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1. Summary

For the past three years, we have been developing an Exact Scientific Computational Library (ESCL)

using p-adic arithmetic. New algorithms have been designed and implemented for matrix operations with

rational numbers by representing numerator and denominator with arbitrary length integers, all integers

and fractional numbers are represented by p-adic sequences, and all arithmetic calculations are carried

out in p-adic domain. In this project, we have worked on: 1) investigating the relation of the length M of

p-adic expansion for a rational matrix and the periodicity of a resulted p-adic sequence from arithmetic

operation in p-adic field; and extension of the ESCL to compute: 2) the complex rational matrix; 3) the

exponential of a rational matrix.

2. Progress on Length M and Periodicity of a p-adic Expansion

To determine what is the efficient length M of the p-adic expansion for a rational number in the matrix

operation is not a trivial problem. Let us observe what happens after the arithmetic operations of two p-adic

sequences.

All rational numbers can be uniquely written in the form,

a=Zajpi. (1)
.1=0

We know that a real number is rational if and only if its decimal expansion is periodic. Similarly, a

p-adic number is rational if and only if its p-adic expansion is periodic. Consequently, since we are

primarily interested in the p-adic expansions of rational numbers, we will be dealing only with p-adic

expansions which are periodic. The expansion eventually repeats to the right. That is, if a is a rational

number, then it has a repeating pattern of a,p J in its p-adic expansion, i.e., it is of the form

a=.Ao... Aao... a,,_ (2)

Addition/subtraction

Assume that we have two p-adic sequences, (s<t):

b =.B, ... B, b...bm

Considering various carry digits' effects, we concluded that the maximum length of the p-adic

expansion of (a ± b) is:

2 x LCM(n, m) + max(s,t) - 1. (3)
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Multiplication

axb =.A I... A., ai...a x.B...B,b ... bm

= .A .A, a, .. a , x.B ,. .. B, + .A , ... A, a, ... a , x .0 ... 0Ob, ... b

t 3= .A .. A, a, ... a, x.B, ... B, +.A, ... A, x. .... Ob, ... b. +.O ... Oa, ... a, x.0 ...0Ob, ... b.n

Considering all the three parts separately and the various carry digits' effects, we concluded that, in

multiplication, the length of periodic part of the product is:

LCM(m, n) x (pGCD(m,f) 1), (4)

where m and n are the length of periodic part of the two multipliers, p is the prime.

The length of periodicity of the resulting p-adic sequence can be very large from (4). But if we should

represent all the p-adic sequences with a complete period during all the calculations, we can definitely carry

out all the arithmetic operations exactly. Further investigation is needed to find proper length M which is

smaller than the periodicity of a p-adic expansion. The determination of the efficient length M of the p-adic

expansion for a rational number in the matrix operation becomes more important, when the algorithms in

eigensystem computation use iterative arithmetic operations.

3. Progress on the Computation of Complex Rational Matrices

We have implemented the algorithms developed for single and matrix rational number operations

(addition, subtraction, multiplication and division) in the p-adic field, to compute the complex rational

arithmetic operations in the p-adic field as follows:

Complex addition

(a + bi) + (c + di) = (a + c) + i(b + d), (5)

Complex subtraction

(a + bi) - (c + di) = (a - c) + i(b - d), (6)

Complex multiplication

(a + bi)(c + di) = (ac - bd) + i(ad + bc), (7)

and Complex division

a+bi ac+bd .bc-ad

c + di c2 + d' c 2 +d2  (8

These complex operations are needed in the process of eigenvalue computation.
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4. Progress on the Computation of Matrix Exponential

4.1 Compute matrix exponential with Jordan canonical form

Matrix decomposition methods, which are to be most efficient for problems involving large matrices

evaluation of etA , are those which are based on factorizations or decompositions of the matrix A. The

Jordan canonical form (JCF) decomposition is one of the many stated in [I]. Due to its truncation error by

floating-point arithmetic operations, it has not been widely used, since a single rounding error may cause

multiple eigenvalues to become distinct, which can alter the entire structure of the decomposition. If we can

improve the accumulated floating-point truncation error created during the iteration process of the

computation by p-adic arithmetic wherever possible, we hope that the stability and accuracy can be

improved dramatically.

Definition: The Jordan canonical form decomposition states that there exists an invertible P such that

P-'AP = J, (9)

where J is a direct sum, J = J 1 (D .. Jk, of Jordan blocks,

2 1 0 ... 0

02 1...0
j = : : (i, -by-n). (10)

1

0 0 0 ... 2,

The 2, are eigenvalues of A, here we assume that A is rational. Each Jordan block corresponds to a

linearly independent eigenvector. If any of the m, is greater than 1, A is said to be defective. This means

that A does not have a full set of n linearly independent eigenvectors. A is derogatory if there is more than

one Jordan block associated with a given eigenvalue.

