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Abstract. We present two key components of a principled method fortcocis
ing modular, heterogeneous swarms. First, we generalizgdldmnown technique
for representing swarm behaviors to extend the power ofiagdht systems by
specializing agents and their interactions. Second, al ypaph-based method
is introduced for designing swarm-based behaviors for iagént teams. This
method includes engineer-provided knowledge throughi@kplesign decisions
pertaining to specialization, heterogeneity, and modylaWe show the repre-
sentational power of our generalized representation carsée to evolve a solu-
tion to a challenging multiagent resource protection poblWe also construct
a modular design by hand, resulting in a scalable and imeultieterogeneous
solution for the resource protection problem.

1 Introduction

Natural examples of emergent complexity from collectiohsimple components have
led to the development of a number of methods that prosidarm intelligence—
collective capabilities from simple autonomous agentsApplication of swarm meth-
ods to discrete and real-valued optimization problemsuthelant colony optimization
[2] and particle swarm optimization [3] respectively, wehdther swarm methods have
been applied to the area of collective robotics [4]. Desigrswarms in simple situa-
tions is primarily a matter of replicating agents with thexeebehaviors, but more chal-
lenging problems require varying degrees of heterogenetigre agents maghare
key behaviors and may also be capable of specialization edervfew swarm methods
address issues of heterogeneity and modularity.

Historically, problems in Artificial Intelligence have beapproached using meth-
ods that involve representing and incorporating domaimkedge. Unfortunately, such
methods are difficult to implement, due to the amount of huevagineering required.
This is especially true for multiagent problems, where thmher of interactions be-
tween agents becomes prohibitive. In response, swarndlsadetions to multiagent
problems have been knowledge-poor. This raises otherdsssgpecially with respect
to scalability and intuition. What is missing is a princigland practical method for
finding a middle ground: incorporatirepmehuman knowledge into the system, while
providing as much representational flexibility as possible
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We present a method for designing swarm-based behaviaraftiagent teams that
achieves this objective. While our method is general, thjzep will focus on one par-
ticular swarm control paradignphysicomimeticsSpecifically, we will illustrate how
physicomimetics can be generalized to include heterogeerplicitly as part of the
swarm design process, and will introduce a graph-basedaddthdesign heteroge-
neous, modular swarms. Our method allows engineers to ekrmmdedge about the
domain into the system to constrain agent interactionafiproved scalability, as well
as to maintain intuition about the system'’s operation.

The paper first presents background information on physioetics, then de-
scribes our generalizations to this framework. An examplbaw this can be used
to develop heterogeneous solutions is given. We follow tscdking our graph-based
design method and use it to construct a heterogeneous, araailition by hand. The
result is a very scalable solution that was intuitively desid and easily understood.
We finish by discussing how our work relates to other swarmraeging methods,
then provide some concluding remarks, including intendéaré endeavors.

2 Physicomimetics

Physicomimetics provides a framework for the control of tiplé agents [5]. Agents
are treated as point-mass) particles. Each particle has a positian,and velocityy.
We use a discrete time simulation, with time-stéf At each time step, the particle is
repositioned based on the velocity and the size of the giegp= v A¢. The change in
velocity of the particles is determined by the artificialdes operating on the particles,
Av = FAt/m, whereF is the aggregate force on the particle as a result of interst
with other particles and the environment. Each particle bés a coefficient of friction,
¢y € [0,1]. Velocity in the next step becomée + Av)cy, stabilizing the system [6, 7].

There are two constraints: the magnitude of the force cagxededF,, ., and the
magnitude of the velocity cannot excegd,,... These restrict acceleration and velocity
of particles in the model. Also, since there is an emphasi®cal interactions, there
are further restrictions on the range of effect particlasehan other particles.

The simplicity of this framework creates a number of benehisst, a variety of
force laws can be employed to different effect. Moreoves, grameters of the above
model, coupled with the force law parameters, provide ezmyisiwith mechanisms to
adjust the behaviors of agents. Finally, since physicoriasés based on physics, prac-
tical analyses are possible using traditional physicsrtieghtes such as force balance
equations, conservation of energy and potential enerd3) [6,

A slight variation of the well-known Newtonian force law Wile used in this paper.
The range of effect of the force (s, while R is the desiredange of separatiobetween
agents. The gravitational constantisand there are two parameterized exponents: one
for distance(, and one for mass,. The distance between two particleand; is r;;.
The magnitude of the force between particlesd; is computed as follows.

