optimal routing tree, thenS = {v|t,, has apath to j inT"} is an approximately
maximum independent set in G, with the same approximation factor. Note that we reduce agraph with n
verticesto anetwork with O(n?) nodes and O (n?) allowed pths Thus, an (n)4 € =p2 § approximation
to the welfare-maximizing routing problem would give us an s~ approximation to the independent set
problem, and an (n)l* = n'~ 2 approximation to the welfare-maximizing routing problem would give us
ann'~3 approximation to the independent set problem. Combining this with known results on the hardness
of computing exactly maximum independent sets and approximately maximum independent sets [Kar72,
Has99], we have proved the following theorem:

Theorem 1 Given a general network on n nodes, with a total of O(n) allowed paths and arbitrary AS-path
utility functions,

e Unless NP = P, there is no polynomial-time algorithm to compute a welfare-maximizing routing
tree.

e For anye > 0, unless NP = P, there is no polynomial-time algorithm to compute a tree the total
welfare of which approximates that of a welfare-maximizing routing tree to within a factor of e,

e Foranye > 0, unless NP = Z PP, thereis no polynomial-time algorithm to compute a tree the total
welfare of which approximates that of a welfare-maximizing routing tree to within a factor of 7> ~¢.

O
Theorem 1 probably rules out the possibility of solving this problem exactly or approximately in the most
general case. There are two possible approaches to restricting the scope of the problem in order to make
it more tractable. The first isto restrict the class of networks, while still covering Internet-like situations.
The second approach is to restrict the class of allowable utility functions; we pursue the second approach in
Section 4.

4 Next-hop preferences

In this section, we consider solutions to the welfare-maximizing routing problem with a restricted class of
ASpreferences. Specifically, we assumethat ASi’sutility «; (P;;) for route P;; depends only on the next hop
from 7 on this route (i.e., the utility depends only on which of i’s neighbors this route passes through). The
motivation for thisis that an ASislikely to have different economic relationships with different neighbors
(customers, providers, and peers), leading to different utilities for routes depending on which neighbor is
used for transit; however, it is reasonable to assume that two routes to ; through the same neighbor have a
similar economic impact on 4. Further, we assume that the set of allowed routes from 7 islikewise determined
solely by which neighbors of 4+ may be used to transit packets destined to ;.

With this assumption, 7's utility function can be written as a function (a) of the neighboring AS a.
Similarly, the set of 4's allowed routes can be expressed as a set S of i’s heighbors that can be used to carry
trangit traffic to j. (The set S; reflects agreements between 1 and its neighbors: If ¢ € S, it means that, in
principle, 7 iswilling to send packets through a, and « iswilling to accept packets from i for destination j.)

Thisleadsto aconvenient combinatorial form of the welfare-maximizing routing problem. We construct
agraph G, with a vertex corresponding to each AS, and an identified destination vertex 5. If a € §, we
include adirected edge e from i to a; we assign this edge aweight 4. = u;(a). A routing tree isthen simply
adirected tree (arborescence) T with all edges directed towards the root 5. Further, an ASi’s utility for its
routein T isthe weight u, of the edge outgoing from ¢ in T' if such an edge exists or 0 otherwise. Thus, the
overall welfare with routing tree T" is

W(T) = Z Ue

ecT

It follows that the welfare-maximizing routing tree 7 is a maximum-weight directed tree with root j in Gj.
We first show that we can restrict our attention to directed spanning trees.

Lemma 2 Suppose we are given a weighted graph Gj, with vertex set N. Define R C N by

R™ {i e N | Thereisapath fromi to j in G;} U {5}

Then, there is a maximum-weight directed tree with root ; that spans R.

6

Proof: Let T* be a maximum-weight directed tree with root j. Suppose there is some vertex v € R such
that v ¢ 7. Thereis apath from v to j in G;; we can add edges from this path to 7* without decreasing
its weight, because the utilities are always non-negative. By adding edges along this path in order, we can
eventually grow the tree to include v, without reducing its weight. a

Note that the ASes that cannot even reach j can be completely ignored for the purpose of finding routes
toj. Also, itiseasy to compute, for each ASi, whether j isreachable fromi. This, combined with Lemma?2,
means that without loss of generality, we can assume that T* spans the vertex set V.