For a given matrix A, its Jordan canonical form J is completely determined by the maximal number

of linearly independent eigenvectors of A: the number of the Jordan blocks in J is equal to the maximal

number s of linearly independent eigenvectors of A, each of which is associated with a Jordan block whose

order is the same as the 'rank' of the eigenvector.

Thus the number of Jordan blocks with the same eigenvalue 2 is equal to the dimension of the

eigen-space E, = N(2I - A), the number of linearly independent eigenvectors of A belonging to 2.

Moreover, the sum of the orders of all Jordan blocks associated with an eigenvalue 2 is equal to the

multiplicity m of 2.

In principle, the problem posed by defective eigensystems can be solved by resorting to the Jordan
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canonical form (JCF).

If

A = P[JI ED... @ Jk ]P-' (1

is the JCF of A, then

eA = Ple a' ... ( e akP-. (12)

Thus, it is enough to compute eu for a simple Jordan block J. The exponentials of the Jordan blocks

Ji can be given in closed form. For example, if

(13)

L0 2

then,

1 t t/2! t"-'I(n-1)!
0 1 t ' tn-2/1(n -2)!

eu= e l 1 (14)

t

o0 1

It is important to know how sensitive a quantity is before its computation is attempted.
6

One of the most important issues in the computation of matrix exponential with JCF is the evolution

of performing eigenvalue analysis.

4.2 Power method

Numerical analysis, at its simplest, is an iterative technique. It is a fruitful exercise to study the

Power method to get an in-depth understanding of the numerical solution for eigen-values and

eigenvectors.

4.2.1 Algorithm

The Power method is an iterative technique used to determine the dominant eigenvalue of a

matrix-that is, the eigenvalue with the largest magnitude. By modifying the method slightly, it can also be

used to determine other eigen-values. One useful feature of the Power method is that it produces not only

an eigenvalue, but also an associated eigenvector. In fact, the Power method is often applies to find an

eigenvector for an eigenvalue that is determined by some other means.

To apply the Power method, we assume that the n x n matrix A has n eigen-values , A21... An
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with an associated collection of linearly independent eigenvectors {v( ), v , v( ) }. Moreover, we

assume that A has precisely one eigenvalue, 2, that is largest in magnitude, so that

IA 2I RY1 31 n .. > o.
Ifx is any vector in 93n, the fact that {v( ), v(2),..., vn) } is linearly independent implies that

n

constants l ,. 2 ,. ",3 exist with X = v
j=1

By making a series of calculations, we get

(in) [g,1.- +1Z 2 (A.J1A1)n38VP(1)
A, lV p() +rn-, j V 0p(15

P.-vI! + Z= 2 (AJ /.1)mI~~1 N-115

and

x(M) - A' . (16)H-, y(k)
flk=l YPk

By examining Eq. (15), we see that lim., (m) -1 1. Moreover, the sequence of vectors {x n,=0

converges to an eigenvector associated with ,;{.

The Power method implementation can be stated as follows:

INPUT: dimension n; matrix A; vector x; tolerance TOL; maximum number of iterations N.

OUTPUT: approximate eigenvalue /u; approximate eigenvector x (with IIx = 1) or a message that the

maximum number of iterations was exceeded.

Step I Set k=l.

Step 2 Find the smallest integer P with 1< p < n and ixPI = IIxL.
Step 3 Set x = x/x P.

Step 4 While(k < N)do Step 5-11.

Step5 Set y=Ax.

Step6 Set U =yp.

Step 7 Find the smallest integer p with 1< p < n and lYp I= Il[Y1.
Step 8 If yp = 0 then OUTPUT ('Eigenvector', x);

OUTPUT ('A has the eigenvalue 0, select a new vector x and restart');

STOP.
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Step 9 Set ERR= x- (y/yP)1L;

x = Y/Y,

Step 10 If ERR < TOL then OUTPUT (/,x);

(The procedure was successful.)

STOP.

Step 11 Set k=k+1.

Step 12 OUTPUT ('The maximum number of iterations exceeded');

(The procedure was unsuccessful.)

STOP.

As we can see, such an algorithm is designed to get the approximate eigen-values, round-off and

truncation errors may be introduced by using floating point arithmetic during the computation, but the exact

linear computation can avoid that kind of errors.

4.2.2 Implementation

For example, the matrix
-_ 4 14 0]

A= -5130

has eigen-values A, = 6, A2 = 3, and A3= 2 , so the Power method described in this algorithm will

converge. Let X(
-

) = (1,1,1) , then

y () = Ax(0) = (10,8,1)',

so
yI)

0,P = 10, and = - = (1,0.8,0.1)'
=Y 10, = 10, a10

Continuing in this manner leads to the approximations to the dominant eigenvalue 1/3.

Comparison of the results of the exact linear computation and results using floating point arithmetic.

