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Abstract-- Electro-optic identification (EOID) sensors have

been demonstrated as an important tool in the identification of
bottom sea mines and are transitioning to the fleet.  These
sensors produce two and three-dimensional images that will be
used by operators to make the all-important decision regarding
use of neutralization systems against sonar contacts classified
as mine-like.  The quality of EOID images produced can vary
dramatically depending on system design, operating
parameters, and ocean environment, necessitating the need for a
common scale of image quality or interpretability as a basic
measure of the information content of the output images and the
expected performance that they provide.  Two candidate
approaches have been identified for the development of an
image quality metric.  The first approach is the development of
a modified National Imagery Interpretability Rating Scale
(NIIRS) based on the EOID tasks.  Coupled with this new scale
would be a modified form of the General Image Quality
Equation (GIQE) to provide a bridge from the system
parameters to the NIIRS scale.  The other approach is based on
the Target Acquisition Model (TAM) based on Johnson’s
criteria and a set of tasks.  The following paper presents these
two approaches along with an explanation of the application to
the EOID problem.

Index Terms—Image Quality, EOID, Probability of
Identification, NIIRS, GIQE, Target Acquisition Model

I. INTRODUCTION

Identification of mine-like objects (MLOs) is a pressing
Fleet need.  During mine countermeasures (MCM) operations,
sonar contacts are classified as mine-like if their signatures are
sufficiently similar to known signatures of mines.  Each
contact classified as mine-like must be identified as a mine or
not a mine.  During MCM operations in littoral areas, tens or
even hundreds of MLOs must be identified.  This time
consuming identification process is currently performed by the
human eye -- Explosive Ordnance Disposal (EOD) divers or
Remotely Operated Vehicles (ROVs) -- and is the rate limiting
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step in many MCM operations.  A method to provide rapid
visual identification of MLOs will dramatically speed up such
operations.  The method selected is electro-optic
identification.

Two electro-optic identification (EOID) sensors are
currently transitioning to the fleet.  These are the Streak Tube
Imaging Lidar (STIL), an addition to the AN/AQS-20/X and
the WLD-1 (Remote Mine-hunting System) programs, and the
Laser Line Scan (LLS), which will be part of the AN/AQS-
14A(V1) program.  Through these transitions, EOID will be a
key element in implementation of Fleet plans for a robust
organic MCM capability.

With these systems, the Fleet will have their first
experience with high-resolution underwater electro-optical
imagery.  Therefore, it is necessary that a capability exists to
measure the performance and effectiveness of these sensors
under a given set of environmental conditions.  Two
approaches have been proposed.  The first approach is the
development of a modified image quality scale analogous to
the National Imagery Interpretability Rating Scale (NIIRS)
scale used by the surveillance and reconnaissance community.
The other approach that applies is called Target Acquisition
Model (TAM) and is based on a performance modeling
technique developed, tested, and validated by the US Army.
This paper will outline these two approaches and present the
theory of each as well as the expected products in terms of
MOPs and MOEs.

II. ELECTRO-OPTIC IDENTIFICATION SENSORS

The two laser identification systems set to transition to the
Fleet are the Areté Associates Streak Tube Imaging LIDAR
system in the AN/AQS-20 and WLD1, and the Northrop
Grumman Laser Line Scan  system in the AN/AQS-14A (V1).
The laser line scan technology is illustrated in Figure 1.
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Figure 1.  Illustration of the Laser Line Scan
Technology.

The continuous wave laser illuminates a small moving spot
on the ocean bottom.  A photomultiplier receiver, which is
separated from the transmit beam, is synchronously scanned at
the same rate to build up a raster-scanned image.  The
resulting imagery is a 2 dimensional representation of the
target of interest [1] as shown by the target in Figure 2.

Figure 2.  Laser Line Scan Image of a Truncated Cone.

