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                                                          Abstract 
 

         We consider error propagation near an unstable equilibrium state (classified as an unstable 

focus) for spatially uncorrelated and correlated finite-amplitude initial perturbations using   short- 

(up to several weeks) and intermediate (up to two months) range forecast ensembles produced by a 

barotropic regional ocean model. An ensemble of initial perturbations is generated by the Latin 

Hypercube design strategy, and its optimal size is estimated through the Kullback - Liebler distance 

(the relative entropy). Although the ocean model is simple, the prediction error (PE) demonstrates 

non-trivial behavior similar to that existing in 3D ocean circulation models. In particular, in the 

limit of zero horizontal viscosity, the PE at first decays with time for all scales due to dissipation 

caused by nonlinear bottom friction, and then grows faster than [quasi]-exponentially. Statistics of a 

prediction time scale [the irreversible predictability time (IPT)] quickly depart from Gaussian (the 

linear predictability regime) and becomes Weibullian (the non-linear predictability regime) as 

amplitude of initial perturbations grows. A transition from linear to non-linear predictability is 

clearly detected by the specific behavior of IPT variance. A new analytical formula for the model 

predictability horizon is introduced and applied to estimate the limit of predictability for the ocean 

model. 

Keywords:  oceanography, wind-driven circulation, current prediction, stochastic stability,        

                    statistical analysis   
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1. Introduction 

          A number of recent theoretical studies have demonstrated that the robust dynamical regimes 

[attractors] of oceanic circulation often present a combination of [quasi-stable] equilibrium states and 

transient dynamics between these flow configurations (Berloff and McWilliams, 1999; Schmeits and 

Dijkstra, 2000; Stanev and Staneva, 2000; Sura et al., 2001; Lermusiaux et al., 2006  among others).  

For example, Eremeev et al. (1992) and Stanev and Staneva  (2000) identified single, double, and 

multiple basin-scale current gyres observed in the Black Sea as quasi-stable equilibrium states, for 

which transient dynamics were induced by baroclinic instability and mesoscale anti-cyclonic eddy 

activity. Another example that was well documented in observations and numerical models is the path 

variation of the Kuroshio south of Japan  (Masuda et al., 1999).  

           Clearly, an equilibrium state influences the phase-spatial organization of the local prediction error 

growth rate, i.e. it organizes the local predictability for a forecast model. Therefore, the knowledge on 

how small- and finite-amplitude perturbations evolve near this equilibrium state is important for 

understanding regional model predictability and identifying the persistence of circulation ocean and 

atmospheric patterns with oscillations near equilibrium states (Robinson et al., 1996). 

         The primary goals of the proposed study are (1) to understand what mechanism[s] can form the 

statistics of finite-amplitude prediction error (PE) near an unstable equilibrium state identified as an 

unstable focus, (2) to check how quickly such statistics depart from Gaussian (if such a departure exists) 

for the short- (up to several weeks) and intermediate (up to a couple of months) range forecasts, and  (3) 

how to quantify PE statistics for perfect models with initial conditions corrupted by finite-amplitude 

stochastic perturbations. 

         The computations presented below assume a perfect model scenario with stochastic perturbations 

in initial conditions. A non-linear barotropic model of wind-driven circulation in an idealized basin is 

used to understand evolution of prediction error. Although this model seems to be too simple in 

comparison with large state of the art oceanic models, it describes a generic system with many degrees 
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of freedom while not requiring large computer resources. The latter feature allows us to generate non-

rank deficient forecast ensembles and strongly reduce errors in determination of appropriate 

distributions in comparison with small ensemble integration.  

      Predictability in real-time systems can be qualified in many ways (for example, see Smith et al., 

1999).  The proposed study defines model predictability in the stochastic stability context. The 

stochastic stability addresses effects of random perturbations on trajectories of a dynamical system and 

estimates its stability in terms of probabilistic measures, such as expected values or distribution 

functions (Freidlin and Wentzell ,1998). In general, the stochastic stability and predictability differ from 

one another. However, if a time scale quantifies the model predictability, and if this scale indicates the 

time when the forecast uncertainty exceeds some boundary or when information on the initial condition 

is lost, the stochastic stability and predictability are interchangeable. Since these time scales are widely 

used in meteorology (see, for example, Toth, 1991) and oceanography (Robinson et al., 1996), the 

stochastic stability concept seems to be a useful tool for the predictability analysis of large 

hydrodynamic models. 

The loss of superposition and the extreme inhomogeneity common in nonlinear hydrodynamic 

models require applying local measures of predictability and corresponding time scales (see Lorenz, 

1965; Benzi and Carnavale, 1989; Ivanov et al., 1994; Boffetta et al., 1998; Smith et al., 1999; Mu et al., 

2004, and references thereof).   It is widely held that time scales are related to the inverse of the largest 

Lyapunov exponent estimated by the tangent linear models in assumption of small-amplitude initial 

perturbations. The linear approach gives reasonable estimations of model predictability in many 

practical cases. However, it cannot provide critical boundaries on finite-amplitude stability of the 

thermohaline ocean circulation. 

In regional ocean modeling, neither initial perturbations nor prediction errors are small. Therefore, 

the linear predictability regime, where the PE grows [quasi] exponentially or even faster than 

exponentially, may be quickly replaced by the nonlinear predictability regime, for which the 
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predictability time is much larger than the inverse of the leading Lyapunov exponent (Aurell et al., 1996; 

Lorenz, 2005 and others).  

To quantify both the linear and non-linear predictability the proposed study uses the so-called 

irreversible predictability time (IPT) originally introduced by Ivanov et al. (1994).  Chu et al. (2002) 

demonstrated the capability of IPT for the analytical estimate. They have obtained an analytical formula 

for the mean IPT and variance of IPT for Lorenz-84 atmosphere model (Lorenz, 1984).  Here, we would 

like to show how IPT statistics change with a transition from linear to non-linear predictability regimes, 

and to find what kind of PE statistics may accompany the nonlinear predictability regime.  

      The paper is organized as follows. Section 2 briefly discusses IPT and its statistics.  Section 3   

analyzes the specificities of the reference solution reproduced by a barotropic regional ocean model.  

The ensemble of stochastic perturbations added to the initial conditions is described in Section 4. 

Section 5 depicts the optimal ensemble size of stochastic perturbations using the Kullback-Leibler 

distance. Section 6 discusses the initial PE decay due to viscosity damping. Section 7 studies the 

response of the model to finite-amplitude initial perturbations, and analyzes a basic feature of the PDF 

of IPT (denoted −τ PDF), such as non-Gaussianity. Section 8 gives evidence for using a three-

parameter Weibull distribution as IPT statistics in the non-linear predictability regime. Variations of 

mean IPT and its variance for transition from the linear to nonlinear predictability regime are discussed 

in Section 9. Section 10 estimates the model predictability horizon (the maximum predictability time for 

the given statistics of initial perturbations).  Section 11 summarizes the obtained results. 

2. Irreversible Predictability Time  

          Let the prediction error t),(xZ  be defined as a difference between the reference solution ),(ˆ txY  

[i.e., the solution of a perfect model without errors in initial conditions (Lacarra and Talagrand, 1988)] 

and an individual forecast ( , )tY x :    

                               ),(),(ˆt),( tt xYxYxZ −= ,    0 0( , ),t=Z Z x  
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where  (x, t) are spatial coordinates and time; 0Z  refers to   the initial perturbations. ),( txY  is  the state 

vector, which may include velocity, temperature, salinity and other fields.  

