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Abstract monly known asnanifold learninge.g., [4, 6, 9, 20, 23, 28,
33]. Often, points that live in a high dimensional space can
A framework for the regularized and robust estimation of pe parametrized by a number of parameters much smaller
non-uniform dimensionality and density in high dimen- than the ambient dimension. A representation (embedding)
sional noisy data is introduced in this work. This leads to of the data in a lower dimensional space is very helpful for

learning stratifications, that is, mixture of manifolds rep analysis and computations on the dataset.
senting different characteristics and complexities indat

set. The basic idea relies on modeling the high dimensionalé3
sgtrﬁple p|c>|qt§ asa p;rpc;ess olf T:jqnsl?ted Po:jsslonhm;tpre ¥ame manifold and thus there is a unique intrinsic dimen-
V\f d reﬂﬁ anzing res ”Cf lons, e:f\”:ng_ro a Tn? dePW' Ic Ind' sion. However, this is often not a correct assumption. It is
cludes Ihe presence of noise. 1he Transiated Folsson ISﬁkely that, for example, a collection of image portraits of

anuhon is useful to model a noisy countmg. process, and the same person under varying pose and illumination, lies
Itis dgnved f.ro”.‘ th? n0|se-|ndu_ce_d_transla‘uon .Of a regu- oy a manifold defined by a set of parameters related to the
lar Poisson dlstrlbutpn. By maximizing th? log-likelindo variations in pose and illumination. On the other hand, let
of the Process countmg the pomts falling |_nto a local ball, us consider a set of images representing scanned digits. It
we estimate the local dimension and density. We show thatmight happen that the images representing the digit ‘1’ can

the sequence of all possible I_o_cal _counting in a point cloud be described with a different number of parameters than the
formed by samples of a stratification can be modeled by aimages for the digit ‘2.’ Videos of diverse human motions

mixture of different Translated Poisson distributiongjgh contain the same complexity variability. In these cases, it

a_lllov_vmg the presence of m|_xed ghmen_su_nnahty and densi- is important to detect that there are different complegitie
ties in the same data set. With this statistical model, the pa

rameters which best describe the data, estimated via expec‘-)resent n the same (noisy) point cloud data. This is the
X L - S subject of this work.

tation maximization, divide the points in different classe ) _ ) ) ] N
according to both dimensionality and density, togethenwit ~ This problem, clustering-by-dimensionality astlatifi-

an estimation of these quantities for each class. Theatetic Cation leaming has recently been explored in a handful of
asymptotic results for the model are presented as well. TheWorks. Barbara and Chen, [3], proposed a hard clustering
presentation of the theoretical framework is complementedt€chnique based on the fractal dimension (box-counting).
with artificial and real examples showing the importance of Starting from an initial clustering, they incrementallydad
regularized stratification learning in high dimensionaieda Points into the cluster for which the change in the fractal di

analysis in general and computer vision and image analysigTeénsion after adding the point is the lowest. They also find
in particular. the number of clusters and the intrinsic dimension of the un-

derlying manifolds. Gionigt al, [13], propose a two-step
algorithm: First, they estimate the local correlation dime
1 Introduction sion and density for each point; then, standard clustering
techniques are used to cluster the two-dimensional repre-
Recently, there has been significant interest in analyhiegt sentation (dimension + density) of the data. Souvenir and
intrinsic structure of high dimensional data, this is com- Pless, [31], use an Expectation Maximization (EM) type of

Most of the works on manifold learning rely on the hy-
othesis that all the points under analysis are sampleof th



technique, combined with weighted geodesic multidimen- which models the presence of noise and permits to have dif-
sional scaling (weighted ISOMAP [33]). The weights mea- ferent classes (each one with their own dimension and sam-
sure how well each point fits the underlying manifold de- pling density). This technique automatically gives a soft
fined by the current set of points in the cluster. After clus- clustering according to dimensionality and density, with a
tering, each cluster dimensionality is estimated follgyvin  estimation of both quantities for each class. A preliminary
[23]. Vidal et al, [18, 36], cluster linear subspaces with an version of this work was presented in [15] and a regularized
algebraic geometric method based on polynomial differen- version together with asymptotic results in [16]. Thesdiec
tiation, called Generalized PCA (GPCA), which also finds niques are particular cases of the more general Translated
the number of linear subspaces and their intrinsic dimen-Poisson model introduced in this paper in order to handle
sions. An algorithm for clustering linear manifolds basad o  noise?!

lossy coding was proposed by Maal. [25]. Goh and Vidal The remainder of this paper is organized as follows: In
[14] extend [27] to cluster a union of, non-intersectingk- Section 2 we review the method proposed by Levina and
connected nonlinear manifolds. It is done with the vectors Bickel, [23], which gives a local estimation of the intrin-
spanning the null space of the LLE matrix [28], which are a sic dimension and has inspired our work. We reformulate
linear combination of the membership vectors and the em-this approach in Section 3 in order to include the presence
bedding vectors of thg connected components. The work of noise in the statistical model. Section 4 explains our ap-
of Mordohai and Medioni, [26], estimates the local dimen- proach for robust stratification learning. We show experi-
sion using tensor voting. Cao and Haralick, [7], propose a ments with synthetic and real data in Section 5, including
hard clustering by dimensionality: First, local dimengibn  comparisons with critical literature, and finally, concdarss

ity is computed via local PCA; and then, neighboring points are presented in Section 6.

are clustered together if they have the same dimension and

if the error of representing the new cluster as a combination ) o ) ] )

of basis functions in a kernel-based feature space is small2 L ocal intrinsic dimension estima-
Among these clustering-by-dimensionality techniqueg on tion

the one by Cao and Haralick includes spatial information in
order to obtain a regularized classification. Recently, Lu

and Vidal, [24], combined GPCA with an additional spa- Levina and Bickel, [23], proposed a geometric and prob-

tial traint in ak tashi Th h d that abilistic method which estimates the local dimension and
'al constraint in ak-means fashion. ey showe at, density of a point cloud data. This dimension estimator

oy a0 L conatn, e st i IProved s equvalent o the one progosed n (321 i the conte
. i P . mputar,e dynamical systems. Their approach is based on the
tional geometry .persp.ecnv.e, a Voronm-pased techryque tOidea that if we sample am-dimensional manifold witil
compute local dlmensmnahty. has been introduced n [1.1]' points, the proportion of points that fall into a ball around
and demonstrated for 3D point cloud data. The diffusion a pointa; is £ ~ p(xy)V (m)Ry(x:)™. The given point
distance framework, [8, 22], can work with stratifications, o Pon' vt !S T % Pl koot given p

. ) : . cloud, embedded in high dimensiof is X = {x; €
though no explicit estimation of the clusters is performed Dt — 1,....T}, k is the number of points inside the

and single maps into Euclidean space are performed for the[J ' . . . . :
S all, p(x;) is the local sampling density at point, V(m) is

whole Qata set. Recently, and following in part f[he theory the vﬁ())(lutn)w of the unit sphperegmm, an)(;er()a:t) is tr(1e )Eu-

of persistent topology [12], a framework for studying sast clidean distance from. to its k-th nearest neighbor (kNN).

based on local homology has been introduced in [5]. Then, they consider the inhomogeneous prodesg, «1),

These recent works have clearly shown the necessity towhich counts the number of points falling into a sma

go beyond manifold learning, into “stratification learning ~ dimensional spher&(k, z;) of radius & centered atr;.
In our work, we do not assume linear subspaces, and werhis is a binomial process, and some assumptions need
simultaneously estimate the soft clustering and the intrin o be done to proceed. First, ff — oo, k — oo, and
sic dimension and density of the clusters while being ro- /7" — 0, then we can approximate the binomial process
bust to noise and outliers. This collection of attributes is by @ Poisson process. Second, the density) is consid-
not shared by any of the pioneering works just described.ered constantinside the sphere, a valid assumption fot smal
lOur lag.proac.h IS ar:_ eXttenSISSn Of_lfﬂe Levina andd tBICkel S 1We should mention that in [15] we compared the original frenom
oca 'm?ns_'or? es_lma O_r [23]. ey p_ropos_e 0 Corr_" (with no regularization or noise modelling as here devetypwith a two
pute the intrinsic dimension at each point using a Maxi- step approach, where we first estimate the local dimensigner point
mum Likelihood (ML) estimator based on a Poisson dis- using the original Levina-Bickel approach, and then cluiiowing the

: : :+ information bottleneck approach [34]. This has been showatonly to
tribution. We propose to _compute a ML on the whole Po'r.‘t be less elegant and mathematically funded than the approaeh pre-
cloud data at the same time (and not one for eQCh POINt IN-gented, but mush less robust, even when compared to theegaterized
dependently), based on a Translated Poisson mixture modeknd noise-transparent formulation.




