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1 Introduction

Isogeometric Analysis was introduced by Hughes, Cottradl Bazilevs [15] in an
effort to improve upon shortcomings of finite element anialys the areas of ge-
ometric precision, ease of mesh refinement, and integratitnComputer Aided
Design (CAD). Engineering investigations of performanceibration calculations
showed very good behavior, Cottrelial.[7], as did mathematical studies of con-
vergence under mesh refinement, Bazileval. [2]. Nevertheless, the approxima-
bility of isogeometric analysis compared with classicaitérelement analysis has
not been thoroughly investigated. It is the purpose of thisep to initiate such a
comparison.

To a certain degree, one might say that isogeometric asadykisumes finite ele-
ment analysis, in that standard element basis functiondbeagenerated from B-
splines and NURBS (non-uniform rational B-splines), themmachnologies used
thus far in the instantiation of isogeometric analysis. ldegr, isogeometric anal-
ysis offers more, in particular, the possibility of devdlgpsmoother basis func-
tions, at least throughout patches (i.e., subdomains)jranthny cases globally.
Isogeometric analysis emanates from constructs used igrjemputer graph-
ics, animation, and visualization, and it is often the chse¢ $moothness is of ut-
most importance. For example, rendering of reflective dbjesquires essentially
C2-continuity in order not to exhibit spurious reflections.retent years, a num-
ber of computer graphics techniques have been developedidiess this issue.
It is interesting to note that difficulties in developing sotio basis functions (i.e.,
C'-continuity and higher) in the early years of finite elemamsially led to re-
formulation of problems so th&t’-elements could be utilized, a classical illustra-
tion being the virtual abandonment of Poisson-Kirchhofiteltheory, which leads
to fourth-order biharmonic problems, in favor of Reissh&ndlin theory, which
leads to second-order differential equations. Times hhgeged and it is now pos-
sible to construct complex models utilizing functions sttingo thanC®. This may
open a door to simpler formulations of problems involvingher-order differen-
tial operators (see, e.g., Gometal. [11]). Another possibility is that smoother
functions might produce better approximations of derixegtithanC® continuous
finite elements in second-order problems. For examplesstgeare generally the
most important quantities in structural analysis, and taey usually smooth al-
most everywhere. Standard finite elements require smap#nd post-processing
of stresses. This might be avoided through the use of smails bunctions.

In this paper we initiate the investigation of smooth basrsctions generated by
isogeometric analysis and compare them with stand&rdinite elements. The
problems used as a basis of comparison emanate from saldymamics and
wave propagation, in particular the eigenvalue problenred fibration, and the
Helmholtz equation of time harmonic wave propagation agsn acoustics and
electromagnetics. We use discrete Fourier techniquesR@de¢myer and Morton



[20]) to analyze the difference equations. In the case oéipenvalue problem, we
work with a finite domain and homogeneous Dirichlet boundamgditions, and

for the Helmholtz equation we perform dispersion analysisrdinite domains,

and consider a boundary-value problem on a finite domain.

The basis of comparison used throughout this paper is thébeauof degrees of
freedom in the discrete model, which turns out to be equitale the bandwidth

of the corresponding matrix problem. There is some predefiberthis basis of

comparison, namely, it was used by Kwok, Moser and Jiméheékip studies of

B-splines, finite element, and collocation methods for ative and diffusive pro-

cesses and they presented their rationale for selectiNgvertheless, one can still
take issue with it, primarily, in our opinion, because itdedo significantly differ-

ent numbers of quadrature points for smooth &fidbasis functions. However, it
may be said that, for the smooth case, optimal rules are ridkn@vn and once

they are, a more valid comparison of cost will be able to been&dthe mean-

time, we will use the number of degrees-of-freedom as a bas@mparison, but
recognize that the issue is more complex.

In Section 2 we briefly review the problems under consideratin Section 3 we

recall the basis of isogeometric analysis, B-splines andRRS. We describe the
different geometric constructions which lead to linear andlinear parameteriza-
tions of the problem domain. This has important consequsimogbration analysis
(see [7]). In Section 4 we begin our investigation in the eghbf one-dimensional
problems. We calculate the discrete spectrum of the eigéhgm, and the dis-
persion properties of the discrete approximation to therteltz problem using
complex wave-number analysis [22]. After presenting th&itefor linear ele-

ments, we state a “duality principle”, which enables us t@mesults of spectral
analysis to dispersion analysis, and vice versa. Througtheupaper we invoke
the duality principle to simplify derivations. Neverthste there are subtle differ-
ences between spectrum and dispersion analysis that ndezl ioted, namely,
the possible existence of “outlier frequencies” [7] in dpam analysis, and the
existence of complex wave-numbers leading to spuriousesgamt waves in dis-
persion analysis. These phenomena occur for higher-oideretizations and so
we investigate quadratics in some detail, and sketch whapdres in cubic and
higher-order cases. We calculate the “stopping bands’l&ssecal finite elements,
first identified by Thompson and Pinsky [22], and show thapBags/NURBS do

not engender stopping bands. However, they produce spuats corresponding
to evanescent waves. These are strongly attenuated and sieemo to show them-
selves in numerical calculations. We then proceed in Seétio a two-dimensional
model problem that we analyze with bilinear elements. Thiblgem gives us the
opportunity to explain the oscillations in frequency esrproduced in numerical
studies. Based on results in Sections 3 and 4 we are able fideotly use numer-
ics to calculate invariant analytical spectra for cladsicanethod finite elements
and NURBS. This comparison is quite startling. The higheleop-elements give

rise to so-called “optical branches” to spectra, which hawvapproximation prop-



erties. It is well known that the upper part of discrete freey spectra are very
inaccurate, but what seems to be a completely new obsemvatibe errorgliverge
with p. On the other hand there are no optical modes with NURBS &at l@hen
an appropriate “nonlinear” parameterization of the geoynist used [7]) and the
spectral errorgonvergewith p. The results are strikingly different (see Figure 28)
and seem to register a significant advantage for NURBS. Wgectume that these
results may at least partially explain why classical higbreter finite elements have
not been widely adopted in problems for which the upper pati@discrete spec-
trum participates in a significant way, such as, for exampipact problems and
turbulence. We also examine eigenvectors in one dimensidrivao-dimensional
spectra for higher-order approximations. This is follovilgdstudies of frequency
response spectra and wave propagation in a one-dimensazhdh all cases, we
find NURBS outperform standard finite elements. Our lastystsidn initiatory one
into the effects of reduced numerical quadrature. We fintiréftdhucing quadrature,
below exact, fop-method finite elements, has deleterious consequences.ngbw
only spectra diverge witp, but for a fixedp, with only one point less than for the
exact rule, they diverge with mesh refinement (iketefinement). The situation is
much worse than for the exactly integrated case, which isicdy not good. It is
also an indication that the Gauss rules are indeed optis&yeer points are disas-
trous. On the other hand, reducing quadrature for NURBS dogsave significant
effect. Roughly speaking, the Gauss rule with approxingdtelf as many Gauss
points as required for exact integration provides very ptatge results with no
significant degradation. This indicates that the Gauss rarle far from optimal for
NURBS. In fact, it is conceptually clear that the Gauss ralesnot the answer be-
cause they do not acknowledge in any way the precise ordempintiity at knots.
So, at present, application of the Gauss rules between knsimple and effec-
tive, but clearly very inefficient. We anticipate that opéilhnules will eventually be
developed for NURBS and, at that time, we will be able to makeerequitable
comparisons of cost. We draw conclusions in Section 7.

2 Structural vibrations and wave propagation

In this section we briefly recall the main equations of suait vibrations and of
wave propagation; for elaboration, see Chopra [4], Clouggth Renzien [5], and
Hughes [14] for structural vibrations; Thompson and Pinf@3], and Thompson
[24] for wave propagation (note that in [23, 24] particulan@hasis is on acoustics).



2.1 Structural vibrations: natural frequencies and modes

Given a linear ¢o-dimensional) structural system, the undamped, unforged-e
tions of motion, which govern free vibrations, are

d2
,Ma§+Ku:m )

whereM andK are, respectively, the mass and stiffness operatorspand (¢, x)
is the displacement.

The n'* normal modeg, and its frequency, are obtained from the following
eigenvalue problem
K¢, =w:Maeo,.