The results using floating point arithmetic as follows:

1 0.55555555555555558 8 0.3340807174887892

2 0.40000000000000002 9 0.33370618941088748

3 0.36111111111111094 10 0.3335195530726256

4 0.34615384615384615 11 0.3334263912153359

5 0.33950617283950624 12 0.33337984928830566

6 0.3363636363636362 13 0.33335658806567126

7 0.33483483483483478 14 0.33334495988838486
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15 0.33333914640810103 38 0.33333333333402604

16 0.33333623982003013 39 0.33333333333367965

17 0.33333478656401028 40 0.33333333333350645

18 0.3333340599455038 41 0.33333333333342008

19 0.33333369663862655 42 0.33333333333337667

20 0.33333351498578179 43 0.33333333333335502

21 0.33333342415950795 44 0.33333333333334414

22 0.33333337874640823 45 0.3333333333333387

23 0.33333335603986758 46 0.33333333333333592

24 0.33333334468659981 47 0.33333333333333437

25 0.33333333900996609 48 0.33333333333333359

26 0.33333333617164973 49 0.33333333333333326

27 0.33333333475249138 50 0.33333333333333326

28 0.33333333404291232 51 0.33333333333333326

29 0.33333333368812279 52 0.33333333333333326

30 0.33333333351072825 53 0.33333333333333326

31 0.33333333342203075 54 0.33333333333333326

32 0.33333333337768223 55 0.33333333333333326

33 0.33333333335550774 56 0.33333333333333326

34 0.33333333334442072 57 0.33333333333333326

35 0.33333333333887694 58 0.33333333333333326

36 0.33333333333610504 59 0.33333333333333326

37 0.33333333333471904 60 0.33333333333333326

The results of the exact linear computation using p-adic arithmetic as follows:

1: 7:

5/9 223/666

2: 8:

2/5 149/446

3: 9:

13/36 895/2682

4: 10:

9/26 597/1790

5: 11:

55/162 3583/10746

6: 12:

37/110 2389/7166
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13: 3758096383/11274289146

14335/43002 32:

14: 2505397589/7516192766

9557/28670 33:

15: 15032385535/45097156602

57343/172026 34:

16: 10021590357/30064771070

38229/114686 35:

17: 60129542143/180388626426

229375/688122 36:

18: 40086361429/120259084286

152917/458750 37:

19: 240518168575/721554505722

917503/2752506 38:

20: 160345445717/481036337150

611669/1835006 39:

21: 962072674303/2886218022906

3670015/11010042 40:

22: 641381782869/1924145348606

2446677/7340030 41:

23: 3848290697215/11544872091642

14680063/44040186 42:

24: 2565527131477/7696581394430

9786709/29360126 43:

25: 15393162788863/46179488366586

58720255/176160762 44:

26: 10262108525909/30786325577726

39146837/117440510 45:

27: 61572651155455/184717953466362

234881023/704643066 46:

28: 41048434103637/123145302310910

156587349/469762046 47:

29: 246290604621823/738871813865466

939524095/2818572282 48:

30: 164193736414549/492581209243646

626349397/1879048190 49:

31: 985162418487295/2955487255461882
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50:

656774945658197/1970324836974590

51:

3940649673949183/11821949021847546

52:

2627099782632789/7881299347898366

53:

15762598695796735/47287796087390202

54:

10508399130531157/31525197391593470

55:

63050394783186943/189151184349560826

56:

42033596522124629/126100789566373886

57:

252201579132747775/756604737398243322

58:

168134386088498517/504403158265495550

59:

1008806316530991103/3026418949592973306

60:

672537544353994069/2017612633061982206

-10-



From the above results, we can find that floating-point operation does not function very well in

terms of round-off/truncation errors. The approximation of the dominant eigenvalue remain

0.33333333333333326 from loop 49, while it should be 0.33333333333333333 precisely. The results have

been rounded up or down in every step, finally, the iterative process will dramatically enhance the

uncertainty of the outcome. In the meantime, using p-adic arithmetic will get a decisive advantage since it

can keep the calculation free of round-off/truncation errors.

An obvious advantage of the exact linear computation using p-adic arithmetic is that, we can get

results as accurate as we want with the loop increasing, while floating-point arithmetic can only reach a

certain precision and stay at a Value no matter how many loops it runs.

Compare to the program using floating-point arithmetic in which the results remain

0.33333333333333326 from loop 49, the program usingp-adic arithmetic can get more and more accurate

after each loop, for example, in loop 59, the approximate eigenvalue is

1008806316530991103/3026418949592973306;:e 0.33333333333333333366375685,

after running one more loop, the approximate eigenvalue is

672537544353994069/2017612633061982206 : 0.33333333333333333349854509

which is closer to 1/3.

Precision is critical to the computation of the exponential of a rational matrix since the method

requires a tremendous amount of operations, the truncation errors for every step will cumulate and finally

make a great difference from the exact value. As a matter of fact, a little error will alter the entire structure

of J and P and lead to an utterly wrong outcome, this will put the matter beyond a doubt that our "Exactly

Computing" system would prove highly valuable on the computation of the exponential of a rational

matrix.