The STIL technology was developed specifically for
high-resolution three-dimensional imaging of underwater
objects.1  The STIL system is an active imaging system using
a pulsed laser transmitter and a streak tube receiver to time
resolve the backscattered light.  The laser beam is diverged in
one dimension using a cylindrical lens to form a fan beam.
The backscattered light is imaged onto a slit in front of the
streak tube photocathode by a conventional lens, and is time
(range) resolved by electrostatic sweep within the streak tube,
generating a 2-D range-azimuth image on each laser pulse.  By
orienting the fan beam perpendicular to the vehicle track, the
along-track dimension is sampled by adjusting the Pulse
Repetition Frequency (PRF) of the laser to the forward speed
of the vehicle, thus sweeping out the three-dimensional ocean
volume in a pushbroom fashion (Figure 3). [2]

1 Patent 5,467,122.

(c)

Figure 3.  Illustration of the Streak Tube Imaging
Lidar (STIL). (a) and (b) Frontal view and Side view of
the STIL showing STIL data collection with vehicle
motion. (c) Streak tube receiver architecture. [2]

The precise temporal sampling of the STIL makes the
sensor immune to ambient sunlight. The bottom return
includes both time of flight information, which provides a
quantitative measure of the height of the object above the
bottom and the radiometric level that is proportional to the
reflectivity of the bottom object.  Each laser shot thus
provides range to and contrast of the bottom for each cross-
track pixel.  The imagery is rendered and the results are two
images corresponding to contrast and range as shown by
Figure 4. [2]
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                    (a) (b)

Figure 4.  STIL (a) Contrast and (b) Range Imagery of
a Truncated Cone.

III. FLEET NEEDS

The two Measures of Effectiveness (MOEs) for MCM
operations are time and residual risk. A given area can be said
to be cleared of mines to a certain confidence level based on
the search effort and the search results. A more confident
declaration of a cleared area requires more time and assets to
be applied in the operation. To calculate the MOEs, Measure
of Performance (MOPs) must be established to quantify the
individual system contribution. Some of these MOPs may
seem familiar like Probability of Detection, others like
Probability of Reacquisition (Preacq) and Time to Identify (Tid)
may not. All the MOPs must be defined in order to calculate
the MOEs of time and residual risk. To get to the MOPs, it is
necessary to relate the environmental variables back to sensor
performance parameters.  This constitutes the goal of this
work.

In real world operations, the overall MCM MOE is
sensitive to identification. Search systems provide large lists
of mine-like contacts that will form the basis of prosecution
lists for identification assets. Objects positively identified as
mines can either change the ship operations area or call for
neutralization assets to clear the mined area. The time required
to identify the objects can be significant.

Both Fleet EOID systems will use sonars to help reacquire
the initial contact increasing the Preacq. The EOID systems will
then be towed over the target for high resolution imaging of
the object. The Probability of Identification (Pid) and
Probability of False Identification (Pfid) are functions of water
clarity and the altitude of the sensor over the target. Along
with Tid, the time to identification against a single object, an
analyst can calculate the time to perform the identification
mission and the numbers of correctly and incorrectly identified
mines. The MCM analysts would then have an estimate of the
time and the residual risk to ships transiting in that area.

Both Fleet systems have target cueing and snippet
generation of EOID objects.   Target cueing is basically a
Region of Interest (ROI) matched filter algorithm that
highlights certain areas of the image for the operator. Images
snippets are generated either by the ROI algorithm or
manually by the system operator.

Performance models are being developed so operations can
be planned using water clarity measurements from
oceanographic databases. The best water clarity data comes
from sensors in the operation area during the operation. The
STIL system is using a water clarity measurement to suggest
an operational altitude during the sortie. Models have also
been suggested to show reference targets as they would be seen
through the current water conditions. Ideally, the warfighter
would be able take whatever information is known of the
environment, input that into a mission planning tool, and
determine the expected performance, or Pid,  to determine the
utility of the EOID sensor for that mission on that day.
Figure 5 illustrates this need.

Performance
Prediction

Tools

Environmental 
Measurements

Measure of 
Performance/Effectiveness

Figure 5.  Mission Planning Tools.

IV. APPROACHES

Performance prediction models have been developed for four
classes of imaging systems: Synthetic Aperture Radar (SAR),
downlooking visible and infrared (IR), battlefield target
acquisition (low elevation angle visible and IR), and video.
The primary performance metrics are NIIRS, probability of
task performance, and subjective quality ratings.[4],[5]  The
primary purpose of an EOID performance metric is to give the
operator a measure of the ability to distinguish between mines
and clutter.  In what follows, we will refer to this task as
"identification."

Two of these approaches have been investigated as possible
quality metrics for the EOID imagery. The first approach has
been presented in recent EOID literature[7],[8] and centers on
the development of an image quality scale based on the
National Image Interpretability Rating Scale (NIIRS) that was
developed by the surveillance and reconnaissance community
to measure image quality of hard copy imagery.  A logical
extension to this new scale is a modified version of the
General Image Quality Equation (GIQE) that was developed
later to convert system design parameters to a NIIRS number.  

