
 

NAVAL 
POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 

 
 

THESIS 
 

 
Approved for public release; distribution is unlimited. 

REAL-TIME OPTIMAL SLEW MANEUVER DESIGN AND 
CONTROL 

 
by 
 

Andrew Fleming 
 

December 2004 
 
 

 Thesis Advisor:   I. Michael Ross 
 Second Reader: Barry Leonard 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 i 

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time 
for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing 
and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington headquarters Services, 
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
December 2004 

3. REPORT TYPE AND DATES COVERED 
Engineer’s Thesis  

4. TITLE AND SUBTITLE:  Title (Mix case letters) 
Real-time Optimal Slew Maneuver Design and Control 
6. AUTHOR(S)  Andrew Fleming 

5. FUNDING NUMBERS 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND 
ADDRESS(ES) 

N/A 

10. SPONSORING/MONITORING 
      AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES   The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 
 

13. ABSTRACT (maximum 200 words)  
    This thesis considers the problem of time-optimal spacecraft slew maneuvers.  Since the work of 
Bilimoria and Wie it has been known that the time-optimal reorientation of a symmetric rigid body was not 
the eigenaxis maneuver once thought to be correct.  Here, this concept is extended to axisymmetric and 
asymmetric rigid body reorientations with idealized independent torque generating devices.  The premise 
that the time-optimal maneuver is not, in general, an eigenaxis maneuver, is shown to hold for all spacecraft 
configurations.  The methodology is then extended to include spacecraft control systems employing 
magnetic torque rods, a combination of pitch bias wheel with magnetic torque rods, and finally to control 
systems employing single gimbal control moment gyros.  The resulting control solutions, designed within the 
limitations of the actuators, eliminate the requirement to avoid actuator singularities.  Finally, by employing 
sampled-state feedback the viability of real-time optimal closed loop control is demonstrated. 

15. NUMBER OF 
PAGES  

179 

14. SUBJECT TERMS   
Optimal Control, Time-optimal Control, Real-time Optimal Control, Slew Maneuver 
Optimization, DIDO, Dynamic Optimization, Sampled-data Feedback Control 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 

 
UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 

REAL-TIME OPTIMAL SLEW MANEUVER DESIGN AND CONTROL 
 

Andrew Fleming 
Commander, United States Navy 

B.S., Rensselaer Polytechnic Institute, 1988 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

ASTRONAUTICAL ENGINEER 
AND 

MASTER OF SCIENCE IN ASTRONAUTICAL ENGINEERING 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
December 2004 

 
 
 

Author:  Andrew Fleming 
 
 
Approved by:   I. Michael Ross 

Thesis Advisor 
 
 

Barry Leonard 
Second Reader 
 
 
Anthony J. Healey 
Chairman 
Department of Mechanical and Astronautical 
Engineering 



 iv 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 v 

ABSTRACT 
 
 
 
This thesis considers the problem of time-optimal spacecraft slew 

maneuvers.  Since the work of Bilimoria and Wie it has been known that the time-

optimal reorientation of a symmetric rigid body was not the eigenaxis maneuver 

once thought to be correct.  Here, this concept is extended to axisymmetric and 

asymmetric rigid body reorientations with idealized independent torque 

generating devices.  The premise that the time-optimal maneuver is not, in 

general, an eigenaxis maneuver, is shown to hold for all spacecraft 

configurations.  The methodology is then extended to include spacecraft control 

systems employing magnetic torque rods, a combination of pitch bias wheel with 

magnetic torque rods, and finally to control systems employing single gimbal 

control moment gyros.  The resulting control solutions, designed within the 

limitations of the actuators, eliminate the requirement to avoid actuator 

singularities.  Finally, by employing sampled-state feedback the viability of real-

time optimal closed loop control is demonstrated. 
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I. INTRODUCTION  

A. MOTIVATION 

Modern satellites require more precision and agility than ever before.  In 

both military and commercial applications the ability to rapidly maneuver 

represents an increase in mission effectiveness and productivity.  Rapid 

retargeting maneuvers translate directly into more time on the intended object 

and more observations per orbit.  With commercial Earth-imaging satellites like 

Ikonos and research into agile microsatellites1 on the rise, the need for time-

optimal satellite control is greater than ever.  Planned future satellite missions in 

support of missile-defense and Earth observation will rely on satellite agility and 

minimum-time maneuvers for mission success. 

 

B. THE PROBLEM 

Spacecraft time-optimal attitude maneuvers have held the interest of 

engineers and mathematicians for decades.  In their paper, “Survey of Time-

Optimal Attitude Maneuvers,” Scriverner and Thompson provide a summary of 

work in this and related areas2.  They also present the principal difficulties 

associated with solving the time-optimal attitude maneuver problem.  

Unlike the pointing problem which lends itself well to linearization 

techniques, slew problems, especially large angle slew maneuvers are highly 

nonlinear.  Euler’s equations, which represent the rotational motion of a rigid 

body, consist of three, coupled, nonlinear differential equations. 
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Additionally, the high angular velocities associated with time-optimal 

maneuvering cause significant gyroscopic stiffness through the non-linear terms. 
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 While these equations completely describe the rotational motion of the 

body with respect to an inertial frame they do not determine the spacecraft’s 

attitude.  To describe the attitude of the spacecraft Euler parameters are 

generally used since they provide singularity free kinematics: 
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These non-linear ordinary differential equations have no closed-form solutions 

except for a small number of cases involving simple rotations or simple geometry 

(i.e., torque free motion of an axisymmetric body3,4). 

 The time-optimal nature of the problem adds additional difficulties.  Major 

problems are encountered in solving the boundary value problem that arises from 

the application of the Minimum Principle.  The problem, formulated in Chapter II, 

has no known numerical or analytical solution except when certain restrictions 

are applied.  These assumptions have taken the form of specific configurations or 

restricted motions 5. 

 

C. HISTORICAL BACKGROUND 

A short summary of the historical work that influenced this research is 

presented here.  Beginning with their landmark work in 1993, Bilimoria and Wie 

demonstrated with extensive analytical modeling and numerical analysis that the 

time-optimal maneuver was not the long-assumed eigenaxis maneuver6.  Their 

methods and results are examined in detail in Chapter III.  Bilimoria and Wie later 

extended this work to an axisymmetric body and observed the same 

characteristic precession they had noted earlier7.  Beyers and Vadali8 reproduced 

the results of Bilimoria and Wie but focused on developing a control algorithm.  

They used linearization and the switch time optimization (STO) algorithm 

developed by Meier and Bryson9 to produce an algorithm that could be 

implemented in real-time. 



3 

In the context of magnetic control, Junkins et al.10 modeled a single 

controller aligned with the spin axis of a spin-stabilized symmetric spacecraft.  

The time-optimal solutions were found through an interactive graphical 

technique.  These results were eventually implemented for open loop control on 

the NOVA-1 spacecraft11. 

 

D. CONCLUSION 

Solving the problem of spacecraft time-optimal control has occupied the 

interest of engineers and mathematicians for years.  The problem is simple to 

formulate and yet solutions have been difficult to obtain.  In this thesis we extend 

the present body of work to all spacecraft moment of inertia configurations.  The 

ideal actuators often studied to simplify the problem formulation are replaced with 

magnetic torque rods and a combination of toque rods and a pitch-bias wheel.  

Finally, the control moment gyro configuration most studied for its singularity 

problems is examined and shown to be singularity free in the time-optimal result.  

This unpredicted benefit of the formulation has the potential to make future work 

in actuator singularity avoidance moot.  Finally, computational speeds are shown 

to be such so as to allow time-optimal solutions to the nonlinear plant to be 

generated in real-time.    
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II. OPTIMAL CONTROL PROBLEM FORMULATION  

A. INTRODUCTION  

In this section the optimal control problem formulation is developed.  This 

formulation will be referred to throughout the remainder of this work.  There are 

numerous excellent books and papers on optimal control theory which explain 

these concepts in much greater detail.  Interested readers are referred to the 

references [1, 2, 3, & 4] for further information. 

 

B. METHODOLOGY 

Over the years many different methods of solving optimal control problems 

have been developed.  These are broadly grouped into two categories:  indirect 

and direct methods.  In indirect methods, the necessary conditions for optimality 

are derived from Pontryagin’s Minimum Principle and solved to obtain the optimal 

trajectory.  These methods are notoriously labor intensive.  In direct methods, the 

optimal control problem is discretized into a parameter optimization problem.  

The resulting nonlinear programming problem can then be solved by standard 

nonlinear programming means.   

In this work we will employ a Legendre Pseudospectral method encoded 

in the reusable software package DIDO5.  Pseudospectral methods are well 

known in the field of fluid dynamics where they are used to numerically solve 

partial differential equations.  Unlike other methods which employ piecewise-

continuous polynomials  Pseudospectral methods are unique in their application 

of global orthogonal polynomials as trial functions. 

In the Legendre Pseudospectral method the time domain of the problem is 

discretized at a special set of Legendre-Gauss-Lobatto (LGL) points.  Polynomial 

approximations of the state and control variables are considered where Lagrange 

polynomials are the trial functions and the unknown coefficients are the values of 

the state and control variables at the LGL points (nodes).  Using the properties of 

the Lagrange polynomials the nonlinear differential state equations are 
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transformed to nonlinear algebraic equations.  These equations are then posed 

as a nonlinear programming problem and a sparse numerical optimizer is used to 

solve the problem.  In addition, a relationship between the costate variables and 

the Lagrange multipliers called the Covector Mapping Theorem, allows for 

determination of the costates at the LGL points6.  This provides numerical 

information that is used to validate the solution’s optimality.  Interested readers 

should refer to references 7, 8, 9, and 10 for details regarding Pseudospectral 

Methods. 

Numerical results throughout this work are specified in terms of the 

number of LGL points used to obtain the solution.  Initial solutions were generally 

based on 30 LGL points with initial guesses restricted to two vectors representing 

the initial and final conditions.  Initial control solution guesses were arbitrary.   

Where greater accuracy was desired the 30 LGL point state and control solution 

was used as a guess for a second solution based on 100 LGL points. 

 

C. OPTIMAL CONTROL PROBLEM FORMULATION 

In an attempt to develop the notation and methodology that will be used 

throughout this work we consider the following optimal control problem.  

Determine the control function * ( )u t  and the corresponding state trajectory 

* ( )x t  that minimize the Bolza cost functional* 

 ( )
0

( ) , ( ) , ( ( ), ) ( ( ), ( ), )
ft

f f f
t

J x u t E x t t F x t u t t dt⋅ ⋅ = + ∫  

where ∈ ¡nx  and ∈ ¡mu  are subject to the differential constraint 

 ( ) [ ]= ∈&
0( ), ( ) , fx f x t u t t t t  

and the boundary conditions 

 
( )
( )

0 0 0 0( ), 0 and  1

( ), 0 and  1

p

q
f f f f

e x t t e p n

e x t t e q n

= ∈ ≤ +

= ∈ ≤ +

¡
¡

 

                                                 
* ( )⋅ :  Functional dependence not specified. 
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and control inequality constraints of the form 

 ( , ) 0 rh u t h≤ ∈ ¡  

where ∂ ∂h u  has full rank. 

 The Lagrange multiplier theory allows us to adjoin the state equations and 

constraints to the cost functional to form an augmented cost functional as follows 

 

( ) ( ) ( )

{ }
0

0 0 0 0( ), ( ( ), ( ( ),

( , , ) ( ) ( ( , , ) ) ( ) ( , )
f

T T
f f f f f f

t
T T

t

J E x t t e x t t e x t t

F x u t t f x u t x t h u t dt

υ υ

λ µ

= + + +

+ − +∫ &  

Defining the Hamiltonian as, 

 ( ) ( ) ( )λ λ= +, , , , , , ,TH x u t F x u t f x u t  

Pontryagin’s Minimum Principle provides the following necessary conditions for 

*u  to be an optimal control. 

 

( ) ( )

[ ]

0
0

0

*, *, *, *, *, , Hamiltionian Minimization

* Adjoint equations

( ) Initial transversality

( ) Terminal transversality

0 Hamiltonian Value

T

T f
f

f f

T f
f

H x u t H x u t

H
x
e

t
x

eE
t

x x

eE
H t

t t

λ λ

λ

λ υ

λ υ

υ

≤ →

∂
= − →

∂
∂

= − →
∂

∂∂
= + →

∂ ∂

∂∂
+ + = →

∂ ∂

&

 

For the case in which the cost function and constraints are linear in the 

state and control variables, no minimum exists for the Hamiltonian minimization 

unless inequality constraints are imposed on the state and/or control variables.11  

In the case, where the inequality constraints are linear and placed only on the 

control variables the problem is a special case of linear programming problem 

covered in detail by Bryson12 and others13.  The important result is the application 

of the Karush-Kuhn-Tucker (KKT) Theorem and complementarity conditions.  