We remark that the normal modes form a basis in space.

Then, we can separate variables as
u(t7 X) = Z an<t)¢n<x)7

and, using equation (1), obtain
d*a,, (1)
de?

Each mode coefficient, oscillates at a frequency,,, and we can write

+ Wi, (t) = 0.

an — C_e—lwnt + C+€Mnt.

After discretization, the following discrete equationswdtion are obtained
d*u”
de2

whereM andK are, respectively, the finite-dimensional consistent raasisstiff-
ness matrices, ana" = u” (¢, x) is the discrete displacement vector.

M + Ku" =0, (2)

Analogously to the continuum case, the discrete normal m¢geand the frequen-
ciesw” are obtained from the eigenproblem

K¢, = (wy)"Méy,, ©)
and separating variables we get

u'(t,x) = >y () (%),



with 4" oscillating at a frequency?”, that is,

ah = C_emnt 4 O ent,
Then' discrete normal modg” is an approximation of the'” exact normal mode
¢,,forn=1,..., N, beingN the total number of degrees-of-freedom.

The corresponding discrete and exact frequencies are oealifferent (see, e.g.,
Figure 1).
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Fig. 1. Exact and discrete natural frequencies for the ameasional model problem of

free vibration of an elastic rod with homogeneous Diriclletindary conditions. The dis-
crete method is based on linear finite elements.

A fundamental question is, how close are the discrete frecjas to the continuous
ones? In other words, how well does the discrete spectrumorippate the exact
spectrum?

2.2 Wave propagation: the Helmholtz equation

The classical equation governing wave propagation is

1 d®u
Viu— = — =0, 4
YT e “)
wherec is the wave propagation speed. Particular solutions ofr@pkane waves
of frequencyw traveling in the directiom at a speed, which can be expressed as
the time-harmonic wave train

u(x,t) = Re(Aei(k“'x_“’t) ), (5)



wherek = w/cis the wave-numbey is the angular frequency, antlis a complex
number. The wavelength (with units of length) is defined\by 27/, while the
dual measure of period (with units of time) is definedby- 27 /w.

Assuming time-harmonic solutions, that is, with abuse ¢&tion,u(t, x) = e“'u(x),
the linear wave equation (4) reduces to the Helmholtz equoati

Vu + k*u =0, (6)

whose solutions iR™ are linear combinations of plane waves in space) =
eknx - After discretization, equation (6) gives rise to

(K — k¥*M)u" = 0. (7)

The numerical solution of the above equation is a linear doatlon of plane waves
having numerical wave-numbgf, where, in generak” # k.

Thus, discrete and exact waves have different wavelength4;" and2x /k (see
Figure 2).

exact wave

O discrete wave

Fig. 2. Different exact and numerical wave-numbers produaees with different wave-
lengths.

The fundamental issue, which is addressed by dispersidypsisas to determine
the dispersion of a numerical method, that is, how close ib&rete wave-number
k" is to its continuous counterpart

3 NURBS-based isogeometric analysis

Non-Uniform Rational B-splines (NURBS) are a standard fooldescribing and
modeling curves and surfaces in computer aided design amghuter graphics
(see Piegl and Tiller [18] and Rogers [21] for an extensivecdption of these
functions and their properties). In this work, we use NURBSaa analysis tool,
which is referred to as “isogeometric analysis” by Hugbeal. [15]. The aim of



this section is to present a brief overview of features arup@rties of NURBS-
based isogeometric analysis for 1D and 2D problems. We wilzet NURBS in
our study of the problems introduced in the previous sestidie section starts
with a short description of B-splines and NURBS.

3.1 B-splines and NURBS

B-splines in the plane are piecewise polynomial curves asag of linear combi-
nations of B-spline basis functions. The coefficients afatgan the plane, referred
to ascontrol points

A knot vectoris a set of non-decreasing real numbers representing c@edi in
the parametric space of the curve

{51 - 07 "'7§n+p+1 - 1}7 (8)

wherep is the order of the B-spline and is the number of basis functions (and
control points) necessary to describe it. The intefgalk,, 1] is called gpatch A
knot vector is said to beniformif its knots are uniformly-spaced amwn-uniform
otherwise. Moreover, a knot vector is said to dygenif its first and last knots
are repeateg + 1 times. In what follows, we always employ open knot vectors.
Basis functions formed from open knot vectors are intefpojaat the ends of the
parametric interval0, 1] but are not, in general, interpolatory at interior knots.

Given a knot vector, univariate B-spline basis functions defined recursively
starting withp = 0 (piecewise constants)

CJLifG <E<&in
Niol6) = { 0 otherwise. ®)
Forp > 1:
o E-& Eivpr1 =€
Nz,p(g) - £i+p — giNz,p—l(g) + £i+p+1 — £i+1Nz+1,p—1(§)' (10)

In Figure 3 we present an example consisting. 6 9 cubic basis functions gen-
erated from the open knot vectf®, 0,0,0,1/6,1/3,1/2,2/3,5/6,1,1,1,1}.

If internal knots are not repeated, B-spline basis functiameC?~!-continuous. If
a knot has multiplicityk, the basis is2?~*-continuous at that knot. In particular,
when a knot has multiplicity, the basis i€2° and interpolates the control point at
that location.

By means of tensor products, a B-spline region can be carstiistarting from
knot vectors{{; =0, ..., &pipr1 = 1} and{n, =0, ..., Nmig1 = 1}, and am x m
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Fig. 3. Cubic basis functions formed from the open knot wvecto
{0,0,0,0,1/6,1/3,1/2,2/3,5/6,1,1,1,1}.

net of control pointsB, ;. Two-dimensional basis functions; , and)/;, (with
1 =1,..,nandj = 1,...,m) of orderp andq, respectively, are defined from the
knot vectors, and the B-spline region is the image of the ghago, 1] x [0, 1] — Q
given by

S(&m) =D Nip(§) M (n)B,;. (11)

i=1j=1

The two-dimensional parametric space is the dorftait] x [0, 1]. Observe that the
two knot vectors(¢; = 0, ....&pr1 = 1 and{m; =0, ..., Mm1q+1 = 1} generate
in a natural way a mesh of rectangular elements in the paransetace.

A rational B-spline inR? is the projection onto two-dimensional physical space of a
polynomial B-spline defined in three-dimensional homogeisecoordinate space.
For a complete discussion of these space projections, sd®]&nd references
therein. In this way, a great variety of geometrical ergittan be constructed and,
in particular, all conic sections in physical space can kaiobd exactly. The pro-
jective transformation of a B-spline curve yields a ratigmalynomial curve. Note
that when we refer to the “order” of a NURBS curve, we mean ttieioof the
polynomial curve from which the rational curve was genetate

To obtain a NURBS curve ifR?, we start from a seB¥ € R? (i = 1,...,n) of
control points (“projective points”) for a B-spline curve R? with knot vector=.
Then the control points for the NURBS curve are

(B); = <B§'v)j,j =1,2 (12)

wy

where(B;); is the;j** component of the vectd; andw; = (BY); is referred to as

10



thei'" weight The NURBS basis functions of ordgiare then defined as

D . NZ,P(&)“%
The NURBS curve is defined by
C(¢) = > RI(€)B.. (14)

Analogously to B-splines, NURBS basis functions on the tiraensional para-
metric space0, 1] x [0, 1] are defined as

Nip(&)M; q(n)w; ;
RP9(E, ) = — (&) M o(n)w

j
o : (15)
=1 £<j=1 Ni,p@)Mj}q(n)wii

wherew; ; = (B};)s;. Observe that the continuity and support of NURBS basis
functions are the same as for B-splines.

NURBS regions, similarly to B-spline regions, are defineddmms of the basis
functions (15). In particular we assume from now on that thgspcal domair(?
is a NURBS region associated with thex m net of control pointSB, ;, and we
introduce the geometrical map: [0, 1] x [0, 1] — Q given by

m

- i R (16)

i=1j=1
3.2 Isogeometric Analysis

The image of the elements in the parametric space are elsnmettie physical
space. The physical mesh is therefore

77L = {F((gugl-i-l) X (nj7nj+1))7 with i = 17 co, N F D, j = 17 - ,m—l—q}
(17)
We denote by, the mesh-size, that is, the maximum diameter of the elenadnts
Th.