4.3 Eigenvalues of a Real General Matrix

The solution of eigensystems is a fairly complicated business, almost all routines in use nowadays

trace their ancestry back to routines published in Wilkinson and Reinsch's Handbook for Automatic

Computation, Vol. II, Linear Algebra [2]. A public-domain implementation of the Handbook routines in

FORTRAN is the EISPACK set of programs [3]. It includes the ability to solve for eigenvalues and
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eigenvectors of various kinds of matrices, has been implemented. The routines we used are translations of

either the Handbook or EISPACK routines.

The matrix is first balanced. Orthogonal similarity transformations are used to reduce the balanced

matrix to a real upper Hessenberg matrix. The implicit double-shifted QR algorithm is used to compute the

eigenvalues and eigenvectors of this Hessenberg matrix.

4.3.1 Balancing

The idea of balancing is to use similarity transformations to make corresponding rows and columns

of the matrix have comparable norms, thus reducing the overall norm of the matrix while leaving the

eigenvalues unchanged. It is recommended to always balance non symmetric matrices. It never hurts, and it

can substantially improve the accuracy of the eigenvalues computed for a badly balanced matrix.

Balancing is a procedure with of order N2 operations. The actual algorithm used is due to Osborne,

as discussed in [2]. It consists of a sequence of similarity transformations by diagonal matrices. The output

is a matrix that is balanced in the norm given by summing the absolute magnitudes of the matrix elements.

Note that if the off-diagonal elements of any row or column of a matrix are all zero, then the diagonal

element is an eigenvalue. If the eigenvalue happens to be ill-conditioned (sensitive to small changes in the

matrix elements), it will have relatively large errors when determined by the routine hqr. We could have

determined the isolated eigenvalue exactly and then deleted the corresponding row and column from the

matrix.

4.3.2 Reduction to Hessenberg Form

First we reduce the matrix to a simpler form, and then we perform an iterative procedure on the

simplified matrix. The simpler structure we use here is called Hessenberg form. An upper Hessenberg

matrix has zeros everywhere below the diagonal except for the first sub-diagonal row. For example, in the

6x6 case, the nonzero elements are:
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-X X X X X X"

X X X X X X

X X X X X

X X X X

X X X

x x

Here we use a procedure analogous to Gaussian elimination with pivoting. Before the

rth stage, the original matrix A = A, has become A,r, which is upper Hessenberg in its first r- 1 rows

and columns. The rth stage then consists of the following sequence of operations:

* Find the element of maximum magnitude in the rth column below the diagonal. If it is zero, skip

the next two "bullets" and the stage is done. Otherwise, suppose the maximum element was in row r'.

* Interchange rows r' and r+1. This is the pivoting procedure. To make the permutation a

similarity transformation, also interchange columns r' and r+].

* For i = r + 2, r + 3, .... N, compute the multiplier

nr air
ar+l,r

Subtract ni,r+1 times row r+1 from row i. To make the elimination a similarity transformation, also add

ni,r1 times column ito column r+ 1.

A total of N-2 such stages are required.

4.3.3 The QR Algorithm for Real Hessenberg Matrices

The basic idea behind the QR algorithm is that any real matrix can be decomposed in the form

A =Q.R, (17)

where Q is orthogonal and R is upper triangular. Now consider the matrix formed by writing the in the

opposite order:

A'=R.Q . (18)

Since Q is orthogonal, equation (17) gives R = Q . .Thus equation (18) becomes
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A'= Q .A.Q. (19)

We see that A' is an orthogonal transformation of A.

The QR algorithm consists of a sequence of orthogonal transformations:

A,= Q..R, (20)

R, , = RA.Q (= -. ) (21)

The QR transformation preserves the upper Hessenberg form of the original matrix A A and the

workload on such a matrix is O(n2 ) per iteration as opposed to O(n3 ) on a general matrix. As

S -- 0, 4A converges to a form where the eigenvalues are either isolated on the diagonal or are

eigenvalues of a 2 x 2 sub-matrix on the diagonal.

In order to accelerate convergence, we deployed the technique of shifting: If k is any constant, then

A - k has eigen-values Aj, - k. If we decompose

A, - k,I = Q, " R, (22)

so that

A,+1 = R,.- Q + kI
T (23)

-Q' • A, "Q.,

then we verified that the convergence is determined by the ratio

A, -k,

here Aj < Aj. A good choice for the shift k. would maximize the rate of convergence.

Any real matrix can be triangularized by pre-multiplying it by a sequence of Householder matrices P,

(acting on the first column), P2 (acting on the second column),... P- Thus Q = P" P, and

the first row of Q is the first row of P, since P, is an (i-1) x (i-1) identity matrix in the top left-hand

comer.