Then, if a minimum exists, it will require the control variable to be at a boundary 
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of the feasible control region.  Since the Hamiltonian is subject to an inequality 

constraint on the control variable we apply the Karush-Kuhn-Tucker Theorem 

and form the Lagrangian of the Hamiltonian: 

 TH H hµ= +  (2.1) 

where µ i  is a KKT multiplier.  Then the KKT Theorem gives the following 

necessary conditions for the optimal trajectory 

 0
T

i

H H h
u u u

µ
∂ ∂ ∂ = + = ∂ ∂ ∂ 

 (2.2) 

In addition, the multiplier-constraint pair must satisfy the complementarity 

conditions of the KKT Theorem which states: 

 µ

≤ =


= < <

≥ =

 =

0 ( , ) ( )

0 if     ( ) ( , ) ( )

0 ( , ) ( )

unrestricted      ( ) ( )

L
i i

L U
i i i

i U
i i

L U
i i

h u t h t

h t h u t h t

h u t h t

h t h t

 (2.3) 

In subsequent chapters, once the state dynamics of the problem have 

been established, the optimal control problem will be presented in this format.  

The candidate optimal control solution will then be propagated through the state 

dynamics to verify the feasibility of the solution.  Verifying that this candidate 

solution is optimal is more difficult.  Recall that the Minimum Principle supplies 

necessary conditions not sufficient conditions for optimality.  However, since the 

Legendre Pseudospectral Method, through the covector mapping theorem, 

provides costate information at the nodes we can evaluate the necessary 

conditions for optimality.  Where available, results will be compared to published 

works.  Finally, engineering and physical insight will be used to establish that the 

solutions obtained are optimal. 
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III. IDEALIZIED TORQUE ACTUATOR CONTROL PROBLEM  

A. INTRODUCTION 

In this section, we develop the time-optimal rotational maneuver for a 

rigid-body with ideal, bounded actuators.  The idealized actuator will be defined 

by: 

 [ ]outTorque I u=  

where 1u ≤ , is the control vector and I  is the identity matrix.  In the case of the 

ideal actuator, the control vector is equal to the output torque vector.  This 

distinction allows for later definition of the control vector u  as, for example, 

magnetic dipole moment (See Chapter IV).  In this case the actuator is not 

considered ideal.  The closest physical approximation to the idealized actuator is 

a thruster. 

Bilimoria and Wie showed that the time-optimal solution for the 

reorientation of an inertial symmetric body was not necessarily an eigenaxis 

maneuver.1  Shen and Tsiotras examined time-optimal reorientations of 

axisymmetric spacecraft using two controls.2  Finally, Proulx and Ross examined 

the control structure and evaluated time-optimal reorientations of asymmetric 

spacecraft3.  We begin with a reexamination of the inertial symmetric 

reorientation problem in order to establish the methodology.  Then the principles 

are extended to axisymmetric and finally to asymmetric spacecraft in the orbital 

frame. 

 

B. INERTIALLY  SYMMETRIC RIGID-BODIES 

Inertial symmetric rigid-body reorientations represent the simplest problem 

that we can pose.  Yet, prior to the work of Bilimoria and Wie the solution was 

misunderstood.  The eigenaxis maneuver about the control axis was thought to 

be the time-optimal maneuver for symmetric bodies and near time-optimal for 

other configurations.4  Through analytical analysis and numerical simulation 
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Bilimoria and Wie demonstrated that this was not true for symmetric bodies.  

They showed that all three control components cannot be simultaneously zero on 

the time-optimal trajectory. 

 

1. Notation and Transformations 

In order to progress with the problem formulation we establish the 

standard notation and rotation sequences used in the development.  The 

spacecraft will have an assumed standard orbit frame defined as: 

Zo – Nadir pointing 

Xo – Velocity vector 

Yo – completes the right hand set 

We choose the rotation sequence for the body to orbit frame 

transformation, represented as Euler angles as ψ θ ϕ→ →  with axes order of 

rotation 3 2 1→ → .  Therefore, ψ  is the first angular rotation about the z-body 

axis.  The second rotation is about the once displaced y-body axis by an angle 

θ .  The final angular rotation ϕ  is about the x-body axis.   

Then, following the notation convention of Kane 5 the following angular 

velocities are defined: 

ω

ω ω
ω

 
  → 
  

@ Angular rate of body with respect to inertial in body frame.
x

N b
B y

z

(3.1) 

 

ω ω
 
 − → 
  

@
0

Angular rate of orbit with respect to inertial in orbit frame.
0

N o
O o (3.2) 

 

ω

ω ω
ω

 
  → 
  

@
1

2

3

Angular rate of body with respect to orbit in body frame.o b
B (3.3) 
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and: 

 ω ω ω= +N b N o o b
B B B  (3.4) 

 

The rotational transformation from the orbit frame to the body frame is 

referred to as the direction cosine matrix (DCM).  It is defined from the rotation 

sequence above and represented in terms of the quaternion vector as,6 

 

 
 − − + − −
 

= − − − + − 
 − − − − + 

s
2 2 2 2
1 2 3 4 1 2 3 4 1 3 2 4

2 2 2 2
1 2 3 4 2 1 3 4 2 3 1 4

2 2 2 2
1 3 2 4 2 3 1 4 3 1 2 4

2( ) 2( )
2( ) 2( )
2( ) 2( )

B o

q q q q q q q q q q q q
C q q q q q q q q q q q q

q q q q q q q q q q q q
 (3.5) 

 

Therefore, the angular velocity of the body with respect to the Newtonian frame 

may be written as: 

 ω ω ω= +
s

0N b b B o N o
B B OC  (3.6) 

 

Then substituting from equation (3.2) we have, 

 

 ω ω ω= −0
2

N b b
B B o iC  (3.7) 

 

where oω  is the magnitude of the orbital angular velocity* and 2iC is the second 

column of the DCM.  Then by substituting the values established in equation 

(3.5) we obtain the following relationships, 

 

 

ω ω

ω ω ω
ω ω

+     
     = − − − +     
     +     

1 1 2 3 4
2 2 2 2

2 2 1 3 4

3 2 3 1 4

2( )

2( )

x

y o

z

q q q q

q q q q
q q q q

 (3.8) 

 

                                                 
* Orbital angular velocity oω is sometimes referred to as “mean motion” for circular or 

elliptical orbits. 
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and, 

 

ω ω

ω ω ω
ω ω

+     
     = + − − +     
     +     

1 1 2 3 4
2 2 2 2

2 2 1 3 4

3 2 3 1 4

2( )

2( )

x

y o

z

q q q q

q q q q
q q q q

 (3.9) 

 

2. Problem Formulation 

The inertial symmetric body is shown in Figure 1.  The state of the system 

can be completely defined by its attitude and the time-rate-of-change of attitude. 

 

Z-Body 

X-Body 

Y-Body 

 
Figure 1 Inertial Symmetric Body 

 

For mathematical simplicity in extension to future work, the attitude is 

represented as a quaternion.  Quaternions have none of the inherent singularities 

that are well known in other representations of spacecraft attitude.  Additionally, 

they are computationally more suited for on-board real-time processing since 

there are no trigonometric functions to be evaluated in the quaternion kinematics 

equations.   

Euler’s rotation theorem states that a rigid body can be changed from any 

given initial orientation to an arbitrary final orientation by a single rotation about 

an axis that is fixed to the body and stationary in an inertial reference frame.7  

This axis which remains unchanged in both the body and reference frames is 

called the eigenaxis or Euler Axis.8 
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Defining the eigenaxis in the body frame as: 

 = + +
r

1 2 3
ˆ ˆ ˆe e i e j e k   (3.10) 

allows us to define the quaternion vector as follows: 

 

( )
( )
( )

( )

φ

φ

φ

φ

B

B

B

B

1 1

2 2

3 3

4

sin 2

sin 2

sin 2

cos 2

q e

q e

q e

q

 (3.11) 

where φ  is the rotation angle about the eigenaxis.  The state of the spacecraft is 

then represented by:† 

 
ω

 
= ∈ 

 
¡7q

x  

The state dynamics include both quaternion kinematics and rotational 

dynamics.  The quaternion kinematics are well known and are repeated here for 

completeness. 

 

 

ω ω ω

ω ω ω
ω ω ω
ω ω ω

− 
 − = Ω Ω
 −
 
− − − 

& @
3 2 1

3 1 2

2 1 3

1 2 3

0

01
   with,      

02
0

q q  (3.12) 

 

Termwise, we have, 

                                                 
† We have adopted the convention that q4 is the scalar quantity of the quaternion vector. 
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[ ]

[ ]

[ ]

[ ]

ω ω ω

ω ω ω

ω ω ω

ω ω ω

= − +

= + −

= − + +

= − − −

&

&

&

&

1 1 4 2 3 3 2

2 1 3 2 4 3 1

3 1 2 2 1 3 4

4 1 1 2 2 3 3

1
2
1
2
1
2
1
2

q q q q

q q q q

q q q q

q q q q

 (3.13) 

In order to maintain consistent notation throughout this work we have used the 

subscripts indicating that the angular velocities are of the body with respect to the 

orbit in the body frame.  For this example, we consider the spacecraft located in 

inertial space.  Mathematically, orbital angular velocity is zero and we have, 

 
1

2

3

x

y

z

ω ω

ω ω
ω ω

   
   =   
      

 

This distinction will become important for the later case where the spacecraft is in 

orbit about the Earth centered inertial frame. 

The rotational dynamics of a rigid body are obtained by equating the 

applied torque about the center of mass to the time rate of change of the angular 

momentum.9  This well-known fact is expressed as: 

( )=
r rd

M H
dt

 

where 
r
H  is the angular momentum vector of the rigid-body about its center of 

mass with respect to an inertial frame and 
r

M  is the external moment acting on 

the body about its center of mass. 

Since this is the logical extension of Newton’s 2nd law it follows that the 

time-derivative of angular momentum must be with respect to an inertial frame.  

The angular momentum is the product of the moment of inertia and the angular 

velocity, 

ω=
r r
H I  
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This allows us to express Euler’s rotational equations of motion for a rigid-body in 

matrix notation. 

 ω ω ω+ × =& extI I M  

If we express the moment of inertia and angular velocity in the principal axis 

frame as: 

1 1 2 2 3 3

0 0
0 0
0 0

ˆ ˆ ˆ

x

y

z

I
I I

I

b b bω ω ω ω

 
 =  
  

= + +
r

 

Then Euler’s equations can be expanded to: 

 
1

2

3

( )

( )

( )

x x z y y z

y y x z x z

z z y x x y

M I I I

M I I I

M I I I

ω ω ω

ω ω ω

ω ω ω

= + −

= + −

= + −

&
&
&

 (3.14) 

These equations are well known and generally referred to as Euler’s Moment 

Equations.10  For the case of a symmetric body the gyroscopic terms in equations 

(3.14) are zero and the rotational dynamics can be written as: 

 31 2
x y z

x y z

MM M
I I I

ω ω ω= = =& & &  

This reduces Euler’s Moment Equations from three-coupled non-linear ordinary 

differential equations to three uncoupled linear ordinary differential equations.  

Then normalizing the moment by the inertia, without any loss of generality we 

have, 

 1 2 3ω ω ω= = =& & &x y zM M M  (3.15) 

Taken together, equations (3.13) and (3.15) form the system dynamic 

constraints.  The normalized external torque, iM , is chosen as the control 

parameter and it is limited somewhat arbitrarily to unity. 
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2. Time Optimal Maneuvers 

With the dynamic constraints defined and presuming initial conditions and 

desired final conditions are known, we can formally state the time-optimal control 

problem for the rest-to-rest maneuver as follows: 

 

( ) 0Minimize (), ( ) ,

1
 s.t.

2
        , 1

f fJ x u t t t

q q

u uω

⋅ ⋅ = −

= Ω

= ≤

&

&
 (3.16) 

In order to allow a comparison with published results, we choose our initial and 

final conditions as: 

 

[ ]
[ ]
[ ]

1 2 3 4 1 2 3

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0

T

T

T
f

x q q q q

x

x

ω ω ω=

=

=

 (3.17) 

Referring to equations (3.10) and (3.11) these conditions represent a rest-to-rest 

rotation maneuver of 180 degrees about the z-body axis.   