~GUma)l it gy € [0, R)
Ej = Gi(mi:;j)a if Tij € [R, C] (1)

ij

0 otherwise



This force law repels particles closer thArand attracts particles past that distance
but within the range of effect. The gradient of the force cancbntrolled usingl,
anda can raise or lower the importance of mass on the force. I, tittere are two
parameters associated with each partieleqdc ;) and five parameters associated with
their interactions@, C, R, a, andd). Distance variable;; is an observed phenomenon.

3 Generalizing Physicomimetics

3.1 Differentiating Particle Types and Their Interactions

In heterogeneous multiagent systems, different types effitzgwill have different be-
havioral profiles. When heterogeneity is necessary, thtesfip is to explicitly consider
different particle types during the swarm design processehdype having its own
mass and coefficient of friction. Differentiating parti¢tigpes provides some degree of
specialized behaviors. For example, we can generate dyafigng formations of ar-
bitrary radii by creating two different particle types: owéh a relatively small mass
and one with a relatively large mass. However, only a limgebset of ring behaviors
are possible when all particles are homogeneous.

In addition to differentiating particles, interactive feis between the types of par-
ticles can vary. When heterogeneity is important, the secap a swarm engineer
should consider is specializing the different interactibetween those types. With the
combination of different types of interactions and differparticle types, a wide range
of complex heterogeneous behaviors are now possible. Mergby controlling how
many particle types there are, and how many agents theref &&ch particle type,
engineers can explicitly control thevel of heterogeneityn cooperative teams.

In the simplest cases, the same force law is imposed for t@idntions, but the
parameters differ. For example, Speatsl. [6] showed that, while one can generate
hexagonal lattice formations using traditional Newtongdysics, to produce square
lattices one must differentiate partictemnd vary the parameters of their interactions.

Force interactions between different particle types mag bk asymmetric. That s,
particle type A may affect particle type B differently thanafects A. This idea was
leveraged by the online evolutionary learning system apldliy [9, 10] to an obstacle
avoidance problem. In this case, particles representiagtageacted to each other dif-
ferently than those representing the goal or the obstagt¢she particles representing
the goal and obstacles remained fixed.

More generally, the underlying force law itself can vary fhifferent interactions.
There is a physical metaphor for this— particles in the redtworld affect one another
via a variety of forces and one often dominates. An examphtadre this might be
useful is the game capture the flag. Those agents retrielim@pponent flag might
be better off using a force law that takes advantage of filiel dffects for movement
and obstacle avoidance, while those protecting the homenflagbe better off using
something more appropriate for strong structural fornmestifd.0].

1 n the referenced work, they used the artificial label “spimtiifferentiate particles.



3.2 An Example Problem

To begin exploring the advantages and limitations of ouregalized physicomimetic
framework, we introduce a simple resource protection gobA centrally-located, im-
mobile resource is encircled by a defense perimeter. Niogptor agents are deployed
from the vicinity of the resource. Two slightly faster intler agents appear in random
locations just outside the perimeter and begin attack ruitisearesource, attempting
to avoid protectors during the run. If an intruder is destibyhits the resource, or is
chased out of the perimeter, it is removed from the simutatzmd a new intruder will
begin a new run from just outside the perimeter after a slamddom waiting period.

Fig. 1. Example resource protection problem. Castle marks resdarbe protected, outer circle
marks defense perimeter, gray and white circles with dalie#@te protectors (two types), and the
triangles indicate intruders (one type).

The problem is multiobjective. Ultimately, we want to redube extent of incur-
sions into the defense perimeter, but also we want to aveithde to the resource. Thus
we define two objectives: the average per-step incursidartis of intruders into the
perimeter and the ratio of resource hits taken over the tataiber of intruder runs at
the resource. While these two objectives overlap a gredt ey are not the same —
particularly when there are multiple intruders as is theedase.

As a result of its multiobjective nature, the resource prod@ problem is a good
one for exploring questions about heterogeneity. By changspects of the problem,
such as the relative importance of the two objectives, thabar of intruders, or the
types of possible intruder behaviors, we can begin to addresstions about how het-
erogeneous teams of protectors can help, and what leveltefdgeneity is useful in
what circumstances. Specifically, we will consider solusidhat allow for two differ-
ent types of protectors (6 of one and 3 of the other) defendgainst a single type of
intruder. The intuition here is to allow the system to dedahveiach objective separately
by providing it with different protective mechanisms foceabjective. For example, it
might be useful to have one set of protectors on the fronhiasing away intruders as
soon as they enter the perimeter, while also having a feveptaits back by the resource
to prevent last-minute strikes.



3.3 Optimizing a General Physicomimetic Solution

Solutions to the resource protection problem can be reptedeusing generalized
physicomimetics; intruders and protectors use this madallicases in this paper. Ad-
ditionally, since their behaviors will be significantly infinced by the resource itself, it
is also useful to model this as a separate particle type.