Following the isoparametric approach, the space of NURBBtfans on(2 is de-
fined as the span of thmuish-forwardof the basis functions (15)

V), = Spal'{qu oF '}io nij=1,...,m- (18)

11



3.2.1 Main features

In the following we present a summary of the main featuresafeometric analy-
sis. The interested reader may find more details and appinsan [2, 7, 8, 15, 19].

A mesh for a NURBS patch is defined by the product of knot vector

Knot spans subdivide the domain into “elements”.

The support of each basis function consists of a small numibelements.

The control points associated with the basis functions defia geometry.

The isoparametric concept is invoked, that is, the unknoamables are repre-

sented in terms of the basis functions which define the gegnidte coefficients

of the basis functions are the degrees-of-freedorspatrol variables

e Three different mesh refinement strategies are possikddognes of classicél-
refinement (by knot insertion) arnm@refinement (by order elevation of the basis
functions), and a new possibility referred to lasefinement, which increases
smoothness in addition to order.

e The element arrays constructed from isoparametric NURBSbeaassembled
into global arrays in the same way as finite elements (see &tujl], chapter
2).

¢ Dirichlet boundary conditions are applied to the contraiafales, in the same

way as in finite elements. Neumann boundary conditions arsfisd naturally

as in standard finite element formulations (see Hughes ¢hépters 1 and 2).

Finally, it is important to remark that in structural anatyBlURBS elements rep-
resent all rigid body motions and constant strain statestlgxgee Hughes [14]).
Consequently, structures assembled from compatible NU&B®ents pass stan-
dard “patch tests” (see Hughes [14], chapters 3 and 4, fosarigi¢ion of patch
tests).

3.3 Linear and nonlinear parameterizations

When dealing with NURBS, an important issue is the choicéneffiarameteriza-
tion to be used. Take as an example a 1D domain: the simpletsingare natural)
option is to employ a linear parameterization, but in sontgasions a nonlinear
choice can be more suitable.

The isogeometric procedure originally proposed by Hughesd. [15] is based on
a distribution of control points which leads to a linear paeterization (i.e., con-
stant Jacobian determinant), but in Cottedllal. [7] it has been shown that when
studying structural vibrations a nonlinear parameteioratsuch that the control
points are uniformly spaced, gives better results. In FEgurwe show the 1D dis-
tribution of 21 control points obtained for the two cases using cubic NURBS)(
along with plots of the corresponding parameterizatior- =(£) and Jacobian

12



J(&) = %@ (bottom). Subsequently, we will refer to this choice, in efhcon-

trol points are uniformly distributed, as “nonlinear paederization”, in contrast
with the linear one.

¥ ok ok ok ok ok ok k ok ok ok ¥ ok ok ok ok Kk ok Kk k¥

—— equally spaced control points
—— linear parameterization

——equally spaced control points
—— linear parameterization

0.8r

0.61

0.4r

0.2

0 0.2 0.4 £ 0.6 0.8 1 ) 0.2 0.4 £ 0.6 0.8 1
Fig. 4. 1D case: linear versus nonlinear parameterizatgtarchined by uniformly-spaced
control points (cubic NURBS, 21 control points). Top: distition of control points; dots

correspond to linear parameterization control points abereks to uniformly-spaced con-
trol points. Bottom: plot of the parameterization (leftdeof its Jacobian (right) for the two
cases.

Finally, referring to the 2D case, we present in Figure 5 tkeavgple of a control
net and mesh (i.e., the physical representation of the eltsnef a square physical
domain, obtained using = ¢ = 4 and11 x 11 control points for both the linear
and the nonlinear parameterizations.

3.4 k-method and p-method

We conclude this section on isogeometric analysis by brigdiypnting out what
we mean in this paper by the termisrhethod” and p-method”. Referring to the
already citedk- andp-refinement strategies, we define tamethod as the analysis
method exploiting the full continuity across the elemetitsrzed by NURBS basis
functions (i.e.C?! for a degree NURBS). In the following we will simply label
this method as “NURBS”. Instead, we define fienethod as the analysis method
where onlyC?-continuity is enforced across elements (this can be obtaith
isogeometric analysis by repeating the knots of a degld&RBS p — 1 times).
This approach, used in combination with a linear parameggan, is equivalent to
classicalhp-finite element methods, and in the following we will simp&pkl it as
“FEM".

13
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XL x/L

Fig. 5. 2D case: linear versus nonlinear parameterizatgtarchined by uniformly-spaced
control points p = ¢ = 4, 11 x 11 control points). Top: control net (left) and mesh (right)
obtained employing the linear parameterization, botht@tbbn thephysical domainMid-
dle: mesh on th@arent domainBottom: control net (left) and mesh (right) obtained em-
ploying the nonlinear parameterization, both plotted ayptysical domain

4 Analytical study in one dimension

In this section, we carry out some analytical computati@ndihding the discrete
spectrum for structural vibrations (spectrum analysig) tre dispersion relation
for wave propagation (dispersion analysis), and we disthessimilarity between
the two frameworks. We first deal with the case of an approtionawith linear
elements, for whiclk- andp-methods coincide. Then, we discuss the extension of
the results to higher order approximations, for both meshdtiis section is partly

14



based on [1, 12-14, 16, 22].

4.1 Linear approximation

4.1.1 Spectrum analysis

In this section, we solve the generalized discrete eigdieno (3) associated to
a linear approximation on the one-dimensional dontair.), and study the error
between discrete and exact solutions. We employ a uniforshhe- 2, < z; <
.. < 1wy <...<xyny1 = L, where the number of elementsiig = N + 1 and
the mesh-size i8 = L/n,,.

Considering homogeneous Dirichlet (fixed-fixed) boundamyditions, the eigen-
problem (3) can be written as

h)2

1 h
H(6a-1=20+Par1)+ ) (ar+ddatdan) =0, A=1,... N, (19)

6

®o = ¢n41 =0, (20)

whereN is the total number of degrees-of-freedom, and= ¢"(z,) is the nodal
value of the discrete normal mode at nade Equation (19) constitutes a lin-
ear homogeneous recurrence relation of orZlewhose solutions (ignoring, for
now, the boundary conditions (20)) are linear combinatiohexponential func-
tionsg, = (p1)” andos = (p2)*, wherep, andp, are the distinct roots of the
characteristic polynomial

hh2

(1—2p+p2)+(w6)(1+4p+p2):0. (21)

Actually, (21) admits distinct roots when'h # 0, /12; for w"h = 0, (21) admits
the double roop = 1 (in this case, solutions of (19) are combinationggf= 1
and¢, = A, that is, the affine functions), while far*h = /12 there is a double
rootp = —1 (and solutions of (19) are combinations@f = (—1)4 and¢, =
A(—1)"). Observe that, in general; = p; .

For the purpose of spectrum analysis, we are interesteéddm™h < /12, which

we assume for the remainder of this section. In this gaseare complex conjugate
(we assumdm(p;) > 0) and of unit modulus. Moreover, in order to compare the
discrete spectrum to the exact spectrum, it is useful toesegmt the solutions of
(19) as linear combinations @f"4“" (that is,p, = C_e " + C "), by
introducingw such thak'“® = p,. With this hypothesisy is real and, because of
periodicity, we restrict t® < wh < 7. Using this representation in (21) and using
the identity2 cos(a) = €'* + e~'*, after simple computations the relation between
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wh andw”h is obtained:
(whh)2

(2 4 cos(wh)) — (1 — cos(wh)) = 0. (22)

Solving forw"h > 0, we get

B 1 — cos(wh)
whh = J 6 T cos(h) (23)

Taking now into account the boundary conditions, non-nollisons¢ 4 of (19)—
(20) existwhew = 7/L,27/L, ..., Nw /L. Indeed, fowh = nth/L = nx /(N +
1), andC_ = —C, the solution

e-HArwr/(N-i—l) _ e—iAmr/(N-‘rl)

2i

pa=0C (24)

ECsin( Anm >

N +1
vanisheswheml =0orA =N + 1.