As our first step in determining the control *u  that will drive the dynamic 

system we write the Hamiltonian in standard form.  Since we have written the 

cost functional in the Mayer form it will not appear in the Hamiltonian.  Thus the 

Hamiltonian will be a linear combination of the state dynamics and take the form: 

 ( )λ λ=, , , ( , )TH x u t f x u  (3.18) 

Substituting equations (3.13) and (3.15) into the Hamiltonian equation (3.18) we 

have: 

 

( ) ( )

( ) ( )

1 2

3 4

1 4 2 3 3 2 1 3 2 4 3 1

1 2 2 1 3 4 1 1 2 2 3 3

1 2 3

2 2

2 2

x y z

q q

q q

H q q q q q q

q q q q q q

u u uω ω ω

λ λ
ω ω ω ω ω ω

λ λ
ω ω ω ω ω ω

λ λ λ

= − + + + − +

− + + + − − − +

+ +

 (3.19) 
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where the subscripts on the Lagrange multipliers have been selected to aid in 

bookkeeping.   

  In order to minimize the Hamiltonian we form the Lagrangian of the 

Hamiltonian by adjoining the constraint equations to the Hamiltonian in the form: 

 TH H hµ= +  (3.20) 

where µi are the KKT multipliers and ( )( ),h u t t  is the control constraint function in 

the standard form.  On substituting the Hamiltonian equation (3.19) and the 

control constraint equation as defined above into equation (3.20) the inertial 

symmetric problem has necessary conditions, 

 ωλ µ+ = 0  (3.21) 

with the complemetarity condition, 

 µ

≤ = −


= − < <
≥ =

0 1

0 if     1 1
0 1

i

i i

i

u

u
u

 (3.22) 

 

The quantity ∂ ∂H u  is called the “switching function” in the literature.  The 

case when the switching function equals zero for a non-zero period of time was 

rigorously examined by Bilimoria and Wie and shown not to be time optimal.  

Thus we are left with a switching function that determines when the optimal 

control *u  will switch between its extreme values.  For this reason the control 

profile is called bang-bang.11   

In order to validate their results, Bilimoria and Wie used a multiple-

shooting algorithm to solve the two-point boundary value problem resulting from 

the state and adjoint equations .  This, in conjunction with the state and adjoint 

equations allowed them to determine and evaluate candidate optimal control 

solutions and the resulting trajectories.12  Here we employ a pseudospectral 

approximation to arrive at the optimal solution.   
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A careful comparison of previous results with the ones obtained here 

(Figure 2 and Figure 3) reveals that for this case there are at least two and 

potentially four equally optimal solutions.  For the symmetric spacecraft the 

precession that is characteristic of the optimal solution may proceed in either 

direction for a 180 degree reorientation.  A simple transformation of the controls 

as follows: 

 1 2

2 1

3 3

Current Previous
u ( 1) u

u u
u u

→
→ − ×

→
→

 

will transform the current quaternion and angular rate histories (Figure 2 and 

Figure 3) to an exact match with those of Bilimoria and Wie.  These transformed 

results are shown in Figure 4 and Figure 5.  For the 180 degree maneuver under 

consideration one could argue that the entire maneuver could proceed in the 

opposite direction and still result in the same cost and hence be equally optimal.  

This, while true, is precluded by the quaternion definition convention employed. 

Therefore, the results obtained correspond to the published results and 

clearly show that the solution is not an eigenaxis maneuver.  This is evident from 

both the non-zero quaternion histories of 1q  and 2q  (Figure 2) and the non-zero 

angular velocities about the x and y axes (Figure 3). 
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Figure 2 Inertial Symmetric Quaternion Solution 
 
 

 

Figure 3 Inertial Symmetric Angular Rate Solution 
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Figure 4 Inertial Symmetric Quaternion Transformed Solution 

 

 

Figure 5 Inertial Symmetric Angular Rate Transformed Solution 
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The optimal control solution is shown in Figure 6.  This solution matches 

the previous work of Bilimoria and Wie and exhibits the five control switch, bang-

bang structure that they observed. 

 

Figure 6 Inertial Symmetric Optimal Control Solution 

 

The control vector obtained is verified as a feasible control through propagation 

of the state dynamics.  The initial conditions and control solution are used as 

input to a MATLAB® ODE45 propagation subroutine which uses an explicit one-

step Runge-Kutta medium order (4th - to 5th –order) solver13 to verify that the 

control solution drives the system from the given initial condition to the desired 

final condition.  A linear interpolation was used to approximate the control values 

between LGL points.  Propagation results are shown in Figure 7 and Figure 8.  

The original solution obtained is shown in solid lines overlaid with the propagated 

states shown as ‘+’ marks below.  
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Figure 7 Quaternion Propagated Solution 

 

It is easy to see that not only does the dynamic system propagate to the desired 

end state but that the pseudospectral approximation of the states closely 

matches the propagated results.   

 

Figure 8 Angular Rate Propagated Solution 



25 

 

Next we examine the necessary conditions for optimality.  Recall that 

equation (3.21) and the complementarity conditions of equation (3.22) define the 

switching structure of the control vector and define a relationship between the 

costate dynamics and KKT multipliers.  An inspection of the switching functions 

and their relationship to the control behavior verifies that the control-constraint 

pair meet the KKT conditions.  Switching functions for each axis are shown 

(Figure 9 , Figure 10, and Figure 11). 

 

 

Figure 9 Inertial Symmetric Spacecraft Control and Switching Function 
About X-body Axis 

 



26 

 

Figure 10 Inertial Symmetric Spacecraft Control and Switching Function 
About Y-body Axis 

 

 

Figure 11 Inertial Symmetric Spacecraft Control and Switching Function 
About Z-body Axis 
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Turning to the Hamiltonian equation (3.19) there is no explicit dependence 

on time and therefore the Hamiltonian will have a constant value along the 

optimal trajectory. 

 
∂

=
∂

0
H
t

 

Recall the Hamiltonian value condition allows us to determine the final value of 

the Hamiltonian from the end-point Lagrangian.  The end manifold, in standard 

form, is given by: 
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 (3.23) 

Then the end-point Lagrangian, previously defined as: 

 TE E eυ= +  (3.24) 

allows us to determine the final value of the Hamiltonian as: 
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 (3.25) 

Thus, the value of the Hamiltonian will be -1 at all times along the optimal 

trajectory.  The resultant Hamiltonian, shown in Figure 12, meets the necessary 

conditions with some small numerical variation. 
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Figure 12 Inertial Symmetric Problem Hamiltonian Evolution 

 

The Adjoint equations can be formed by differentiation of the Hamiltonian.  

However, since the state variables are specified at both the initial and final 

conditions the adjoint variables will be free or unspecified at both initial and final 

conditions.  Therefore, the adjoint equations and terminal transversality of the 

adjoint variables provide no new information which will aid in our solution to the 

problem.   

  

3. Numerical Considerations and Notes 

We have shown that the optimal control solution is feasible and meets the 

necessary conditions derived from Pontryagin’s Minimum Principle.  Additionally, 

we have shown that the results obtained closely match those previously obtained 

by Bilimoria and Wie.  Next we compare the time required for optimal 

reorientation with that required for a comparable eigenaxis rotation. 
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Rotation Angle (deg)

Symmetric Maneuver Comparison

Optimal 1.752 2.428 2.895 3.254

Eigenaxis 1.777 2.513 3.078 3.555

45 90 135 180

 
Table 1 Comparison of symmetric spacecraft reorientation time for time-

optimal and eigenaxis maneuvers 

 

A comparison of the time required for reorientations is shown in Table 1.  

These results indicate that the time-optimal maneuver is always faster than the 

optimal eigenaxis maneuver except as noted by Bilimoria and Wie14.  The cost 

reduction is shown below in Table 2.  It is clear that larger reorientation 

maneuvers represent a larger cost benefit. 

Proper scaling of numerical problems is important to both the accuracy of 

the result and the computation time required in obtaining the result.  No 

numerical scaling was employed in this algorithm.  The nature of the problem is 

such that for reasonably large rotational maneuvers all numerical values are of 

the same order of magnitude.  
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Table 2 Cost reduction for inertial symmetric time-optimal reorientations 
over eigenaxis maneuvers 

 

4. Conclusions 

The published work by Bilimoria and Wie represents a landmark 

achievement in the application of optimal control theory.  Their basic result, that 

the time-optimal maneuver is not, in general, an eigenaxis maneuver will be 

shown to extend to a wide variety of spacecraft moments of inertia and control 

configurations. 

 

C. AXISYMMETRIC SPACECRAFT REORIENTATIONS 

In this section we will examine the time-optimal reorientation of 

axisymmetric spacecraft.  Shen and Tsiotras15 examined the problem of 

axisymmetric reorientations using two control torques.  They used a combination 

of direct and indirect methods to numerically evaluate several representative 

maneuvers16.  We begin with reorientations about the axis of symmetry before 
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examining the general reorientation case.  Finally, we will examine the 

reorientation of the axis of symmetry of a spacecraft spinning about its axis of 

symmetry.  For the spinning spacecraft we will examine the case where the spin 

rate is held constant throughout the maneuver.  This amounts to the two-control 

reorientation of Shen and Tsiotras.  Additionally, we will examine the case where 

the spin rate is allowed to vary during the maneuver from a given initial condition 

to a known final condition.  We will show that adding this third control torque 

results in the time-optimal maneuver for a spinning spacecraft.  

 

1. Problem Formulation 

The inertial axisymmetric body is shown in Figure 13.  The axis of 

symmetry is chosen as the z-body axis somewhat arbitrarily though this is not an  

 Z-Body 

X-Body Y-Body 
 

Figure 13 Inertial Axisymmetric Body 

uncommon configuration.  As before the state of the spacecraft will be defined 

as: 

 7q
x

ω

 
= ∈ 

 
¡  



32 

The quaternion kinematics remain as previously defined in equation (3.12).  

However, the rotational dynamics in the principal axis frame given in equation 

(3.14) now take the following form: 
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 (3.26) 

Note that the gyroscopic term about the z-body axis has been eliminated by the 

equal moments of inertia about the x and y-body axes.  Thus, the time rate of 

change of angular rate is given by: 
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 (3.27) 

These, taken together with the quaternion kinematics equations defined earlier 

form the new dynamic constraints on the axisymmetric system.  Once again the 

control parameter is chosen as external torque and is limited to unity. 
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2. Time Optimal Maneuvers 

The formal statement of the optimal control problem is as follows:  
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 (3.28) 

 

a. Non-spinning Axisymmetric Reorientations About the 
Axis of Symmetry 

We will begin by considering a family of prolate spacecraft with 

characteristics as given (Table 3).  Assuming the spacecraft has uniform mass 

distribution, the moments of inertia about the principal axes are given by: 
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 (3.29) 

where, l  is the length of the axis of symmetry, m is the mass of the spacecraft 

and r is the radius.  The effect of increasing length on moment of inertia is shown 

in Table 3. 
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Case Mass Length Radius Ix Iy Iz
I 1 1 1 0.33333 0.33333 0.5
II 1 5 1 2.33333 2.33333 0.5
III 1 10 1 8.58333 8.58333 0.5
IV 1 20 1 33.5833 33.5833 0.5
V 1 50 1 208.583 208.583 0.5

VII 1 100 1 833.583 833.583 0.5

Prolate Cylinder Spacecraft

 
Table 3 Prolate Spacecraft Characteristics 

 

The initial and final conditions will define a rest-to-rest maneuver in inertial space 

representative of a 135 degree rotation about the axis of symmetry.  The initial 

condition will be defined as nadir pointing therefore we have the following: 
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Referring to equation (3.18) we can write the Hamiltonian for the axisymmetric 

system as follows: 
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 (3.30) 

where we have followed the Lagrange multiplier subscript convention established 

earlier.  Then minimizing the Hamiltonian by forming the Lagrangian of the 

Hamiltonian and evaluating the partial derivative of the Lagrangian with respect 

to the control as before we have, 
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as necessary conditions for optimal control solution.  Turning our attention to the 

first prolate spacecraft case (Table 3) we find that the optimal solution exhibits 

characteristics similar to the symmetric spacecraft we examined previously.  The 

optimal control solution is shown in Figure 14.  It displays the same bang-bang 

switching structure that was previously observed in the symmetric case. 