Thus, we want to compute a maximum-weight directed spanning tree, with edges directed towards j
(a maximum-weight j-arborescence)? This is a well-studied problem; one distributed algorithm for this
problem was given by Humblet [Hum83].

41 A VCG Mechanism

We now describe an efficient, strategyproof mechanism for the welfare-maximizing routing problem with
next-hop preferences. This is a direct application of the theory of Vickrey-Clarke-Groves (VCG) mecha-
nisms. It follows from the characterization of efficient, strategyproof mechanisms [GL79] that the payment
to AS i must have the form:

pi=Y ua(T*) + hi(u) €
aFi

Here, h;(-) isan arbitrary function of u~’, the vector of utilities of all agents other than i. We normalize
the payment by requiring that nodes that do not carry transit traffic (leaf nodes in 7*) are not paid. The
rationale for this requirement here isthat leaf nodes are not contributing to other agents' value.

Let T~¢ be the maximum weight j-arborescence in N\ {i}2 Then, W (T~*) isafunction of u~ alone.
Recall that an AS can refuse to accept transit traffic, i.e., effectively cut off all incoming edges. If AS+ did
this, it would force the optimal tree to have it as aleaf node. We would then have T* = T~ U (i,a), where
(i,a), an edge from AS i to some other AS a in the network, is the heaviest outgoing edge from i. As:
would be aleaf, the payment p; must be 0 in this case; for thisto occur, we must have h;(u=*) = —W (T).
Substituting back into Equation 1, we get the following formula for the payment p:

pi = Y ug(T*) — W(T7) = W(T*) —u(T*) — W(T) 2)
aFi

We call this the MDST mechanism. In order to compute this mechanism, we will have to compute the
MDST, aswell asthe payment p; to be given to each ASi. The payments can be computed by solving (n—1)
minimum-weight j-arborescence instances (one for each node except), and thus the MDST mechanism is
polynomial-time computable.

5 Hardnessof BGP-based | mplementation

Up to this point, we have formulated the problem of finding the welfare-maximizing routing tree with next-
hop preferences as amaximum-weight directed-spanning-tree problem and derived the natural strategyproof,
efficient mechanism for this problem. This mechanism is polynomial-time computable in a centralized

Thisis essentially equivalent to the problem of computing a minimum-weight j-arborescence, with weights adjusted appropri-
ately.
3\We assume the network is 2-connected, and hence such atree exists.

computational model; this leads us to hope that, as in the case of lowest-cost routing [FPSS02], we can find
a BGP-based distributed algorithm for it. Unfortunately, this appears not to be the case. In Section 5.1, we
further develop the BGP-based computational model; in sections 5.2 and 5.3, we argue that this mechanism
isincompatible with BGP.

5.1 TheBGP-based Distributed Computation model

We start by recalling the BGP-based computation model defined by Feigenbaum et al. [FPSS02]: An ago-
rithmis“BGP-based” if it has similar data structures and communication pattern to (asimplified abstraction
of) BGP. Further, such an algorithm has acceptable performance if the storage space per router, time to
convergence, and total communication required in running the algorithm are within a constant factor of the
requirements for running BGP itself.

This definition of BGP-based algorithms is not yet complete. For proving that a specific algorithm,
such as the price computation algorithm in [FPSS02], does not cause large changes in the structure or
performance of BGP, it is adequate- it is possible to assure ourselves by inspection that the algorithm “has
similar structure” to BGP. However, for proving impossibility results, we need a more precise specification
of the class of acceptable algorithms. Thus, we need to elaborate on the specific properties that we expect a
BGP-based computation to have.

Consider routing to some destination j. The properties we require of any BGP-based computation of the
routesto j are:

P1 Therouting tables should use O(!) space to store aroute of length /.

P2 Routes should be computable in time proportional to the diameter of the network rather than the total
size of the network.

P3 When a node fails, or there is a change in the information (such as costs or preferences) associated
with the node, the change should not always have to propagate to the whole network; instead, it should
usually be propagated only to a small subset of nodes. Formally, we require that there are o(n) nodes
that trigger ©2(n) UPDATE messages when one of them fails and comes back up or changes its cost or
utility function by an infinitesimal amount.

Property P1 says that the routing table should have roughly the same size as BGP routing tables, or
be smaller; thisis clearly desirable in any proposed routing algorithm. While the number of ASesin the
Internet has grown rapidly, the AS-graph diameter has remained small. In addition, current Internet routes
typicaly pass through few intermediate ASes. Property P2 requires a routing algorithm to stabilize rapidly
in networks of thisform.