The second approach known as the Target Acquisition
Model (TAM) is based on the sensor modeling that the US
Army has been doing for many years.  It is based on the
Johnson’s criteria and Minimum Resolvable Contrast (MRC)
and has been used to characterize the performance of
acquisition sensors.  This process revolves around the premise
that there is a minimum resolvable contrast that is a function
of spatial frequency.  

Both approaches will be discussed here and comparisons
will be presented.  It should be noted that neither method has
been developed with 3-dimensional data.
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A. National Imagery Interpretability Rating Scale (NIIRS)
NIIRS was developed in the 1970s by a team of government

and contractors.  The scale was developed in response to the
inability to measure the interpretability of imagery given the
simple measures of image quality.  The goal of the
development was to provide a scale that would communicate
what information could and could not be extracted from an
image.  A large sample of interpretation tasks was rated by a
group of Image Analysts (IAs).  The tasks ranged from
detection of large facilities to the identification of small
details, all of which had intelligence or military value.
Various images of known quality were presented to another
group of IAs for a determination of the most difficult task that
could “just be accomplished.”[4],[5],[6]

The resulting NIIRS scale was defined in terms of resolution
with each level corresponded to a doubling or halving of
resolution.  The tasks were grouped into 10 levels (0-9) and
were defined for the five military orders of battle (air, ground,
naval, missile, and electronics).  These criteria defined certain
levels of interpretation.[4] For example, a NIIRS value of 2
will allow the analyst to detect large hangars at airfields while
a NIIRS of 9 will allow the analyst to detect individual spikes
on railroad ties.

The General Image Quality Equation (GIQE) was developed
in the 1980s but not released until 1994.[4]  The GIQE had
been developed to relate system design parameters to the
NIIRS scale.  This was done because the next generation of
surveillance and reconnaissance (S&R) sensors were specified
in terms of NIIRS performance.  The GIQE relates resolution,
sharpness, and signal-to-noise ratio to a NIIRS number.  The
GIQE for visible EO is

)/(344.0656.0

loglog251.10 1 010

SNRGH

RERbGSDaNIIRS

GM

GMGM

−+
++= (1)

where GSDGM is the geometric mean ground sampled
distance (in inches), RERGM is the geometric mean of the
normalized relative edge response, HGM is the geometric mean
height of overshoot due to MTF Compensation (MTFC), G =
noise gain due to MTFC, SNR = signal-to-noise ratio, a =
3.32 if RER ≥ 0.9 and 3.16 if RER < 0.9, and b = 1.559 if
RER ≥ 0.9 and 2.817 if RER < 0.9.[4],[5]  The GIQE in its
present form is not directly applicable to the EOID imagery.
Substitution of the EOID-type numbers into the equation
results in numbers that appear outside of the 0-9 scale, and
even if the GSD were rescaled to a more relevant spatial scale
range, the limits of the regression data set [5] used for
deriving eq. (1) are significantly exceeded in SNR and RER in
the EOID context.

B. Target Acquisition Model (TAM)
The TAM predicts the discrimination performance of

operators who make their decisions based on examining a
single grayscale image produced by an imaging sensor.

For a sensor which is well approximated as a linear, shift-
invariant (LSI) imaging system, the TAM theory provides a
metric for the quality of an image of a target that takes into
account blurring, stochastic noise processes, and
undersampling.  The metric is the number N of Johnson bar
cycles (with contrast equal to the target's characteristic contrast

C) that can be discerned across the characteristic dimension D
of the target by a human observer using the sensor (Figure
6).[4]

DD

Figure 6.  Illustration of Characteristic Dimension D
and a 4-barTarget.

  The method for computing N as a function of C, D and
the degradation of the image resulting from scattering in the
intervening medium constitutes much of the formalism of the
TAM and is the application of the sensor models that are now
being evaluated by the ONR EOID Research Program.

In the TAM, the relationship between N and probability of
identification (Pid) must be established empirically for any
given identification task and sensor.  However, this calibration
is embodied in a single number, N50, which is the value of N
for which the ensemble of human observers in the experiment
is able to perform the identification task with 50%
probability.  Whatever formula gives Pid as a function of N
and N50 can be expected to be a function only of the ratio
N/N50 (under the assumption that e.g. doubling the size of the
target should not effect Pid if the scale to which the
sensor/operator can resolve is also doubled).