 

Figure 14 Case 1 – Axisymmetric Spacecraft Time-optimal Control 
Solution 

 

The quaternion and angular rate histories are shown (Figure 15 and 

Figure 16) and clearly demonstrate that the time optimal maneuver is not an 

eigenaxis maneuver. 
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Figure 15 Case I – Axisymmetric Spacecraft Time-Optimal Quaternion 
History 

 
Figure 16 Case I – Axisymmetric Spacecraft Time-Optimal Angular Rate 

History 

The feasibility of the solution is verified by propagating the optimal control 

solution through the state dynamics.  The propagation results, shown in Figure 

17 and Figure 18, indicate that the solution does indeed drive the state from the 
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known initial conditions to the desired final conditions.  The original solution 

obtained is shown in solid lines overlaid with the propagated states shown as ‘+’ 

marks below.  

 

Figure 17 Axisymmetric Spacecraft Quaternion Solution Validation by 
Propagation 

 

Figure 18 Axisymmetric Spacecraft Angular Rate Solution Validation 
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The necessary conditions for optimality that we can evaluate 

directly include the switching structure obtained from the Hamiltonian 

minimization (Equation (3.31)), and the behavior of the Hamiltonian over time.  

The switching structure is shown in Figure 19 through Figure 21.  The control 

solution has been overlaid to further illustrate the relationship between the 

switching function and the control solution. 

 
Figure 19 Axisymmetric Spacecraft x-axis Switching Structure and 

Control 
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Figure 20 Axisymmetric Spacecraft y-axis Switching Structure and 
Control 

 

 

Figure 21 Axisymmetric Spacecraft z-axis Switching Structure and 
Control 
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Inspecting the Hamiltonian for the axisymmetric case (Equation 

(3.30)) reveals no direct dependence on time.  Therefore we can see that the 

Hamiltonian should be a constant over the interval under consideration.  

Additionally, forming the end-state Lagrangian as before in equation (3.24) gives 

the final value of the Hamiltonian.  The evolution of the Hamiltonian over time is 

shown in Figure 22. 

 
Figure 22 Case 1 – Axisymmetric Hamiltonian Evolution and 

Transversality 
 

Our analysis of the solution indicates that it is a feasible solution to 

the time-optimal reorientation problem.  Additionally, the solution meets the 

necessary conditions for optimality derived from Pontryagin’s Minimum Principle. 

Now examine the effects of increasing the length of the symmetry 

axis of a constant mass prolate spacecraft.  From equations (3.29) and Table 3 

we can see that the moment of inertia about the axis of symmetry remains 

constant while the remaining moments of inertia grow proportionally to length 

squared.  This is shown in Figure 23.  These increasing moments of inertia have 

two effects.  First, the angular acceleration about the x & y-body axes is reduced 

proportional to the increase in moment of inertia.  Physically, this is a decrease in 

the ability of a constant torque to cause an angular acceleration of an increasing 
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mass moment of inertia.  However, in addition to the decreasing control 

effectiveness, we see that the switching functions of the controls about the x & y-

axes are numerically vanishing due to the increasing moment of inertia.  The y-

axis switching function for case III illustrates this effect and is shown in Figure 25.  

Increasing the value of the control torque available is not sufficient to counter the 

vanishing switching function. 
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Figure 23 Constant Mass Prolate Spacecraft Moment of Inertia versus 
Length of Symmetry Axis 

Therefore the time-optimal reorientation maneuver about the symmetry axis 

approaches an eigenaxis maneuver as the length of the body grows in a constant 

mass spacecraft. 
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Figure 24 Axisymmetric Reorientation Maneuvers About Symmetry Axis 

versus Symmetry Axis Length 

 It is interesting to note that the structure of switching function is not 

significantly affected by the increasing moments of inertia.  The switching 

function for the prolate spacecraft of case III (Table 3), where the length of the 

symmetry axis is 10 times longer than the original, displays the same switching 

structure as the original.  The magnitude is however, reduced by several orders 

of magnitude.  The switching function for the y-axis control of Case III is included 

(Figure 25) for comparison to that of Case I (Figure 20). 
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Figure 25 Prolate Axisymmetric Spacecraft Case III – Switching function  

 

b. Non-spinning Axisymmetric Reorientations of the Axis 
of Symmetry 

The case of non-spinning axisymmetric spacecraft reorientations of 

the axis of symmetry is mathematically no different from the previous section.  

The problem formulation and necessary conditions for optimality remain 

unchanged.  The optimal maneuvers display the same characteristic precession 

about the eigenaxis and involve control torques about all three axes.  It is 

interesting to note that the control switching structure behaves in a manner very 

similar to that observed by Bilimoria and Wie in their work on symmetric 

reorientations.17  That is, for small angle reorientations we observe a sequential 

seven-switch structure and for large angle maneuvers we observe a sequential 

five-switch structure.  The control solutions for two representative maneuvers are 

shown.  In Figure 26, we see the control solution for a large angle maneuver 

about the x-axis.  The representative maneuver is chosen as a 135 degree 

rotation.  The five-switch-sequential structure is clearly evident.  In Figure 27, the 

control solution for a representative small angle maneuver about the x-axis is  
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Figure 26 Axisymmetric Spacecraft Optimal Control Solution for X-axis 
Large Angle Rotation (135 Degree Rotation) 

 

 

Figure 27 Axisymmetric Spacecraft Optimal Control Solution for X-axis 
Small Angle Rotation (60 Degree Rotation) 
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shown.  The maneuver, a 60 degree rotation results in a seven-switch-sequential 

solution.  This suggests that there is a dividing point, as Bilimoria and Wie 

observed for the symmetric case, where the time-optimal solution changes from 

the seven-switch to the five-switch structure.   

 

c. Reorientations of the Spinning Axis of Symmetry 

Next we consider the reorientation of a spinning axisymmetric 

spacecraft.  Shen and Tsiotras also considered this case where the rigid body 

was subject to only two control torques which spanned the plane perpendicular to 

the axis of symmetry.  They concluded that two torques were sufficient to achieve 

a time-optimal maneuver.18  In this section we will show that a third torque about 

the symmetry axis, if available , further reduces the objective function and is the 

true time-optimal solution. 

 Consider the axisymmetric spacecraft of Figure 13, which is 

spinning about the z-axis, the axis of symmetry.  Euler’ equations remain 

unchanged from equation (3.26) and are repeated here for the convenience of 

the reader: 
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Using the formulation of Shen and Tsiotras suggested by Tsiotras and Longuski19 

the orientation of the 3n̂  inertial axis of the inertial frame given by 

( )1 2 3
ˆ ˆ ˆ ˆ, ,n n n n= with respect to the body frame can be represented by two variables 

defined as: 

 1 21 1
w w

β α
γ γ

−
= =

+ +
 

where 1w  and 2w  obey the differential equations: 



46 

 
( )

( )

2 2
1 2 1 2 1 2

2 2
2 1 1 2 2 1

1
2

1
2

x
z y

y
z x

w w w w w w

w w w w w w

ω
ω ω

ω
ω ω

= + + + −

= − + + + −

&

&
 

Readers are directed to the references [18,19] for a complete derivation of this 

parameterization.  Using this formulation we can state the time-optimal 

reorientation of the spin axis as follows: 
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Following the numerical example of Shen and Tsiotras we establish the following 

spacecraft parameters: 
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The Hamiltonian and necessary conditions are available in the reference and not 

repeated here.  Using initial and final conditions given as: 
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we can duplicate the results of Shen and Tsiotras by setting the torque 3 0M = .  

The results are shown in Figure 28 and Figure 29.  The maneuver, defined as a 

115.38 degree reorientation of 3̂b  to 3n̂ , and is completed in 2.6142 seconds.  

Published results indicated a minimum maneuver time of 2.61 seconds.20 

 

 

Figure 28 Angular Rate History for Constant Spin Rate Time-optimal 
Maneuver 
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Figure 29 Time Histories of w1 and w2 for Constant Spin Time-optimal 
Maneuver 

 

 However, if the control 3u  is available, and the boundary conditions 

are enforced such that the spin rate is allowed to vary throughout the maneuver, 

then the true time-optimal solution is found. 

 
Figure 30 Angular Rate History for Time-optimal Spinning Reorientation 

Maneuver 
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 If spin rate of the z-axis is allowed to vary the time-optimal 

maneuver solution contains a significant change in spin rate as shown in Figure 

30.  The improved time for maneuver completion is now 2.513 seconds.  This is a 

reduction of 3.87% from the previously assumed time-optimal solution.  The 

three-axis control time-optimal w solution is shown in Figure 31.  

  The control solution obtained (Figure 32) is bang-bang in all three 

axes.  As before the control solution is propagated through the state dynamics to 

verify that the solution is feasible.  The original solution obtained is shown in solid 

lines overlaid with the propagated states shown as ‘+’ marks below.  It is clear 

(Figure 33 and Figure 34) that the spacecraft states properly propagate from the 

given initial conditions to the desired final conditions.   

 

 

Figure 31 Time Histories of w1 and w2 for Spinning Spacecraft Time-
optimal Maneuver 
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Figure 32 Spinning Axisymmetric Spacecraft Time-optimal Control 
Solution 

 

 
Figure 33 Spinning Axisymmetric Spacecraft Angular Rate Solution 

Validation by Propagation 
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Figure 34 Spinning Axisymmetric Spacecraft W History Solution 
Validation by Propagation 

 

Minimization of the Hamiltonian with respect to the control vector 

allows us to establish the switching functions.  These are shown, overlaid with 

the unity scaled control solution (Figure 35, Figure 36, and Figure 37). 
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Figure 35 Spinning Axisymmetric Spacecraft X-axis Switching Function 
and Normalized Control 

 Finally, we evaluate the Hamiltonian and observe it is constant over 

time and numerically equal to -1.  This is expected for the Mayer formulation of 

the cost function when the Hamiltonian has no direct time dependence. 

  

 

Figure 36 Spinning Axisymmetric Spacecraft Y-axis Switching Function 
and Normalized Control 
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Figure 37 Spinning Axisymmetric Spacecraft Z-axis Switching Function 
and Normalized Control 

 

 

Figure 38 Spinning Axisymmetric Spacecraft Time-optimal Solution 
Hamiltonian 
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3. Numerical Considerations and Notes 

Operationally, it is often preferable to maintain a constant satellite spin 

rate about the axis of symmetry.  However, we have shown that if a third torque 

is available about the axis of symmetry then the time-optimal solution will involve 

a change in the spacecraft spin rate.  This change in spin rate is appreciable and 

results in a measurable time savings over the two control torque solution. 

 

4. Conclusions 

In this section we examined the time-optimal maneuver for an 

axisymmetric spacecraft with three independent control torques.  We saw that for 

maneuvers about the axis of symmetry the relative moment of inertias have 

significant effects on the maneuvers.  As the moment of inertia about the 

symmetry axis increased the maneuver approached the eigenaxis maneuver in 

both time required and spacecraft response.  Additionally, we demonstrated that 

while reorientation of the spin axis is possible with two control torques spanning 

the plane perpendicular to the spin axis, the addition of a third control torque 

about the axis of symmetry further reduces the objective function and is the true 

time-optimal solution.  This third control torque is in general assumed to be 

available as it was required to generate the spinning motion. 

 

D. ASYMMETRIC SPACECRAFT REORIENTATION MANEUVERS 

In this section we will numerically investigate the time-optimal reorientation 

of a rigid asymmetric body.  Livenh and Wie21 presented an extensive analytical 

analysis of the asymmetric reorientation problem under constant body-fixed 

torques.  Additionally, the work of Proulx and Ross22 determined an admissible 

switching structure which was elegantly illustrated by the traversal of a unit cube.  

Using this to limit the search space a combination of a genetic algorithm and 

pseudospectral method was used to obtain the optimal solution.  Additionally, 

they suggested a method of evaluating the “optimality” of a solution by evaluating 

the Hamiltonian derived from the costates obtained through the Covector 
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Mapping Theorem.  This method of evaluating compliance with the Minimum 

Principle is employed throughout this work. 

 

1. Problem Formulation 

In order to facilitate future work and extension to other control actuators 

the orientation of the asymmetric spacecraft will be represented with respect to 

an Earth centered inertial reference frame.  This will require the incorporation of 

orbital velocity and reference frame transformations to properly represent the 

dynamic constraints. 