If we allow all possible instantiations, the parameter ggaquite large, but we can
reduce it somewhat. Since the central resource does not, mveveeed not worry about
its coefficient of friction or interactions from other typekparticles. Additionally, we
limit the intruders to a single pre-defined strategy and $oon optimizing a solution
for the protectors. Still, protector behaviors requireh¢igteractions (one from each of
the four types affecting each of the two protector types)atatal of 46 parameters (8
interactions with 5 parameters each + 4 for the mass of egeh+#y2 for thec; of the
protectors). If we were to add another protector type, thenaeld be 6 more interactions
and 32 more parameters. Indeed, the number of parametérs goadratically with the
number of particle types.

In spite of these simplifications, the size and complexityhaf parameter space
make it intractable for us to solve this by hand. Instead,umedd to evolutionary com-
putation to help learn the parameters for the problem. BEwoluwvas performed with
a simple E®2 + 10). The physicomimetic parameters were encoded as real vialues
the rang€0.0, 1.0] and mapped to the ranges shown in Table 1. An adaptive Gaussia
mutation was used, where € [0.005, 0.2], initialized at 0.2. The ES optimized two
equally weighted measures: the average incursion distanicgruders into a defense
perimeter of radius 150, scaled to the rafi@e, 1.0], and the hit ratio of the intruders
on the resource. These measures were evaluated using firetdiime, 350 x 350
continuous space simulations of the problem run for 100@sstach. This time is suffi-
cient to allow approximately 20 intruder attack runs pengdation. The simulation was
implemented with MsoN, a multiagent simulation library [11].

Table 1. Legal physicomimetic parameter ranges for resource pimtegents.

C’LLU | Ru’u | G’LLU | duv | au’u | mu | Cfu
[0, 350]([0, C]][0, 2400]|[—5, 5]|[0, 5][0.1, 50.0]|[0, 1]

We performed 10 independent evolutionary runs, each for déiterations, and
tested the final best parameter set for an additional 100lafions. The resulting av-
erage scaled incursion distance measure and 95% confideeceai for this solution
was 0.120+ 0.0016, and it allowed 4 hits on the resource over the 100latinns. As
hoped, the ES took advantage of the generalized physicamifreanework by evolv-
ing a heterogeneous solution in which 6 protectors formealder ring to block incom-
ing intruders as far away from the resource as possibleg@rotectors formed a tight
cluster around the resource to block any intruders makitigdugh the outer defense.
However, the inner ring of defenders was too close to theuresoto be physically
plausible. The majority of the other evolutionary runs progd physically implausi-
ble solutions as well. Furthermore, all the evolved sohgibad an unnatural jitter that
would not be acceptable if deployed.



A more carefully considered EA might have produced morenaaand physically
plausible solutions in this case. Additionally, it is cléahat some kind of representa-
tional constraints are necessary if one wishes to incréeskevel of heterogeneity: the
parameter space scales quadratically as the number oflpastpes increases. Such
considerations are attempts to implicitly add domain kmeaolgke into the algorithm.
We detail an approach that addresses the scale-up probléenallbwing the engineer
more control over the final solution Bxplicitlyincorporating domain knowledge in the
design process. Our approach is meantdmplementhe learning algorithm, though
for our example problem it is sufficient to allow us to devesmtutions by hand.

4 Engineering Physicomimetic Solutions using Directed Grphs

Our goal is to systematically design formation-orientedlaborative multiagent teams
capable of true heterogeneity and modularity. While gdirer physicomimetics is
capable ofepresentingsuch solutions, it isn’t clear how tesignthem.

It isn’t a trivial problem. The parameter space of geneealiphysicomimetics, in
which any level of heterogeneity of team members is possiblery large. Every agent
could be represented by a different particle type. Hence tdypair-wise interactions,
the parameter space can grow quadratically with the nunftigpes. Moreover, since
there can be strong non-linear influences between thesmptees, designing solutions
will become increasingly intractable as the level of hegereity increases. Finally,
with this system it is unclear how to share successful daiations.

We provide a principled and practical method of engineesigtions using gener-
alized physicomimetics by noticing two key facts: We do rioizg's need every possi-
ble interaction, and we can often reuse an interactionamaters. Reasoning about the
types of interactions is necessary for designing succkssterogeneous, swarm-based
multiagent solutions. Digraphs are natural and usefubtéml this type of reasoning.

4.1 A Graph-Based Force Interaction Model

Let each type of particle be a node in a digraph and each ettenebe a directed edge
in that graph. An edge is associated with a force law as faldar two particle types,
u andv, a directed edgéu, v, F,,) denotes an interaction where particles of type
impart a force on particles of type according to the force law defined b¥y,,. Fig. 2
illustrates a graph for a two-agent example.