The Target Transfer Probability Function (TTPF) is the
result of several empirical experiments and gives the
probability of discrimination as a function of N/N50.  The
values for the TTPF are given in Table 1.[1]

Table 1.  Empirical values measured for the TTPF

Probability
of discrimination

N/N50

1.00 3.0
0.95 2.0
0.80 1.5
0.50 1.0
0.30 0.75
0.10 0.50
0.02 0.25

0 0

A formula has been empirically fit to this data [1] and is
itself often referred to as the TTPF:

 (2)

It is important to note that determining N50 is a much easier
task (that is, involving a smaller number of operator-decision
experiments) than determining the full TTPF would be.
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1) Application to 2D
The application of the TAM to the standard 2 dimensional

data received from the EOID sensors is fairly straightforward.
The block diagram in Figure 7 shows where the physics-based
imaging models and the environmental parameters fit into the
TAM.

Lidar Model
Target Acquisition
Model

SNR
(cont rast and range)

X Reso lution

Y Reso lution

P id

Environmental 
Parameters

Target Parameters

OOP (a,b,c,beta)

Target Geometry/Range

Background Reflectance

Target N50, Target Dimensi ons

Target Reflectance

Target Acquisition Model Use: Summary

Lidar ModelLidar Model
Target Acquisition
Model
Target Acquisition
Model

SNR
(cont rast and range)

X Reso lution

Y Reso lution

P id
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Parameters
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OOP (a,b,c,beta)

Target Geometry/Range

Background Reflectance

Target N50, Target Dimensi ons

Target Reflectance

Target Acquisition Model Use: Summary

Figure 7.  Application of TAM to EOID imagery.

The general procedure that would be used to apply the
TAM to the EOID problem is shown in Figure 8.

Figure 8a.  Procedure for the TAM and the EOID
problem.  The target's critical dimension dc  and
characteristic contrast C are determined.

Figure 8b.  The results of pre-existing, controlled
experiments (human operators vs. patterns of varying
spatial frequencies and contrasts on CRT screens) are
combined with a model of the imaging process to derive
an SNR Threshold (SNRT) for the Human Visual System
(HVS).  The objective is to discern Johnson bar patterns
as a function of their spatial frequency k in the object
plane.  SNRT(k) is compared with SNR(C,k), the SNR
calculated for HVS observations of Johnson bar patterns
with spatial frequency k, where C , the contrast, is set
equal to the characteristic contrast of the targets in the

target set.  The two curves meet at a threshold spatial
frequency kT above which the bar patterns can no longer
be perceived.

Figure 8c.  The number N of just-discernible Johnson
bar cycles, across the target critical dimension, is
calculated from kT, and the probability of performing the
discrimination task is calculated using the TTPF.

Figure 8d.  N50 will vary with the type of discrimination
task.  In the US Army context, the three different
discrimination tasks lead to three different N50's, and
therefore three different curves for probability of
performing a task as a function of e.g. range to target.

The application of this procedure on each of the 2D images
(e.g., LLS contrast, STIL contrast, and STIL range) should
result in a Pid curve versus range for the 2-dimensional
imagery.  As a check, a regression analysis can be performed
on the results from the 2D testing as a validation point on the
TTPF.  It should be noted that the TTPF is an ensemble
probability that is applicable for the whole target set although
performance against individual targets may be better or worse
than the TTPF predictions.

2) Extension to 3D
While both sensors transitioning to the Fleet provide a

contrast image, the STIL also produces a range map of the

SNR

k (cycle meter-1)

SNRT(k)
SNR(C,k)

kT

Probability

Range(km)

1

0

Recognition
Identification

Detection

 

N/N50

TTPF
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ocean bottom as shown earlier.  At the present time, there
does not exist a methodology for the incorporation of a third
dimension into the discrimination task for the Target
Acquisition Model.  Neither does there exist a quantification
of the improvement that the extra information provides to the
operator.  As a part of this study, we have formulated an
extension of the TAM process for the inclusion of the range
information.  This should provide the first look at quantifying
the “range improvement.”  