         The ocean-atmospheric model predictability is often quantified by the weighted relative root mean 

square error (see Robinson and Haidvogel, 1980; Holland and Malanotte-Rizzoli, 1989; Brasseur et al., 

1996, Robinson et al., 1996; Wirth and Ghil, 2000 among others) written as   

                                        ( ) )(,),( 1
0 tJ,tJ norm

−⋅= WZZWZ ,                                                        (1) 

where W is the weight matrix, (…,…)  is the inner product , the function )(tJ norm  is specified from the 

physics.  

        The IPT is defined as the time τ , at which ),,( 0 tWJ Z  reaches a predetermined level 2ε  for the 

first time: 

                                   ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ >=

≥

2
0

0
0 ,,  inf,, εετ tJt

t
WZWZ ,                                                 (2) 

where ε  is a non-dimensional tolerance level (accepted prediction accuracy). 

        This definition is illustrated by Fig. 1a. Clearly, the IPT defines the model predictability on the 

condition that any returns of model predictability (the shaded zones in Fig. 1a) do not contribute to the 

prediction skill.  

        The mean IPT differs from the e-folding or the doubling time when J  oscillates or is random. To 

compare, for example, the e-folding and the irreversible predictability time, we should suppose in Eq. 

(2) ),( 00 ZZ=normJ  and 22ˆ e=ε . The e-folding time is the time when J  crosses 2e (Fig. 1b),  

                                    ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ ≤=

≥

2
0

0
,,  max etJt

t
e WZWτ ,                                            (3) 

 where  the brackets ...  denote the average over the ensemble of initial perturbations 0Z .  

  The mean IPT for the same e  is computed by  

                                 ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ >=

≥

2
0

0
,,  inf, etJte

t
WZWτ ,                                           (4)                              
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where the averaging is over the ensemble of IPTs Nττ ,...,( 1 ) induced by  the ensemble of 0Z  (Fig. 1 c). 

Chu and Ivanov (2005) pointed out that the mean IPT is the lower bound of e-folding time:    

                                        ),()( ee WW ττ ≥ .    

         In practical applications, the ensemble generated −τ PDF [ ),,( ετ WF , hereafter, this is a PDF 

which corresponds to the given ensemble of initial perturbations], the cumulative distribution function of 

τ  ( −τ CDF) 

                 0 0( , , ) Pr ob( )P t t t tε τ− = ≥ −W ,                                                         (5a) 

 and −τ moments calculated by 

                 ( ) ( ) ( )dtttPttk
t

k
k  ,,,

0

0
1

0∫
∞

− −−= εετ WW ,     k=1…K,                                (5b) 

 may be used to quantify model predictability. The first four unbiased −τ moments determine −τ mean 

( τ ), −τ  variance ( 2δτ ), −τ  skewness (SK) and −τ  kurtosis (KU).    

        For simplicity, the further analysis supposes (a) to replace the weight matrix W  by the identity 

matrix I , (b) to describe flow dynamics in a quasi-geostrophic approximation using the geostrophic 

stream function Ψ (Pedlosky 1987) , and  (c) to take =normJ  )ˆ,ˆ( ΨΨ . 

3.  The Reference Solution 

A shallow water circulation computed in a flat bottom semi-enclosed basin and forced by wind 

and water flux across its open boundary,  is taken as the reference solution. Our model leaves out the 

effects of topographic and baroclinic processes but it reproduces a highly non-linear flow with a balance 

on the β -plane between  steady wind forcing, nonlinear bottom friction and inertial terms of the model. 

The model is similar to Veronis’ model of wind-driven circulation in a rectangular basin (Veronis, 

1966) but with a non-linear bottom friction.      
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The computation domain presents a rectangular basin with depth H (= 2 km) centered at 35P

o
PN. 

The domain is bounded by the rigid (Λ ) and open boundaries (Domain–A depicted in the top panel of 

Fig. 2).  This basin extends =2L 1000 km [ =1L 1050 km] in the north-south (east-west) directions. A 

Cartesian coordinate system is used with the origin in the southwest corner.  The 1x -axis points towards 

the east, and the 2x -axis towards the north.  

The barotropic mode of the Princeton Ocean Model (POM) (Blumberg and Mellor, 1987) is 

applied to compute the horizontal velocities 2 1 ,uu , and the surface elevation ζ  in Domain-A with no-

slip boundary conditions. The circulation is forced by wind with stress varying with latitude 

                                    ( )
2

2223

0

 
cos /10

L
x

smw π
ρ
τ −−= ,                                                   (6a) 

and  the prescribed open boundary conditions ( bu and bζ )  explained below. Here, 44.10250 =ρ  kg/mP

3
P 

is the reference density. The model runs with time step equaled to 2.5 minutes and reproduces the 

circulation with  horizontal resolution of 50 km. 

            The Coriolis parameter varies linearly with a beta plane approximation 20  xff β+= , where 

of ϕΩ sin20 =  and oa ϕΩβ cos)/2(= . Here, Ω  and a  are the rate of rotation and the radius of the 

Earth, respectively; 0
0 35=ϕ ;  -14 s 1073.0 −×=of , 1-111 m 102 −−×= sβ . 

The horizontal kinematic viscosity is set to zero. The bottom stress is  parameterized by the 

quadratic drag relation: 

                    ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ++== 2

2
2

2
101

2
2

2
1021  , , uuuαuuuαww ρρw ,                            (6b) 

where the drag coefficient =α 0.0025. No model spin up exists for <α 0.0025 when any solution is 

unstable. 

The open boundary conditions are specified by Chu et al.’s (1997) approach. Accordingly to this 

approach POM is firstly integrated with wind stress (6a) and dissipation (6b) from rest (u = v  =0) and 

flat surface ( =ζ 0) for 150 days in a closed rectangular basin formed by extension of Domain-A up to 
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2000 km in the east (Domain-B shown in the bottom panel of Fig. 2). The velocity and surface elevation 

in the left part of Domain-B computed on day-10 are utilized as the initial conditions for the control run 

in Domain-A. The values of 1u  and ζ  along the line 1x =1050 km are the prescribed open boundary 

conditions bu and bζ  between day-10 and day-140. The model spin-up was found in Domain-A after 60 

day integration. Here, the kinetic energy of the reference flow slowly decays with the power exponent   

of 1000 dayP

-1
P, oscillating with period of about 180 days. 

       The circulation pattern evolves from a single semi-closed gyre with a maximum velocity of 

about 0.35 m s P

-1
P (Fig. 3a) and sea surface elevation between 0.05 to 0.1 m (not shown) to a multi-gyre 

structure with maximum velocities up to 0.9-1.0 m s P

-1
P (Fig. 3b) and high surface elevation near 1 m in 

the west-northern part of the basin (not shown).  This multi-gyre structure is a model spin-up reached 

after 60 day integration.     

The model spin up is a nonlinear regime identified by two non-dimensional numbers (Pedlosky,  

1987): 

           7.0~)max(
0

1 Lf
URo = -0.1,          12.0~)1max(

0
2 Tf

Ro = ,                                (7)                    

where  0f ~ ×7 10P

-5
P s P

-1
P   is the Coriolis parameter;  U~ 0.5-0.7 m s P

-1
P is the characteristic velocity in the 

basin;  L ~ 10P

5
P  m and T ~  1 day are the characteristic  spatial and temporal scales of the flow, 

respectively.  