The justification for Property P3 is as follows: In a link-state routing protocol, any change has to be
broadcast to all the nodes in the network. BGP is a path-vector protocol, partly to avoid this dynamic
communication burden; thus, a BGP-based algorithm should preserve this property. As the set of routes to
j forms a tree, we cannot prevent changes in a few nodes near the root from affecting many other nodes.
Similarly, it seems acceptable that alarge change in the cost or preference of node ¢ can put it near the root
and hence affect many nodes. However, we don’'t want every change to result in this much communication;
thisis expressed in the statement of P3.

Property P3 is an unusual feature of our model in that it deals with the dynamic performance of an
algorithm— specifically, it requires the algorithm to have dynamic stability. The main analytic reason for
introducing this constraint is to rule out algorithms that compute routes in a centralized fashion at a single
location, using logarithmic-depth spanning trees to collect the inputs and distribute the outputs. Such an
algorithm is clearly not similar to BGP, yet it could meet the static performance requirements with some

8

clever encoding in the routing tables. The dynamic stability requirement prevents this, and aso provides
new insight as to why a fully distributed algorithm, such as BGP, may be preferable in loosely-coupled
systems.

It may be argued that requirements P2 and P3 capture desirable properties of distributed algorithms
generally and not BGP-based algorithms in particular. This is not an obstacle for our purposes in this
section. Because we are trying to show that the MDST mechanism is not BGP-compatible, it suffices to
show that it does not have properties required for a larger class of algorithms that contain those that are
BGP-based. These three properties that suffice for the negative result sought in this section. We do not
claim that these properties provide us with afully fleshed out “BGP computational model”; that isa goal for
future work.

Another important point is that we do not necessarily require these conditions to hold for all possible
networks and all possible cost or preference values. The only networks that we care about are “Internet-
like” networks— those that can plausibly represent an AS graph or some subgraph of an AS graph. For this
reason, we restrict ourselves to networks that satisfy three properties. They must be sparse, with average
node degree O(1); they must have small diameter— specifically, diameter O(logn); and, when any one node
is removed from the network, the diameter must remain O (logn).

It is more difficult to identify what “reasonable” cost or preference values might be. We definitely want
them to be polynomial in n and preferably polylogarithmic in n. Further, we are not as concerned with
hardness that may arise because of some strange coincidence of specific numerical values that happen to
produce avery unstable state. At the same time, there is no single natural distribution with respect to which
we can analyze the average-case complexity of an algorithm. Instead, weinsist that any hardness result hold
over an open set of cost or preference vaues; this means that the hardness holds over aregion of preference
space with non-zero volume, instead of at isolated points. Thisis similar in spirit to the smoothed analysis
of Spielman and Teng [STO1].

We note that the lowest-cost routing mechanism in [FPSS02] satisfies these properties, provided the node
costs are similar to each other, not very skewed. By contrast, we now show that the welfare-maximizing
routing problem does not satisfy these properties, even for networks and preference values that fit our defi-
nition of “reasonable.”

5.2 Long convergencetime

Destination j — Edgein MDST

Q
1 1
) / \ ----> Edgenotin MDST

bl/Q\ bo n/2
10 Nt Lo L

a 52 2 2 2. L2052

1 a2 as ay Ap_1 an

Figure 2: Network with low diameter and along path in MDST.

Figure 2 shows an example of a network with 2n — 1 nodes for which a BGP-based algorithm for the
welfare-maximizing routing mechanism takes 2(n) stages to converge. The network consists of a balanced

j-arborescence. The leaf nodes are oy, as, . . . ,a,. The network can be extended to have diameter 2logn
by adding reverse edges with lower preference values; these reverse edges do not affect our argument, and
so we omitted them from Figure 2. Similarly, by adding one more low-preference edge from each internal
node, we can arrange for the diameter to remain small even when any one node is removed. Each node is
adjacent to at most 4 other nodes, and so the network satisfies the sparseness requirement as well.