The Householder matrix PI is determined by the first column of(A, -k, 1 ) (As -k,I), which

has the form [p,,q,r,O,...,O]", where

P, =a21 (a,, - a, )(an1,,-1 -a,- a,-,an,n-1 + a,2]
a21

q= a21 [a 22 - a,1 - (a., - a 1 ) - (a._,,_ - a11 )] (24)

r,-' a21,a32

Since it has only first 3 elements nonzero, the matrix I " Ir is upper Hessenberg with 3 extra

elements:

X X X ) X X X

X X X X X X X

x x x x x x

PI-.A, I = X X X X X X X

X XX

XX

This produces a matrix with the 3 extra elements appearing one column over:

X X X X X X X

X X X X X X X

X X X X X X

x X X X X X

X x x x x

x X X

Xx X

Proceeding in this way up to P,, we see that at each stage the Householder matrix P has a vector that is

nonzero only in elements r, r+l, and r+2. These elements are determined by the elements r, r+l, and r+2

in the (r-I)st column of the current matrix.

In summary, to carry out a double QR step we construct the Householder matrices,

P, r = 1, . n- 1. For P we use p, , q,, and r given by (24). For the remaining matrices, Pr,
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qr 'and rr are determined by the (r, r-l), (r+1, r-1), and (r + 2, r - 1) elements of the current matrix.

Algorithm description:

There are two possible ways of terminating the iteration for an eigenvalue. First, if a,,,- becomes

"negligible," then a,,,, is an eigenvalue. We can then delete the nth row and column of the matrix and

look for the next eigenvalue. Alternatively, a_,,_-2 may become negligible. In this case the eigenvalues

of the 2 x 2 matrix in the lower right-hand corner may be taken to be eigenvalues. We delete the nth and

(n- I)st rows and columns of the matrix and continue.

The test for convergence to an eigenvalue is combined with a test for negligible sub-diagonal

elements that allows splitting of the matrix into sub-matrices. We find the

largest i such that a, 1, is negligible. If i = n, we have found a single eigenvalue. If

i = n- ],we have found two eigenvalues. Otherwise we continue the iteration on the

sub-matrix in rows i to n.

After determining i, the sub-matrix in rows i to n is examined to see if the product of any two

consecutive sub-diagonal elements is small enough that we can work with an even smaller sub-matrix,

starting say in row m. We start with m = n-2 and decrement it down to i+l, computing p, q, and r

according to equations (24) with I replaced by m and 2 by m+]. If these were indeed the elements of the

special "first" Householder matrix in a double QR step, then applying the Householder matrix would lead

to nonzero elements in positions (m+1,m-I), (m+2,m-1), and (m+2,m). We require that the first two of

these elements be small compared with the local diagonal elements am-i,m_I, am, m and am+i,m+,. A

satisfactory approximate criterion is

Iam,m_j(jq + r) p (lam+,,m4I + lam,m + am-,,m_1 ). (25)

If ten iterations occur without determining an eigenvalue, the usual shifts are replaced for the next iteration

by shifts defined by

k , +  k , +, = 1 .5 x ( a n , n 1 I + ja _ , ,n 2  )

k,k,+, = (a.,-1I + an,.n-2 ()2
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This strategy is repeated after 20 unsuccessful iterations. After 30 unsuccessful iterations, the routine

reports failure.

Because our system carries out exact arithmetic operations, we are able to set the tolerance for the

condition as "negligible", which means using a,,,_- < Tolerance and

a,-I(IqI +frj) a =

I(am ,ml I aql + r -- ) < Tolerance, instead of 0,n-I and

(float)(Jam,I (Iql+ rl)+IpI(Iam.+m., + am,,I + a._,,._, ))= IpI(am+,m+I + ammI + Iam_,._, )

when deploying floating point arithmetic. The results would be more precise with a smaller tolerance.

4.3.4 The Modules

Our program calculates the eigenvalues of an N x N real general Matrix A. The algorithm is a translated

version of the EISPACK subprogram RG.F.

List of Routines:

RG.F calls subroutines BALANC, ELMHES and HQR.

Program Overview Flowchart:

BALANC balances a
real matrix before

eigenvalue calculations.

ELMHES transforms a
real general matrix to

upper Hessenberg form.

HQR computes all
eigenvalues of a real

upper Hessenberg
matrix.
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BALANC

void balanc(vec_ZZ & vecTnum, vec_ZZ & vecTden,mat_ZZ & matPadicsl ,int & nm, int & n,int &

low,int & igh,vec_ZZ & scaleNum, vec_ZZ & scaleDen);

Function Description: It balances a real matrix and isolates eigenvalues whenever possible.

INPUT:

nm must be set to the row dimension of two-dimensional array parameters as declared in the calling

program dimension statement.

n is the order of the matrix.

vecTnum vecTden and matPadics I contain the input matrix to be balanced.

OUTPUT:

vecTnum vecTden and matPadics I contain the balanced matrix.

low and igh are two integers such that A[i,j] is equal to zero if (1) i is greater than j and (2)j=1,..low-I or

i=igh+1.,n.

scale contains information determining the permutations and scaling factors used.