           The chosen model configuration allows us to use the same model for the analysis of model 

predictability affected by different sources of uncertainty: stochastic errors inserted in initial condition 

(the present study), wind (Ivanov and Chu, 2006), and open boundary conditions (Ivanov and Chu, 

2007). Cross-correlations between different types of errors can also be studied. 

 Using the quasi-geostrophic approximation allows introducing a model phase space with the basis 

composed from M eigen-functions [ ]Mψψ ,...,1  of  a plane Laplacian operator ( ⊥∆ ) defined in Domain-

A (for details see Appendix A) and get the following spectral representations for the reference solution          
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                      ),()()(ˆ),(ˆ

1

ttAt harm

M

m
mm xxx ΨψΨ +=∑

=

,                                                       (8a)  

and   a perturbed solution 

                             ∑
=

=
M

m
mm tAt

1

)()(),( xx ψδΨδ ,                                                                         (8b)         

where  ΨΨΨδ −= ˆ , Ψ  is an individual forecast, harmΨ  is the harmonic function described in 

Appendix A. 

         The spectral coefficients )](ˆ),...,(ˆ[ 1 tAtA M  and )](),...,([ 1 tAtA Mδδ  define the reference and  

perturbed trajectories, starting, respectively, from points ]ˆ,...,ˆ[ 00
1 MAA  and ],...,[ 00

1 MAA δδ  in the phase 

space.  Appendix A specifies the optimal truncation number for both the reference and perturbed flows 

as 210≈M .  

Therefore, the dimensionality of a dynamical system ( M ) embedding the ocean model should be 

~O(10P

2
P). However, the real number of degrees of freedom ( 0M ) determined by Syrovich’s approach 

(Syrovich, 1989; Aubry et al. ,1991) is only about 15  (Chu and Ivanov, 2005).  

          We used a well-known classical stability analysis (Guckenheimer and Holmes, 1983) to classify 

the model spin up (quasi-equilibrium state) in dynamical system context. The governing equations in the 

spectral form (not shown) were linearized near the spin up state, and eigenvalues and eigenfunctions of 

appropriate tangent operator were calculated. The spectrum of the eigenvalues contained positive and 

negative real numbers only. Thus, the quasi-equilibrium state is an unstable focus in the model phase 

space. Any model trajectory tends to move toward (off from) this point in a phase plane determined by a 

pair of low-order (high-order) modes. 

4. Perturbations of Initial Conditions 

     The main question in ensemble forecasting is how to generate a set of initial perturbations. The 

present study uses a Monte-Carlo method to produce ensembles of perturbed solutions from running 



multiple POM simulations with initial perturbations, which are drawn randomly from a specified 

probability density function. 

    It is often assumed in ensemble forecasting that for a forecast model of nearly 105 degrees of 

freedom, direct sampling of small size [~ ] ensembles is of limited utility because the inherent 

sampling error may overwhelm the desired covariance information. To correct these distortions different 

selective sampling procedures are used.  See Palmer (2000) for extensive review of different techniques 

of ensemble generation including those based on singular (Moltenti and Palmer, 1993) and breeding 

vectors (Toth and Kalnay, 1997).  Miller and Enret (2002) examined small ensembles drawn from 

spaces spanned by singular vectors and by bred vectors for nonlinear dynamical systems with multiple 

attractors.  

)10( 2O

   A sound approach for estimating model predictability was developed by Lermusiaux and Robinson 

(1999), Lermusiaux et al. (2000), and Lermusiaux (2001,2002). The approach called the “error subspace 

statistical estimation”(Lermusiaux and Robinson, 1999) combines the dynamical equations for the ocean 

state in their discrete form in space, with a decomposition of error covariance to initialize and evolve the 

“dominant” eigendecomposition of the variability covariance matrix, merging data and dynamics. An 

essential feature of the dominant eigenvectors is that they indicate, evolve and organize the directions in 

the variable space that have largest statistical significance, based on a variance measure. Therefore, the 

approach provides a framework for investigation of   large and complex system like the ocean. 

Lermusiaux et al. (2006) have demonstrated explicit capability of the approach through a number of 

practical examples including acoustical and biological models. 

For a number of reasons we simply sample initial perturbations from specified, multivariate 

normal distributions. First, due to simplicity, our hydrodynamic model is able to produce forecast  

ensembles containing  up to ~  perturbations. Such large ensembles have desirable statistical 

characteristics as revealed by a series of specialized statistical tests considered in Section 5. 

)10( 5O

 11



 12

Second, the Latin hypercube (LHC) design (Latin Hypercube, 2001) was applied to simulate a 

highly uniform distribution of an initial error in the phase space. Using pure probabilistic arguments, 

Downing et al. (1985) pointed out that the Latin hypercube design is more effective than the classical 

Monte-Carlo method. For obtaining dense error coverage with the same degree of homogeneity from 

Monte-Carlo samples and through the LHC design 0MN  and )22( 0 +⋅ MN  statistical realizations are 

required, respectively. Here, N is the number of statistical realizations necessary to simulate one degree 

of freedom. Typically, )10(~ 3ON .  

 For 0M =15, the classical Monte-Carlo method   should  require ~ )10( 45O  initial perturbations 

for a statistically significant estimate. This is not feasible with available computer resources. 

Comparable results can be obtained by the LHC design approach   with only ~ )10( 4O  initial 

perturbations.  

Third, our study focuses only on the physics of finite-amplitude errors and their contributions to 

losing model predictability. Thus, small forecast ensembles similar to those utilized by operational 

forecast models, are not considered here. 

The initial perturbations =′u [ )(),( 21 xx uu ′′ ] are assumed to be 2D isotropic Gaussian white noise 

[white noise-like perturbations (WNLPs)] with the two-point correlation function  

                                        )()()( 2 xxxx ′−=′′′ δδ ijji Iuu ,                                        (9)   

or   2D isotropic  Gaussian  spatially correlated noise [red noise-like perturbations (RNLPs)] with the 

two-point correlation function                               

                        ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ′−
−=′′′

⊥
2

2
2

2
exp)()(

R
Iuu ijji

xxxx δ ,                                 (10) 

where ),( 21 xx=x , ( ⊥R , I P

2
P ) are correlation radius and  noise variance (intensity of perturbations), 

respectively. These perturbations are directly added to the initial conditions. The technical details of 

generating Gaussian noises with correlation functions (9) and (10) can be found in Sabel’feld (1991). 
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The non-dimensional intensity of the initial perturbations 2
0

22 / III =  ( 222
0 m 1 −= sI ) will be used 

below.    

        Noise with correlation functions (9) and (10) is the popular model of errors for optimal 

interpolation or spline fitting. Both of these procedures are applied to construct initial conditions for 

ocean models from irregularly spaced data  (Brasseur et al., 1996; Robinson et al., 1996 and others).  

5.   Optimal   Ensemble   Size 

     The LHC design approach provides the dense error coverage of the model phase space for 

~ )10( 4O  initial perturbations. This number of initial perturbations is a trade-off between the ensemble 

ability to reproduce main features of PE statistics, and the computational cost. However, the optimal 

number of initial perturbations ( optN ) should be specified for the concrete ocean model. We suggest to 

estimate  this number through   the Kullback-Leibler (KL) distance (the relative entropy) (White, 1994). 