The preference values are shown as numbers (weights) on the edgesin Figure 2. Each g in {a1, as, ...,
an—1} prefers to route through its neighbor ;11 (value 2) rather than take the path up the tree (value 1).
Thus, the welfare-maximizing routing solution, given by the maximum-weight directed spanning treein this
network, consists of the path a;as - - - a,,, atached to the remainder of the tree at «,,. Note that the values
arein asmal range [1, 2]. We also remark that this remains the optimal solution even if any subset of the
next-hop values are perturbed by a small amount (less than 0.5 each).

Thus, the optimal solution has a route of length ©2(n), for any preference values in an open set around
the specified values. BGP builds routes on a hop-by-hop basis. An AS can use a route only when its next
hop on the route has advertised it, and it can itself extend and advertise the route only in the next stage.
Thus, we have proved that any such algorithm does not satisfy property P2:

Theorem 2 Any BGP-based algorithm for computing the next-hop welfare-maximizing mechanism in the
network of Figure 2, over an open set of preference valuesin a small range, takes 2(n) stages to converge.

|

Given the hop-by-hop route construction in BGP, it may seem that a more reasonable requirement than
P2 is that the number of stages required for convergence is proportional to the length of the longest route.
However, the length of the longest selected route is aso a function of the mechanism under consideration
(in this case, the MDST mechanism); for this reason, we prefer the more stringent requirement P2, which
isindependent of the mechanism. One of the reasons that the MDST mechanism is incompatible with BGP
is precisely that it may select very long routes even in networks with small diameter and hence will cause
BGP (or any hop-by-hop protocol substrate) to converge very slowly.

5.3 Extensive dynamic communication

It may be argued that the long route in Figure 2 is unlikely to arise, because long routes are inherently unde-
sirable, and hence ASes will lower their preference values for neighbors with long routes to the destination.
In other words, even though next-hop preferences may adequately capture an AS's preferences at any given
time, these preferences will themselves evolve (over alonger time period, perhaps) to rule out value profiles
that lead to long routes. In this section, we show that, even if there are no long routes, any agorithm to
compute the next-hop welfare-maximizing mechanism will not satisfy condition P3; There are situationsin
which every change in a single node’s utility function will trigger update messages to at least half of the
other nodes.

We show this by constructing a network as depicted in Figure 3. The network hasn = 2™ + 1 nodes.
We construct it with by recursively constructing clusters of nodes.

At the bottom, we construct a 1-cluster that consists of two nodes, B and R. The 1-cluster has two
edges, a“blue” edge from R to B and a“red” edge from B to R. Here, “blue” and “red” are smply labels
that we attach to the edges to clarify the analysis; they have no particular semantics. Each of these two edges
hasweight . — 1, where L = 2m + 4.

In each cluster in our construction, we identify two special nodes. Oneisthe “blue port” and oneis the
“red port.” For al-cluster, B isthe blue port and R isthe red port. We recursively construct (k + 1)-clusters
from two k-clusters, for £ = 1,2, ... ,m — 1. We add a blue edge from the blue port of the right k-cluster
to the blue port of the left k-cluster; the latter then serves as the blue port of the (k 4 1)-cluster. Similarly,

10

3-cluster

2-cluster

1-cluster

—— blue edge
---> red edge

2-cluster Tl 5 -

3

Figure 3: Construction of network for Section 5.3, for m = 3.

we add ared edge from the red port of the left £-cluster to the red port of the right &-cluster, which serves
asthe red port of the (k + 1)-cluster. These edges both have weight L — 2k — 1.

Once we have built up the m-cluster in this manner, we complete the network construction as follows:
We add one more node, the destination j. We also add a blue edge from the blue port of the m-cluster
to 7, with weight L — 2m — 1 = 3, and a red edge from the red port of the m-cluster to j, with weight
L — 2m — 2 = 2. The complete network, for m = 3, isshown in Figure 3.

This network is sparse (each node has only two outgoing edges) and has low diameter, as required. As
in Section 5.2, we can augment it with edges of lower value so that the diameter stays low on removing an
edge; these edges do not affect the analysis, and so we ignore them here. All the valuations are in the range
[1, L], where L = O(logn). The network we have just built has two distinguished directed spanning trees
to destination j: one consisting of al the blue edges and one consisting of all the red edges. In each of
these trees, the longest path (route) hasm + 1 = O(logn) hops. We will now show that these two directed
spanning trees have greater weight than any other directed spanning tree with destination ;.

Lemma3 If T' is a j-arborescence in a network of the form shown in Figure 3, and 7" has both blue and
red edges, then there is another j-arborescence?” such that W (T') > W(T) + 2.