R. Note that the latter assumption is only local, the global according to a conditional probability densjtyz|«), called
density does not need to be constant, only inside the localthetransition density

sphere. With these assumptions, the ratef the counting For our purposes, we are going to consider the particular
processV (R, z;) can be written as case where each pointis translated independently of the oth
ers and there are no deletions or insertions in the traoslati
AR, z;) = p(ze)V (m)mR™ 1. (1) process (these more general cases are also studied in [30]).

. ) ) We have the following critical theorem [30] which says that

The log-likelihood of the procesS (R, x,) is then given by a translated Poisson process is also a Poisson process:
R R
L(m(ay),0(x:)) = /log A(r, x4 )dN (r, ZCt)—/)\(T7 x¢)dr, Theorem (Snyder & Miller [30]). Let{N(A): A C X}
0 0 be a Poisson process with an integrable intensity function

{A(z): z € X }. Points of this input point process are trans-
lated to the output spacs to form the output point process
{M(B): B C Z}, where each point is independently trans-
lated according to the transition densiff(z|z). Then, if
there are no insertions and deletiods\/ (B): B C Z}isa
Poisson process with intensity

wheref(z;) := log p(x;) is the density parameter and the
first integral is a Riemann-Stieltjes integral [29]. The max
imum likelihood estimators lead to a computation for the
local dimension at point;, m(x;), depending on all the
neighbors within a distancB from z; [23]. In practice, it

is more convenient to compute a fixed amokimf nearest
neighbors. Thus, the local estimators at painare

ne) = [ feloN@.

-1

1 2. Rila)
m(zr) = k—ljz:;bg Ao | @

Since the intensity of the Poisson process in our model

is parametrized by the Euclidean distances of the points

0(z;) =log ((k -1)/ (V(m(xt))Rk(xt)m(m)) ,(3) (and not by the points themselves, see previous Section), we

are going to consider a random translation in the distances.

mhere (n(ry) = (21501 (s V(25 and  THISTeanshatwe donot cheerve e oiginal dtaces
r(medy = Jo o tm@)/2=1e=tqt. If the data points be- oY - Lef(slr) iy 1 W

2 . defines the random process which translates a distaimce
long to the same manifold, the authors propose 1o averaggne input space to a distansen the observable space. If

over all local estimators:(z;) in order to obtain a more ro- A(r,z,), defined in (1), is the local rate of the Poisson pro-

bqtitg_sﬁnmat:)g_ Howe_ver, Ehere are tw(;) or motre mlzz\mfolds cess which defines the counting process in the input space,
with different dimensions, the average does not ma esensethenu(s), the intensity of the Poisson process in the output
unless we first cluster according to dimensionality and then o

) . . X _ space is given by
estimate the dimensionality for each cluster. Anotheriposs
bility is to include this in the process via the simultaneous /
soft clustering and estimation technique described in Sec- wis, xy) = / f(s|r)efV (m)yms™ Ldr. (4)
tion 4. Before this, let us present the proposed framework 0

to naturally handle noise as part of the model. o ] ] ] ]
R/ is different from the radiug considered in the counting

processN (R, z;). We considerR’ > R in (4) because,
3 Transated Poisson modd points originally at distance greater th&ifrom x; can be
placed within a distance less thdh after the translation
Usually, point samples are contaminated with noise, thusprocess. In practice, the maximum translation is smalt (jus
the point process that we observe is not a simple sampling2 perturbation because of the noise) and we consider
of a low dimensional manifold but a perturbation of this 1+ o inthe particular case of a Gaussian transition density
sample process. This can be modeled with a Translated11). The log-likelihood of the translated Poisson proéess
Poisson Process [30], where an underlying (unobservable) - -
point process is translated to an output (observable) point
process. The input and output spaces of the points are not (M(+), 0(zt)) :/Olog(“(s’xt))dN(S’xt)_/)‘(T’ o )dr.
necessarily the same or even of the same dimension (clearly,
noise brings points outside of the underlying manifold and The parameters of the maximum log-likelihood are ob-
into the higher dimensional embedding space). More con-tained by solving the system of equatiahs/dm = 0 and
cretely, an input point at locationm in the input spaceX OL/d6 = 0. We then obtain the following expression far
is randomly translated to a locatiarin the output spacg, when we use thé nearest neighbor&{NN) instead of the

0



points within distance less t8g,

-1

It _12

i=1 f(R (¢)[r)rm=tdr
(%)

where, by an abuse of notation, we have identified=

J|r)rmLlog —Rkimt) dr]
m(x

to the transition density(R;|r) and thus reducing the effect
of noise. Using the approximation (9) in (6) we obtain

-1
l Z R|7° log kdr} . (0)

P} f(R;i|r)dr

m(z,) in the right hand side. Note that this expression re- We explicitly estimate, in the following Section, the error
duces to the Levina and Bickel estimator [23] in the particu- Produced inm(z;) when we use the approximation (10) in-

lar case thaf (s|r) = d(s—r), i.e., there is no translation of

stead of (5), for the particular important case of a Gaussian

the original points. This corresponds to the ideal case with transition density,

no noise.
Equation (5) is a nonlinear recursive expressionrin

which is difficult to solve. Thus, we are going to approxi-

e ;”)2). 1)

mate it by an easier to compute closed expression. Since the, s particular case that the coordinates are perturiyed b

translation density is modeling the effect of noise, theeff
tive support off (s|r) is going to be concentrated around
Then, we can substitut¢”—! in (5) by its Taylor expansion
aroundR;. Let us write (5) in the following way

B = -1
m(xy) =1""= mzfz ) (6)

i=1

and expand™~1! in the integrall; via its Taylor series

T @) log Bty
v fo F(Ri|r)yr™=1dr
fo r)log & (zt)dr +AIn, +... Iy,
fo F(Ri|r)dr + Alp, + Ip,’
where
’ R
Aly, := 71/ f(R;|r)(r — Ry)lo k(2e) dr,
0 T

(7)

and

Alp, = (m= DR [ 1(RI0 = R (@

These integrals are small since the effective support of (r — Ri)log& —( _ Ry,
f(R;|r) has the same order than the level of noise (con- r

sidered not very large), and the quantity- R;) is small in
the vicinity of R;. We can then approximate

log (w')dr
I fo f ©)
0

Notice that with this approximation df, the estimator (6)

still reduces to the noise-free Levina-Bickel estimatdy, (2

thatisl; = 1og L whenf(R;|r) = 6(R;—r). Inthe more
general case, (9) is the expected valuéogf% according

Gaussian noise, the error in the Euclidean distance can be
approximated by a Gaussian as well (see Appendix A for
more details). Thus, the expression for the local dimension
estimator becomes

R’ i —1)2
@) 1 k-l fo exp (——(RQUQ) ) log Br qp
m(z) ~ E
’ k—1¢ / _ (Ri—r)?
iz1 [, exp ) dr

(12)

3.1 Approximation error for a Gaussian
tranglation density

In order to estimate the error of approximating (5) by (10),
we compute the integrals (7) and (8), which are the largest
order error terms of the numerator and denominator, respec-
tively, in the approximation ofn(z;). For the integral (8),
notice that the Gaussian is even with respedit@nd that

(r — R;) is odd. Then, (8) is zero if the effective support of
the Gaussian is within the intervi@l, R’], that is essentially

if R; € [30,R' —30]. If R; € [0,30] U[R' — 30, R'], (8)

is bounded byt.50%(m — 1)/R;. We will use this bound

for Alp, independently of the value ;. Regarding the
integral (7), we use the Taylor expansionof- R;) log %
aroundR;,

(7’ — Rl)Q

7, + ...