As before, for a rigid body the applied torque about the center of mass is 

equal to the time rate of change of the angular momentum.23   
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Following the previous development we obtain Euler’s equations: 
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 (3.32) 

The quaternion kinematics equations are unchanged from previous (equation 

(3.13))  except that emphasis is placed on the notation. 
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As shown above the angular rates ( 1 2 3, ,ω ω ω ) are of the body with respect 

to the orbit frame.  For convenience we choose to define the state of the 

spacecraft in terms of the quaternion vector and the angular rates with respect to 

the Newtonian frame.  Thus the state vector is given by: 

 7
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2. Time Optimal Maneuvers 

The formal statement of the optimal control problem is as follows: 
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The maneuver under consideration will be rest-to-rest in the orbit frame; 

however, the final angular velocity in the inertial frame will depend on the final 

attitude.  This is clear from equation (3.8).  The maneuver under consideration is 

an x-axis rotation typically 135 degrees.  This maneuver magnitude was selected 

based on the anticipated orbital parameters of NPAST1, the potential test bed for 

later algorithms.  The initial condition was chosen somewhat arbitrarily as nadir 

pointing.  Then the problem initial and final conditions may be presented in 

standard form as follows: 
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Additionally, spacecraft moment of inertias for subsequent examples have been 

selected to match the planned NPSAT1 moment of inertias and are given as 

follows: 
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 As before, the first step in our approach is to form and minimize the 

Hamiltonian.  Recall that the Hamiltonian is a function of the state, control and 

Lagrange multipliers. 

 ( ), , , ( , )TH x u t f x uλ λ=  

Since quaternion kinematics are typically written in terms of the body angular 

rates with respect to the orbit frame, a lengthy algebraic process of coordinate 

transformations is required to properly write the Hamiltonian.  Once completed 

the Hamiltonian takes the following form: 
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(3.34) 
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In accordance with the Minimum Principle the Lagrangian of the Hamiltonian is 

formed and partial derivatives with respect to the control vector are formed which 

establish the control switching functions. 
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 (3.35) 

The reader should note that the switching functions of the asymmetric case are 

no different than those of the axisymmetric case given in equation(3.31).  This 

would correctly lead us to surmise that as the moment of inertias approach those 

previously studied the results would closely match those previously obtained. 

The control solution for the asymmetric body under consideration is shown 

in Figure 39.  It clearly exhibits the structure we have come to expect.  In general, 

the control is bang-bang in all three axes.  There are five switches in all, 

characteristic of a large angle slew with a single-switch in the primary axis of 

rotation. 
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Figure 39 Asymmetric Spacecraft Time-optimal Maneuver Control 
Solution 

 

The process of solution va lidation begins with propagating the candidate 

solution through the state dynamics.  A feasible solution must drive the 

spacecraft from its known initial state to the desired end state.  The calculated 

state histories are shown (Figure 40 & Figure 41) with the propagation results 

(Figure 42 & Figure 43).  The original solution obtained is shown in solid lines 

overlaid with the propagated states shown as ‘+’ marks below. 
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Figure 40 Asymmetric Spacecraft Time-optimal Maneuver Quaternion 
History 

 

 

Figure 41 Asymmetric Spacecraft Time-optimal Maneuver Angular Rate 
History 
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Figure 42 Asymmetric Spacecraft Quaternion Solution Validation by 
Propagation. 

 

 

Figure 43 Asymmetric Spacecraft Angular Rate Solution Validation by 
Propagation. 
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The solution, confirmed feasible, is evaluated for optimality by observing 

the switching functions and Hamiltonian evolution.  The switching functions, 

equations (3.35) are shown graphically with the overlaid control solution. 

 

Figure 44 Asymmetric Spacecraft X-axis Switching Function and Control 
Solution 

 

Figure 45 Asymmetric Spacecraft Y-axis Switching Function and Control 
Solution 
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Figure 46 Asymmetric Spacecraft Z-axis Switching Function and Control 
Solution. 

 

These figures illustrate both the Hamiltonian minimization and the system’s 

compliance with the KKT conditions. 

 Inspection of the Hamiltonian reveals no direct dependence on time.  Thus 

we expect a constant value Hamiltonian.  The final value of the Hamiltonian is 

given by the transversality condition, equation(3.25).  Taken together we expect 

a constant Hamiltonian of -1.  Figure 47 shows the Hamiltonian with the 

optimality characteristics predicted. 

 Finally, we compare the time-optimal solution with the eigenaxis maneuver 

once theorized as nearly time-optimal.  The results, (Table 4) show a significant 

reduction in maneuver time. 
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Asymmetric Maneuver Comparison 

Eigenaxis 6.8742 seconds 

Time-optimal 6.1737 seconds 

Reduction 10.19 % 

Table 4 Asymmetric Maneuver Comparison 

 

 

 

Figure 47 Asymmetric Spacecraft Time-optimal Hamiltonian Evolution 
and Transversality 

 

3. Numerical Considerations and Notes 

The problem was transformed into the orbital frame as a stepping stone to 

the magnetic torque problem.  Orbital position and velocity will be necessary for 

magnetic field computations.  Additionally, this problem formulation incorporated 

linear scaling factors.  While not strictly necessary for the problem formulation 

under consideration, incorporating scaling factors in the independent torque 
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problem allowed validation of the scaling algorithm prior to the incorporation of 

the more complicated magnetic field calculations. 

For evaluation, the torque available was reduced form 1 Newton-meter to 

0.01 Newton-meters.  Without scaling, it was noted that costate estimates 

increased by 4 orders of magnitude.  In this work we have found that large 

costate estimates have generally been an indication of a numerically poor 

problem formulation.  Results in these cases have generally displayed poor 

accuracy and long computational times.  Numerical scaling was implemented in 

the following form: 
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=

=
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 

 

where the overbar indicates a scaled variable. 

 

4. Conclusions 

In this section we have shown that the asymmetric problem displays many 

of the characteristics previously noted in symmetric and axisymmetric 

configurations.  The time-optimal solution, as we might have predicted, is not an 

eigenaxis maneuver but instead is bang-bang in all control axes.  The sequential 

switching structure theorized and observed by Proulx and Ross24 was observed 

for the problem.  The number of possible configurations for asymmetric 

spacecraft combined with the possible slew maneuvers limits the extent to which 

numerical analysis can be used to form general conclusions.  However, the 

method employed allows us to generate the time-optimal solution to the 

asymmetric configuration, validate the feasibility of the candidate solution, and 

evaluate its compliance with the Minimum Principle. 
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IV. MAGNETIC TORQUE CONT ROL  

A. INTRODUCTION 

Magnetic torque control has been effectively used for momentum 

management in zero-momentum systems on many spacecraft systems.  The 

methods are well known and flight tested.  The use of magnetic torque control for 

spacecraft three-axis stabilization is less well known but the body of research is 

growing.  Magnetic torque control represents a low cost method to control small 

spacecraft in reasonably low earth orbit.  In this section we examine the basics of 

magnetic torque control and the solution to the time-optimal slew of spacecraft 

using magnetic torque generating devices.  This problem is significantly more 

complicated then the idealized actuator problem of Chapter III.  This is due to the 

resultant cross-product torque generation and varying magnetic field.  It is well 

known that there are body-frame orientations where no torque can be generated 

in specific directions. 

Junkins and Turner, reference [1], discuss the magnetic time-optimal 

control of spin-stabilized spacecraft.  They were able to solve the open loop 

problem for spin-axis reorientation and implement their solution on the NOVA-1 

spacecraft in 1981.1   

 

B. BASIC MAGNETIC TORQUE ATTITUDE CONTROL 

The magnetic moment generated within the spacecraft, whether 

generated intentionally or inadvertently, interacts with the Earth’s magnetic field 

to produce a torque according to: 

BT m B= ×
r rr

 

where m
r

 is the magnetic dipole moment generated inside the spacecraft body* 

and B
r

 is the Earth’s magnetic field intensity. 2 

                                                 
* Magnetic dipole moment is represented as a lower case m in order to distinguish it from an 

applied torque which is commonly represented as an upper case M. 
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The Earth’s magnetic field intensity as approximated by McElvain (1962) 

is: 

 3

( ) cos( )sin( )

( ) cos( )
( ) 2sin( )sin( )

x o m
f

y m

z o m

B t t i

B t i
R

B t t i

ω
µ

ω

   
   = −   
      

 (4.1) 

where, mi  is the inclination of the satellite orbit with respect to the magnetic 

equator, R  is the semi-major axis of the orbit, oω  is the orbital angular velocity, t  

is zero at the point in the satellite orbit where the ascending node crosses the 

equator, and fµ is the magnetic dipole strength of the Earth (circa 1975) given as: 

157.96 10f Wb mµ = × ⋅  

So we see that magnetic field intensity decreases rapidly with orbital 

altitude.  A typical magnetic field approximation is shown for a satellite in a 

circular orbit with inclination of 35.4 degrees at altitude of 560 Km.  As expected 

the behavior in the x-z planes is harmonic (Figure 48) at the orbital frequency. 

The magnetic model used for this problem differs from equation (4.1).  The 

above model is reasonably accurate as a first-order approximation but does not 

take into account the rotation of the earth.  For this reason, a model with slightly 

higher fidelity was adopted.  Shown below, as equation (4.2), is a model adopted 

from Wertz, Spacecraft Attitude Determination and Control.3  This model 

assumes no orbit precession but does allow for the Earth’s rotation.  
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Figure 48 Earth Magnetic Field 

 



72 

Recall Euler’s equations (repeated from previous for the convenience of 

the reader). 
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The external torque can now be replaced by the torque generated by the 

interaction of the Earth’s magnetic field and the satellite magnetic dipole moment.  

The rotational dynamics equation of motion in vector form then becomes, 

 

 I I m Bω ω ω+ × = ×&  (4.3) 

 

where angular velocities are by necessity referenced to the Newtonian frame 

and, 
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 (4.4) 

As written, the cross-product of equation (4.4) is meaningless since the 

dipole moments ( im ) are in the body frame and the magnetic field components 

are represented in the orbit frame.  Therefore, the components of the magnetic 

field which are in the orbit frame must be rotated into the spacecraft frame by: 

 B o
B OB C B=

sr r
 (4.5) 

where the DCM was previously defined in equation (3.5).  Then the magnetic 

field in the body frame in expanded form is given by: 
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 (4.6) 
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Finally, by substituting equation (4.6) into equation (4.3) we can form the 

dynamic constraint equations as follows, 
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These represent the rotational dynamical equations  of motion for our spacecraft, 

Earth magnetic field system. 

 

C. TIME-OPTIMAL MAGNETIC TORQUE CONTROLLED SLEW 

In this section we consider the time-optimal reorientation of a spacecraft 

with magnetic torque control.  The maneuver is defined as rest-to-rest in the orbit 

frame where the initial and final states are given.   

 
1. Problem Formulation 

The spacecraft state is defined by its position and angular velocity. 

q
x

ω

 
=  

 
 

The position is represented by a four -element quaternion vector, we have 

previously adopted the convention that the fourth element of the quaternion 

vector is the scalar quantity.  The angular velocity is in body coordinates with 

respect to the Newtonian frame.   

We choose our control parameter as the magnetic dipole moment of the 

torque rods.  Dipole moment is controlled by current flow however the response 

of dipole moment to changes in current can be considered instantaneous.  Since 
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the actual torque generated is limited by the maximum dipole moment of the 

torque rod, we impose a bound on the control dipole moment. 
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30i

m

u m m A m
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 
 = → ≤ ⋅ 
  

 (4.7) 

The minimum time, rest-to-rest, reorientation problem may then be stated as 

follows: 

Determine the controls [ ]1 2 3*, *, *u u u that drive the spacecraft from its initial 

rest position, given by [ ]0x to its final rest position given by [ ]fx while minimizing 

the cost function: 

( ) ( )( ) 0, , f fJ x u t t t⋅ ⋅ = −  

where we have used the Mayer form of the cost function, subject to the following 

constraints: 

 Control Constraint:  The control constraint is defined in the standard form, 

 ( ) ( , ) ( )L Uh t h u t h t≤ ≤  

then our control constraint can be written, 

 30 30iu− ≤ ≤  
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Dynamic Constraints: 
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 (4.8) 

 

2. Solving the Optimal Control Problem 

The first step in solving the optimal control problem is to form the 

Hamiltonian.  Basic format of the Hamiltonian is repeated here†, 

 ( , , , ) ( , , ) ( , , )TH x u t F x u t f x u tλ λ= +  

Since the cost functional was formulated without a Lagrange cost term the 

Hamiltonian reduces to the following. 

 ( , , , ) ( , , )TH x u t f x u tλ λ=  

 

Again, since the quaternion kinematics are written in terms of angular velocity of 

the body with respect to the  orbit frame, equation (4.8), a lengthy algebraic 

rotation sequence is required to write the Hamiltonian in standard form: 

                                                 
† Recall that in this notation F is the Lagrange (running) cost and f are the state dynamics. 
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(4.9) 

The subscripts on the Lagrange multipliers have been chosen for bookkeeping 

purposes.  The control vector is defined in equation (4.7). 