Precisely, (24) is the'" discrete normal mode, associated to the corresponding
discrete natural frequency”, given by (23):

w

h_ N + l\l - COS(TLW/(N + 1)) (25)

L 2+ cos(nm/(N + 1))

Observe that (25) returns the frequencigsin increasing order with respect to
n. Figure 6 shows the dimensionless discrete natural freziggen”h, for N =

9 degrees-of-freedom. They are represented by points lyinthe graph of.”h
versuswh/m, given by (23). The abscissah /7 is equivalent to the scaled wave-
numbern/(N + 1).

As is known, then!" discrete modey, = C'sin(Anw/(N + 1)) is the nodal in-
terpolant of then' exact modes(x) = C'sin(nrx/L), whose natural frequency
W —w

. LW
iSw = nrm/L. The quantity— — 1 =
natural frequency. The plot of

represents the relative error for the

whoo1 61 — cos(wh) (26)
w  wh\ 2+ cos(wh)’

straightforwardly derived from (23), is shown in Figure 10.

4.1.2 Dispersion analysis

We obtain here the discrete dispersion relation for linggr@ximation. We con-
sider the Helmholtz equation (6) on the infinite domain (Jljrmad its discretization
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Fig. 6. Analytically-computed (discrete) natural freqoes for linear approximation,
N = 9. The dimensionless frequencies lie on the graph (dotte) éhrelation (23).

(7) on the numerical grid 4 = hA, A € Z. The resulting stencil equation is

%(UA—l —2uy + UA+1) + kzg(uA_l + du + UA+1) =0, VAecZ. 27)
As we described in Section 2.2, the standard dispersiolysisatonsists of com-
paring the wave-numbers of the exact and discrete solutldesrecall that the
exact solutions of the Helmholtz equation are linear comtms ofu(z) = e,
Also, the discrete solutions, that is, solutions of the Gteaguation (27), are com-
binations of exponentials (as we have seen in the previai®edor (19), which
is analogous to (27)): following the notation which is commia the context of
dispersion analysis, the discrete solutions are written as

ug = uM(xy) = Coe ¥ A 4 e A (28)

denoting byk" the discrete wave-number. In generil, € C, and is uniquely
determined under the conditiah< Re(k"h) < =. Inserting (28) into (27), the
relation between andk” is obtained (analogously to (22)) as

(kh)?
6

(2 + cos(k"h)) — (1 — cos(k"h)) = 0. (29)

In this context, one is usually interested in solving (29%hwiespect td:"h. The
first step is
6 — 2(kh)?

k"h) =
costk™h) = 5

(30)

17



where it is easily seen that (sinké > 0)

<1 & kh<V12

6 — 2(kh)?
‘ 6 + (kh)?

Then, forkh < v/12 the discrete wave-number is real and given by

B 6 —2(kh)*\
k"h = arccos <m> ; (31)

whenkh > /12, k"h can be obtained as in (31), butcos(-) has to be understood
as the complex arc-cosine (see [22]). The non-zero imagjvent of k" produces

an amplitude modulation of the discrete solutions whiclelsarly, an unphysical
feature of the numerical solution. However, for linear edents, it happens when
reaching theesolution limit which corresponds to the largest wave-number that
the numerical mesh can represent (before aliasing ocdtos)inear elements, the
resolution limit isk"h = =.

The plots of Re(k"h) and Im(k"h) versuskh are shown in Figure 7 (observe that
kh is represented on the ordinate). The amplitude spectruahighu|/|ua1| =
em*"h) versuskh (assumingus = e*""4), is presented in Figure 8.

5 -
\
45F \
\
\
4r [\
\
35} e
3,
= 25
e
2,
15}
1,
|| Re(k"n)
- = - Im(k"h)
0 ‘ ‘
-3 -2 -1 1 2 3

0
k"R
Fig. 7. Analytically-computed (discrete) wave-numberlioear approximation.

The dispersion errofk" — k)/k = k" /k — 1 is typically displayed in the litera-
ture (e.g., see [12]) by plotting the quantity/k versusk”h, for k"1 real. This is
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Fig. 8. Amplitude spectrum for linear approximation.

obtained from (29) as

k" k"h

2 + cos(k"h)

and is shown in Figure 9.

0.96 - 4

0.941 1
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0.841 1
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k"h

[

Fig. 9. Discrete-to-exact wave-number ratio for linearragpnation.
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Fig. 10. Unified dispersion and spectrum analysis for lirsggoroximation.

4.1.3 Duality Principle

Note that (32) is the reciprocal of expression (26), writterterms of different
quantitiesw corresponds té" while w" corresponds té.

Indeed, it is clear from Section 4.1.1-4.1.2 that spectroaiyais is equivalent to
dispersion analysis in the regime whéteis real: switching from one field to the
other is just a matter of exchanging notation, from the nratitecal viewpoint.

From now on, we will represent the dispersion error by phgtthe ratiok /£ ver-
susk”h. While this is not common in literature, it is suitable forifying dispersion
and spectrum analysis (see Figure 10).

Remark 1 Figure 10 can be obtained numerically, instead of analytjcafter
numerically computing the spectrum, with eigenvaluesesbit increasing order,
and then the frequencies of the discrete system, each @i$rguency is divided by
the corresponding exact frequeney/ L. This gives.” /w, with correct association
of discrete to exact modes. In this case, the scaled modeearurpbV + 1) has to
be represented as the abscissa.

4.2 Higher orderp-method

We have seen in the previous section that, for linear elesnspéctrum and disper-
sion analysis are equivalent. This holds for ph@method with higher order elements
as well, though the analysis becomes more technical. Weskdast, and in more
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detail, the simpler case of quadratic elements.

We start by focusing on dispersion analysis. Therefore,ake into consideration
the Helmholtz equation on the infinite line and its discraiian by quadratic finite
elements on the uniform grid . < x4 < 24112 < Ta41 < ..., Wherex, = hA
(for A € Z) are the element-endpoint nodes and,/, = h(A +1/2) (for A € Z)
are the mid-point nodes. On this mesh, we consider the usdal ibasis, depicted
in Figure 11. The corresponding stencil equation is difiefer element-endpoint

15
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Fig. 11. Basis functions for the quadratianethod.

degrees-of-freedom and bubble (internal to element) @ésgoé freedom: one has

B_h(_UA—l + 8ua_1/2 — 14uas + 8uati/o — Uay)
(33)

h
+ kzﬁ(—UA—l + 2uA_1/2 + 8ua + 2UA+1/2 - UA+1) =0, VAeZ.

and

3%(8'%4 — 16UA+1/2 + 8UA+1) + kQ%(QUA + 16UA+1/2 + QUA_H) = 0, VA € Z,
(34)
respectively. One could look for a solution of (33)—(34) & element-endpoint
and bubble nodes (see, for example, [g2.2.4]). However, a simpler and more
common way to proceed consists of calculating the bubblesgsgof-freedom as

40 + (kh)?
Uty = 8(10+——((1ch))2)<qu +Uat1), (35)

and eliminating them, obtaining a system of equations:fgrA € Z, which is

1 l <30 4 2(kh)2> — <_6o 4 16(l<:h)2> o (30 + 2(kh)2> UAH]

3h [\ 10 — (kh)? 2 10 — (kh)? 2 10 — (kh)? :

(36)
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Remark 2 The bubble elimination is not possible when the bubble egu#84)
is singular foru 4.1 /2. We refer to this situation asubble resonancét occurs for

kh = V/10. (37)

Observe that (36) is a homogeneous linear recurrence equattiorder2, as for
the linear case (27). Then, its solutions can be written as

uy=C_e A Lo A vA e 7. (38)
Substituting (38) into (36), one obtains

3 kht — 104 kh? + 240

h
h) = .
cos(h™h) = = 6 k2 + 240

(39)

Givenkh, there is only one solutiok’* % to (39) if we restrict td) < Re(k"h) < ;
this is
(40)

i — arocos <3 kh* — 104 kh? + 240)

kh* 4+ 16 kh? 4 240

As for the linear case, if the right hand side of (39) is, in miod, smaller than or
equal tol, thenk”h is real (see the left plot of Figure 12). From (40) and Figure

8

| kb | kMh
Fig. 12. Analytically-computed (discrete) wave-number doadraticp-method, and:"h
real. Relation (40) is plotted on the left, and relation (dd)the right.