— R)log == —

r— R))log

Again, we consider the worst case scenaRpg [0, 30] U
[R' — 30, R'], and we obtain

m—1 R
Aly, <4502 7 loe ?’“

We use these bounds and error propagation theory to obtain
the relative error od;,

AIl AIN AID 21 — 1 1 Rk 1
e\ L 45 log & 4
L In, o In, 7R, +

Iv, R, " Ip,



and the relative error omy (), Let us consider/ different translated Poisson distribu-
tions in the mixture, each one with a (possibly) different

Am () _ g _ 1 Z AL dimensionm and density parametér Let us denote by
m(xy) I I(k-1)4&""" the vector set of parameters,= {¢/ = (77,67, m?);j =
1,...,J}, wheren/ is the mixture coefficient for clasg
which is bounded by (the proportion of distributiori in the dataset)}’ is its den-
) sity parameterg/ = ¢%'), andm/ is its dimension. While
Am(zy) . 4.50"(m(z,) —1) (1 + M) in the Levina-Bickel approach the density is assumed lo-
m(ze) min; (Ri}?im(m')_l) m(zy,0=0))" cally constant (inside a ball) here the density is assumed

(13) constantinside a class (a single Poisson distribution eefin
wherem(z;, o = 0) is (2), or equivalently, (5) withr = 0, each class). However, if there is a class with different dens
’ ’ ties the algorithm will cluster also according to densitgt(n

> — _ (B ) m—1 i i
and k; = Ip, = fO f(Bilr)r . d.r' This prgwdes only dimension) and a single manifold will be represented
a bound on the error of the approximation for the important ; . . .
by clusters of the same dimension but different densities.

case of Gaussian noise. Similar computations can be per-

i . X An example of that is shown in Figure 5. If the number of
formed for other translation density (noise models). In the : - . .
: S classes is not sufficient to represent the dimension and den-
case ofo = 0 (no noise), the approximation errdvm(z;)

is zero, as expected. If we considBr ~ R, the bound s@y var|ab|l|ty, _the algorithm W!|| give one or more cl_asse
" . . . . with a dimension and/or density which are the (weighted)
(13) is inversely proportional to the signal to noise ratid a I e
roportional to( 1)/R™2, which is a decreasing func average of the actual features within the class. This is the
brop L AT P 9 standard result for under-clustering. On the other hand,
tion of the dimensiomn for R; > 1. Note that the estimator

. . . . ) . we have experimentally observed that giving extra classes
m(x), defined in (5), is invariant to distance rescalings so . . .
is reasonable robust, since the extra classes end-up being
we can always ensuie; > 1.

empty or identical to other classes.
The observable event is, as in the Levina-Bickel ap-

4 Dimensionality and density estima- proach, the number of points inside the bBIR, z;) of
radiusR centered at point;, denoted byy; = N(R, x).

tion with simultaneous soft cluster-  The total number of observationsT andY = {y;;¢ =
ing 1,...,T'} is the observation sequence. Oftéil,= T, all
points in the dataset are considered. Let us also denote by

Having introduced the critical translational Poisson mpde (') the probability density function and by(-) the proba- -
we are now ready to introduce the mixture of these modelsb!“ty- The density function of the Poisson mixture model is
to address the problem of stratification learning for noisy 9iven by
point cloud data. We start with the basic model, and then _ ! j 0 i
introduce a regularization term. We conclude the presenta- pyel) = ,ZW P67, m?).
tion providing asymptotic results. /=t

m—1

Since the observations follow a Poisson distribution, aad w
use the translated Poisson model introduced in the previous

41 Translation Poisson Mixture Modé€ section, we have

(TPMM)

In [15], we proposed to study a stratification by extend-
ing the Levina and Bickel's technique. Instead of model- , j NI ,
ing each point and its local ball of radiug as a Poisson wglere N (T)]. - ¢’ lV(:nJ)er " and /_LJ(S) -
process and computing the maximum likelihood (ML) for Jo  f(s[r)e®” V (m/)m/r™ ~*dr. If Y containsT sta-
each ball separately, all the possible balls are considgred tistically independent variables (a standard assumption)
the same time in the ML function. The probability density then the probability density function of the observation se
function for the whole point cloud becomes a mixture of duence is the product of the individual probability deresifi
Poisson distributions with different parameters (dimensi  P(y:|¢), and the log-likelihood is

and density) in each class. This allows for the presence of
different intrinsic dimensions and densities in the ddtase
These are automatically computed while being used for soft
clustering. We extend this approach here to the more gen-
eral case when we have mixtures of translated Poisson proiet us consider the hidden-state information, that is, thic
cesses (thereby handling the noise). mixture (or expert) generates each observation. We denote

P(ye|07,m?) = eJo 181 () AN (s,a0) o= Jg X (r)dr

T
L(Y|y) =logp(Y|e) = Y logp(y:|v)).  (14)

t=1



by Z = {2z € C;t = 1,...,T} the set of hidden variables
and byC = {C*,C?,...C7} the set of class labels. Then,
z; = C7 means that thg-th mixture generateg. UsingZ
we can write the complete data log-likelihood as

T J

logp(Z, Y1) = 373" 67 og [plyelv)]

t=1 j=1

(15)

where a set of indicator variablé¢, called membership

functions, is used in order to indicate the status of the hid-

den variables:

1 if Zt = Cj,
0 otherwise.

6l = 6(2,0%) = {

to computemfl+1 we have used the same approach as in
[23], by means of & nearest neighbor graph. The TPMM
approach just described is summarize®RiT PMM Algo-
rithm below, for the particular case of = 0 (no regular-
ization, see below).

4.2 Regularized TPMM

The TPMM algorithm seeks a soft clustering according to
dimensionality and density, considering noise in the data,
but does not (explicitly) take into account spatial informa
tion. Adding regularization is the goal of this section. Reg
larization further helps to improve the classification insyo
data and points lying close to manifold edges (see results in
figures 1 and 2). This regularization is inspired in part by

The unknown parameters in (15) are: The membershipthe work in [1] for the neighborhood EM (NEM), where the

function of an expert (class);, the mixture probabilities,
77, and the parameters of each expert,andd’. Usually,
problems involving a mixture of experts are solved by the
Expectation Maximization (EM) algorithm [10] [21, Chap.
3]. The EM is based on the following decomposition of the
log-likelihood (14):

M=
'M“

LY, H) = hj(yt)log [p(ytwj)ﬁj}

o~
Il

1

1j

(16)

-
M-

Il
-

h (yt) log [hj (yt)] )

1y

whereH = {h/(y,) < L;t = 1,....T,5 = 1,...,J}
andh? (y;) is the probability that observatianbelongs to
mixture j: 1/ (y:) = Ez[0]|ye,¥] = P(6] = 1y, ),
whereE(-) is the expectation with respect # Since the

authors extend the EM algorithm adding spatial constraints
This neighborhood spatial information is introduced as-a pe
nalization term in the log-likelihood, following Hathaway
EM interpretation [17]. In our context, we complete (16)
with a spatial termb (H),

F(, H) = L(Y |, H) + aS(H),
wherea is a parameter that controls the tradeoff between
the spatial term and the likelihood. Its value is also re-
lated to the amount of noise in the datalhen, function
F' is maximized with an alternate optimization technique.
Since the new term$, only depends ort/, the optimiza-
tion procedure results in a EM-type algorithm with a mod-
ified membership probability that not only depends on the
likelihood but also on the spatial criteria. The NEM algo-
rithm uses (note the similitude with MRFs, see below)

(18)

membership functions are indicator variables, the firshter ToJ _
in (16) is the expectation of (15) with respectfo Also Snem(H) =YY "0 (y) > b (),
notice that the second term is the entropy of the membership t=1 j=1 It

functions.