Now, according to Pontryagin’s principle the control which minimizes the 

cost functional must meet the conditions we established earlier.  It is however, 

important to note that not all of these conditions reveal usable information about 

the nature of the problem. 

 

a. Hamiltonian Minimization 

We know from previous work that a necessary condition for the 

Hamiltonian to be a minimum with respect to the control variable is that the 

partial derivative of the Lagrangian with respect to the control equals zero.  In this 

case the control that satisfies this condition must also lie within the control 

constraint set.  We apply Lagrange multipliers in the form, 

 ( , , , , ) ( , , , ) ( , )TH x u t H x u t h u tλ µ λ µ+B  (4.10) 

Then, by inspection of equations (4.9) and (4.10), we can write the 

necessary conditions for the Hamiltonian minimization as follows. 
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These represent useful information that can be evaluated to validate the 

candidate solution. 

 

b. Hamiltonian Evolution and Final Value 

The Hamiltonian evolves in accordance with the simple equation, 

 
H

H
t

∂
=

∂
&  (4.12) 

Previously, we dealt only with Hamiltonian equations that had no specific 

dependence on time and therefore the time-rate of change was zero.  In this 

case the magnetic field of the Earth introduces a time-dependence into the 

Hamiltonian.  That is 0H
t

∂ ≠∂ .  Therefore, the Hamiltonian is not a constant in 

the interval under consideration. 

The final value of the Hamiltonian is given by, 

 [ ] 0t
f

f f

E e
H t

t t
υ

∂ ∂
+ + =

∂ ∂
 

where the end manifold ( e ) is written in the standard form, 
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Then by inspection we can see that the final value of the Hamiltonian is negative 

one.   

 [ ] 1 0 [ ] 1f fH t H t+ = → = −  

Although the Hamiltonian is not a constant for the interval under consideration its 

final value represents a second numerical figure of merit to validate the optimality 

of the solution. 

 

3. Numerical Results 

The numerical example for this work was taken from the Naval 

Postgraduate School’s current small satellite program, “NPSAT 1.”  Designed 

primarily to allow a hands-on learning experience this satellite, still in the design 

phase, will provide three-axis magnetic torque control with a pitch wheel for 

increased stabilization.  The moment of inertias and orbital parameters used in 

the numerical examples were taken from NPSAT 1 preliminary designs.  The 

contribution of the pitch bias wheel will be addressed in a later chapter.  The 

NPSAT 1 data includes: 
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NPSAT 1 Parameters 

Ix 5     kg·m2 

Iy 5.1  kg·m2 

Iz 2     kg·m2 

Max Dipole Moment 30   Amp·m2 

Orbital Altitude 560  km (Circular) 

Inclination 35.4  degrees 

Table 5 NPSAT 1 Parameters for Numerical Simulations 

 

The maneuver selected for simulation is a 135 degree roll (x-axis slew). 

The time-optimal control solution for this maneuver demonstrates a 

surprisingly clean bang-bang structure.  The solution, shown in Figure 49, has 10 

control switches distributed among the three axes. 

 

 
Figure 49 Time-optimal Control Solution for Magnetic Torque Problem 
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Before evaluating the optimality of the candidate solution the 

feasibility is evaluated.  The control solution is propagated through a 

separate ODE 45 dynamics simulator to verify that the candidate solution 

drives the dynamic system from the initial state to the final state.  The 

propagation results (Figure 50 & Figure 51) show that the control solution 

does meet the end point constraints and that the estimated states closely 

match those obtained during propagation.  The original solution obtained 

is shown in solid lines overlaid with the propagated states shown as ‘+’ 

marks below. 

 

 
Figure 50 Quaternion Solution and Validation by Propagation 
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Figure 51 Angular Rate Solution and Validation by Propagation 

The quaternion and angular rate histories are shown (Figure 52 & Figure 53).  

The maneuver is clearly not an eigenaxis slew.  This is evident from both the  

variation in the quaternions 2 3&q q and the non-zero angular rates of 2 3&ω ω . 

 

Figure 52 Magnetic Torque Slew Time-optimal Quaternion History 
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Figure 53 Magnetic Torque Slew Time-optimal Angular Rate History 

 Next we evaluate the optimality of the feasible, candidate solution.  The 

switching functions are given in equations (4.11).  These are plotted overlaid with 

the scaled control solution (Figure 54, Figure 55, & Figure 56). 

 

Figure 54 Magnetic Torque Control X-axis Switching Function and 
Control Solution 
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Figure 55 Magnetic Torque Control Y-axis Switching Function and 
Control Solution 

 

 

Figure 56 Magnetic Torque Control Z-axis Switching Funct ion and 
Control Solution 
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Shown are the switching functions ( iS ) previously defined as the partial 

derivative of the Hamiltonian with respect to the control vector.  The KKT 

multiplier (Mu) is also shown plotted separately from the switching function.  The 

sum of the switching function and the KKT multiplier is the definition of the 

minimization of the Hamiltonian, equation (4.11), and should be numerically 

equal to zero.  Additionally, as before the switching function and control are 

related be the KKT conditions: 

 

maximum 0

* minimum 0
singular  0

i

i i

i

S

u S
S

<


= >
 ≡

 

These figures clearly illustrate that the control solution meets optimality criteria 

established by the Hamiltonian minimization. 

 The Hamiltonian transversality and evolution conditions are complicated 

by the varying magnetic field.  The Hamiltonian and the predicted final value are 

shown (Figure 57).  The numerical final value of the Hamiltonian and the 

theoretical final value differ by only 0.0646.  Therefore we conclude that the 

candidate solution has met the necessary conditions for optimality. 

 

Figure 57 Magnetic Torque Solution Hamiltonian and Final Value 
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Additionally, to validate our hypothesis that the time-dependence of the 

Hamiltonian was due to the varying magnetic field the problem was evaluated 

with a constant magnetic field approximation.  The Hamiltonian for the case of a 

constant magnetic field is shown in Figure 58.  The Hamiltonian for this case has 

lost its apparent dependence on time and settled to a value that is numerically 

close to the value of -1 that was predicted.   

 

 

Figure 58 Constant Magnetic Field Approximation Hamiltonian Solution 
 
4. Numerical Considerations and Scaling 

The linear scaling used throughout these algorithms was introduced in the 

previous section.  In this section scaling was also added for the Earth’s magnetic 

field in the form: 

 i B iB k B=  

The goal of the scaling is to bring all numerical values seen by the optimization 

solver into the same order of magnitude.  Scaling values were adjusted from an 

unscaled solution to improve the quality of the solution and then readjusted as 

necessary.  Proper scaling reduced computation time and improved the accuracy 

of the solution.  Additionally, the switching functions of properly scaled problems 
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behaved more closely to theoretical predictions indicating that results were 

improved by proper scaling. 

 

Scaling Effects 

Maneuver Time (before 

scaling) 
230.0845 seconds 

Maneuver Time (after 

scaling) 
271.1564 seconds 

Error 15.15 % 

Table 6 Effects of Scaling on Solution Fidelity 
 
5. Conclusions 

In this section the open loop time-optimal control for a magnetic torque 

controlled asymmetric spacecraft was determined.  The candidate solution was 

determined by propagation to be a feasible solution to the problem.  The 

optimality of the solution was validated through an analysis of the Hamiltonian 

minimization, switching functions and the behavior of the Hamiltonian.  The 

hitherto unseen variation of the Hamiltonian over time was theorized to be 

caused by the time dependence of the Earth’s magnetic field.  When this 

dependence was eliminated the Hamiltonian returned to the constant values we 

have seen previously.  Therefore, we conclude that the solution is feasible and 

meets the necessary conditions for optimality. 
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V. NPSAT 1 CONTROL SYSTEM  

A. INTRODUCTION 

NPSAT 1 is a small satellite design project currently in work at the U.S. 

Naval Postgraduate School (Figure 59).  It was conceived as a three-axis 

stabilized magnetic torque controlled satellite.  Later in the design process, a 

pitch bias wheel was added to improve stability and reliability.  In this section   we 

explore the time-optimal reorientation of this small asymmetric satellite where 

both the three torque rods and the pitch wheel are available as torque generating 

devices.   

 

 
Figure 59 NPSAT1 Conceptual Image courtesy of Dan Sakoda 
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B. PROBLEM FORMULATION 

In this case the spacecraft state is defined by its position, angular velocity 

and the angular momentum of the pitch wheel. 

8

w

q

x

h
ω

 
 = ∈ 
  

¡  

The position is represented by a four -element quaternion vector; we have 

previously adopted the convention that the fourth element of the quaternion 

vector is the scalar quantity.  The angular velocity is in body coordinates with 

respect to the Newtonian frame.  The pitch wheel is assumed to be aligned with 

the spacecraft #2 principal axis.  This assumption simplifies the formulation of the 

rotational dynamics equations.  The orbital parameters are as given in Table 5. 

The quaternion kinematics equations are well known and shown in 

equation (3.33).  These equations are unchanged by the addition of the pitch bias 

wheel.  The rotational dynamics however, are now the result of the external 

torque generated by the interaction of the magnetic field and the torque rods in 

addition to the pitch wheel angular momentum and torque.   

The time rate of change of angular momentum can be expressed as1, 

 N b
ext S S S

N b

d d
M H H H

dt dt
ω   = = + ×      

r r r rr
 (5.1) 

where SH
r

 is the total angular momentum of the spacecraft-wheel system and is 

expressed in the body frame.  Then by assuming that the wheel’s center of mass 

is collocated with the spacecraft center of mass we can express the system 

angular momentum as, 

 N b N W
B WH I Iω ω= +

r r r
 (5.2) 

where &B WI I are the body and wheel moments of inertia respectively, and the 

angular velocity of the wheel with respect to the Newtonian frame is given by, 

 N W N b b Wω ω ω= +
r r r
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Then the angular momentum of the system can be written as, 

 N b N b b W
S B W WH I I Iω ω ω= + +

r r r r
 

By defining, 

 B WJ I I+B  

we have, 

 N b b W
S WH J Iω ω= +

r r r
 (5.3) 

This result is easily derived under the assumptions stated.  Kane 2 provides a 

detailed derivation to show that this result holds for any configuration. 

Then, referring to equation (5.1) we have, 

 ( )N b b W N b N b b W
ext W WM J I J Iω ω ω ω ω= + + × +r r r r r& &  

By defining, 

 b W
W W

B

d
h I h

dt
ω  =  

r rr && B  

we can write, 

 N b N b N b
ext W WM J h J hω ω ω= + + × +

r rr r r&&  

If we allow extM  to be the sum of disturbance torques and the torque generated 

by the interaction of the Earth’s magnetic field and the magnetic torque rods, 

setting the disturbance torque to zero we can write, 

 where,

0 0
,

0 0

W W

N b
W W W W

J J m B h h

h h h h and

ω ω ω ω

ω ω

+ × = × − − ×

   
   =   
      

r r rrr r r r&&

r r r r& &B B

 

Carrying out the cross products and rotational transformations previously defined 

gives the following result: 
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( )
( )
( )

1 2 3 2 3 3 2

2 3 1 3 1 1 3

3 1 2 1 2 2 1

x y z z w

y x z w

z x y x w

J J J m B m B h

J J J m B m B h

J J J m B m B h

ω ω ω ω

ω ω ω

ω ω ω ω

− − = − +

− − = − −

− − = − −

&
&&

&
 

where the Earth’s Magnetic Field ( 1 2 3, ,B B B ) is in the spacecraft body frame and 

was previously defined by equation (4.6).  The four-element control vector is 

chosen as: 

 

1

2

3

w

m
m

u
m
u

 
 
 =
 
 
 

 (5.4) 

Box constraints are imposed on the control elements based on the physical 

limitations of the control elements selected.  The components under 

consideration in this model have the physical characteristics shown (Table 7). 

 

Component Characteristics 

Torque Rods 
Maximum Magnetic 

Dipole Moment 
30 Amp*m2 

Pitch Wheel 
Maximum Angular 

Momentum 
18 N*m*sec 

Pitch Wheel Maximum Torque 30 mN*m 

Table 7 NPSAT 1 Simulation Component Characteristics 

 

Pitch wheel angular momentum limits are imposed as a state constraint.  Other 

values are imposed as control constraints. 

 

C. TIME-OPTIMAL NPSAT 1 SLEW 

In this section we consider the time-optimal reorientation of an asymmetric 

spacecraft controlled by a combination of magnetic torque rods and a pitch 



93 

momentum wheel.  The maneuver is defined as rest-to-rest in the orbit frame 

where the initial attitude and attitude rates are known.  The final attitude and 

attitude rates are determined by the eigenaxis of rotation and the rotation angle.  