ELMHES

void elmhes(vec_ZZ & vecTnum, vec_ZZ & vecTden,mat_ZZ & matPadicsl,int & nm, int & n,int &

low,int & igh ,int & inte );

Function Description: Given a real general matrix, it reduces a sub-matrix situated in rows and columns

low through igh to upper Hessenberg form by stabilized elementary similarity transformations.

INPUT:

nm must be set to the row dimension of two-dimensional array parameters as declared in the calling

program dimension statement.

n is the order of the matrix.

low and igh are integers determined by Balanc. If Balanc has not been used, set low= I, igh=n.

vecTnum vecTden and matPadicsl contain the input matrix.

OUTPUT:

vecTnum vecTden and matPadicsl contain the Hessenberg matrix. The multipliers, which were used in the
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reduction, are stored in the remaining triangle under the Hessenberg matrix.

inte contains information on the rows and columns interchanged in the reduction. Only elements low

through igh are used.

HQR

void hqr(int & nm, int & n, int & low,int & igh,vec_ZZ & vecTnum, vec_ZZ & vecTden,mat_ZZ &

matPadicsl,vec_ZZ & wrNum,vec_ZZ & wrDen,vec_ZZ & wiNum,vec_ZZ & wiDen,int & ierr);

Function Description: It finds the eigenvalues of a real upper Hessenberg matrix by the QR method.

INPUT:

nm must be set to the row dimension of two-dimensional array parameters as declared in the calling

program dimension statement.

n is the order of the matrix.

low and igh are integers determined by Balanc. If Balanc has not been used, set low=], igh=n.

vecTnum vecTden and matPadics I contain the upper Hessenberg matrix. Information about the

transformations used in the reduction to Hessenberg form by Elmhes, if performed, is stored in the

remaining triangle under the Hessenberg matrix.

OUTPUT:

vecTnum vecTden and matPadics I have been destroyed. Therefore, it must be saved before calling hqr, if

subsequent calculation and back transformation of eigenvectors is to be performed.

wrNum wrDen and wiNum wrDen contain the real and imaginary parts, respectively, of the eigenvalues.

The eigenvalues are unordered except that complex conjugate pairs of values appear consecutively with the

eigenvalue having the positive imaginary part first. If an error exit is made, the eigenvalues should be

correct for indices ierr+ 1., n.

ierr is set to zero for normal return, or set toj if the limit of 30*n iterations is exhausted while thej-th

eigenvalue is being sought.

The matrix and related parameters are stored as p-adic sequences in mat_ZZ and fractional number.

For the rational data structure, the numerator and denominator of the rational are stored separately in array
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vecTnum and vecTden as arbitrary length integers. This maintains the precision of the numbers during the

calculation. During computational process all rational numbers will keep their fractional data type. The

floating-point data type was never used, to keep the calculation free of round-off/truncation errors.

Note the Error Code output: if normal return, ierr = -1; if Error Code > 0, it indicates that more than 30

iterations of a subroutine were required to determine an eigenvalue. In this case, the subroutine terminated

after 30 iterations.

The eigenvectors are outputted as a square Nx N matrix whose entries correspond to the eigenvalues as

follows: If the i-th eigenvalue is real, the i-th COLUMN of the eigenvector matrix contains the

corresponding eigenvector; If the i-th eigenvalue is complex with positive imaginary part, COLUMNS i

and (i+ 1) of the eigenvector matrix contain the real and imaginary parts of the corresponding eigenvector.

4.3.5 Result Analyses

We use the following example to show the advantages of our programs in terms of exactness.

4 14 0
111 111

5 13

0 2 2 6 3
The input matrix 111 has eigenvalues ,and 111

Result:

THE BALANCED MATRIX is:

2/111 0/1 -1/111

0/1 13/111 -5/111

0/1 14/111! -4/111

THE UPPER HESSENBERG MATRIX is:

2/111 0/1 -1/111

0/1 13/111 -5/1111

0/1 14/111 -4/1!11

Eigenvalue 1:
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2/11 1+j0/l

Eigenvalue 2:

44032022843120654290378435526868383433715773553 170377747095358400281485847264778

38853083241 1739293057334922173130505581325899767127967821746397871 19558918188959

221 702720074339662784354589549822465878495646621262775276737077244883873 14845240

7316611944867861174034430672244531960410044645571 1872024503408794989428024999557

723673743315004299770630626539054409554950270347001 10517834687322583943548114289

2048738448454372403635717886951478791577316024461031 1077901974476456747955678844

300477672788033910258324348335702228394885570985506130783 18596870081849669675244

73135639084829788496287548762380218651 169899910814485161617327888699986994382161

0883 1024771732 1665797227094129528646769563587143690915855022770497914672443 155 16

3328839138014608837615600860829960703893290772819960569052101 8011735767815276798