An interesting interpretation of the EM algorithm is
introduced in [17], where the EM is seen as an alter-
nate optimization algorithm of the log-likelihood (16).
Then, the E-step is nothing else than the maximization o
L(Y|y, H) with respect tad with the additional constraint
thaty7_, h7(y;) = 1 for each observation=1,...,T.
Thus, the variables’ (y;) at stepn + 1 of the optimization
algorithm are

p(yi|mi,, 07,
- .
> =1 P(yelmly, 04) 7,

In the same way, variableg are obtained by maximizing
L(Y|v, H) with respect to) with an additional constraint
for the mixture probabilitiest:1 mI=1. This gives equa-
tions (21)-(23) for the variables at step+ 1. In order

h{erl (Ut) = (7)

wherel ~ t indicates that there is a neighborhood relation-
ship between observatiohandt. By maximizing this term,
we want, for each observatignas many neighbors as pos-

¢ sible with high probability of belonging to the same class as

observatiort, thus regularizing the classification. However,
we will use a more general expression f(H ) based on

a dissimilarity measure), between every observation and
other observations in the sequence,

T J

S(H) = =SS W (y)D(t, . X, H).

t=1 j=1

(19)

2The study of the possible connection between the regutamizéac-
tor « and the level of noise and the translation density in thestegion
Poisson model is an interesting subject of future resedxdte that this
regularization is important beyond the noise, e.g., at foltfs edges, see
experimental results.



The expression (19) provides a generic framework for intro- level or full noise/translation functiofi).

ducing constraints in the soft classification, besides tteso

ENSURE: Regularized soft clustering according to dimemsiity

already present in the TPMM model, namely dimensional- and density.

ity and density. One possibility, as in the NEM algorithm, is
to introduce spatial regularity. Then, as dissimilarityane
sure we usé® = Dg defined as

D=3 (1 W (y)).
I~t

Different neighborhoods definitions iRty result in differ-
ent kinds of regularization. A natural choice is the man-

ifold neighborhood, for that, we can define as neighbors

the k nearest neighbors. However, for specific applications
one might be interested in other neighborhoods, e.g., pixel
neighborhoods or contiguous frames in video applications
(see experiment in Figure 10 and Table 5).

As noted in [1], the EM algorithm with additional con-
straints can be seen as finding the Gibbs distribution with
energy—F'(v, H). In the particular case when the ad-
ditional constraint is neighborhood depende&iw.z s (H)
andS(H) with Dg, the Gibbs distribution defines a Markov
Random Field.

The maximization ofF’ (Equation (18)), is obtained as
in [1], with an alternate optimization technique which re-
sults in an EM-type algorithm. Maximizing (18) with re-
spect toH, with S(H) defined in (19) — with the constraints
> hi(y) = 1 for each observation = 1,...,T, by
means of Lagrange multipliers — results in the following ex-
pression for the membership probabilities:

p(ye|md, 09 )i e=oP' (43, X, H)

ZzJ:1 plye|m!, ol)ﬂ.lefal)’(t,l,X,H) ’

whereD'(t,l, X, H) = >, ,(1 — 2h7(y;)) in the par-
ticular case we are interested> = Dg, and assuming
that! ~ ¢ impliest ~ [. Since the only term in (18)
which depends on is L(Y|¢, H), the optimal values of
W = {(n7,67,m7) for j = {1,...,J}} do not change
with respect to the original TPMM algorithm. The regular-
ized version of the TPMM algorithm is summarized in the
R-TPMM Algorithm below (Regularized Translated Pois-
son Mixture Model Algorithm).

The EM suffers from local maxima, this can be allevi-
ated running the algorithm several times with different ini
tializations. In particular, we add to the EM iterations an
extra loop where the parameters and¢’ of each class
are reinitialized every odd iteration and every even iter-
ation.

W (ye) =

(20)

R-TPMM Algorithm

1. Compute the local estimators

)|r) log Rk(”)dr}
[ Z f(R (z¢)|r)dr

0(x:) =log ((k’ -1)/ (V(m(:ct))Rk(mt)m(wz)))

In particular, we use the definition gfgiven in (11).

. Initialize o = {3, mj, 03} andvyo = {7}, m}, 0} } to any
set of values which ensures tha}, ) = >, 7 = 1 and

Ho={hi(y)=1/J;j=1,...,J,t=1,...,T}.
3. lterations on,
3A. If lisodd B ‘
Setrn] = mj and¢] = 6], forallj =1,...,J.
Else

Setr! =1/J,forallj =1,...,J.
3B. lIterations om,
Forallj=1,...,J:
3B.1: Compute, foralt =1,...,T,

p(yslmi, 04)mhe” P (43X M)

il pye|mby, 0} )mhe oD (LX)

hZH»l(yt) =

whereH,, = {hd,(y:); 5 =1,...,
3B.2: Compute

; 1
Ty = T Zhé(yt)
= —1
nH[Zh] (ye)m Zh’ yt} (22)
T —1
phi1=e "“_[Z K, (ye) f (e) ZhJ (ye) ]

t=1
(23)

Jot=1,...,T}

(1)

wherep(z;) = ’(*t),

Until convergence of,,, that is, when|w,+1—n |2 <
¢, for a certain small value.

Sety); 11 = ¢, andH; 1 = H,.

Until ||'l[}l+1_'l[}l||2 < €, ||ﬁl+1—gl||2 <eorl= lma)(.a

REQUIRE: The point cloud data, (number of desired classes),

(scale of observation)y (regularization parameter), amd(noise

3In the experiments we usgax = 10



Remark 1. The PMM and R-PMM algorithms introduced 4.3 Asymptotic analysis
respectively in [15] and [16] are particular cases of the pa-
rametersa (regularization) ands (noise) in the R-TPMM
algorithm . Let us introduce the following notation for the
particular cases of these parameters:

Levina and Bickel show in [23] that under the assumptions
T — oo, k — oo, andk/T — 0, that is when the Poisson
approximation is correct, the mean and variance of the di-
mension estimator (2) (witk — 2 instead ofk — 1 in the

o PMM: o — 0 ande — 0. denominator) are

m2
¢ R-PMM:a > 0 ando = 0. Elm(z,)] =my, Varm(z)] = 75,

e TPMM:a — 0 ando > 0. where ny is th_e actual d|mens_|on. We can apply the same
type of analysis to our model in the particular case of hard

clustering, that is
e R-TPMMxu > 0 ando > 0. g

We will use the above notation in the experiments in Section

5 0 otherwise.