Fi

Fig. 2. An example force interaction digraph. There are two partigpes, {) and ), and there
are separate force laws between every possible pair otfeatypes.

These digraphs can have isolated nodes and cycles. Onliged eénply there is no
direct interaction between the particle types represdmydtiose nodes in the graph.



4.2 Modularity via Condensed Subgraphs

In swarm engineering, the concept of modularity is paréidylimportant. Here, we ad-
dress two different views of modularity: modularity of dgsiand behavioral modules.

When designing something complex, engineers often decsenpgstems, build
components separately, and then combine them. We emplayitarsidea for con-
structing complex multiagent simulations. Using our gréyaised approach, we break
the graph into relevant subgraphs, and then consider theonjunction with one an-
other. It is helpful to categorize agents by developing saplys thaprofile how agents
of a group interact with other agents in the system. Thistitossmodular design

In addition to modular design, there may be times when mathitg behaviors
(sharing subsets of behaviors) in a heterogeneous muitiagam is important. One
way to introduce modularity to generalized physicomingigto allow particles to
share force laws and parameters. We do this by allowing tk@ear tocondense
subgraph by consolidating particle types into a single node

Some simple notational elements can be added to the digvapth with these sorts
of design issues. This is illustrated in the next section.

4.3 A Simple Graph-Based Solution

Our generalized physicomimetic solution to the resourogggtion problem was versa-
tile, but yielded a large parameter space that was quadvilticespect to the number of
protector types. Careful analysis, however, reveals alsigays that engineer-guided
knowledge can limit the space in order to craft a solutiorhtogroblem by hand.

We begin our design by considering the agent types: an arpittumber of protec-
tor types 1, po, . ..), one intruder typeif, and a resource type)( Next we consider
the types of interactions that we believe will be necessgince intruders cannot distin-
guish types of protectors, we can condense some of the arthahaviors. Moreover, if
we consider each protector type as nearly independent, egeprevide only limited in-
teractions between types of protectors — just enough taadvitting one another. Both
of these pieces of knowledge lead to fairly obvious reductio the model.

We designed the interactions using three subgraphs (seeeF8), profiling pro-
tectors (all types) separately from intruders (one typég first subgraph represents a
module of behaviors for the intruder, while the second twwesent two modules of be-
haviors for the protector types. The notatjanin a node means all protector types are
represented by that node. Links connecting such nodessegralentical force laws
between the nodes. Additionally, rather than drawing mamgsaphs for each type of
protector, we abbreviate the design usinggheotational convenience. Our design so-
lution for the interactions can be seen below. We omitihkbels in the graph since
they are implied by the existence of the edge and identifiettiéyodes they connect.

Notice that we must resolve a notational conflict. The midsilegraph shows a
specific edge between a particle protector type and itsaifewhe third subgraph shows
a general edge between any two protector types. A specifie ledg precedence over
a general one, so the way to read the graph is as follows. HrtEgaction between
different protector types is identical, except for the ratgion of the protector type
with itself —that is specified explicitly and is differentrfeach type.
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Protector Profile

Intruder Profile

Fig. 3. Force interaction models for the resource protection roblThe graph on the left repre-
sents all the interactions affecting the intruders. Noig does not depend on the protector type.
The two on the right represent those affecting the protegp@s. Each type of protector can react
to its own type and to intruders in a different way, but thegotédentically to all other protectors.

We have designed our subgraphs in such a way as to capturediuths of mod-
ularity. The first and third subgraplesndenseeactions toward any kind of protector,
creating reusable modules. The second subgraph providesgnedevel modularity. By
using this visualization, we can compute the number of megiyparameters for the pro-
tector profile. Each interaction requires five paramet@ts{, R, a, andd). If there are
P protector types, theBP+ 1 edges (interactions) must be defined, requisif®+1)
parameters. Each protector type requires two more parasrgteandcy), resulting in
2P additional parameters. Hence, fBrprotector types]7P + 5 parameters must be
optimized. This means there will be a constant number of remarmeters (17) with the
addition of each protector type: a linear scaling of paramset

With the above interaction design, it was easy to constrgotation to the resource
protection problem by hand. Beginning with the first protedype, we adjusted the
parameters such that these agents form a large ring aroandsburce. They attempt
to maintain formation, but will chase off or destroy intrusl¢hat come close to them.
The rest of the ring will redistribute if a protector is pullaway in pursuit of an in-
truder. Next we designed the second protector type to stasedb the resource, but
aggressively pursue intruders that are moderately far th@em. These protectors are
pulled back to the resource if they get too far away, but arerga fair amount of lat-
itude to pursue enemies that are in close quarters. In tisis, @@mbining these two
behaviors was trivial —we merely sought to keep them out efutay of one another.
The combined behaviors are smooth, easily understood, laysiqally plausible.