5909433235933007948146745966282331 8370479626325472496352345432847465969088296104

283732110476272950258951 14939200921720177457521662696667452584613428566709527512

18032601247038636424675563928171 582647205470537422467Y488808855048852276404241

1566551182469544603109721 1301380086764455157186467712955273234825991280793288313

38731004861252085 123399344975183826445596327774227596479231001879467647971989059

85705324337204429410057744644133151 184503184321613724648787673213506174227469332

53386680227576456 134520568 1478 160083845750294554867 1747058388995544208967530585 1

35956178819028560493 142657814827072103071061003638462512403630315276086657439555

78853367947057069029770166333602879891 190733134152298150652563067540320404704145

7822899014805766509521081 7347368915696729714546326862223739233814284452302608771

59737283720351212204287788577980070266208143665421 741015899903767280098068319985

160012923046320655 1473746264382582 174539679013077622765637238847662928796 1434674

1432578835716134253782786728866246380835717826393230159659806355454822766 1025957

24439199876100321325798 196 126737664 1246 1640 1696776542557373577409745580597249478

9708734965853704877047031039201 1659863661909521784470714573456328028934513404199
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306081117289604230777200992365893482396794286096956903425 156 10380878344966858032

04140223657424510114298383581 170479103307987222089797995959058963603843466968175

73222675067103683 80083 33496440823 85 513285097795172673 83 81886443 521/8 145920243 782

432866986596466286921929849825 13568068667732824273057509259544569876376010302129

66467041038894305621459903039222541390787332954482 100506309809838393635973213081

66079968918484828514581685649477801312200555078303900637798083 185219291906305311

236849018099209545429677153355472693993785971587063245 15889726366716183278863345

25617984099218717269159098033 106919806346215646563968489653731895013754521469132

99324138603198176950531003791820971646699862123473 123343263389197453818707126769

745386648508485590488554440598748219822363174558644281 13775876713388646225147111

224434609560387090171493535462769461 14981866591214549752747253351428145542453341

041 12587479588894604427105664523299000439612604318505747345365619730693766391724

30457710640595101071561042006094598319606565938417611 133067664188736335746269603

47217018237629144647769407331047628729657501 120721717001979827504744651812511147

773063291487166352435624383407705450065454927351439293 14507702854422264288277652

9020820605894819632510827036710726126525874641 3352755732272437359618325737476761

2982121740584001647370732862200667749943 1976340893306600785871480643767951494167

2321 1208919633500477361312883327899264268485979531471532109205898377631543296859

691248084759845975913065382888482658 120905456589065913966 10597676687826263821894

534521561495740762928 1656684 170683660968340705244222043222 1453441998099696529593

398047263177228421211897778435933 16564989925883254903846988982682944839850835487

592832152745908860488183994094908260101453129684021 64085993658489747629840189356

208219653650316384656844134610956362291676711621367931030601981 87229402927869201

318412 12474 183 19722 16636130499323067074988797 1783 1089609725368687288333816007879

72966516514974389859745387783051481788526044206996095620191371 090402633048892058

02607758563696118773 1048618300786186834419316592176605451 15892316829635871775756

39638392324954036506409791751 153546361957415137723745351909267489592226233425431
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63 1788565390221375346032328444479192431417528734543883494138524591383 16119468484

42681807604340724694107445 125247221100439652494582522383618778441773705174597789

537202756767478525580308 125564 15798698659036732822570624891802079542434 1480 13549

68779901116559585476875 1548809514622895473538432573440+ jO/I

Eigenvalue 3:

220 159920487203306097293653549728073663236506982595 138 17893848302 1446 1288218 1271

819636816868639320797030898630779859341921 15376193352022246848619771402315365203

0287446358499124981 1438067031286189122540419001159271718637028991857294710541184

64586069381502139974761 138330432070587754523717307653392222573546440136938850449

589717041971875607759687909841428097360846808741 10534797951633588352405735278906

6088109659655923426247025701215384039603736503050625556213 1703496498864982608338

4115298181330443195714625653701212545337505755732483653546771 1413334957336942985

87943596433095662932017976972783881 967542399454674394242376425228021490203761529

3663509391837165776425857 19 107725830154389738639334658334392992695522028768 17456

041 13777245519262592217409291326881775659565835124895340512921219631085354849813

6826589755704161 6602894846741907591 163516146381478930742900132241840735707641248

5668656022977608608133026996873688570082127069352442895158445964308171 1528760291

346 13226797874339342856966503 147 183019135671057200674 1729 16477402853920991796339

0234549110301462370084031 8507276415921015764477291265562685668446681363752108057

3148682154063705190134446039643617889103687403 1354250145463360238719908286085918

75276729547138347821254112203851 181465899264835637260491354823467692500554304646

39421746501969855759193643912152706641313638820667405718055481747465812741 126189

0934578185959970143807731257990209390472072338151264153 1973408923265905341587131

7578765688571 1407787753940590745006776467952245982817538748248391 777244502585410