   The KL distance is a natural distance function from a ”true” probability density, ∞F , to a “target” 

probability density, NF . For continuous density functions, the KL distance is defined as  

                                ( ) ⎥
⎦

⎤
⎢
⎣

⎡
= ∞
∞

∞ ∫ )(
)(

log)( 
0

τ
τ

ττ
N

NNN F
F

FdFFKL ,                                              (11) 

where )(τNF  and )(τ∞F  are  −τ PDFs computed for an N sample ensemble and a hypothetic ensemble 

with infinite sampling, respectively. In practice, a difference between two distributions is negligible if 

3100.5 −×≤NKL   (White, 1994).  

         To calculate the KL distance we suppose 100000FF =∞  because only small differences in 

−τ statistics estimated from ensembles of 3100.5 × , 4100.1 × , 4100.2 × , 4100.5 ×  and 5100.1 × samples 

have been observed.  Typical behavior of NKL  with the growth of N  is shown in Fig. 4a.  The NKL  
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rapidly reduces with N  from 1100.2 −×  (N =20) to 3100.4 −×  ( 310=N ). Therefore, optN  was chosen 

as 310 . 

 The first four moments of IPT also quickly converge as N increases to 10 P

3
P: −τ mean to 43.8 day 

(Fig.4b), −τ most probable to 42.6 day (Fig.4c), −τ variance to 8.8 dayP

2
P (Fig. 4d), and −τ skewness to 

0.75 (Fig. 4e). Kurtosis is most sensitive to the choice of N   (Fig. 4g), and varies between 3.9 and 4.1 

for N~10P

3
P. However, these variations are quite small to mask the non-Gaussian feature of IPT statistics 

(Gaussian statistics is identified by both SK=0.0 and KU= 3.0).  

     By varying characteristics of initial perturbations ( 2I  and 2
⊥R ) we have found that 310=optN  is an 

acceptable choice for any combinations of 2I  and 2
⊥R . Thus, all forecast ensembles below have large 

size ( 310=optN ) and are not rank-deficient ( 0MNopt >> ). This reduces the sampling errors 

significantly. 

6. Prediction Error Evolution 

      6.1 Different stages of PE evolution        

          A number of stages for PE evolution (at least four) are observed for both WNLPs (Fig. 5a) and 

RNLPs  (Fig. 5 b). All these stages are clearly identified by the growth rate ><= J
dt
dQ ln  (Fig. 6a,b).  

         Initial error decay is observed for the first ten days of PE evolution (Fig. 5a,b) where the growth 

rate Q  evolves as                                              

                                       ])[exp( 100 αα −≈ tQQ ,                                                         (12)  

where 0α  is the decay exponent, 45.010 −≈αQ , 110 /ln tαα = , 1t =10 days.  

        Non-exponential initial error decay corresponding to (12) differs from a quasi-exponential decay 

obtained in Wirth and Ghil’s  (2000) model with the dissipative operator ⊥∆ν   and quite large horizontal 
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viscosity ν . In contrast to this model the zero horizontal viscosity is used in our model. Therefore, the 

non-exponential decay seems to be caused by nonlinear bottom friction. 

         Then ( )J t  remains   quasi-stationary   low values during 10 and 20 days for WNLPs  (Fig. 5a) 

and RNLPs  (Fig. 5b), respectively. At this stage (stagnation stage) the growth rate Q  oscillates near 

zero (Fig. 6a,b). 

           During the third stage (after day-20 and day-30 for WNLPs and RNLPs, respectively) PE grows 

faster than exponentially (Fig. 5a,b). Fig. 6a,b shows that here the growth rate increases with t  linearly,  

                                                                tQ ~                                                                        (13) 

          Mechanisms for PE to grow faster than [quasi]-exponentially, were discussed earlier in the 

scientific literature (Lacarra and Talagrand, 1988;  Smith et al., 1999 among others). Therefore, they are 

not in the focus of the present study. Duration of  “super-exponential” error growth does not exceed 7-10 

days. 

          Nonlinear interactions among various scales slow down (Fig. 6 a,b), and then, limit further growth 

of PE (Fig. 5a,b). The transition from the linear to nonlinear predictability regime is identified by a 

behavior of the growth ratio: Q  reaches a maximum value and then quickly reduces.  Although linear 

effects can also stimulate similar behavior of Q  (Smith et al., 1999), more detailed analysis provided in 

Section 7 gives evidence for the nonlinear predictability regime. 

         The duration of the nonlinear predictability regime (up to 10-15 days) does not seem to be short, 

and is comparable with the time when the PE grew faster than exponentially. The larger the error 

amplitude, the faster the transition from linear to nonlinear predictability regime. Therefore, the 

nonlinear regime should play an important role in understanding model predictability and its limits. 

      6.2 Initial error decay 

Initial error decay was documented earlier by Lorenz (1996),  Brasseur et al.  (1996),  Molteni et 

al (1996), Wirth and Ghil (2000), Vannitsem and Nicolis (1997), Snyder et al. (2003) and others.  Their 
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results   show (a) the relation of the decay to model dissipation, and (b) that stability of the reference 

solution estimated by the kinetic energy norm is less than when other norms are used.  

 The initial error decay quantified by the kinetic energy norm diminishes or even disappears with 

reducing the coefficient of horizontal viscosity hν , when dissipation process were parameterized by a 

hyper-dissipation operator 2 ⊥− ∆ν h  (Snyder et al., 2003; Vannitsem and Nicolis, 1997). 

In contrast to this, Wirth and Ghil (2000) have demonstrated that the square root of the stream-

function error variance ( J ) for randomly inserted small-amplitude perturbations first decays due to 

viscous damping parameterized by the usual dissipative operator ⊥∆ν  . Although for smaller values of 

horizontal viscosity ν  the decay was slower, it did not disappear with  reducing ν . 

Our computations demonstrate the existence of the initial error decay for both the kinetic energy 

norm and norm (1) only due to nonlinear bottom friction if the friction coefficient ≥α α . The choice of 

normJ =1 in norm (1) does not change the obtained result, although the decay becomes slower. The 

decay also exists for non-zero coefficients (ν  and hν ) of  horizontal  viscosity.  

          Since the initial error decay, in general, does not depend on the amplitude of initial perturbations 

(Fig. 5 a, b), to understand its physics we limit ourselves to the case of small-amplitude   initial 

perturbations. In our opinion, the initial error decay may be explained by features of a nonlinear 

dissipation scheme and statistical features of initial perturbations with correlation functions (9) and (10).  

      Using the assumption on small amplitudes of initial perturbations, the term, which is responsible for 

PE dissipation (see Appendix B), can be written as:                                        

                                           ( ) ⎥⎦
⎤

⎢⎣
⎡ ′′+′≈′ −

212
2

11
2/1

11 uuuEuF γγα  ,                                              (14) 

                                   ( )[ ]212
2

23
2/1

22  uuuEuF ′′+′≈′ − γγα ,                                                  (15)                    
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where  ( 21,uu ) and ( 21,uu ′′ ) are velocities of the reference and perturbed solutions, respectively;  

2
2

2
1 uuE +=  is the kinetic energy of the reference flow,  2

2
2

11  2 uu +=γ , 212 uu=γ  and  

2
2

2
13 2uu +=γ .  

            During the first stage (initial error decay), the PE dissipation is only determined by the first terms 

in the right hand sides of Eqs (14) and (15), because the initial perturbations are statistically isotropic: 

0)()( =′′ xx ji uu , if ji ≠  (the isotropy feature). Both renormalized coefficients of   friction 1
2/1 γα −E  

and 2
2/1 γα −E  are positive and grow with increasing kinetic energy as 2/1E . 