12 (left), it is seen that each real value /dfh is associated with two values of
kh, on two different branches, termedousticalandoptical (cf. [3]). This means
that the solution at the endpoint-element nodes of the gridle same for the two
corresponding:h’s; however, the bubble degrees-of-freedom (given by (25¢)
different for the two cases, which means that the two disgelutions (at element-
endpoint and bubble nodes) are different. From (40), itismtbthatih € [0, v/10]
for the acoustical branch artd € [/12, 1/60] for the optical branch.
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Fig. 13. Analytically-computed (discrete) wave-numberdoadraticp-method.

A better representation of the relatiafh versuskh is derived from (39) as fol-

lows. For the optical branch, that is, fbk, > /12, thanks to the even parity and
periodicity of the cosine function, we represent the digckgave-number in the
ranger < Re(k"h) < 2x. Then, we set

h* — 104 kh? + 24
3k 0 i 0) for kh < V12,

T ( Fh' + 16 kB + 240

(41)
4 2
27 — arccos (3 kA" — 104 k0" + 240) for kh > V12.

kh* 4+ 16 kh? + 240

This results in a one-to-one monotone relation betwe@erand the real values of
k"h, plotted in Figure 12 (right), which is consistent with theypical expectation
and is useful in view of spectrum analysis. Moreovérh = 27 plays the role

of resolution limit of the complete numerical grid (congidg both bubble and
element-endpoint nodes).

Allowing complex wave-numbers in (41), Figure 13 is obtainsotice that/m (k"h)
is not only zero forkh > /60 but also in between the two branches, {610 <
kh < +/12. This interval is called atopping bancand its effect on the numerical
solution will be discussed in Section 6.2.1. The amplituplecsrum is shown in
Figure 14.

We now turn to spectrum analysis, and consider the eigefgmo(8) on the do-
main (0, L). The mesh restricts t0 = zy < ... < Z4_1/2 < T4 < Taq1)2 <
... <y, = L. The mesh-size i8 = L/n.,;. We have therefore., + 1 element-
endpoint nodes, including, andz,,, andn,; bubble nodes. Taking into account
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Fig. 14. Amplitude spectrum for quadragemethod.

the homogeneous Dirichlet boundary conditions, there\are 2n,., — 1 degrees-
of-freedom. Based on the previous study of the Helmholtagqgao (33)—(34), we
assumev"h # /10 and perform the bubble elimination, leading to the follogvin
equation for the element-endpoint degrees-of-freedomidfe- 1,...,n, — 1

1| (30 +2(wh)? —60 + 16(w"h)?
3h ( 10 — (whh)? ) ba-1t ( 10— (W'h)? ) b4
30 + 2(w'h)?
+ <—10 — ((whh)>2 ) ¢A+1:|
h 5(whh)? 200 — 15(w"h)? 42)
35 { <40 - 4(whh)2> Pa-1t < 20 — 2(whh)? ) b4

5(whh)? B
(@ 1) ¢] -

We also have the boundary conditiops = ¢,_, = 0. Clearly, (42) is the coun-
terpart of (36). We proceed now using the dispersion arehgsiults of the present
section, invoking the duality principle, that is, the cependence.” «— k and
w < k", and reasoning as for spectrum analysis in the linear caseSsction

4.1.1).
Normal modes at element-endpoint nodes can be writtep,as- C_e "4 4

C., e“"4; the boundary condition, = 0 determine€”_ = —C, while ¢,,, = 0 if
% € Z. Observe that the complex values.of are not of interest in this case. The
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relation between "k andwh is (analogous to (39))

3 (whh)* — 104 (W"h)? + 240
(whh)4 + 16 (Whh)2 + 240

cos(wh) = (43)

The natural frequencies are obtained solving (43) witheesw”h. Unlike the
linear case, this is a two-branch relation: there are twtstoth > 0 for anywh €
R. As we have seen, a monoton&h versuswh relation is obtained representing
the two branches in the rangé < [0, 7] andwh € |7, 27|, respectively. Therefore,
we associate to o
wh=—, n=1,...nyg—1, (44)
el
the smallest positive root of (43), obtaining the acousticanch, and we associate
to
wh:@, n=ng+1,...2ng—1=N; (45)
Tel
the highest root of (43), obtaining the optical branch. Ehexts are the natural

frequencies that can be obtained by bubble elimination.

The frequency."h = /10, which gives bubble resonance (see Remark 2) has to
be taken into consideration as well. Indeed, it is assatiatth the normal mode

¢A:07 VAZO,...,TLel,

(46)

¢A+1/2 :C(_l)A VA:()v"'vnel_l-
Sincew”h = /10 is located between the two branches, this frequency is idedc
with mode numben = n,;. Notice that with this choice, all the normal modes at
element endpoints are given by

Anrm > A=0.1 .. .ny. (47)

n being the mode number. Therefore, (47) interpolate of tleetemodes (at ele-
ment endpoint nodes).

Eventually, this results in a monotone ordering of all theure frequencies of the
discretized system, as shown in Figure 15 (for= 9). The abscissa in Figure 15
iswh/2m, which corresponds to the scaled wave-numbg&rV + 1).

The numerical error in the calculation of natural frequesds visualized by the
graph ofw” /w versusvh. As for the linear case, it is the same graplk pf" versus
k"h, which reveals the dispersion error. The unified plot is showFigure 16.

What we have described for the cgse= 2 can be easily generalized to higher
order casep > 2, in one space dimension. In general we have 1 bubbles per
element, and thep branches ang — 1 stopping bands. See, for example, Figures
17 and 18 which refer to the cage= 3. In particular, assuming the resolution limit
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Fig. 15. Analytically-computed (discrete) natural fregaes for quadraticp-method
(N =9).
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Fig. 16. Unified dispersion and spectrum analysis for quadpamethod.

to bek"h = wh = pr, one can derive the monotonéh versusuh relation which
is useful for the spectrum representation. There arejalsd natural frequencies
associated to bubble resonance.
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Fig. 17. Analytically-computed (discrete) wave-numbaeardabic p-method.

4.3 Higher orderk-method

There is also a strict relation between spectrum and digpeenalysis for the
k-method with higher-order elements. Again, for the sakeimipscity, we only
discuss in detail the quadratic approximation, and briefytion the extensions to
p > 2 at the end of this section.

Considering the Helmholtz equation (7) on the infinite limes denote now by
s = hA, for A € Z, the sequence di-spaced control points (giving a linear
parameterization of the infinite line); the stencil equai®then

6%(1%—2 +2up_1 — 6ua + 2uatr + Uai2)
N (48)

+ k:?ﬁ)(uA_2 + 26ua_1 + 66us + 26upys + Uare) =0, VAEZ.
Remember that, for the-method,u, denotes the coefficient in the basis expan-
sion, which is no longer interpolatory. Another major diface from the cases
considered in the previous sections is that (48) is a homemesrecurrence rela-
tion of order4. Because of its structure, its solutions can be writtenraesali com-
binations of the four solutions™*""4 ande**"#4, wherek”" # k" are uniquely
determined under the assumption< Re(k"h) < m, 0 < Re(k"h) < = and
Im(k") < I'm(k") < 0. Notice that the space of discrete solutions has dimension
4, unlike the space of exact solutions ) which has dimensioR. The values
of k"h andk"h can be obtained fromh using (48). These are plotted in Figure
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Fig. 18. Amplitude spectrum for cubjemethod (top) and detail of the two stopping bands.

19. It is seen that” is an approximation of the exact wave-numbegi"h ~ kh
within the resolution rangé”h € [0, x]), while k" is a numerical wave-number,

associated with spurious evanescent waves of the form C/(—1)A¢F/mE"m)A,

The role of the spurious solutions of (48) is not fully cle@hese solutions are
irrelevant at lowkh (in this case, tha priori error analysis guarantees the accuracy
of the numerical solution) while they could affect the nuioarsolution at high
kh. Nevertheless, in all the numerical tests we have perfor(eed Section 6.2),
they did not appear, perhaps because they are so strorgytpated. See Figure 20.

Therefore, for the purpose of the dispersion analysis, igamsider the relation
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Fig. 19. Analytically-computed (discrete) wave-numberdaadratick-method.
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Fig. 20. Analytically-computed spurious wave-number foadratick-method.

k/k" versusk”h. After simple computations this is obtained from (48) as

L $ 20(2 — cos(k"h) — cos(k"h)?) (49)

kK kMR\ 16 + 13 cos(k"h) + cos(k"h)?’
and plotted in Figure 21.