Proof: Consider aminimum-sized cluster that has both red and blue outgoing edgesin T'. Suppose thisis
a(k + 1) — cluster, as shown in Figure 4(a). Consider the two k-clusters it is composed of, and label the
ports By, Ry, By, Ro as shown.

Now, the (k + 1)-cluster has ablue outgoing edge; it must be from the blue port B,. All smaller clusters
have only one color of outgoing edge in T'. It follows that the left k-cluster must have only blue edges.
Similarly, the red outgoing edge must be from the port R, and so the right k-cluster must have all red
edges. Thus, the spanning tree T' must include the blue spanning tree of the left £-cluster, the red spanning
tree of the right k-cluster, and the two outgoing edges with weight L — 2k — 3 (or lessif k = m — 1).

We now construct the tree’T” as shown in Figure 4(b): we replace the red spanning tree by ablue spanning
tree, and replace the red outgoing edge by the blue edge within the (£ + 1)-cluster, with weight L — 2k — 1.
Because of the symmetric construction of the k-clusters, the red and blue spanning trees have the same
weight. Thus, the overall weight of T is at least 2 higher than the weight of T'. O

Lemma4 For the network and weights u as constructed in Figure 3, the maximum-weight j-arborescence
T*(u) is the blue spanning tree. Further, for any node B, that is the blue node of its 1-cluster, T~ 5= (u)
(the maximum-weight j-arborescence on N'\{ B, }) isthe red spanning tree restricted to N\{B,}.

11

) 5 k-cluster P
(k + 1)-cluster I

k-cluster) L k-cluster

(k + 1)-cluster

L —(2k+3)

(b) Tree T
Figure 4: Construction to increase the weight of atree T" with both red and blue edges.

Proof: From Lemma 3, we know that the maximum weight j-arborescence must be either entirely blue
or entirely red. At the top level, the blue edge has a higher weight than the red edge; at all other levels
of the construction, the weights are the same. Thus, the blue spanning tree must be the maximum-weight
j-arborescence T (u).

Thered spanning tree has B, asaleaf and hasweight only 1 lessthan optimal. Any other j-arborescence
with B, as aleaf must have both red and blue edges and hence have weight at least 2 less than optimal, by
Lemma 3. Finaly, we observe that any j-arborescence on N\{B,} can be extended to a j-arborescence
that has B, as aleaf, by adding the red edge (B,, R;) with weight L — 1. Thus, the restriction of the red
subtreeto N'\{ B, } must be optimal. O

Now, consider perturbing the weights u by adding an amount ¢, to the weight of each edge e, for any ¢,
with absolute value less than % Then, the weight of any spanning tree cannot change by 1 or more, and so
Lemma4 still holds. This leads us to the hardness result for this section:

Theorem 3 For the network constructed in Figure 3 and an open set of valuations in a small range, any
infinitesimal change in valuation must cause UPDATE messages to be sent to at least (n — 3)/2 nodes.

Proof: We start with the weight vector u. A perturbed weight vector i can be constructed from u as
follows: For each node i, we add 5?' U€ to the weight of the blue outgoing edge from i and ed {0 the
weight of the red outgoing edge from i, where |5ib| ue, |of eOI| < % This corresponds to picking a weight
vector from an open set around u.

Consider the payment pp, due to some node B,. Let £ be such that B, isthe blue port of a k-cluster,
but not the blue port of a (k + 1)-cluster. Then, the blue outgoing edge from B, has weight (L — 2k — 1).

12

The red outgoing edge from B, must have weight (L — 1), and so using Lemma4 and Equation 2, we get

T*) — up, (T") = W(T~")
blue spanning tree) — (L — 2k — 1) — [W (red spanning tree) — (L — 1)]

pp, = W

(
= W(

= | W (blue spanning tree) — ¥ (red spanning tree)| + 2k

1+ (oPlve_sredy | oy ©)

1EN

Notethat pp, satisfies Equation (3) for any perturbed weight vector a in the given range. Now, suppose

we start from some weight vector i, and then there is an infinitesimal change in V€ (or 7€) for some
node «. It follows from Equation (3) that pp, changes when this happens, and hence node B, must receive
an update message (or else, it cannot update its value of pp,). Thisistrue for every blue node, and thus an
infinitesimal change in any node’s preference must cause price updates at every blue node (a total of"T‘1
nodes). Apart from the node « that originated the change (which may be ablue node), every other blue node
must receive an update message, thus proving the theorem statement? O
Theorem 3 showsthe essence of why the MDST mechani sm appears difficult for aBGP-based computational
model: A small change at any one node can cause changes that are global, not confined to the routes the node
lies on. This appears to be an inherent problem of the maximum-weight directed spanning tree structure:
Even if we neglected the payment computation, the failure of any blue node would force the red spanning
tree to be used, effectively changing the routes of all other nodes.