, 1 if j = argmaxhi(y,),
i (yy) _{ J gmaxh’ (y:)
We assume, in addition, that all the points that belong to

Remark 2. Notice that the estimator22)}(23) in the  ja55; are well classified. Then, we obtain the following

PMM and R-PMM approachess( = 0) are weighted

harmonic means of the local estimatq®-(3) of Levina- results , , m

Bickel. The weight at each point is the probability of E[m’] =my + m,
the membership functior,. In the particular case of !

a unique class,J = 1, we obtain the global dimen- Varmi] = (mj )20< 1 >
sion estimator proposed by MacKay and Ghahramani T (k—1)N;—4)’

(http://www.inference.phy.cam.ac.uk/mackay/dimen}io

. where nj. is the correct intrinsic dimension of clagsand
a particular case of our proposed framework.

N; is the amount of points classified as clgssSee Ap-
pendix C for the details of the proof. This result shows

. . that the dimension estimator of each class is more biased
the clusters. A better approach might be to usesiitable when the intrinsic dimension increases. On the other hand,

for each class. Although computationally speaking it will o } .
be more demanding, since we would have to recompute thé’vhen there are more points in a clad (s larger), the bias

. . : : is reduced. It is reduced also by considering more near-
local estimatorsn(z;) andd(z;) at each iteration with the X . . .
. . est neighbors, although there is a compromise for this value
o of the assigned class. Moreover, the differentvould

have to be estimated (this can be done for example as theee increasing affects the underlying hypothesis of con-

: o : . o Stant density inside the ball. We have verified this result
value ofo which minimizes the estimated dimension in each . . .
class) experimentally and we found that the bias results in a un-

derestimation of the intrinsic dimension (this behavioswa
also observed in the Levina-Bickel estimator [23]), and tha

it depends on the intrinsic dimension but not on the ambi-
ent dimension. We have also experimentally observed that a
possible bias in the estimated dimension does not affect the
clustering, unless the bias makes the estimated dimenkion o

that, f?r t;: case 0D, the corresponding bound enis one class to be close to any of the other clusters estimated
ar < 1/(2k). dimensions.

Using the same analysis as in Section 3.1 we find thatthe 11,4 analysis of the density estimatiiris the subject of

relative error produced in (22) by using the approximation ,rrentresearch, as itis the study of the asymptotic behavi
(10) form(a:) is for the full soft clustering model.

Remark 3. We are using the same level of noiséor all

As proved in [2], ifa is small enough, (18) has a guar-
anteed global maximum for a fixed value ¢f and the
additional termS(H) does not affect the convergence of
the EM-type algorithm. It can be shown (see Appendix B)

AmJ 4.50%(m? — 1) 1 m? .
= min, ¢ (Ri(yt)éi(yt)mjfl) ( " mi(o = O)) ’ S Expe”mental results

mi

} _ We now present experimental results with synthetic and real
wherem/ (o = 0) is (22) witho = 0, and R;(y;)™ ! = data for the proposed R-TPMM and its variants. We also
Ip, (yr). compare some of the results with the ones obtained with



GPCA [35] and the Souvenir and Pless [31] algorithms. We PUM [ RPMM [ TPMM [ R-TPMM
fixed . and o experimentally. Forx we usually use val- Estimated parameters for each class

) . Cl]C2Jci|cCz]Jci|cz]fcr ] c2
ues in the interval0, 5]. As for the case obr we use a 1901 102 790 0991 187 | 103 1 187 | .00
value in the order of the mean distance to the first neighbor:| ¢ 1.01| 1.10 || 099 | 1.14 || 1.05 | 1.09 || 1.02 | 1.12
o = vRy, whereR; = % >, Ri(zy) and0 < v < 1. Number of points in each class
In the experiments with real data — digits, faces, video ac-| P || 787 | 13 |} 800 | 0 | 788 | 12 } 800 | 0
" , . Sp.|| 21 | 279 || 22 | 278 || 21 | 279 || 23 | 277
tivities, and motion — we use the following values far
0.4,0.4, 0.25, and 1 respectively. In the first (artificialada
experiment, since we know the level of noise in the point Table 1: Estimated parameters, dimensienand density
coordinates, we use the estimatedas computed in Ap-  p = ¢, in each class (C1 and C2), and clustering results of
pendix A. The only parameter in GPCA is the number of a plane and a spiral (denoted by PI. and Sp. respectively).
clusters. In the Souvenir-Pless algorithm the input parame The four algorithms usé = 30 and.J = 2.
ters are the number of nearest neighbors and the dimension

of each cluster. We also fixed these parameters experimen- o ) ) o
tally in order to obtain the best classification results. be seen in Figure 2. Again, notice how the classification
of the points at the edges is better in the regularized ver-

sions. Table 2 contains the quantitative results for the dif
5.1 Synthetic data ferent variants of the proposed algorithm. In particultr, i
can be seen that the translated versions give an estimation
First, we work with a point cloud formed by 300 samples of for the dimensionn less sensible to noise.
a spiral and 800 of a plane, both in 3D embedding space. We
compare the following algorithms: PMM, R-PMM, TPMM,

R-TPMM, GPCA, and Souvenir-Pless. Figure 1 shows, for 2T, 2T e #, y—
each algorithm, the point cloud with each point colored and v v/ v/
marked differently according to its classification. In thie d N S
ferent versions of our proposed algorithm we ket 30,

J =2,a = 0.75, andoc = 0.1. We test TPMM and R- () PMM (b) R-PMM (c) TPMM

TPMM with a small value ofr different than zero even if

there is no noise just to show that a small error in the esti- '.‘: ‘

mation ofo does not significantly affect the result. Notice L) o) { )

that the regularized versions of our proposed algorithm im- e N ' '
prove the classification at the edges. In the Souvenir-Pless

algorithm we usé: = 10 and dimensions 2 and 2 (it gives (d) R-TPMM (e) GPCA (f) Souvenir-Pless

a better result than using the actual dimensions, 2 and 1, as

parameters). The GPCA algorithm does not give good re-Figure 1: Clustering of a spiral and a plane. Results with
sults because it is designed for linear manifolds. Table 1 different algorithms (this is a color figure).

contains quantitative results of the different versionewf

algorithm. Our approach gives some errors at the intersec-

tion of the two manifolds. This is due to the fact thata point  Due to the statistical nature of the R-TPMM approach,
in the intersection has points of the other manifold as someit is not restricted to linear manifolds, such as GPCA [36],
of its nearest neighbors. Thus, the extent of the classifica-nor to Euclidean manifolds, such as Isomap [33], on which
tion errors in the intersection depends on the amourit of the Souvenir-Pless technique [31] is based on. This is man-
nearest neighbors considered. Note that the GPCA handleffested in Figure 3, where we cluster a sphere and a curved
intersections well when working with linear manifolds [18] line and compare the results of the R-TPMM, GPCA and
Addressing this problem is part of the ongoing efforts in Souvenir-Pless. The R-TPMM gives a 100% accurate clus-
the extensions of the proposed stratification learningéam tering and the estimated dimensions are 0.98 for the line and
work. 2.05 for the sphere.

Next, we added Gaussian noise, with standard deviation Robustness to outliers has been studied for clustering lin-
0.66, to the point coordinates. Then, if we approximate the ear manifolds. In [37] a robust GPCA algorithm is pro-
transition density with a Gaussian (see Appendix A), we use posed. A segmentation of linear subspaces based on infor-
the estimated standard deviation= 0.66v/2 = 0.93. The mation theory is proposed in [25], and it has been shown
rest of the parameters we use are- 40, J = 2, o = 1, to be robust to outliers. In order to see how the R-TPMM
and for Souvenir-Plesg; = 20 and dimensions 2 and 2. performsin the presence of outliers, we have added outliers
The qualitative comparison of the different algorithms can to a set of points sampling a spiral and a plane. The original



(a) PMM (b) R-PMM (c) TPMM (a) R-TPMM (b) GPCA (c) Souvenir-Pless

LRy Figure 3:Clustering of a sphere and a curve with R-TPMM
Plab g\ﬂé (k=20,J =2,a =0.1ando = 0), GPCA and Souvenir-

Pless ¢ = 20, dimensions 2 and 1). R-TPMM works well
in non-Euclidean manifolds. The estimated dimensions for
(d) R-TPMM (€) GPCA (f) Souvenir-Pless each cluster in (a) are 0.98 and 2.05 for clusters in green
and red respectively (this is a color figure).