4906978864575308205752802595157238593601 7032347556079483695977993950692277787221

440112220917578209069998448324565933665840365379413981 33734419465014920385202738

881964258191 836964895030407235979832396253242900467885828448984734595373686 14312
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0924 1273861742076335285465328 15 1003361827240627227895455333385 16707209295 1972598

0034477733702342144552355715 108092 1853535927872 19347820265 1863704794563347086 188

574007903143606864902380985417781005361330741981683 10502148244979572992273947143

2226760677671844772 17 143336379 169470 122694567993 10393900 142 140943332 189413289089

688015166884387553 19043299165764361209017387501371042592592567782859133025205788

52823 0013904272779343 15573 851930785667085 574736853 1246603 1691694076/814592263 309

93657730266449299971593330823809 186741866008588818746612819672246699066309636062

2172021 1005732133442344515648743775806835921532029447722962791583280481528947805

78345767820098833 170876979938995887012656077920947730207621842805625983820178092

7820642785457730009602346916491745661615309108513201541 8900696804177720609009613

46501 993903968294525805824520804285309376523422365486807763487682661 567590826543

755066459005964722394358266598807103833 13290956130593800720766371415326278501865

507455852680366076249015695946933722704699696318771029154041 68408057197654599726

0596296931 7420674602728676940439978848677804058882538447095453898255933846073099

8686940699139100416185687564813910490970924441 1700265498422455815012357251799988

59376405958793359255426254895771362234346579115866697472024981 524795889376939972

70276905158385391519794167525627126423657251148259329367304881 108865541015143074

57389731909526247922765606930608670845855 120581774678078289355689715410733404948

244947596322338881234610692127565869895494507791119393335 16924303092416916680324

571379432141381451908446016901047440791386594069263891143531 15409253610632213726

58742935330058262473 141807 1272569453632028313855933450703736 17 1437915465908320 17

35681637503 13593889 14500763300885276237 179819806735306477 178 16398026625642703401

88004395563813607 12748196955 19509690546437286302 15539358008397727174933 101446074

952943364410590881428976255226214467012929858033598461 10335749065224718866417631

8371795165586826574114941519809341 1949456759743081091533195395561191723535398217

688411342986085211 18123799908426971871983775197035005579864463823225649200964063

951 19195258412649446744540013036760886432482837606425265297870582675060966984896
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60511382019182510241051952901759104433153740341631052883317292036104404338206446

81194527331480535166259021749671017712192449490219251970337339431485726709989654

96942207328995862139063569994252025276440535290179874631670833646505346718918227

02651289483605420634326577978497485950488163291474699646093863977026762394818930

83776888573483781601940843849175645606233866292110823670307664350086514163466508

99355037898275689201553037174122448467622136983868352425261920417856760137613786

83840214969680488350522925941696611 133249854543125524591+jO/1.

As far as exactness is concerned, as we can see from the above example, our system can obtain much more

accurate results, since floating-point arithmetic operations can only provide the precision limited by the

precision of the data type. Our system performs much more accurate results and can be trusted in the

process of exact computation.

5. Conclusions and Discussion
r

Despite the advantages of finite segment p-adic arithmetic, there is a problem need to be solved-the

estimation of an efficient length M of the p-adic expansion in arithmetic operations. Currently, it cannot

give the sufficient number of digits for p-adic sequence for exact computation in some situation. As we

concluded that the maximum length of the p-adic expansion's periodical part of (a ± b) is LCM(n, m);

in multiplication, the maximum length of periodic part of the product of (a x b) is

LCM(m,n)x (pGCD(m,n) _ 1).

In order to compute matrix exponential with JCF, we performed eigenvalue analysis. The routines we

used are translations of EISPACK: The matrix is first balanced; Orthogonal similarity transformations are

used to reduce the balanced matrix to a real upper Hessenberg matrix; The implicit double-shifted QR

algorithm is used to compute the eigenvalues and eigenvectors of this Hessenberg matrix.

Thus, to determine the efficient length M of the p-adic expansion for a rational number in the matrix

operation becomes an important problem. In particular, the algorithm in eigensystems may use iterative

arithmetic operations. This made the situation even more complicated. From our experience of
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implementing the eigensystem in p-adic field, the mechanism for setting the length M is our biggest

concern, because running time is related to it, a large M will increase the runtime tremendously. When

dealing with iterative arithmetic operations, the required length of the p-adic sequence will keep on

increasing during the computation.

One possible solution is to create a gradual increasing "M". As we know, the corresponding fraction

numbers will be completely different for the same p-adic sequence with different lengths. If we can predict

the range of the approximate eigenvalue based on previous results, we would be able to adjust the "M"

when an abnormal result occurs. To be precise, we can set a judgmental mechanism after the operation, if

an abnormal result occurs, redo the operation with an larger "M', at the same time, reduce the p-adic

expansion of the products to its minimum size.
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