The parameter values for the above solution are shown b&laran this model
of 100 independent simulations; the resulting averagesdcicursion distance and
confidence interval was 0.1909 0.004. Of the 100 trials, 94 of them resulted in runs
where no intruder ever struck the resource. The remaini@dmitted just a single
strike each.

Table 2. Model parameters for hand-coded solution to the resou@egtion problem.

|i—’P1 T —p1 P1 —P1 |i—>172 T — P2 P1 — P2 |Px — Px
80 350 250 150 350 300 20 | i pope T
5 100 110 5 15 200 20 110 10 1.0 600
2400 600 1200 | 2400 0.05 1200| 1200 ) : ) '
5 5 15 A 05 5 5 cr|0.150.150.15 -

0 1 1 0 0 1 1

2 2 QxmQ



5 Related Swarm Engineering Work

Swarm engineeringhe process of designing, building, and validating swagimviors,
has sparked much interest of late. In a recent survey of ¢adees applying conven-
tional engineering approaches for dependability to swaesigh, Winfieldet al. [12]
point out the need for better tools for swarm engineering.

In response to such needs, Kazadi [13] developed a formalfssavarm intelli-
genceand described an approach to engineering the behavior ofrsaccording to
that formalism. Chang [14] describes this approach asdulle-meeting methothat
combines both top-down macroscopic with bottom-up micopgzswarm design tech-
niques. While the method provides guidance to the swarngdesin decomposing the
swarm engineering problem, low-level behaviors mustisélcreated by the designer.

In work contemporaneous with the initial development of gbgmimetics, Reif
and Wang [15] develop a method calksatial potential fieldss a way to program large
teams of robots. Like generalized physicomimetics, thathod models the agents as
particles, provides for multiple types of agents, and gatesrbehaviors through inter-
actions of forces between agents. Reif and Wang proposeartiiécal methodology
for determining the set of potential force laws, laying ostep-by-step procedure for
developing system behaviors with different levels of iatgions.

Both Kazadi and Reif and Wang proffer methodologies for gl@isig interactions
between agents. However, both methods largely leave itaa#signer to determine
how to discover or create behaviors that achievegibbal goal(Kazadi) orrequired
behaviorg(Reif and Wang). Our work complements these approachesde faw de-
sign by presenting an intuitive graph-based means for degjgsuch behaviors while
incorporating some human knowledge into the design process

6 Conclusions & Future Work

This paper presented two key components of a principled adetbr constructing
swarms in a modular way, capable of both shared and spexiddizhaviors using physi-
comimitics. We responded to the growing need to find a middbeigd between open-
ended, knowledge-poor representations and brittle, kexgé-rich representations by
illustrating howsomeengineer-guided knowledge can be incorporated into a aulti
gent system. Our intent is to provide one view on how to pcadlii develop complex
swarm-based solutions in a principled way.

First, we clarified how physicomimetics can be generalineeiktend the power of
multiagent systems by specializing particles and thedraxttions. We advocate making
such choices explicitly a part of the design process in caoshg swarm-based sys-
tems. This gives one control over the ability of the systemprtmuce specialized, coor-
dinated behaviors. We illustrated these points using derngihg multiagent resource
protection problem. The representational power of the ggized physicomimetic so-
lution is more than sufficient to solve the problem; howetlrex,scale of the parameter
space necessitated heuristic optimization. This resiitsgecialized squads of agents
that effectively protected a central resource from insasbut sacrificed predictability
and physical plausibility.



Second, we presented a graph-based method for designargdtion models in
physicomimetic systems. This method allows engineersnstcact graphs that clearly
define what interactions are possible. By using our tecleniqgucondensed subgraphs,
engineers can think more modularly about the design progedsproduce reusable
behavioral modules, giving the engineer the ability to cigecontrol the scalability
of the system. We illustrated this method by hand designihgtarogeneous, modular
solution to the aforementioned resource protection prabl@ur solution is easy to
understand, physically plausible, and performs quite amlihe task.

Our next step is to apply our method to design swarm-basaedicas to well-
known multiagent problems, such as the art gallery probleniti-asset surveillance,
and problems from the search and rescue domain. We are édsested in combin-
ing our graph-based design method with heuristic optirananethods, designing the
force interaction models by hand and eliciting the modeapeaters algorithmically.
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