Figure 2: Clustering of a spiral and a plane with noise.
Results with different algorithms (this is a color figure).

cluster apart the spiral and the plane, and the correct esti-
mation of their embedding dimensions is not affected by the

PMM [ RPMM [ TPMM [ R-TPMM outliers. When the amount of outliers is small, 2.5% in (c),
Estimated parameters for each class the estimated dimension for the class ‘outliers’ is vergéar
CL]cC2Jcrt|cz]cL] Cc2J c1] C2 . . :

247 151 248 [ 143 186 135 [ 187 | 1.32 due to the small amount of points belonging to this clags,
6 || 013 | 0.03| 0.15| 0.03 || 0.87 | 0.34 || 0.83 | 0.40 and we do not have enough samples of the class ‘outlier’

Number of points in each class in each ball (there are mixed samples from the spiral and/or
PLJI 764 | 36 || 800 | O || 784 | 16 )\ 800 | O the plane). In these balls, the assumption of approximate
Sp.|| 22 | 278 || 25 | 275 || 27 | 273 || 29 | 271

constant density is not satisfied either. When the amount of
outliers is larger, their estimated dimension is the same as
Table 2: Estimated parameters, dimensienand density ~ the ambient dimension, since there is no intrinsic strectur
p = €, in each class (C1 and C2), and clustering results for these points.

of a plane and a spiral with noise (denoted by PI. and Sp.

respectively). The four algorithms use= 40 andJ = 2.

v v v
point coordinates are within the intervaisl1, 21], [5, 25],
and|[—11,14]. The outliers follow a uniform distribution
within the intervalg—30, 30], [—15, 35], and[—30, 30]. We (a) 2.5% outliers (b) 2.5% outliers (c) 25% outliers
usea = 0.1 ando = 0.1. Figure 4 shows the classifica-
tion results for different amounts of outliers and nu_mber of e | s ”
classes: ay = 2, 2.5% outliers; b)J = 3, 2.5% oultliers; ’ L\ : o s s

c) J = 3, 50% outliers; d)J = 3, 50% outliers; e).J = 3,

75% outliers; f) J = 3, 100% outliers;. In the experiment

(a) we set two classes and we obtain a class formed by the  (d) 50% outliers (e) 75% outliers (f) 100% outliers

spiral and the outliers with an estimated dimension of 1.10,

the second class is the plane with an estimated dimensiorFigure 4:R-TPMM clustering of a spiral and a plane with
of 1.87. Note that the estimation of the embedding dimen- different amount of added outlieré, = 30, « = 0.1 and
sions are not affected by the outliers when its percentage is; = 0.1. Example (a) is when considering two classes and
relatively low and we do not allow an extra class for the out- the rest with three classes (this is a color figure).

liers. If we set three classes, experiments (b)-(f), théerst

are clustered as a separate class, and the only errors being

at the intersections (due to points whose nearest neighbors The experiment in Figure 5 illustrates how the soft clus-
actually belong to different classes). The dimensions ob-tering is done according to both dimensionality and density
tained in each experiment are the following: (b) 1.06, 1.87, The data consists of 2000 points on the Swiss roll, 400 on
and 10.46; (c) 1.17, 1.88, and 3.32; (d) 1.23, 1.87 and 2.92;a line with high density and 50 on another less dense line.
(e) 1.29, 1.83 and 2.97; (f) 1.28, 1.81 and 2.92. Indepen-We have set/ = 3 and the algorithm clusters the line in
dently of the amount of outliers, the algorithm is able to two different classes, according to the different densitie
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The estimated dimensions are: 1.98, 1.02 and 0.99. And ... e e

the estimated densities: 0.49, 0.53 and 6.89 respectively. T P A .i,...
!"\. . "\ . !\'\\. '}i/
@a=0 (b) @ =0.25 ) a=

e ET AT

AT miy— "/'“ s
L) LA |
d)a=8 (&) @ = 20 (f a=25

Figure 5: Clustering of a Swiss roll and a line with two

different densities with R-TPMM; = 20, J = 3, o = 2 Figure 6: Clustering of a 1D spiral and a 2D plane (R-
ando = 0, no noise (this is a color figure). PMM, k = 30, J = 2). Evolution of the classification as

Before presenting results on real data, we show how thethe regularization parameter increases.
regularization parameter affects the classification. Figure
6 shows the evolution, according 49 of the classification

of the spiral and the plane by the R-PMM withy. We results are in Figure 7. Observe how the classification im-

have perturbed 50 randomly picked samples of the Splralproves adding regularization and including the noise in the

by a Gaussian noise of standard deviation= 0.'66'. It model (Translated Poisson). We have used R-PMM with
can be observed that a small amount of regularization helps

in the classification, but whea increases, it produces a & ~ 4, TPMM with o = 1.5, and R-TPMM witha: = 1

e . . o . ando = 1.5. Levina-Bickel's technique gives a dimension
larger diffusion of the labelling, resulting in an inacciera ! .
e o ... value of 11.26 and Costa-Hero’s 9. These methods give a
classification. This is due to the fact that the regularorati

component gains more importance than the log-likelihood dimension in between the two different dimensions present
term. In the limit, when is quite large, the optimal so- in the point cloud. With the R-TPMM algorithm (and its

lution is a single class. Of course, the “optimal” value of variants), we are able to separate the points (images)-corre

a, which marks these transitions, depend on each particularSpOndlng to each digit and handle the noise and regulariza-

. . . tion. Both sets of digits have different dimensionality and
experiment (this is common in MRF-type approaches, and . -
. . density. We have observed that some other digits do have
the study of techniques from there to automatically compute

this reqularization parameter is an interesting open rob_the same dimensionality, as expected. Observe in the Table
9 Pe S 9 open prob- ¢ Fig. 7 how the dimension is reduced with the (R-)TPMM,
lem). For the experiments in this paper, we have worked A
: o . these values are much closer (than the ones with (R-)PMM)
with values ofor within the intervall0, 5]. In [16] we also to the dimension obtained with Isomap, see graph in Figure
tested the evolution of the classification with respecito P, grap 9

with another termDy in the additional constrair(F) so 8, applied to each one of the digits by separate. The fact that

. . e ; the dimension is reduced when considering the translated
as to impose spatial compactness within a class. Again, the

dimension/density criterion for classification was more pe process |nd|c_ates that the high dw_nensmns were on_gmally
nalized against the extra ter§( H) for larger values ofy due to the noise (this can be also inferred by observing the

and thus yielding rather a k-means kind of clustering (note Isomap eigenvalues in Fig.8).
that within the context of GPCA, [24] also proposed a com-
bination of k-means and dimensionality clustering).

02 08

07

0.15] @ 0]
8

g
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§

Residual variance

5.2 Real data

As a test of the performance with real data, we first work N * -
with the MNIST database of handwritten digitsyhich has ‘5"”3"“_‘“_““’"3““ ‘S"”a"“jme_““’"a‘“y

a test set of 10,000 examples. Each digit is an image of (a) Digit "1’ (b) Digit 2

28 x 28 pixels and we treat the data as 784-dimensional vec- ] ] _ o
tors. We analyze the mixture of digits one and two, some Figure 8:lsomap dimensionality of Digits one and two. The

examples of those scanned digits as well as the clusteringdaph shows the residual variance of the first ten Isomap
embedding dimensions.