Let us discuss now how the results above are related to speatnalysis. Consider
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Fig. 21. Unified dispersion and spectrum analysis, for caizzk-method.

the eigenvalue problem (3) on the intery@l L), on which we introducév +2 con-
trol points associated to a linear parameterization. Tirobpoints are uniformly
spaced, at distande only in the interior portion of the domain, while they get
closer to each other at the endpoints of the donf@iri.), as shown in Figure 4.
On the other hand, the space of discrete functions is madecéwise quadratic
polynomials on a uniform mesh with knot spacing, with global C! regularity
(see Figure 22). In this cases, the discrete problem (3kread

1 h(wh)?
6—h(6¢0 — 8¢y + Py + P3) + 120 (14¢g + 4001 + 259 + ¢3) = 0,
h\2

6ih(2¢0 + @1 — 6P + 203 + ¢4) + hgo) (200 + 25¢1 + 6602 + 26¢3 + ¢4) = 0,

(50)

VA=3.. N-2
1
6—h(¢A—2 + 2041 — 604 + 20441 + Pat2) (51)

h(wh)2
120

(Ppa—a +2604_1 + 6604 + 260441 + Pat2) =0,

1 Note, h here corresponds to the knot spacing in physical spaceioBsty, when analyz-
ing quadratic finite elements, we adopted the usual corathiath represents the element
length. Consequently, thes in these two cases differ by a factor of 2.
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6ih<¢N_3 +2¢N_2 —6ON_1+ ON + 20N+1)
h(wh)2
+ TO(¢N—3 + 26¢n_2 + 66pN_1 + 250N + 20n41) = 0,
1 (52)
6—h(¢N—2 + N1 — 8¢n + 6PN 1)
h(wh)2
190 (pn—_2 + 25pNn_1 + 40pn + 14dn11) =0

along with the Dirichlet boundary conditions

¢o = ¢n41 = 0. (53)

Substituting (53) into (50)—(52), this is aW-dimensional generalized eigenvalue
problem.

The equations (51) for the interior degrees-of-freedonresmond to the stencil
(48) we previously considered in the dispersion analys@véver, the boundary
equations (50) and (52) are different, due to the differéwipe of the boundary
basis functions (see Figure 22). The relation between theicios of (48) and the
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Fig. 22. Basis functions for the quadratienethod

ones of (50)—(53), which is not trivial, is addressed in tbkofving discussion.
First, we deal with (51) and use the previous study of the Helta equation (in-
voking the duality principle and change of notatioh« k, w < k" and® « k"),
to infer that the solutions of (51) are

o= Cre“tA 4 C_e WA L O @A L C 7@ yA=1... N. (54)

Inserting this expression into the boundary equations &6d) (52), and imposing
the boundary conditions (53), one determines the four @effisC_, C,, C_,
andC. in order that (54) is the solution of the entire system (583)(The trivial
solution corresponds 16_ = C', = C_ = C'. = 0. The normal modes are instead
the non-zero solutions, which exist for suitakléh (giving the discrete natural
frequencies) and corresponding and@h. Precisely, the’ normal mode turns
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out to be?
A—1/2

pa = Csin (mr

¢0 = ¢N+1 = 07

that is,wh = nw/N, C_ = C, andC_ = C, = 0; the corresponding frequency is
given by

VA=1,....N
)7 ) ’ ) (55)

| 20(2 — cos(wh) — cos(wh)?)
w'h = J 16 + 13 cos(wh) + cos(wh)? (56)

Figure 23 shows the discrete frequenciesfor= 9 degrees-of-freedom, together
with the graph of (56). The abscissa is the scaled mode numbér = n/N.
Notice that the present scaling of the mode number is diftdrem the one adopted
for linear and higher order-methods in Sections 4.1.1 and 4.2.

Remark 3 The spurious wave component$~"4 do not contribute to the normal
modes (55).
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Fig. 23. Analytically-computed (discrete) natural fregoes for quadratick-method
(N =9).

The case of higher order elemepts- 2 is conceptually similar, though the higher
is p, the more technical the analysis becomes. For dispersiagsis, the space of
discrete solutions (of the Helmholtz equation) has din@amp, with 2p — 2 spuri-
ous (linearly independent) solutions. For the purpose @kfiectrum analysis, one
has to split the eigenvalue/eigenvector problem into bamnend interior (stencil)

2 We emphasize that th¢,’s are the control variables and are not interpolated by the
solution.
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equations: the former are used to determine which solutibnise interior equa-
tions are compatible with the boundary conditions, thusngiadmissible normal
modes. They have a structure that is similar to (55) but tsepla- 1, for p odd, or
p — 2, for p even, correspond to evanescent waves, and are associdtadlier
frequencies” (see [7]).

The outlier frequencies disappear, for anywhen a nonlinear parameterization of
the domain is adopted, through the uniform distribution aftcol points shown
in Figure 4. This is observed numerically but a sound mathiealeexplanation

is still missing. Indeed, in spectrum analysis thenethod with nonlinear param-
eterization exhibits a more complicated behavior thanittmethod with linear
parameterization. In Figure 24 the numerically computédw (see Remark 1)
are plotted forN = 3, 10, 30 degrees-of-freedom: it is possible to notice that the
points do not lie on an underlying curve independenyoHowever, they converge
towards the graph of the analytical relation (56), wiAér- oc. The same behavior
is observed fop > 2 as well; the computed” /w versus the scaled mode number
converges, folN — oo, towards the analytical relation obtained considering/onl
the non-spurious solutions of the internal stencil equmatio

1.09

1o} | — relation (56)
o7t ¢ N =3 Q. ]
1.06F | o N =10
L1050+ N =30

~
< 1.04f
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0.6 0.7 0.8 0.9 1
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>
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Fig. 24. Numerical spectrum analysis compared to the analljt-computed relation (56)
for the quadratid:-method with nonlinear parameterization.

5 Analytical study in two dimensions

Spectrum and dispersion analysis can be put in relation an &vd more, dimen-
sions as well. We discuss here the equivalence betweenuitiye aft propagation of

33



numerical waves on the infinite grid and the study of discretiral frequencies
on a rectangular domain. At the discrete level, we only dis¢he case of bilinear
approximation, but the same concepts extend to the higlder prmethod (using
the techniques of, e.qg., [9]), akdmethod (dealing with the boundary equations as
in the one-dimensional setting).

Discretizing the Helmholtz equation by bilinear approxiioa on the infinite uni-
form mesh of square elements of side lenytthe discrete equations are

1
3_h(_8u(A1,A2) T UA —1,45-1) T U4 —1,45) T U(A;—1,45+41)

FUA Ag—1) F U(AL As+1) F UA +1,40—1) F U4 +1,40) F U(A+1,4041))

kh 1 1
+ ?(4U(A1,A2) + 7 AI=140-1) + Ua,-1,45) + 7 AI=1 A01) + U(a,,45-1)
1 1
+ U(A1,Az+1) + ZU(A1+1,A2—1) + U(A141,A2) + ZU(A1+1,A2+1))7 VA € sz

(57)
whereua = u(a, 4,) are the degrees-of-freedom with respect to the standaral nod
basis.

The solutions of (57) are linear combinations of discresmplwaves s = ¢"x" A,
where (see, e.g., [9]) the discrete wave-nunitdes= (£, k) satisfies

(g _ g<kh)2) _ (% + g(khf) (cos(kPh) + cos(KhR))

: (59)
— (é + (kh) ) cos(k"h) cos(kihh) = 0.

3 9

Likewise, exact plane-wave solutions of (6) afex) = ¢'**, with |k| = k.

The joint plot ofk”h andkh, for kh = 1,2, 3, is presented in Figure 25; it is seen
that the dispersion error depends on the direction of praijiagy of the wave. A

discrete wave-numbé¢" has to be compared with the corresponding exact wave-

number which is aligned, that i& = k- the dispersion error i lﬁ;ﬁ{ﬂ =

[
‘1 — ﬁ . The plot ofﬁ versusk”h is given in Figure 26.