For this 3D experiment, operators will be presented with
two grayscale 2-D images of the ground truth, one indicating
contrast and one indicating range.2

Just as a contrast image of the target has its N-value Nc, the
associated range image of the target has an N-value Nr.
Generally, these images will have to fill some 2-D region of
(Nc,Nr)-space in order to encompass the images that a realistic
system would encounter given varying altitudes,
environmental conditions, and inherent target properties. As
far as we know, there is no analog to the TTPF involving two
N-valued images presented side-by-side.  We will need to do
operator testing on the (Nc,Nr)-space to determine the analog.
We will consider various regression forms including
interpolations of TTPF-type functions, but cannot predict in
advance what functional form will best fit the data as, to our
knowledge, generalization of the TAM to 2-image data has not
been done before.

The region of (Nc,Nr)-space to be explored will be chosen by
running existing physical models on part of the target set
under environmental conditions ranging from estuarine
through coastal and with low and high altitudes.

Although we cannot yet predict the best way to describe
operator performance as a function of 2-image data quality, at
least two hypotheses suggest themselves and will be
considered once operator-testing data is measured.  The benefit
of hypotheses like these is that they restrict the regions on
(Nc,Nr)-space for which operator testing must occur, and
restrict the type of testing to determining some small number
of N50-like quantities.  We should stress the fact that these
hypotheses are merely to be checked; they may very well not
be true and we are not relying on them to determine Pid .

a) Hypothesis 1: Statistically Independent Error
Processes

Make the approximation that the processes inherent in
misidentifying a contact given side-by-side images (in this
case made with contrast and range data) are statistically
independent. Furthermore, assume that the operator will use a
"risk-averse" decision rule such that if he would choose to
declare a mine present based on one type of image, then given
both images he would still declare a mine present irrespective
of whether he would have declared the second image alone to
be mine or clutter.

Then the probabilities of interest can be written:()()()
(3)

()RCR,idC,idclutterclutterPPP= , (4)

2Other presentation algorithms, which may include combining the images
into one image, may in fact work better.  However, the first display to which
the operator will be introduced  is the side-by-side display currently  planned
for the AN/AQS-20/X console.

where PRC(A|B) indicates the probability of declaring state A,
conditioned on the true state being B, given both range and
contrast images, and PR,id or PC,id indicate the probabilities of
identification given only a range or contrast image
respectively.

An important consequence of the assumptions for this
hypothesis is that the Pid's may vary significantly between
clutter and mine elements of the test set, as can be seen in the
differing expressions for eqs. (3) and (4).  This would lead to
an unavoidable dependence on the poorly known prior
distributions of mine vs. clutter in the overall value for Pid.
However, the hypothesis could lead to the easiest
characterization of Pid on (Nc,Nr)-space because only two
N50-like calibrations would be required to characterize the
whole space.

b) Hypothesis 2: Linearly Interpolated TTPF Regions

The line L of points where Nc/N50,c = Nr/N50,r, is potentially
a special region of (Nc,Nr)-space because in a sequence of 2-
image pairs along this line, the information quality in each of
the images in a pair (at least as measured by the probability of
discrimination given that image alone) is the same.  The first
assumption is that since the images in a pair have the same
information quality, an image pair is acted on by the human
operator as if it had come from a single type of imager, in the
sense that the TTPF applies:

, (5)

where  is the value for Nc for which a 50% probability

of identification obtains given pairs of images along L , and
where TTPF(x) is given by equation (2).  It should be noted
that N50,c|rc differs from N50,c in that N50,c|rc is the value of Nc

for which the users achieve 50% Pid given range/contrast pairs
of images (along the line L of points where Nc/N50,c = Nr/N50,r)
while N50,c, is the value of Nc for which the users achieve 50%
Pid given contrast images only.  By definition of L , equation
(5) could just as well have been written in terms of the
analogous range-only quantities:

, (6)

where  is the value for Nr for which a 50% probability

of identification obtains given pairs of images along L.
Although it may appear that two new parameters, 

and , have been introduced, the fact that they are

defined on L relates them and it is therefore useful to define a
single new quantity R50,rc given by:

. (7)

R50,rc is the ratio of N50 given the image pairs along L to the
N50 given either range or contrast alone.  The smaller R50,rc is
measured to be, the more the data is indicating that the
operator is able to take advantage of the side-by-side images.
The unlikely possibility of a value larger than 1 would
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indicate confusion arising from the two images and suggest
only one be used.  The situation is indicated in Figure 9.