4http://yann.lecun.com/exdb/mnist/
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PMM [ R-PMM [ TPMM [ RTPMM
Estimated parameters for each class

) v C1 c2 C1 Cc2 C1 Cc2 C1 C2
1 ! : Z 7.33 | 12.79 7.36 | 12.95 2.86 7.14 2.88 7.24
- -7.38 | -23.99 || -7.67 | -23.26 || -1.52 | -12.70 || -1.62 | -12.90

Number of points in each class
‘1 1032 0 1032 0 1032 0 1029 3
‘2 70 1065 43 1092 36 1099 17 1118

<3

Figure 7:Clustering of scanned digits ‘1’ and ‘2. Some examples gftdiand table with estimated parameters, dimension
m and densityp = €%, for each class (C1 and C2), and clustering results for diffé variants of the R-TPMM algorithm
with /=2, k=30 (since the density is = ¢’, p > 0 for § € R).

We also analyze images from the Yale Face Database
B,> which contains images of 10 subjects under 585 view-
ing conditions (9 poses and 65 illumination conditionsg se
Fig. 9. Each image has a size6a0 x 480 pixels. For com-

putational reasons we subsampled the images by a factor of —r P'\|/|'M y— = 35R'T|F|)MMI€ —
ten and use eact x 48 image as a vector in a high di- Estimated dimension for each class
mensional space. We analyze the point cloud formed by the Cl|cCc2[fciJczfca|cz[c1] c2

585 images of subject 5 (varying pose and illumination) to- | m || 4.10 | 2.94 || 437 | 2.79 || 3.34 | 2.59 || 3.60 | 2.55
gether with the 65 images of subject 6 only in the first pose IS N5“7r2ber ‘ifopo ”tzglleamlc'ass e —
and under varying |I[um|nat!ons. The estimated dimensions 65 0 65 0 65 0 65
and confusion matrices using the PMM and R-TPMM al-

gorithm witha = 0.25 ando = 1 are presented in Table

3. Note how both subjects are well separated, and the set offable 3:Dimensionm for each class (C1 and C2) and clus-
images of subject 5 has a dimension one unity larger thantering results of the mixture of subject 5 (all poses, all il-
the dimension for subject 6, since we do not consider theluminations) and subject 6 (one pose, all illuminations) in
pose variation for this subject. The classification resaies ~ the Yale Face Database B. PMM and R-TPMM= 0.25,
improved using regularization and the translated Poissono = 1) algorithms with two different values &f The algo-
model. Observe also that changing the numbérogarest  rithms are applied in thé4 x 48 dimensional space.
neighbors does not significantly change the results. Table 4

contains the confusion matrix obtained with the GPCA and

the Souvenir-Pless algorithms. These algorithms are com-

puted with a pre-projection of the data onto a 5-dimensional

spacé. This is necessary in the GPCA because, although

not being an iterative algorithm, it consumes a lot of time in

high dimensional spaces. For the Souvenir-Pless algorithm

this point is not so critical but we obtained better clasaific

v n
o u
o

tion results in the reduced dimensionality space. However, GPCA [ Souvenir-Pless
with the proposed R-TPMM we obtain better results in the Number of points in each class
original space. ci|cz2| c1 Cc2

It must be clarified that the R-TPMM is able to sepa- Subject 51| 325 | 260 || 476 | 109
rate both subjects because their corresponding images lie i Subject6]| 0 | 65 || 20 45

manifolds of different dimensions. However, if we consjder

for example, a fixed pose under varying illuminations, in Taple 4: Clustering results of the mixture of subject 5 (all
both subjects, all the points are classified in the same clasg,oses, all illuminations) and subject 6 (one pose, all ilum
since both manifolds have the same dimension (complex-pations) in the Yale Face Database B. We apply GPCA and

ity). In this particular case, we tested the GPCA algorithm goyvenir-Pless algorithms to the data pre-projected onto a
and it gives a 100% accurate classification. 5 dimensional space.

Shitp://cve.yale.edu/projects/yalefacesB/yalefachsBl

6We compute the SVD of the matrix dafa= UXVT and consider
the matrix formed by the first 5 columns &f”" as the embedded data. In
GPCA we further use homogeneous coordinates [36]
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Finally, we tested the R-TPMM algorithm in a mo-
tion segmentation application. We use a sequence of the
Kanatani Lab/, see some examples of frames in Figure 11.
This sequence was originally used in [19] and then in [36].
The data consists of the 2D projection coordinates of the
trajectories along the sequence of some interest points. Th
sequence that we analyze corresponds to a car moving in
a parking lot and there are two different motions in the se-
guence. As in [36] we pre-project the data, originally in
a 60-dimensional space (2 coordinate80 frames), onto
a 5-dimensional space. In Table 6 we show the classifica-

The R-TPMM framework is also tested to study differ- tion effectiveness for different methods: Costeira-Kamad
ent human activities in video. We created a point cloud with Ichimura, Kanatani-Sugaya (the three of them reported in
the frames of a video of a person performing four different [19]), Souvenir-Pless, GPCA and R-TPMM. For the R-
activities: Standing, walking, jumping, and arms waving, TPMM we usek = 10, « = 2 ando = 0.05. We also
all performed in a static background. Each original frame is tested our algorithm with the other two sequences used in
480 x 640, sub-sampled td8 x 64 pixels, with 1673 frames  [19, 36] and obtained a single class since the two differ-
(see some frame examples in Figure 10). This is mainly to ent motions have the same dimension (complexity). Thus,
speed up computations. In video applications, one may beit is necessary to introduce an additional constraint in the
interested in temporal regularization. For that, we cogisid R-TPMM approach in order to deal with these cases.

a temporal neighborhood iz, more concretely we take
into account the 6 previous and 6 posterior frames in the
regularization term. The confusion matrix with the classifi
cation results using the R-TPMM algorithm (with= 10,

a = 5 ando = 0.25) is presented in Table 5. The error in
the classification affects only 4% of the frames.

Figure 9:Examples of images of subjects 5 and 6 of the Yale
Face Database B. See results in Table 3.

Figure 11:Two frames of a sequence of the motion segmen-
tation database of the Kanatani Laboratory.

| Method | Effectiveness|
Costeira-Kanade 60.3%
Ichimura 92.6%

Kanatani-Sugayg 100%
Souvenir-Pless 93.38%

_ L GPCA 100%
Figure 10:Four sample frames of human activities in video. RTPMM 100%
Number of samples in each cluste Table 6: Classification rates, using different methods, for
CL|{c2|c3]| c4 the motion segmentation in the Kanatani Laboratory se-
Standing|| 505 | O 6 0 guence (see example frames in Fig. 11).
Walking 0O | 464 | 45 | 14
Waving || 1 0 (430 O Regarding the computational time, the most expensive
Jumping|| 0 | 0 | O | 207 part is the kKNN-graph. In the digits experiment (Fig. 7),

2167 points of dimension 784, the execution takes 18.37s

Table 5: Classifying human activities in video with the R- while 10.29s of the total time is spent in the computation
TPMM algorithm & = 10, @ = 40 ando = 0.25). We of the kNN-graph. For the experiment with the Yale faces

use the 6 previous and 6 posterior frames as neighbors in(F19- 9, 650 points of dimension 3072) the execution time

Dpg, which results in a temporal regularization. The global 'S 7.64s(3.70s for the KNN-graph). In the video experiment
classification is 96% accurate. http://www.suri.it.okayama-u.ac.jp/data.html
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(Fig. 10, 1673 points of dimension 3072) the total time andx; (resp.z; andz;). We can writeﬁij as a function of
and the kNN-graph time are, respectively, 29.78s and 24.87the original points:; andz;:
(CPU: Pentium Core 2 Duo, 2.0 GHz, 2.0 GB memory). R