Turning to spectrum analysis, we now consider, on the dofaain(0, L) x (0, L),

a mesh made af,; elements per direction. Taking into account the boundany co
ditions, there aréV = (n, — 1)? degrees-of-freedom. The discrete equations are
analogues of (57), by invoking the change of notafion: w" andus = ¢4. The
normal modes are

(bA = Csin(wlhAl) Sil’l(u)ghAg), VAl, A2 = 0, vy N (59)

with 1 < wL/7m, wyL/m < ny — 1. These are the interpolants of the exact normal
modesp, = C'sin(w;x1) sin(wexs). It can be noticed that (59) can be expanded as
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Fig. 25. Numerical wave-numbd” and exact wave-numbér for £ = 1,2, 3 in two-di-
mensions, for bilinear element approximation.
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Fig. 26. Unified dispersion and spectrum analysis in twoettigions, for bilinear approxi-
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a sum of four plane waves

(bA ! (eih(wl,u;Q)-A + eih(—wl,—wg)-A . eih(—w1,w2)'A B eih(wl,—wz)'A) : (60)

for A = (A, As), and Ay, Ay = 0,...,n,. Therefore, we are exactly in the sit-
uation of the previous dispersion analysis. Fixingandw, by changing notation

kb wy, kb < w,y, and using (58), the discrete frequency is obtained from the
relation

@ _ g(whh)2> _ @ + %(Mh)?) (cos(wrh) + cos(wsh)

4 (w'h)? -
— <§ + 5 ) cos(wih) cos(wsh) = 0.

(61)

The corresponding exact frequencyus= /w? + w3. Unifying dispersion and

spectrum analysis, the discrete-to-exact frequency ﬁ%ititersuml h, wyh is shown
in Figure 26.

When spectrum analysis is carried out numerically, as ifidi7gxample, the com-
puted frequencies” and the exact ones are sorted independently, by increasing
magnitude, and then associated. In one-dimension thisipestthe correct associ-
ation of vibrating modes, and results in the sanéw plot obtained analytically
(see Remark 1). In multi-dimensions, however, this nuna¢épcocedure does not
guarantee the correct association of modes and indeed"the numerically cal-
culated differs from the analytical one. However, it is shaw Figure 27 that the
two results are qualitatively similar, the numerical plotgenting less oscillations
but still revealing the correct order of magnitude of theerr

6 Numerical results

In this section, we present several numerical experimempating the analytical
results previously obtained. In particular, for bdthand p-methods, we exam-
ine the approximation of frequencies and modes for strattiynamics problems,
while, for wave propagation, we study the approximationesfponse spectra, as
well as determine solutions of a 1D boundary value probleoppsed in the liter-
ature (cf. [22]).

We finally show preliminary results on the effects of undeegnating NURBS
discretizations, compared with analogous FEM results.
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Fig. 27. Plots of%h obtained analytically (by making first the correct assaciabf modes,

and then ordering them such thais increasing) and numerically (by first ordering inde-
pendently the frequencies and then associating thaim; 50.

6.1 Structural vibrations

We present results of frequency calculations for 1D and 2@gszand we study the
approximation of eigenmodes in 1D.

6.1.1 1D problems

We present the results of some numerical tests performed tis¢k-method (i.e.,
NURBS) andp-method (i.e., FEM) on a 1D vibration problem (i.e., the peob of
the longitudinal vibrations of an elastic rod). In the pms section, this has been
pointed out to be equivalent to the classical time-harmdispersion analysis for
1D wave propagation, by the duality principle.

Before comparing NURBS and FEM results, we briefly remark tha following
plots for NURBS are obtained using a nonlinear paramet@oizdas described in
Section 3.3) in order to avoid so-called “outlier frequesti These are spurious
frequencies (or discrete optical branches) that show umahimear parameteriza-
tion is employed. For a more detailed discussion on the appea of outliers and
how to eliminate them, the reader is referred to Section dd3ta [7].

Figure 28 shows a comparisoniefandp-method numerical spectrafpr=1, ..., 4
(we recall that forp = 1 the two methods coincide). Here, the superiority of the
isogeometric approach is evident, as one can see that loptazaches of spectra
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divergewith p for classicalC? finite elements. This negative result shows that even
higher-order finite elements have no approximability fgtidr modes in vibration
analysis, and possibly explains the fragility of highed@rfinite element methods
in nonlinear and dynamic applications, in which higher nwodecessarily partici-
pate.

16 T T T
—— k-method, p=2
—— k-method, p=3
15— k-method, p=4 1
|| — p—method, p=2
p—method, p=3
p—method, p=4 FEM
14H = = = p:]_ -
p
_c§c 13 N
3
1.2t P Lol P E
d" N\
- A
f” N
11r =K NURBS
- - - lp
1 fm =T . I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
n/N

Fig. 28. Comparison df-method ang-method numerical spectra.

Finally, following [22], we study the approximation of eigmodes byk- and p-
methods. In [22], Thompson and Pinsky consider the 1D eigsdaigm correspond-
ing to the vibration of a fixed-fixed rod of unit length, distized with 21 degrees-
of-freedom (19 after imposing the boundary conditions)witd quadratic interpo-
lations; in particular, they study the finite element apjreation of thels™ mode.
In order to compare the modal approximation propertiek-atndp-methods, we
compute eigenmodes 6, 9, 12, 15 and 18 for this same probldmv@oompare the
numerical modes with the analytical ones, namely,

¢;(z) = sin(jmz), (62)
wherej is the mode number. Figures 29-33 present the comparisahslearly
demonstrate the better performance ofthmethod in approximating eigenmodes,
especially ones corresponding to higher frequencies.

6.1.2 2D problems
We conclude with a comparison &f and p-method numerical spectra for a 2D

problem (i.e., the problem of the transverse vibration ofearrbrane).
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Fig. 29. Exact (red dotted line) versus numerical (bluedsbiie) 6" eigenmode. Left:
k-method approximation; righg-method approximation.

Fig. 30. Exact (red dotted line) versus numerical (bluedsbiie) 9" eigenmode. Left:
k-method approximation; righgi-method approximation.

Fig. 31. Exact (red dotted line) versus numerical (bluedsbiie) 12" eigenmode. Left:
k-method approximation; righg-method approximation.

As discussed in Section 5, we follow [7] and represent 2D tsp@btained numer-
ically as we did for 1D, that is, the abscissae are the nom@@dlhumbers of modes
sorted from the smallest to the highest frequencies. Figdireports the numerical
spectra obtained using 70x70 degrees-of-freedom. Thdtsesthibit similarities
to the 1D case and the superiority of the isogeometric agprzaalso clear. Again,
for higher frequencies, finite element spectra seem to givetth p.
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Fig. 32. Exact (red dotted line) versus numerical (bluedshiie) 15t eigenmode. Left:
k-method approximation; righg-method approximation.

Fig. 33. Exact (red dotted line) versus numerical (bluedshiie) 18" eigenmode. Left:
k-method approximation; righg-method approximation.

6.2 Wave propagation

The aim of this section is to compare NURBS elements andickd$mite elements
on wave propagation problems. In particular, we study tlablem of an elastic
rod originally proposed in [22] and we use theand thep-methods to compute
the numerical frequency response spectra and to solve alapuwalue problem.
We note in passing that Figure 28 can also be interpretegassenting dispersion
error in wave propagation according to the duality prineighs before we need
to make the interchange/w « k/k" andk"h « wh. In the following, all the

numerical tests are carried out using quadratic and cubroents.

6.2.1 Frequency response spectra

Following [22], we start from the governing equation of theagly-state vibration
problem for a rod of lengtid

2
&9, kp =0, (63)

da:?
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Fig. 34. Comparison of 2[2-method and)-method numerical spectra. Top: entire spec-
trum. Bottom: detail of the first half of the spectrum.

with boundary conditions

¢(0) =, &(L)=0. (64)

The solution to problem (63)-(64) can be written as

_sin(k(L — x))

ol k) = sin(kL) (65)

We denote by)"(x, k) the numerical solution for the discrete methods. Now, the

41



dispersive and attenuation characteristics can be igatsti using the frequency
response function for botht andp-methods, that is, we compare for each discrete
method the values dbg,,(R(zx, k)) with the corresponding exact values, where

R('Tv kh) = ¢h<x7 ]{7)/(5 (66)

Figures 35 and 36 show the response spectra obtained for2 andp = 3 at

x = L/10, L/2,and9L/10. In all cases, the better approximation properties of the
k-method are evident, as well as the very poor performandeegfimethod within
stopping bands (see Figure 18 and [22] regarding ceonethod stopping bands).