            During   the   stagnation   stage (Fig. 5 a, b), the correlations between 1u′  and 2u′  become not 

small. The growth of the renormalized coefficients is compensated by the term 0212 ≤′′uuγ . This 

process stops   the PE decay. After day-20 for WNLPs and day-30 for RNLPs,  0212 ≤′′uuγ   continues 

to reduce the dissipative terms 11uF ′  and 22uF ′ , what reduces the model dissipation and stimulates 

the growth of prediction error.  

Nonlinear bottom friction (6b) leads to effective decay of the prediction error at all spatial scales 

larger than a scale determined by the 100-th mode (see Fig. 7a and Fig. 7b). At this stage of PE 

evolution geostrophic adjustment inducing an upscale flux of the prediction error does not play an 

important role. A measure of re-distribution of the kinetic energy among modes is the spectral entropy 

(Aubry et al. ,1991). The entropy is equaled to 1 when the kinetic energy is homogeneously distributed 

among all the modes (maximum disorder), and to 0 when the energy is contained in a single mode 

(maximum order). The spectral entropy is computed by  

            ,log)(log 1 ∑
=

−−=
M

mm
mm

o

ppMS     bbp mm /2= , ∑
=

=
M

mm
m

o

bb 2 ,                  (16) 

where mb  are mÂ  ( mAδ ) for the reference (the perturbed) solution; om  and M  determine the spectral 

band  for calculating the spectral entropy. 
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      The spectral entropy computed for the PE  (the reference solution) is shown in Fig. 8a  (Fig. 8b). Fig. 

8a does not show any significant re-distribution of kinetic energy among different flow scales up to 10-

12 days. A strong upscale flux of PE is observed for low-order modes (from 1 to 20) after day-12: the 

spectral entropy approximately reduces into half.  Such a process seems to be considerably weaker for 

high-order modes. In contrast to the PE, the complexity of the reference flow monotonically grows up to 

day-40 (Fig. 8 b).        

7. Response To Finite -Amplitude Initial Perturbations 

       Linear intuition suggests that the larger the amplitude of the initial   perturbations, the higher the 

probability of obtaining low model predictability. Prediction errors should steadily increase with a 

prediction time scale in the linear predictability regime. In contrast to this, forecasts skill may decay 

slower when amplitude of initial perturbations grows. Our computations show that the growing 

perturbations rapidly adopt a horizontal scale comparable to that of the reference state (linear 

predictability regime), and their further growth is limited by interactions with this state and among them 

(nonlinear predictability regime). In the nonlinear predictability regime the PE demonstrates clear 

contributions from the cumulative effects of flow scales, and the predictability time is no longer 

measured by the inverse of the leading Lyapunov exponent. Moreover, model predictability enhances 

with the growth of the correlation radius ⊥R  and is less sensitive to the choice of the intensity 2I . 

         To understand correlations between model predictability, the amplitude of initial perturbations, the 

correlation radius and the noise intensity, let us show how the amplitude of initial perturbations is 

affected by ⊥R and 2I . Using the spectral representation for noise covariance matrix obtained in 

Appendix C, the maximum amplitude of initial perturbations is estimated as 

                     ( ) 2/1
max

2/122/112
21

2/12/120
max )

2
()

2
(2)( λπδ

⊥⊥
⊥=

R
Lerf

R
LerfIRLLA ,                   (17) 

where maxλ  is the maximum eigenvalue  of a matrix determined in Appendix C.  
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         Eq. (17) clearly shows that the amplitude of initial perturbations is most sensitive to the correlation 

radius but not the noise intensity, because the amplitude may grow as 2
⊥R  and only linearly with I .               

          Our computations demonstrate   the existence of the linear predictability regime identified by non-

Gaussian statistics and  [quasi]-exponential growth of PE, for a small correlation radius ( 50<<⊥R km, 

the case of  WNLPs) and large noise intensities ( 2.02 ≤I ).  For WNLPs, typical −τ PDF was close to 

Gaussian if  2I ~ 0.01-0.05.  The growth of 2I  up to 0.1-0.2 resulted in  a weak asymmetry for the 

−τ PDF (SK 15.0→ ), and departs from non-Gaussian (KU 10.3→ ). However, although such a 

−τ PDF   has a short tail  (labeled by 1 in Fig. 9a), it was still close to Gaussian and the mean −τ IPT 

reduced with the growth of amplitude of initial perturbations. The −τ  PDF quickly departs from 

Gaussian with the growth of 2I after 0.2.  However, from the physical point of view, such initial 

perturbations seem to be too large to exist in reality. 

        The nonlinear predictability regime appears as ⊥R  grows. Both highly non-Gaussian −τ PDFs, 

and the mean IPT that grows with ⊥R , indicate that the PE becomes nonlinear.   A typical non-Gaussian 

−τ PDF  (SK≈0.8, KU≈4.0) computed for a finite correlation radius is demonstrated in Fig. 9 b.  The 

long PDF tail (labeled by 2 in Fig. 9b) is clearly seen in this figure. The tail is formed by rare individual 

forecasts  (IPT up to 60 days), each of which is longer than the mean ensemble forecasting (IPT of about 

44 days).        

  Asymmetry of −τ  PDFs becomes higher for the larger values of correlation radius ⊥R  (Fig. 10 

c). SK, which is a measure of asymmetry, increases up to 0.8 when ⊥R  tends to 100 km. Larger values 

of mean IPT (Fig. 10a) and −τ variances (Fig. 10b) correspond to more asymmetric PDFs.  Highly non-

Gaussian (KU ≈  4, Fig. 10d) and sharp −τ  PDFs with long tails stretching to large prediction times 

accompany this nonlinear predictability regime. The explicit growth of mean predictability time 

observed with the growth of correlation radius ⊥R  is a strong evidence of the nonlinear predictability 

regimes caused by inhomogeneous morphology of the model phase space (Kaneko, 1998).  
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8.   Weibull   Statistics  

   The results above demonstrated a fast departure of −τ PDFs  from Gaussian shape with the growth 

of amplitude of initial perturbations. For finite-amplitude initial perturbations −τ PDFs were highly 

non-Gaussian and asymmetric. The following question arises: what distribution is the best fit for 

such −τ PDFs?   If the analytical form of such a distribution can be found, it can be useful for the 

parametric estimate of ensemble generated PDFs from limited observation samples and small forecast 

ensembles. 

Our computations demonstrate that the tailed −τ PDFs reconstructed by a non-parametrical 

technique based on the Epanichenikov’s kernel and the bootstrap re-sampling procedure (Good, 1996) 

directly from the Monte-Carlo samples, are fitted by the three-parameter Weibull distribution function 

(Bury, 1999) 
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η
βτ exp)(

1

f .                                                 (18) 

Here, γη, and β  are scale, shape and location parameters. We found no difference between the 

reconstructed PDFs and their Weibull counterparts with at least a 95% confidence level. 

       We suggest to identify the distribution parameters of (18) by the probability weighted moments 

(PWMs). Definition of PWMs and their features are given in Greenwood et al.  (1979). For a number of 

reasons these moments seems to be more attractive for the practical calculations of prediction scales 

than the classical statistical moments (CSMs).  First, the PWMs are less sensitive to sampling than the 

CSMs.  Second, the classical statistical moments may not exist for PDFs with long (“heavy”) tails. For 

example, if a cumulative distribution function P has asymptotic tail σ−t~ as ∞→t , then the classical 

−τ moments of ( 1−−σk ) order do not exist because integral (5) does not converge. In contrast to the 

CSMs, the PWMs exist for any tailed PDFs.  