Dij =||: — &;1[2

6 Conclusions = (D2 + [Ins — 3 + 2 <(: — ), (ni —n)>) 2.

Expanding the previous expression in a Taylor series around
D;; (considering the rest of the terms sufficiently small), we
obtain,

In this paper we developed a framework for the simulta-
neous and regularized/constrained estimation of thenintri
sic dimensionality and density of high dimensional noisy

point cloud data sampled from a stratification, as the basis <(zi — ), (ns —n))>  |lni —nyl2
for complexity/density based soft-clustering. The altjori Diyj =Dy + ———2 T 2
. .. . _ Dij 2Dij

is based on a statistical model which addresses the pres )

ence of noise in the measurements. Our previous related _ (<@ — %)), (ni =ny)>)" | O(o™)
works [15, 16] are particular cases of the R-TPMM algo- 8 ij

rithm introduced in this paper. We showed that regulariza- =Dij + Dy, + Dy, + Dy + O(0®).

tion constraints can be naturally introduced in this appihoa

The experiments showed the importance of incorporating |, grder to estimate the probablhty density function of the
the noise in the model and also of adding regularization in i, -ee error term®,, ,i = 1...3,in Du we make use of
the classification. We also showed that the algorithm is ro- 4, following propertles:

bust to outliers. With the proper dissimilarity functiondan

neighborhood type, we are able to add spatial or temporal 1, If X ~ N(u,0?)anda,b € R, thena X +b ~ N(ap+
regularity in the classification or intra-class spatial parci- b, (ac)?).

ness. Other type of constraints are possible under the same

proposed framework. Asymptotic theoretical results were 2. If X ~ N(ux,0%) andY ~ N(uy,o%) are inde-

also presented. pendent variables, then:
We would like to follow this direction of work and study
other constraints which can be useful for stratificatiomiea @) X +Y ~ N(ux + py, 0% +0%),
ing. One possibility is to define a dissimilarity function (b) X =Y ~ N(ux — py,0% +03).
which leads to separate different manifolds that share the
same dimensionality and density. This will define a new 3. If X3,..., X, are iid variables s.tX; ~ N(u;,02),

constraint that WI!| also h(_elp in the class_lflcatmn process thenl/ — Z ( M) follows a Chi-square dis-
when there is an intersection of two manifolds (and where

the algorithm fails at the present stage). Since the den-  tribution withp degrees of freedond] ~ x;.

sity depends on the dimension, we are intrinsically giving
more importance to the dimension criterion in our frame-
work. The control of the relative importance of these two
criteria needs also to be addressed.

4. If X is a random variable with probability density
function f(z) andY = aX, wherea € R, then, the
probability density function ot is ﬁf(%).

5. The probability density function of the sum of two in-

Appendix A: Estimation of the distri- dependent random variabl&sandY with probability
} o density functiong’ andg is the convolution
bution of distanceerrors

In this section we derive the distribution of the error in the (> 9)( / 1y —y)dy

distance between a pair of points when this distance is com-

puted from noisy points. We are interested in the particular  tha error termD.. ~ N(0,202), by using proper-
ni

case when the noise follows an i.i.d. Gaussian distribution ;g | 2(a) and2(b) (notice that the denominator cancels

in each of the point coordinates. R ) out the weights in the numerator when adding the indi-
Let X = {z; € Rt = L....,T} an_dX = {i: € . vidual (constant) variances in each coordinate). The sec-

RP;t =1,...,T} be two point clouds which are related in ond term D... ~ 2 — Di (DU (properties 2(b)

the following way: &; = x; + n., for each index, where e Xp = o7 XP x) brop

ng ~ N(0,02), ie Xisa noisy version of{. Let D;; and 3). And for the last term, using properties 1 - 4,

. . : . . 32D2, 32D7;
(resp. D;;) be the Euclidean distance between points ~ Dng ~ Xi = o X1 (— p J:v)-
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Finally, using the previous results and Property 5, we can Substituting the last expression with values in (24) gives

write

D~ Dij +W; where W ~ N(0,20%) * {2 * Xi.

In Figure 12 we show the distributioN (0, 20%) com-
pared with the estimated distributid# for o = 0.5, p = 3
and two different values foD;;: 1.0 and 3.0. As we can
see in this Figure, for a fixed, asD;; gets larger, the dis-
tribution W is closer to aV (0, 2¢%) distribution. Then, for
values% not very small, thatis, for sufficient SNR, we can
approximate the probability density function of the errror i
the distance as a Gaussian.

0.03

- = = Gaussian
—— Estimated D=1
Estimated D=3

0.025r

0.02r

0.015r

0.01r

0.005r

Figure 12: Gaussian distributioi (0, 202) with o = 0.5,
compared to the estimated distributidn for two different
values ofD;;: 1.0 and 3.0.

Appendix B: Bound on « for conver-
gence

We now show that, for a fixed, F'(v, H) defined in (18)
has a global maximum. For that, we follow the same lines
as in [2]. Let us callFy, (H) the functional (18) when is
fixed. Fy,(H) has a global maximum if it is strictly concave,
i.e. if its Hessian matrig{, with components

—1/n]
2c
0

ifi=jandl =t
ifi=jandl ~t,
otherwise,

§2F
Shioh]

Hirjr =

(24)

wherek is the number of neighbors in the regularization
term. Sinceh] € [0,1], H is strictly negative, i.e., every

eigenvalueh < 0, if ’)\ — h% < 1, and this is true for
o < 1/(2k). '

ZQa = 2ak,

I~t

Appendix C: Proof of the asymptotic
analysis

When we consider the particular case of hard clustering we

have
71
0

The estimator of the dimension in clagsan be expressed
as

if j = argmaxh’(y:),
otherwise.

)

+ S,

hj(yt) =

“1
Ry (yt)

— 2
o8 Ri(y:) ’ (@3)

SR

3t1

whereN; is the number of points clustered in clgsand

log rdr
log Ri(y:) = Uil ) (26)
fo R;(y¢)|r)dr
In the (R-)PMM approach we havB; = R;. We can
rewrite (25) as
m? = Nj(k —1)mj,Z~ 1, (27)

where ni. is the actual dimension of clagsandZ is

T .
Z=>Y 6

t=1

Y:; Yt:rné“zlog =

With the proper definition of the upper limR’ in the inte-
gral in (26) and the transition densify{ R;|r) whenR; is
close toR’, we can guarantee th&; < R, (always true in
(R-)PMM). In this case, we use the fact thdt; /Ry,)™r

is distributed, under the Poisson assumption, as a Uni-

is strictly negative. The Gerschgorin-Hadamard Theoremform(0,1) distribution, the- log of such a distribution is

tell us that the eigenvaluesof this Hessian matrix belong
to the union of discs indexed ly, t) and defined by

Y Ml

(@D#3:t)

[N = Hje jt] <

15

an Exponential(1), and then, the sum(éf— 1) Exponen-
tial(1) distributed variables is a Gamma{ 1,1). Then,
Y, ~ Gammag — 1,1) and the sum oV; Gammag — 1,1)
distributions givesZ ~ Gamma(V;(k — 1),1) andZ~! ~
Inverse-Gammd{ — 1)N;,1). The expectation of ~! is



1/(N;(k—1)—1), and substituting in (27), considering that
1 < Nj(k —1),yields

H) = e N T

Regarding the variance,
Var[m/] = N7 (k — 1)*Var[Z™],
where

var[Z ' =

(Nj(k—1) = 1)?(Nj(k—1)-2)
We now define

2 — 5N, (k—1)
N2k~ D2, (k— 1)~ 2)

a =

After simple computations and under the hypothesis that[10]

la| < 1, we obtain

(m7)?

Varim?] = N1 -2

1+ ia"‘| ,
n=1

and since the second term is smaller than the first one, wed12]

can write

Var[m?]

w0 ()
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