6.2.2 Boundary value problem

We solve the 1D boundary value problem for different chomfabe wave-number

k (taking, e.g.,0 = 1 andL = 1). In order to have meshes with elements of
the same lengthi( = 1/10) independent of the approximation order, we use 21
degrees-of-freedom for quadratics and 31 for cubics.

In Figures 37 and 38, we present the boundary value problgattsdor bothk- and
p-methods solved wittk = 10, 20, 30, and 33 (i.e., within themethod stopping
band) for quadratic approximations, and with= 10, 20, 30, 31.5 (i.e., within the
1t p-method stopping band), 40, 50, and 71 (i.e., within ttfes?opping band, see
Figure 18) for cubic approximations. In the case of NURBSewident attenuation
is observed within the*1 stopping band, which is very narrow and has a very small
imaginary part (see Figure 18). The phase opposition obdaenvthep-method for
k = 31.5 is indeed due to the fact that at= 10r < 31.5 an exact resonance
peak occurs, which is approximated by thenethod slightly aftekc = 31.5. For
the sake of completeness, Figure 39 shows in more detail hdpgtens around an
exact resonance. We wish to emphasize that these resonaake ¢gio not appear
in the frequency response spectra of Figure 36, since tmesmonding (exact and
discrete) eigenmodes vanishuvat= L/10, L/2, and9.L/10.

These figures confirm the superiority of thanethod in wave propagation. It is
noted that the-method stopping bands result in spurious attenuation vésadue
to imaginary parts of discrete wave-numbers.

6.3 Under integration

We perform an initiatory investigation of approximate gpt&tion, an issue which
is of considerable importance in practical analysis.

For p- method finite elements, numerical quadrature seems tarevieell under-
stood. If we assume the simple case of integrating polynisroiger elements, the
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Fig. 35. Frequency response spectragfes 2 computed af. /10 (top), L/2 (middle), and
9L/10 (bottom).

Gauss rules are optimal in one dimension, and often utilfeedensor-product-
based multidimensional elements. For NURBS and B-splities situation does
not seem to be very well understood, even in one dimensioa.pFbblem here
is that reduced continuity existsall knots. Even in the case of tihemethod, the
continuity across knots internal to a patcla®s = C?~!. To form stiffness matrices,
we need to differentiate, and form products of derivativesulting in polynomials
of order2(p — 1) and continuityC?—2. It seems what is required for B-splines and
NURBS are rules that account for the degree of smoothnesssaknots, and the
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Fig. 36. Frequency response spectragfer 3 computed af./10 (top), L/2 (middle), and
9L/10 (bottom).

precise basis on each patch. An investigation into this yoihe the scope of this
paper. We shall use an approach here that is simple andiedfelotit very ineffi-
cient, at least for thé-method. It makes use of the observation that between knots,
NURBS and B-splines ar€ and so are their derivatives. Consequently, Gauss
rules are effective. However, this amounts to overkill cangal with the usual®

finite elements because their basis functions@te across internal nodes (i.e.,
knots). Thus, for example, in one dimension, for equal okde@ndp-methods one
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Fig. 37. Boundary value problem solution for= 2 computed withk = 10 (top-left),
k = 20 (top-right), £ = 30 (bottom-left), andk = 33 (bottom-right, within thep-method
stopping band).

would be using times as many points for themethod as the-method, because
for the k-method the rule needs to be used in each knot interval, \whdoe the
p-method it only needs to be used for each element, consisfipgconsecutive
knot intervals. Nevertheless, this will be the basis of thisatory comparison. It
should be emphasized that this means that many more poebearg used in the
k-method than for the-method. However, conclusions drawn should be viewed as
preliminary, at least, until optimal rules are developedM/RBS and B-splines.

6.3.1 1D spectrum approximation

We start by considering 1D problems and pointing out thatl Gauss points are
needed in order to exactly integrate both mass and stifimessces obtained from
degreep basis functions (in the following, we will refer to this caae “full inte-
gration”). Instead, using Gauss points (i.e., “under integrating” using one fewer
Gauss point), the mass matrix is under integrated while tiffeess is still ex-
actly integrated. Using less tharGauss points, we under integrate both mass and
stiffness. We remark that all the results presented pridghi®section have been
obtained using full integration.
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Fig. 38. Boundary value problem solution for= 3 computed withk = 20 (top-left),
k = 30 (top-right), &k = 31.5 (middle-left, within the 1’ p-method stopping band, = 40
(middle-right), & = 50 (bottom-left), andk = 71 (bottom-right, within the 2 stopping
band).

We first study what happens when under integratimgethod matrices in spectrum
analysis. Indeed, in this case, we can only under integratk Gauss point, oth-
erwise stability is lost (i.e., the stiffness matrix becensengular). Moreover, the
under integrated results are even worse than the fully iated ones in that, for
fixedp, the highest frequency errdivergesas the mesh is refined. See Figures 40
and 41 in which 1000 control points were used.
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Fig. 39. Boundary value problem solution fpr= 3 computed withk = 31.3 (top-left),
k = 31.4 (top-right), £ = 31.5 (middle-left), K = 31.6 (middle-right),k = 31.7 (bot-
tom-left), andk = 31.8 (bottom-right), illustrating what happens around the é&xaso-
nance peak occurring &t= 10x.

Better results are obtained under integratingnethod matrices by 1 Gauss point,
as shown in Figure 42. Moreover, it is interesting to obséne¢ acceptable results
are often obtained under integratibgnethod matrices by even more than 1 Gauss
points, as shown in Figure 43. Fpr> 2 stability is always lost when using just 1
Gauss point, so in the tests we integrated with a minimuth@®@&uss points.

Figure 44 shows the number of Gauss points needed for futirgiizre, and the
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Fig. 40. 1D numerical spectra for linear basis functionswtetd with full integration com-
pared with spectra under integrated by 1 Gauss point (plettéwvo different scales).
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Fig. 41. 1Dp-method numerical spectra obtained with full integratiompared with spec-
tra under integrated by 1 Gauss point (plotted at two diffesgales).
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Fig. 42. 1Dk-method numerical spectra obtained with full integratiompared with spec-
tra under integrated by 1 Gauss point (plotted at two diffeseales).

minimum necessary for stability. Perhaps the most intergshformation pre-
sented in Figure 44 is the minimum number of Gauss pointsatetxiget “accept-
able” results. We remark that the “acceptable” level is luEkned by a subjective
evaluation of the spectrum approximation properties gmerthe basis of the re-
sults reported in Figure 43 and some other numerical cadloak It is interesting
to note that the number of Gauss points needed to reach abtepesults for the
k-method is described by the expressiennd_up(p/2) + 1 (Whereround_up(-)
is the round-toward-infinity function). Asymptoticallyyé slope of this function is
1/2, half that for full quadrature.

A rigorous mathematical explanation of the effects of undergration orp- and
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k-methods is an open question. Furthermore, it is impor@met/elop new and
more efficient quadrature rules for tihemethod so that its full potential can be
reached. The stability of themethod with reduced quadrature suggests to us that
this should be possible.

7 Conclusions

We compared the approximation properties of stand#tadontinuous finite ele-
ments with NURBS on problems of structural vibrations andri@vpropagation.
The basis of the comparison is the same number of degreesexfdm, equiva-
lently, the bandwith of the matrix system. We found that tighbr-modes of clas-
sical p-method finite elements, represented by so-called “opbicahches” of the
frequency spectrum, have no approximability whatsoevetr garprising) and that
the errors in frequency diverge with(very surprising). The behavior of NURBS is
much better. The entire spectrum converges withhis suggests to us that NURBS
present the possibility of higher order accuraty robustness. Heretofore, within
the finite element method, these attributes have been nhytalusive. We also
articulated a “duality principle” which provides preciserespondence between
spectrum analysis in structural dynamics and dispersiatyais in wave propa-
gation. Lastly, we performed an initial study of reduced drasure, being fully
aware that optimal quadrature rules are not yet availabIdf#tRBS. Nevertheless,
the results suggest that reducing the number of quadratumésgor NURBS by a
significant amount is feasible. We hope to pursue this issfigtiire works.
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