         From the physical point of view, the model predictability is also clearly quantified by −τ CDF, 

which   is the probability that a model is able to predict with accuracy higher than ε , at times larger 
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than t (see, also Section 1).  Accordingly to Bury (1999) CDF for Weibull distribution (18) can be 

written as  

                                              
⎥
⎥
⎦
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⎝

⎛ −
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β

η
γttP exp)( .                                                                  (19) 

The parameter β  is a measure of how quickly the −τ CDF decays with t. The super-exponential 

( 1>β ), exponential ( 1=β ) and sub-exponential ( 1<β ) decay regimes correspond to small, 

intermediate and high probabilities to obtain the enhanced predictability in an individual forecast.   

     The following method was used to estimate distribution parameters of (18) from ensemble samples.  

The PWMs can be estimated in two ways: from Eq. (D1), using analytical representation (19), and 

directly from ensemble samples through Eq. (D2). The distribution parameters are obtained through a 

misfit between these estimations. For details see Appendix D.     

       Typical −τ CDFs computed for both WNLPs and RNLPs are shown in Fig. 11a and Fig. 11b, 

respectively. A more tailed CDF corresponds to the RNLPs  (compare Fig. 11a and Fig.11b). That 

indicates a higher probability of long individual forecasting for spatially correlated initial errors than for 

WNLPs. If parameters for distribution (18) are known, there is a chance to predict an asymptotic 

behavior of −τ CDF tail with t, and understand contributions of rare long forecasts to model 

predictability.  

  The last statement is illustrated through a simple example. Let us estimate a contribution of rare 

long forecasts to the growth of −τ mean with ⊥R . The mean IPT calculated   for WNLPs  (  1.02 =I ) 

added to initial conditions, was equal to about 30.41 days, when the tolerance level was 2.02 =ε .  For 

initial RNLPs with the same intensity but the correlation radius km  125=⊥R , the Weibull distribution 

parameters are estimated as  

                                    days   5.37≈γ ,  days  2.6≈η , and  1.2≈β .                                        (20) 

       For Weibull distribution (18) the −τ  mean is calculated as  
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                                 )/11( βΓηγτ ++= ,                                                                    (21) 

where Γ  is  the gamma function.  

    Substituting parameters (20) into Eq. (21) yields,  

                                                    days  2.44≈τ .                                                                       (22) 

Therefore, the mean IPT has grown on 13.8 day. The tail lengthening stimulates approximately 

50% ( ≈η 6.2 days) of this growth. The other half of the growth estimated as τγ − = 7.1 days is caused 

by variations of the location parameter. 

9. Transition From Linear to Nonlinear Predictability Regime 

The above results showed the existence of two predictability regimes. From the practical point of 

view it is important to understand how quickly the linear predictability decays and what is a threshold δ  

on amplitude of initial perturbations, above which the nonlinear predictability regime dominates. There 

are two approaches for determining the duration of the linear predictability regime. One is to compare 

the evolution of a perturbation under the full nonlinear model with its evolution under the tangent linear 

model in order to quantify the PE in this model as a function of time (for example see Vukicevic, 1991).  

 Another approach is to develop a criterion. For example Gilmour et al. (2002) suggested 

estimating duration of the linear predictability regime by monitoring the evolution of twin perturbations 

under the full nonlinear model. Our idea is to demonstrate that the decay of the linear predictability 

regime correlates with the changes in behavior of −τ variance. 

Let us introduce the non-dimensional parameter 22 / Iεµ =  that is a measure for degree of 

smallness of initial perturbations, and estimate it for a number of combinations of 2ε and 2I .    The 

linear predictability regime occurs for 0.1105.2 3 ≤<× − µ  (Fig. 12 a, b) when −τ mean and 

−τ variance evolve along the following logarithmic laws: 

                                          ( )22 /ln~ Iετ ,                                                                        (23)        
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                                         )/ln(~ 222 Iεδτ .                                                                    (24) 

        Eq. (23) coincides with the well-known law of the exponential growth of infinitesimal initial 

perturbations on a chaotic attractor (Lorenz, 1996). Logarithmic law  (24) was theoretically predicted by 

Chu et al. (2002). 

The departure from the linear predictability is observed for 7.160.1 ≤< µ   (Fig. 12c,d). 

Although, here, the −τ mean still follows the [quasi] logarithmic law (23) with the growth (reduction) 

of µ ( 2I ), and deviations from this law do not seem to be essential for small 2I  and large 2ε , the 

−τ variance does not demonstrate a behavior that Eq. (24) predicts. It is practically constant (about 9 

days P

2
P) for 2I  varied between 1105.0 −×  and 0.2 (Fig 12d). That shows no correlations between the 

−τ mean (ensemble mean) and −τ variance (ensemble spread) when the amplitude of initial 

perturbations exceeds the threshold 0.1≈µ . 

 The intermediate domain between the linear and nonlinear predictability regimes, when there are 

no correlations between ensemble mean and spread, is also characterized by small changes in scale and 

shape parameters  ( ),βη  estimated as   

                                           ≈η 9.6± 0.1,     1.04.3 ±≈β .                                                    (25) 

 Here, −τ statistics is still close to Gaussian  because  the skewness and the kurtosis are close to 0 

(|SK|<0.5) and 3  (|KU-3.0|< 1105.1 −× ), respectively.   

The lack of statistically significant correlations between the forecast skill and ensemble spread is 

sometimes observed in ensemble modeling for the atmosphere and ocean. For example, Moore (1999) 

performed a series of experiments, in which he applied different methods of ensemble generation to a 

quasi-geostrophic model of the Gulf Stream.  He obtained no statistically significant relationships 

between forecast skill and ensemble spread in a number of cases and explained them only by poor 

statistics in the forecast experiments. Our computations show that the same effects can appear when the 

initial perturbations have quite large amplitudes.    



 24

10. Predictability Horizon 

          Asymptotic behavior of the −τ CDF with time determines the predictability horizon for the  

hydrodynamic model used here. Model predictability horizon is defined as the maximum prediction time 

( horτ ) for the given model and statistics of initial perturbations (Kravtsov 1993) and can be calculated 

by   

                                                       =horτ [ ] β
ηγ

/1 *ln P−+ ,                                                        (26) 

where *P is the  probability that  horτ  will be achieved in an individual forecast. 

        Let us estimate the model predictability horizon for the example discussed in Section 8. 

Substituting parameters  (20) into Eq. (26) yields,  

                                                  21.50≈horτ ,  52.79   and    55.03 days                                         (27) 

for 01.0* =P , 0.001 and 0.0001, respectively.  Thus, for the RNLPs with the fixed values of ⊥R  and 

2I , and 2ε =0.20, the model predictability horizon is limited to 52-55 days and any individual   forecast 

longer than 55 days, is improbable.  

11. Conclusions  

     We have used a simple shallow-water model to understand predictability of perfect ocean models. 

This model is a highly idealized representation of some aspects of the ocean dynamics and naturally, 

cannot simulate re-distributions of PE between barotropic and baroclinic dynamics, and interactions 

among large and small flow scales reproduced by high-resolution ocean models. However, due to the 

small degree of freedom of the model, distribution function for a prediction scale and its high-order 

moments were computed for a large number of ensemble realizations (up to 10P

5
P). That allows us to 

qualify PE statistics in an accurate manner.   