The angular momentum of the wheel is the final state variable.  For this variable 

and control combination there are four possible options.  First, the initial wheel 

angular momentum may be left unspecified as an optimization variable to be 

determined.  Then, if wheel torque does not equal zero, the algorithm selects the 

initial wheel speed and control history for the minimum time maneuver.  This is 

the case that is numerically evaluated below.  The wheel speed can also be fixed 

at the end points.  In this case a non-zero toque limit will achieve the time optimal 

solution within the constraints provided.  Under the condition of zero torque, 

wheel speed free, the algorithm will determine the optimal, constant wheel speed 

for the desired maneuver.  Finally, if wheel speed and torque are set to zero the 

results match those previously obtained for the magnetic torque control section.  

It is important to note that these changes in boundary conditions do not affect our 

ability to minimize the objective function and obtain valid solutions. 

 
1. Problem Statement 

Determine the controls [ ]1 2 3 4*, *, *, *u u u u that drive the spacecraft from its 

initial rest position, given by [ ]0x to its final rest position given by [ ]fx while 

minimizing the cost function: 

( ) ( )( ) 0, , f fJ x u t t t⋅ ⋅ = −  

where we have used the Mayer form of the cost function, subject to the following 

constraints: 

 Control / State Constraint:  The control and state constraints are defined in 

the standard form, 

 ( ) ( , ) ( )L Uh t h u t h t≤ ≤  

then our control constraints are written, 
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2

3 3
4

30 30 (Amp m ) 1,2,3

30 10 30 10  (N m)
iu i

u− −

− ≤ ≤ ⋅ =

− × ≤ ≤ × ⋅
 

and the state constraint is given by: 

 80.18 0.18 (N m sec)x− ≤ ≤ ⋅ ⋅  

 

Dynamic Constraints: 

 

[ ]

[ ]

[ ]

[ ]

( )

( )

( )

1 1 4 2 3 3 2

2 1 3 2 4 3 1

3 1 2 2 1 3 4
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 (5.5) 
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2. Solving the Optimal Control Problem 

The Hamiltonian is given by, 

 

( ) ( )

( ) ( )

( ) ( )

( )

1 2

3 4

4 3 2 3 3 4 1 4

2 1 2 1 1 2 3 2

2 3 3 2 1 3 1 1 3 4 2

1 2 2 1 3

2 2

2 2

1 1

1

x y

z

q q
x y z o x y z o

q q
x y z o x y z o

z w y z x z
x y

x w x y
z

H q q q q q q q q

q q q q q q q q

u B u B h k u B u B u k
J J

u B u B h k
J

ω ω

ω

λ λ
ω ω ω ω ω ω ω ω

λ λ
ω ω ω ω ω ω ω ω

λ ω ω ω λ ω ω

λ ω ω ω

= − + + + + − + +

− + + − + − − − − +

    − − + + − + + +   
    


− + +


4wh uλ


+



 

  

The subscripts on the Lagrange multipliers have been chosen for bookkeeping 

purposes.  The control vector is defined in equation (5.4). 

Following the solution method previously established we begin by 

minimizing the Hamiltonian subject to the control constraint set.  Then the 

necessary conditions for the Hamiltonian minimization are as follows: 

 

{

2 3 1

3 1 2

1 2 3

4

0

0

0

0

yz

x z

y x

y

w

i

i

z y

x z

y x

h
y mu

S

B B
J J

B B
J J

B B
J J

J

ωω

ω ω

ω ω

ω

λλ
µ

λ λ
µ

λ λ
µ

λ
λ µ

− + =

− + =

− + =

+ + =
14243

 (5.6) 

These relationships will be evaluated to validate the candidate solution. 

We saw that in the case of the magnetic torque problem the magnetic field 

of the Earth introduced a time-dependence into the Hamiltonian.  Therefore, the 

Hamiltonian was not a constant in the interval under consideration.  For the 
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current problem the Earth’s magnetic field is still a factor in the Hamiltonian.  

However, in this case, we will see that the effect of the magnetic field is reduced 

by the introduction of the pitch wheel, and the time rate of change of the 

Hamiltonian is reduced significantly. 

The final value of the Hamiltonian is again given by, 

 [ ] 0t
f

f f

E e
H t

t t
υ

∂ ∂
+ + =

∂ ∂
 

where the end manifold ( e ) is written in the standard form previously established, 

 ( , ) 0f fe x t =  

Then by inspection we can see that the final value of the Hamiltonian is negative 

one.   

 [ ] 1 0 [ ] 1f fH t H t+ = → = −  

 

3. Numerical Results 

The numerical example for this work was again taken from the Naval 

Postgraduate School’s current small satellite program, “NPSAT 1.”  The moment 

of inertias and orbital parameters were previously established in Table 5 and are 

assumed to be the system moments of inertia.  The control parameters are given 

in Table 7.  

The maneuver selected for simulation is a 135 degree roll (x-axis slew) 

and is a rest-to-rest maneuver in the orbit frame.  The initial and final pitch wheel 

angular momentums are free within the state bounds as an optimization 

parameter.  The time-optimal control solution is shown in Figure 60 and Figure 

61. 
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Figure 60 NPSAT 1 Torque Rod & Wheel Time-optimal Control Solution 
(1)  

 
Figure 61 NPSAT 1 Pitch Wheel Torque Time-optimal Control Solution (2) 

 

There are several interesting characteristics to this solution not the least of 

which is an apparent singular arc in the switching structure for the pitch wheel 

torque ( 4u ).  Before evaluating the optimality of the candidate solution the 

feasibility is evaluated.  The control solution is again propagated through a 
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separate ODE 45 dynamics simulator to verify that the candidate solution drives 

the dynamic system from the initial state to the final state.  Previous control 

solutions were propagated using a linear interpolation.  In this case a piecewise 

cubic hermite interpolating polynomial (pchip) produced more accurate results.  

The propagation results (Figure 62, Figure 63, and Figure 64) show that the 

control solution does meet the end point constraints and that the estimated states 

closely match those obtained during propagation.  The original solution obtained 

is shown in solid lines overlaid with the propagated states shown as ‘+’ marks 

below.  Therefore we conclude that the control solution is feasible. 

The state histories are shown (Figure 65, Figure 66, and Figure 67).  It 

comes as no surprise that the time-optimal maneuver is not an eigenaxis 

maneuver.  This is evident from both the variation in the quaternions 2 3&q q and 

the non-zero angular rates of 2 3&ω ω .   

 

Figure 62 Quaternion Solution and Validation by Propagation 
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Figure 63 Angular Rate Solution and Validation by Propagation 

 

 

Figure 64 Pitch Wheel Momentum Solution and Validation by 
Propagation 
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Figure 65 NPSAT 1 Slew Time-optimal Quaternion History 
 

 
Figure 66 NPSAT 1 Slew Time-optimal Angular Rate History 
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Figure 67 NPSAT 1 Slew Time-optimal Pitch Wheel Angular Momentum 
History 

 

 Next we evaluate the optimality of the feasible, candidate solution.  The 

switching functions are given in equations (4.11).  These are plotted overlaid with 

the scaled control solution (Figure 68, Figure 69, Figure 70, and Figure 71). 

 

Figure 68 NPSAT 1 Control Switching Function and Control Solution (1) 
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Figure 69 NPSAT 1 Control Switching Function and Control Solution (2) 
 

 
Figure 70 NPSAT 1 Control Switching Function and Control Solution (3) 
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Figure 71 NPSAT 1 Control Switching Function and Control Solution (4) 

 

Shown are the switching functions ( iS ) previously defined as the partial 

derivative of the Hamiltonian with respect to the control vector.  The KKT 

multiplier (Mu) is also shown plotted separately from the switching function.  The 

sum of the switching function and the KKT multiplier is the definition of the 

minimization of the Hamiltonian, equation (4.11), and should be numerically 

equal to zero.  As before the switching function and control are related by the 

KKT conditions: 

 

maximum 0

* minimum 0
singular  0

i

i i

i

S

u S
S

<


= >
 ≡

 

The Hamiltonian for this problem is shown in Figure 72.  As we alluded to 

earlier the time dependence observed in the magnetic torque control problem 

appears to have been eliminated.  In fact, it has been reduced to the extent that it 

is no longer visible.  By constraining the pitch wheel to zero torque and zero 

angular momentum the previous magnetic torque results are obtained. 
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Figure 72 NPSAT 1 Torque Rod & Wheel Problem Hamiltonian Evolution 

These figures clearly illustrate that the control solution meets optimality 

criteria established by the Hamiltonian minimization.  A closer look at the 

Hamiltonian minimization with respect to the pitch wheel torque is given in Figure 

73.  The switching function appears singular during the period in which the pitch 

wheel torque is zero. 

 

Figure 73 NPSAT 1 Control Switching Function for Wheel Torque (Close 
up) 
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4. Numerical Considerations and Scaling 

We continue with the linear scaling established previously.  In this section 

scaling was also added for the pitch wheel parameters in the form: 

 
h

h

t

h k h

k
h h

k

=

=& &  

As before the goal of the scaling is to bring all numerical values seen by the 

optimization solver into the same order of magnitude.  Scaling values were 

adjusted from an unscaled solution to improve the quality of the solution and then 

readjusted as necessary.   

 
5. Conclusions 

In this section the open loop time-optimal control for an asymmetric 

spacecraft equipped with three magnetic torque rods and a pitch wheel was 

determined.  The candidate solution was determined by propagation to be a 

feasible solution to the problem.  The optimality of the solution was validated 

through an analysis of the Hamiltonian minimization, switching functions and the 

behavior of the Hamiltonian.  Therefore, we conclude that the solution is feasible 

and meets the necessary conditions for optimality. 

By allowing the use of the pitch wheel as a spacecraft control, the time 

required for the reorientation maneuver was significantly reduced.  In the original 

configuration, with only magnetic torque control available, the time required for 

the optimal maneuver was 271.1564 seconds.  In the new configuration the same 

maneuver required only 141.9933 seconds.  This represents a 47.6 percent 

reduction in time required for the same maneuver. 
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VI. CONTROL MOMENT GYRO CONTROL SYSTEMS  

A. INTRODUCTION 

Control moment gyros (CMGs) are well known for their large torque 

generating capability.  However, in the past, because of their mechanical 

complexity, cost and weight they have been restricted to large satellites with high 

agility requirements.  Recent research in the design of smaller, less expensive 

CMGs has created a renewed interest in CMG spacecraft control.  However, the 

primary focus of this large body of work has been singularity avoidance1,2,3,4.  In 

this section we calculate the time-optimal solution for an asymmetric spacecraft 

using the much studied four -CMG pyramid configuration.  In addition to 

completing a time-optimal maneuver we will show that the problem formulation 

generates a singularity free solution.  

 

B. CONTROL MOMENT GYRO BASICS 

A control moment gyro contains a flywheel which spins at a constant rate.  

The spin axis of the flywheel is connected to a gimbal which allows reorientation 

of the spin axis.  Therefore, the direction of the angular momentum vector can be 

changed with respect to the spacecraft body frame by gimballing (Figure 74). 

 

Figure 74 Single-Gimbal Control Moment Gyro (After Ref.[5]) 
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For single-gimbal control moment gyros (SGCMG), the spin axis reorientation is 

restricted to a plane perpendicular to the gimbal axis.  The advantage of CMGs is 

that small gimballing results in a large control torque on the spacecraft.  This 

resultant torque is orthogonal to both the gimbal and spin axes.6  The torque from 

the CMG is given by: 

 CMGM h δ= ×
r r r&  (6.1) 

where h
r

 is the angular momentum vector and has units of Newton-meter-

seconds, δ
r&  is the gimbal angle rate with units of radians per second.  This 

torque amplification property makes CMGs desirable for applications that require 

spacecraft agility. 