Figure 9.  Special values in (Nc,Nr)-space.  The thick
dotted line indicates the identity set L defined by Nc/N50,c

= Nr/N50,r, and the large black dots indicate points where
Pid = 50%.

Given the assumption about performance on L , it remains
to extend the performance predictions to the rest of the space
indicated in Figure 9.  There is no obvious best way to do
this.  Perhaps the simplest suggestion is to approximate
performance by a function that is constant along straight lines
between points of equal probability where the probability has
been measured -- on the identity and axes.  Contours of
constant probability resulting from this linear interpolation are
indicated in Figure 10.

Figure 10.  Sample of the contours of constant
probability under the linear interpolation are indicated
by the thick lines.

The formula giving Pid under these assumptions is:()()()()()cr50,r50,c50,rcccrr50,c50,rc50,r50,c50,r50,rcccrr50,r50,rc50,c50,c50,rid50,rc11,,TTPFTTPFNNNNRNNNNNRNNNRNNNNNRNNNPR−−=+?+<

(8)

If the assumptions in this hypothesis hold, then only three
N50-like calibrations would be required to characterize the
whole space.

V.   NIIRS/GIQE VS. TAM AND THE "TAM-LIKE"
APPROACH

Methods lying closer to TAM entail a much simpler
operator-testing and regression problem then NIIRS/GIQE.
Unlike the GIQE, TAM provides an SNR-based metric N,
which already combines the quantitative image metrics such as

GSD, RER and SNRDC rather than having to find regression
coefficients for them from scratch.  The TAM regression is on
data ordered by this single number N to find a single number
N50, which characterizes the probability of performing a task.
Extension of this method to the 2-image data will require
additional regressions, whether using TAM or NIIRS/GIQE.
Because of the multitude of unknowns associated with this
extension, it would make sense to perform regression against
quantities like GSD, RER and SNRDC, in addition to
regressing performance against N-values, and see which works
best.  But this is still a much more restricted problem than
with the NIIRS/GIQE, because targets in the operator
experiments (mines and clutter) can be restricted to have
similar characteristic scales and contrasts (or range-contrasts),
rather than necessarily studying a large range of spatial scales.

The approach we are describing has features mostly from
TAM (limited variety in the operator test set, use of N-values,
Pid as result), but also has features from the GIQE method (use
of GSD, RER and SNRDC) and a completely novel feature (2-
image data).  We will therefore call it a "TAM-like" approach.

In a sense, the TAM-like approach is more focused and less
ambitious (giving higher probability of success) than
NIIRS/GIQE, because like TAM it concentrates on
identification among targets of similar size and inherent
contrast. The products of this approach are actual probabilities,
not just NIIRS-like numbers; these probabilities are in many
cases more useful to the operator in the field.

Finally, the historical context that motivates the GIQE is
not really relevant to EOID.  GIQE was developed to predict
NIIRS, a mature, pre-existing and widely-used metric.  We
would have to develop a new NIIRS and GIQE
simultaneously.  We conclude that a TAM-like approach such
as we have described is the method of choice for the ONR
EOID experiment.

VI. CONCLUSION

The NIIRS and TAM methods have both been studied for
possible use of modeling MOEs and MOPs for EOID
operations.  Both approaches were deemed valuable, but with
limitations.  Subsequently, a "TAM-like" method,
incorporating aspects of both metric models, has been
developed and is a good candidate for well characterizing
operator performance against EOID data.  In particular, it
appears to be considerably better for the ONR EOID
experiment than a NIIRS/GIQE alone.  Several hypotheses are
available for simplifying the characterization of 2-image data
(necessary because of the availability of both contrast and
range data from STIL sensors).

The results of the ongoing development of this method are
expected to be a viable, broadly applicable metric for EOID
performance.  Such a metric will fulfill the critical need for
performance prediction when making essential tactical
decisions in deploying EOID sensors in the fleet.

APPENDIX

For the US Army, decision-making tasks based on sensor
images (called discrimination tasks) have been divided into
three specific classes:
• "detection" (reasonable probability that blob is a tactical

military vehicle),
• "recognition" (distinguish class e.g. truck, tank, APC)
• "identification" (object discrimination e.g. type of tank).
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The Navy Mine Warfare community uses the following task
definitions:

• Detection - Object/No Object (never really used, one
system calls this "pre-detections")

• Classification - Mine-like Object/Non-Mine-like Object
• Identification - Mine/Non-Mine
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