     Similar analysis is difficult to realize in full-scale numerical forecast ocean models due to limited 

computer resources. The full-scale models produce small sample forecast ensembles and therefore, 



cannot resolve the full complexity of PE statistics. The idealized model reveals some trends in behavior 

of PE and produces useful knowledge for extracting them from small forecast ensemble samples.   

     The following trends obtained in the present study need to be examined by baroclinic high-resolution 

ocean models with realistic bottom topography and forcing. 

     (1) In the limit of zero horizontal viscosity the model demonstrates the initial decay of spatially 

uncorrelated and correlated perturbations due to nonlinear bottom friction. Since the bottom friction 

plays a significant role in the energy balance of ocean coastal currents (Wunsch and Ferrari, 2004),  the 

observed  decay  seems to be an important process that  may enhance model predictability.       

     Initial error decay was noted in connection with numerical experiments in preparation for what 

became eventually known as the Global Weather Experiment (Williamson and Kasahara, 1971), and 

more recently, in the oceanographic and meteorological literature, by Brasseur et al. (1996), Wirth and 

Ghil (2000), Vannitsem and Nicolis (1997), Snyder et al. (2003) among others. The initial error decay 

found in these models was controlled by dissipative processes parameterized through   a hyper-diffusion 

or usual diffusion operator with a horizontal viscosity. Our study reveals another mechanism of initial 

error decay: PE decays due to viscosity damping by nonlinear bottom friction and this process is weakly 

dependent on horizontal viscosity. 

(2) Statistics of the finite-amplitude prediction error was found to be close to extremum statistics -

Weibullian. No general theory is available that demonstrates universality of this result   for any 

forecasting model. However, there is a number of reasons to examine Weibull statistics in large ocean 

and atmospheric models. First, extremum statistics are often observed to arise in multi-dimensional 

systems, exhibiting correlation over a broad range of scales, leading to emergent phenomenology, such 

as self-similarity and in some case fractional dimension (Boffetta et al., 2002). Second, Weibull statistics 

seems to be a good mathematical tool for the parametrical estimate of PE distributions in small forecast 

ensembles and from limited observation samples. Preliminary computations provided by us support this 

conclusion (Ivanov et al., 2007). Third, if the divergence of a predicted flow in phase space is constant, 
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the cumulative distribution function ),( tP ε (defined by Eq. 5a) can be analytically estimated (Ivanov et 

al., 2007). Here, we only give the final results without calculations: 

                                         ( )( , ) exp  /oP t c tε τ= − ,                                                                  (28) 

where k  is  a constant depending on a forecast model. 

      CDF (28) corresponds to the exponential probability distribution function, which results from 

Weibullian distribution (18) for 0=γ , 1=β , and /ocη τ= . Eq. (28) assesses predictability for many 

forecast models  including  Lorenz 63 model (Lorenz, 1963). 

(3) Our computations demonstrated that the transition from the linear to nonlinear predictability 

regime may be detected by high-order −τ moment behavior. We found the predictability regime where 

the mean prediction time scale grew along [quasi]-exponential law, which accompanies the linear 

predictability, but a behavior of variance for this scale was abnormal, so there are no statistically 

significant correlations between the forecast skill and ensemble spread. This result explains the lack of 

correlations between the forecast skill and ensemble spread found in a number of the atmospheric and 

oceanic models, and may be used to develop criteria for detection of the transition from linear to 

nonlinear predictability regime. 

Although the present study has analyzed only model predictability near the equilibrium ocean 

state, non-monotonous behavior of ensemble spread seems to be a common feature of forecast models. 

A possible explanation of this effect is that model predictability strongly depends on the spatial 

correlation scale of initial error as it was firstly demonstrated by Lorenz 1965, and on variations of this 

scale when the PE evaluates. 

There are in general different scenarios in behavior of the ensemble spread due to variations of the 

spatial correlation scale of PE. For example, Lorenzo et al. (2003) demonstrated decreasing ensemble 

spread of an ensemble system consisting of chaotic Lorenz cells diffusively coupled, as the correlation 

scale of PE grows. If the growing perturbations rapidly adopt the horizontal scales comparable to that of 



the reference flow, the ensemble spread reaches an asymptotic value and then weakly changes. This case 

is studied in Section 9.  

However independently on the realized scenario, the correlation scale of prediction error should 

change when the error leaves the tangent space (Schertzer and Lovejoy, 2004). That can, in general, 

result into variations of high-order statistics of IPT and in the non-monotonous behavior of ensemble 

spread, examples of which can be found in Nicolis (1992), Cohn (1993) among others. Obviously, a 

more systematic analytical description of the observed effects is required. We will address this point 

elsewhere. 
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           Appendix A 

                                                                 Spectral Decomposition  

     Following Morse and Feshbach (1953), the geostrophic stream function is decomposed into  

                        harmΨΨΨ += hom ,     ∑
=

=
M

m
mm tAt

1
hom )()(),( xx ψΨ ,                                    (A1) 

where  harmΨ  is   the harmonic function calculated with the open boundary conditions written by  

                        dxtxu
x

al

bharm ),(
2

∫−=′ΛΨ ,     and       0hom =ΛΨ .                                            (A2) 

 The basis functions { mΨ } are the eigenfunctions of the horizontal Laplacian operator ∆   and 

computed by                

                                       mmm ψλψ∆ −= ,     0
  
=

′∪ΛΛ
ψm ,                                                   (A3) 

where  mλ  are  its eigenvalues.  

      Spectral decomposition (A1)-(A3) is also applicable for non-rectangular domains and  can be 

generalized for 2D compressible and 3D incompressible flows  (Chu et al. , 2003).  

            The optimal truncation number optM  in (A1) depends on complexity of a flow structure. Direct 

computations have shown that to represent the reference flow with accuracy better than 0.1%, the 

truncation number optM  should be taken about 10P

2
P.  

         This number can be theoretically confirmed in the following way. The used hydrodynamic model 

may resolve ocean flows with ~100-200 km spatial scales ( L ) because of numerical grid with 50 km 

cells. Following Mikhlin (1964) the spatial scale of the highest-order mode mψ  can be defined as 

                                                  ( ) 2/1
11 /  ~ MM LL λλ ,                                                          (A4) 

where  1L   is the spatial characteristic scale of the largest  mode 1=m .  
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          For the rectangular domain A we can suppose  MLL ≈ , 8
1 10≈L km and 77 10210 ×−≈L km. 

Substituting  1L  and ML  into Eq. (A4), yields  

                                                              10025~1 −
Mλ
λ ,                                                          (A5) 

         Therefore, from 80 to 120 modes should approximate the reference and perturbed solutions with a 

reasonable accuracy. We used  100=optM . 
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 Appendix B 

                                             Dissipation  of  Prediction Error 

    Following Blumberg and Mellor (1987), the bottom  friction  of  both velocity components  is 

parameterized by   

                                                 1211 ),( EuuuF α= ,                                                  (B1) 

                                                  2212 ),( EuuuF α= ,                                                (B2) 

where  α  is the drag  coefficient,  2
2

2
1 uuE += . Let the circulation in a basin be decomposed as the 

reference circulation ),( 21 uu and perturbations ),( 21 uu ′′ :      

                                           ,111 uuu ′+=    222 uuu ′+= , 

 such   that   

                                            11 uu ′>>   and    22 uu ′>> .   