6 Conclusion

In summary, we presented a formulation of welfare-maximizing policy routing in the mechanism design
framework. We showed that in the most general case, it is NP-hard to maximize the overall welfare, or even
approximate it to within any reasonable factor. When utility functions are restricted to the class of next-hop
preferences, an optimal strategyproof mechanism is polynomial-time computable. However, a BGP-based
distributed implementation of this mechanism appears to be unrealistic: 1t may converge very slowly even
on small diameter networks, and it may require messages to be sent to alarge fraction of the nodes whenever
any node changes its preferences.

This raises severa natural questions for further study. We can ask whether it is possible to design
a mechanism for the next-hop preference setting that approximately maximizes the overall welfare and
also has a low-complexity BGP-based distributed implementation. Another approach is to find reasonable
additional restrictions on the preferences for which an efficient exact algorithm exists.

An unusual feature of our computational model is the use of the dynamic communication requirement as
acomplexity measure. Thisis possibly relevant to other problem domains as well: Many network protocols
are designed to operate over long periods of time, during which their inputs frequently change. Thus, it may
be useful to extend the dynamic-stability analysisin Section 5.3 to other distributed optimization problems.

“We assume here that the payment p, must bestored at B,,. Even if thisisnot true, we could get aresult that isnearly as strong,
as follows: pp, must be stored at some node. By property P1, each node can store O (m) values only; thus, the payments for all
the blue nodes must be distributed across ©(n/m) = Q(52) nodes, which must all receive UPDATES every time the preferences
change.

13

References

[ATO2]

[FPS01]

[FPSSO02]

[GL79]

[Has99]

[HS01]

[Hums3]

[Kar72]

[NRO1]

[Sam03]
[STO1]

Aaron Archer and Eva Tardos. Frugal path mechanisms. In Proceedings of 13th Annual ACM-
S AM Symposium on Discrete Algorithms (SODA ' 02), pages 991-999. ACM Press/SIAM, New
York, January 2002.

Joan Feigenbaum, Christos Papadimitriou, and Scott Shenker. Sharing the cost of multicast
transmissions. Journal of Computer and System Sciences, 63:21-41, 2001.

Joan Feigenbaum, Christos Papadimitriou, Rahul Sami, and Scott Shenker. A BGP-based mech-
anism for lowest-cost routing. In Proceedings of the 21st ACM Symposium on Principles of
Distributed Computing (PODC ' 02), pages 173-182. ACM Press, New York, 2002.

J. Green and J. Laffont. Incentives in public decision making. In Sudies in Public Economics,
volume 1, pages 65-78. North Holland, Amsterdam, 1979.

Johan Hastad. Clique is hard to approximate within n'—¢. Acta Mathematica, 182:105-142,
1999.

John Hershberger and Subhash Suri. Vickrey prices and shortest paths. What is an edge worth?
In Proceedings of the 42nd annual ACM Symposium on the Foundations of Computer Science
(FOCS’01), pages 129-140. ACM Press, New York, 2001.

Pierre A. Humblet. A distributed algorithm for minimum weight directed spanning trees. IEEE
Transactions on Communications, COM-31(6):756—762, June 1983.

Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Complexity of Computer Computations (Proceedings of a Sympaosium
on the Complexity of Computer Computations), pages 85-103. Plenum Press, New York, 1972.

Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and Economic Behavior,
35:166-196, 2001.

Rahul Sami. Distributed Algorithmic Mechanism Design. PhD thesis, Yale University, 2003.

Daniel Spielman and Shang-Hua Teng. Smoothed analysis of agorithms: why the simplex al-
gorithm usually takes polynomial time. In Proceedings of the 33rd Annual ACM Symposium on
Theory of Computing (STOC ' 01), pages 296—-305. ACM Press, New York, July 2001.

14