              For small perturbations, linearization of  (B1) and (B2) leads to                       
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  Therefore, the dissipative terms in   the prediction error energy balance can be written by                                  
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2
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              Appendix C 

                                 Probability Density Function of Initial Perturbations 

         Let   the two-point correlation function of the geostrophic stream function be projected onto the 

phase space   with the basis  [ MΨΨ ,...,1 ] ,  

                   )()( )()( 21
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21 xxxx ml

M

l

M

m
ml AA ΨΨδδΨδΨδ ∑∑

= =

= ,                          (C1) 

     Integrating   (C1) over the spatial variables 21, xx  in the computation area   yields   

                                00
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2 )()( mlml ABAdd δδΨδΨδ =∫∫ xxxx ,                                    (C2)     
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2 xxxx .                                                                             (C3) 

        Using (10), the correlation function in the left-hand side of  (C2) is represented, following  Panchev 

(1971) as  

                      12
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      Introducing new variables: 21 xxr −=  and 211 xxr += , and   integrating  (C2) over r and  1r  yield 
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LerfIRLLABA mlml πδδ .                               (C5) 

            Eq. (C5)  defines an M-dimension hyper ellipsoidal surface 0Ω  in the model phase space. The 

ellipsoid semi-axes are directed along the eigenvectors of the matrix lmB . Therefore, the maximum 

deviation for the vector of initial perturbations 
2/120

max )( Aδ  is estimated by  

                  ( ) 2/1
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2/122/112
21

2/12/120
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2
()

2
(2)( λπδ

⊥⊥
⊥=

R
Lerf

R
LerfIRLLA ,             (C6) 

 where maxλ  is   the maximum  eigenvalue  of the matrix lmB .  
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           In the context of the  predictability problem, the PDF of a RNLP  is Gaussian with the mean 

00 =mAδ   and the covariance matrix         
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                                                          Appendix D 

                                            Probability Weighted Moments 

       The probability-weighted moments of a random variable are   defined by Greenwood et al. (1979), 

                                ( )∫ −=
1

0

1)( duuuX k
kα ,   and   ∫=

1

0

)( duuuX k
kβ ,                           (D1) 

where k=0,1,…,K; X(u) is the quantile function ( i.e., the inverse of cumulative distribution function). 

Following Hosking and Wallis (1997) ( kα , kβ ) are calculated   from an ordered random sample nτ  of 

size N as  unbiased estimates of ( ka  , kb ):  
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111 ,         (D2) 

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
q
p

C   are the binomial coefficients.  

        The following procedure is used to estimate the parameters of a Weibull distribution function.  

(a) The probability weighted moments kα  or kβ  are computed from modeled samples accordingly to  

(D2). (b) With the given moments ( kα , kβ ) , the  Weibull distribution parameters   are identified 

from the condition: 

                                        min)()(),,( 1221 →+= FFKLFFKLKLs γβη ,                        (D3) 

 where sKL  is the symmetrical Kullback-Leibler distance, 1F  and 2F   are distribution functions 

computed from Monte-Carlo samples and identified by the probability weighted moments , respectively.        
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Fig. 1 The IPT and e-folding time for an oscillating prediction error. (a) IPT (τ ) computed in 

an individual forecast. Shaded zones show returns of model predictability. (b) an 
ensemble of J (dashed curves), the ensemble averaged J (solid curve) and the e-folding 
time ( eτ ), and  (c) the ensemble of  J (dashed curves) and an appropriate ensemble of 
IPT( Nττ ,...,1 ). 
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Fig. 2 Two areas for POM integration: Domain-A with the rigid Λ (the boundary segment between bl  and  al  in the  counter-

clockwise  direction) and open Λ′  boundaries (top panel), and Domain-B with the rigid boundary (bottom panel). 
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Fig. 3     The reference circulation and normal velocity bu on day-5  (a) and day-60 (b). 



 

 
 
Fig. 4  Sensitivity of −τ  statistics to the ensemble size (N): (a) the Kullback-Leibler distance, 

(b) the −τ  mean ; (c)  the −τ  most probable ; (d)  the −τ  variance; (e) the −τ  
skewness  and  (g) the −τ kurtosis. Initial perturbations   are red noise with the 
correlation radius =⊥R  112 km and the intensity =2I 0.1,  2.02 =ε . Arrows indicate 

310=optN . 
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Fig. 5 Temporal evolution of the root mean square error J  for various initial perturbations: 

(a) WNLPs  with different noise intensities ( 2I ): 0.05 , 0.01, 0.005, and 0.001   
(denoted by ‘1’, ‘2’, ‘3’, ‘4’), and  (b) RNLPs  with the correlation radius ( ⊥R ) of 70 

km and different noise intensities ( 2I ): 0.02 , 0.01, 0.003  and 0.001  (denoted by ‘1’, 
‘2’, ‘3’, ‘4’). 
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Fig. 6   The growth rate Q for (a) NWLPs and  (b) RNWPs with the correlation radius ( ⊥R ) of 70 km.  

            The solid and dashed curves correspond to 2I = 3100.1 −×  and 2I =0.5. Black arrows indicate    

             boundaries  between  the linear and nonlinear predictability regimes for different characteristics of    

             initial perturbations. 
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Fig. 7 Spectra of PE  2

mAδ at large (m=1,…,40) and small (m=40,…,100) scales between day-1 

and day-10.  The initial error is the WNLP with 2I =0.1. 2ε =0.5. 
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Fig.8   The spectral entropy S of (a) PE and  (b) the reference solution. Dashed and solid lines are 

computations for the first 20 ( 20,1 == Mmo ) modes and last 50 ( 100,50 == Mmo ) modes, 

respectively. The initial error is the WNLP with 2I =0.1. 2ε =0.5. 
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Fig. 9. −τ PDFs for (a) WNLPs with   1.02 =I , and 5.02 =ε , and (b) RNLPs with  1.02 =I  

and kmR  125=⊥ , and 2.02 =ε . Skewness and kurtosis  are  0.15 and 3.09  in case (a), 
and 0.77 and 3.95 in case (b). Dashed lines indicate mirror reflections of the left hand 
side tails of −τ PDFs. 
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Fig. 10. Dependence of  −τ statistics on the correlation radius ⊥R  for  RNLPs with the noise 

intensity  1.02 =I , and .2.02 =ε   (a) −τ mean, (b)  −τ variance, (c) −τ skewness, (d) 
−τ kurtosis. 
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Fig. 11. −τ CDF computed for (a) WNLPs with   1.02 =I   and (b) RNLPs with   1.02 =I  and 

kmR  70=⊥ .In both these cases  1.02 =ε .  Here, the circles and dashed lines represent 
−τ CDFs computed directly from the Monte-Carlo samples and by the probable 

weighted moment technique, respectively. The location parameter γ  equals to 20.4 days 
in  case (a) and   38.3  days in case (b). 

 
 
 
 
 

 
 
 
 
 
 
 
 



 50

 
 
 
 
 
 
 
                          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12. Dependence of −τ statistics on the noise intensity   for WNLPs: (a) and (b) for  01.02 =ε ; 
             (c) and (d) for    5.02 =ε .   Logarithmic law  (23) is indicated by solid line in (a) and (c).       
             Dashed line in (b) corresponds to logarithmic law (24). 
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