 

C. PROBLEM FORMULATION 

Following a similar development to that used in Chapter V, recall that the 

time rate of change of angular momentum can be expressed as, 

 N b
ext S S S

N b

d d
M H H H

dt dt
ω   = = + ×      

r r r rr
 (6.2) 

where SH
r

 is the total angular momentum of the spacecraft-CMG system and is 

expressed in the spacecraft body frame.  Assuming that the CMG center of mass 

is collocated with the spacecraft center of mass we can express the system 

angular momentum as: 

 N b N CMG
B CMGH I Iω ω= +

r r r
 

 

where BI  and CMGI are the spacecraft and CMG system moment of inertias 

respectively and the angular velocity of the CMG with respect to the Newtonian 

frame is given by, 

 N CMG N b b CMGω ω ω= +
r r r

 

Then the angular momentum of the system can be written as, 
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 N b N b b CMG
S B CMG CMGH I I Iω ω ω= + +

r r r r
 

Once again, by defining, 

 B CMGJ I I+B  

we have, 

 N b b CMG
S CMGH J Iω ω= +

r r r
 

Then referring to equation (6.2) we have, 

 ( )N b b CMG N b N b b CMG
ext CMG CMGM J I J Iω ω ω ω ω= + + × +r r r r r& &  

Finally, by defining, 

 b CMG
CMG CMG CMG

B

d
h I h

dt
ω  =  

r rr && B  

we obtain the following: 

 N b N b N b
ext CMG CMGM J h J hω ω ω= + + × +

r rr r r&&  

If we allow N bω ω=
r

 and extM  to be all disturbance torque, then setting 

disturbance torque equal to zero we write, 

 CMG CMGJ J h hω ω ω ω+ × = − − ×
r rr r r r&&  (6.3) 

The CMG angular momentum vector ( h )* is a function of the gimbal 

angles (δ ) in the body frame and for multiple CMG configurations, a function of 

the configuration.  Here we consider the four -CMG pyramid configuration (Figure 

75).  Each face of the pyramid is inclined from the horizontal by a skew angle 

( β ).  The four CMGs have gimbal axes orthogonal to the pyramid faces and so 

are constrained to gimbal on the faces of the pyramid.  We have selected a skew 

angle, 54.73β =  degrees.  For CMGs with equal angular momentum about the 

                                                 
* We have adopted the notation lower case ‘h’ as CMG angular momentum and subsequently 

dropped the subscript. 
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spin axis this configuration results in a nearly spherical momentum envelope.  

Additionally, this configuration has been extensively studied in the literature.7 

 

 
Figure 75 Pyramid Mounting Arrangement of Four Single Gimbal CMGs 

(from Ref.[8]) 

Then referencing Figure 75, we can write the total CMG angular 

momentum expressed in the body frame as: 

 
1 2 3 4

1 2 3 4

1 2 3 4

sin cos sin cos

cos sin cos sin
sin sin sin sin

c c

h c c
s s s s

β δ δ β δ δ

δ β δ δ β δ
β δ β δ β δ β δ

− −       
       = + − + − +       
              

r
 (6.4) 

where coscβ β≡  and sinsβ β≡ .  The angular momentum magnitude is set to 

unity without loss of generality ( 0 1h = ).  Then the time of rate of change of 

angular momentum may be written as: 

 

1
1 2 3 4

2
1 2 3 4

3
1 2 3 4

4

cos sin cos sin

sin cos sin cos
cos cos cos cos

A

c c
dh

c c
dt

s s s s

δ
β δ δ β δ δ

δ
δ β δ δ β δ

δ
β δ β δ β δ β δ

δ

 
− −   

   = − −   
    

  

&
r &

&
&144444444424444444443

 (6.5) 
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The matrix A  is defined from equation (6.4) as, 

 i

j

h
A

δ
∂

=
∂

 

and is a 3 n×  Jacobian matrix where n  is the number of CMGs in the 

configuration.  Expanding equation (6.3) shows†, 

 

1 2 3 3 2

2 3 1 1 3

3 1 2 2 1

( )

( )

( )

x x y z y z

y y z x x z

z z x y x y

J J J h h h

J J J h h h

J J J h h h

ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω

− − = − − +

− − = − − +

− − = − − +

&&
&&
&&

 

where the values of ih are established in equation (6.4) and the values of ih&  are 

established in equation (6.5).  A lengthy direct substitution allows us to write the 

time rate of change of angular velocity in the standard form: 

 ( ),i i if x uω =&  

where the state vector and control vector are defined as: 

 
[ ]

11

4

state:  , ,

control:  

T

T

q

u

ω δ  ∈ 

∈

¡
¡

 

 
D. CMG TIME-OPTIMAL SLEW MANEUVERS 

In this section we consider the time-optimal reorientation of an asymmetric 

spacecraft controlled by control moment gyros.  In order to simplify the 

formulation the spacecraft is assumed to be in inertial space.  The maneuver is 

defined as rest-to-rest in the inertial frame where the initial attitude and attitude 

rates are known.  The final attitude and attitude rates are specified.  The gimbal 

angle of the CMG, the final state variable  is left free as an optimization variable.     

 

                                                 
† This derivation is also found in reference [6] where it is used in the development of a 

feedback control law. 
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1. Problem Statement 

Determine the controls [ ]1 2 3 4*, *, *, *u u u u that drive the spacecraft from its 

initial rest position, given by [ ]0x to its final rest position given by [ ]fx while 

minimizing the cost function: 

( ) ( )( ) 0, , f fJ x u t t t⋅ ⋅ = −  

where we have used the Mayer form of the cost function, subject to the following 

constraints: 

 Control / State Constraint:  The control and state constraints are defined in 

the standard form, 

 ( ) ( , ) ( )L Uh t h u t h t≤ ≤  

then our control constraints are written, 

 1 1  rad/sec 1,2,3,4iu i− ≤ ≤ =  

and the state constraint is given by: 

  rad 1,2,3,4i iπ δ π− ≤ ≤ =  

Physically, these equate to a CMG that is capable of full 360 degree rotation 

about its gimbal axis at a rate of 1 radian per second.  With a unit angular 

momentum then from equation (6.1) the maximum torque output from the CMG is 

1 Newton-meter. 
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Dynamic Constraints: 

 

( )

( )

( )

1
3 2

2
1 3

3
2 1

1
2

1

1

1

1,...,4

y z
x y z y z

x x x

z x
y x z z x

y y y

x y
z x y x y

z z z

i i

q q

J J h
h h

J J J

J J h
h h

J J J

J J h
h h

J J J

u i

ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω

δ

= Ω

−
= − − −

−
= − − −

−
= − − −

= =

&
&

&

&
&

&
&

&

 (6.6) 

where the quaternion kinematics equations shown have been previously defined.  

The quantity ih&  is defined in equation (6.5) in terms of the state δ and the control 

and the quantity ih is defined in equation (6.4) in terms of the state δ . 

 

2. Solving the Optimal Control Problem 

As before, the first step in solving the optimal control problem is to form 

the Hamiltonian.  Basic format of the Hamiltonian is repeated here‡, 

 ( , , , ) ( , , ) ( , , )TH x u t F x u t f x u tλ λ= +  

Since the cost functional was formulated without a Lagrange cost term the 

Hamiltonian reduces to the following. 

 ( , , , ) ( , , )TH x u t f x u tλ λ=  (6.7) 

Substituting equation (6.6) into equation (6.7) gives the Hamiltonian for the CMG 

spacecraft system. 

                                                 
‡ Recall that in this notation F is the Lagrange (running) cost and f are the state dynamics. 
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( )

( )

( )

1
3 2

2
1 3

3
2 1

1 1
2

1

1

x

y

z

y zT
q y z y z

x x x

z x
x z z x

y y y

x y
x y x y

z z z

T

J J h
H q h h

J J J

J J h
h h

J J J

J J h
h h

J J J

u

ω

ω

ω

δ

λ λ ω ω ω ω

λ ω ω ω ω

λ ω ω ω ω

λ

−  = Ω + − − − +  
   
 −

− − − +  
 

− 
− − − + 

 

&

&

&
 (6.8) 

Recall from equation (6.7) that the Hamiltonian is written in terms of the 

Lagrange multipliers, state vector, control vector and time.  In order for equation 

(6.8) to be rigorously correct substitutions from equation (6.4) and equation (6.5) 

are required.  However, this lengthy substitution is omitted. 

Since the control is constrained, Hamiltonian minimization is accomplished 

by adjoining the control constraint equations to the Hamiltonian as, 

 ( , , , , ) ( , , , ) ( , )TH x u t H x u t h u tλ µ λ µ+B  (6.9) 

Then, by differentiation of equation (6.8), with respect to the control vector and 

substituting from equation (6.4) and (6.5), we can write the necessary conditions 

for the Hamiltonian minimization as follows. 

 

1 1

2 2

3 3

1 1 1
1

2 2 2
2

3 3 3
3

4
4

cos cos sin sin cos 0

sin cos cos sin cos 0

cos cos sin sin cos 0

sin cos cos

yx z

yx z

yx z

yx

x y z

x y z

x y z

x y

H
u J J J

H
u J J J

H
u J J J

H
u J J

ωω ω
δ δ

ωω ω
δ δ

ωω ω
δ δ

ωω

λλ λ
β δ δ β δ λ µ

λλ λ
δ β δ β δ λ µ

λλ λ
β δ δ β δ λ µ

λλ
δ β δ

∂
= + − + + =

∂

∂
= − + − + + =

∂

∂
= − − − + + =

∂

∂
= −

∂ {4 44 4sin cos 0z

i

i

z Mu
S

J
ω

δ δ

λ
β δ λ µ− + + =

14444444444244444444443

 (6.10) 

These conditions will be evaluated to validate the candidate solution. 
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Inspection of the Hamiltonian equation reveals no direct dependence on 

time.  Therefore the time rate of change of the Hamiltonian is zero and we expect 

a constant valued Hamiltonian for the interval under consideration. 

 The final value of the Hamiltonian is given by, 

 [ ] 0t
f

f f

E e
H t

t t
υ

∂ ∂
+ + =

∂ ∂
 

where the end manifold ( e ) is written in the standard form previously established, 

 ( , ) 0f fe x t =  

Then by inspection we can see that the final value of the Hamiltonian is negative 

one.   

 [ ] 1 0 [ ] 1f fH t H t+ = → = −  (6.11) 

Thus we expect a Hamiltonian with a constant value of -1 over the interval of the 

maneuver. 

 

3. Numerical Results 

For this numerical example we used the asymmetric moment of inertia of 

the NPSAT 1 small satellite design previously established (Table 5) and 

assumed to be the system moments of inertia.  The orbital parameters were 

neglected since the model was assumed in inertial space.  The physical 

parameters for the CMG are summarized in Table 8. 

NPSAT 1 SIMULATED CMG SYSTEM 

Gimbal Rotation Range 360 deg 

Maximum Gimbal Rotation Rate 1 rad/sec 

Maximum Angular Momentum 1 N-m-sec 

Maximum Output Torque 1 N-m 

Table 8 Simulated CMG Characteristics 
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The maneuver selected for simulation is a 135 degree roll (x-axis slew) 

and is a rest-to-rest maneuver in the inertial frame.  The initial and final CMG 

gimbal angles are free within the state bounds.  Therefore, we can write the end 

point conditions as follows: 

 
0 0 0 0

1 2 3 4 1 2 3 1 2 3 4

0 1 2 3 4

1 2 3 4

[ , , , , , , , , , , ]

[0,0,0,1,0,0,0, , , , ]

135 135
sin ,0,0,cos ,0,0,0, , , ,

2 2 f f f f

T

T

T

f

x q q q q

x

x

ω ω ω δ δ δ δ

δ δ δ δ

δ δ δ δ

=

=

    =     
    

 

The time-optimal control solution is shown in Figure 76.  Our engineering 

intuition would lead us to expect a bang-bang solution for a time-optimal 

maneuver.  The control solution indicates that the solution is a bang-bang 

response from all four CMGs with 5 control switches.  This is a surprisingly clean 

solution considering the complexity of the CMG dynamics derived above.   

As we have seen previously, the feasibility of the candidate solution is 

evaluated propagating the control solution through a separate ODE 45 dynamics 

simulator to verify that the candidate solution drives the dynamic system from the 

initial state to the final state.  A linear interpolation was used in the propagation 

sub-routine.  The propagation results (Figure 77, Figure 78, and Figure 79) show 

that the control solution does meet the end point constraints and that the 

estimated states closely match those obtained during propagation.  The original 

solution obtained is shown in solid lines overlaid with the propagated states 

shown as ‘+’ marks below.  Therefore we conclude that the control solution is 

feasible. 
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Figure 76 CMG Time-optimal Control Solution 
 

 
Figure 77 CMG Solution Quaternion History Validation by Propagation 
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Figure 78 CMG Solution Angular Rate History Validation by Propagation 
 

 
Figure 79 CMG Solution Gimbal Angle History Validation by Propagation 
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The state histories are shown (Figure 80, Figure 81, and Figure 82).  Once 

again we see that the time-optimal maneuver is not an eigenaxis maneuver.  This 

is evident from both the variation in the quaternions 2 3&q q and the non-zero 

angular rates of 2 3&ω ω .  Additionally, the gimbal angle history demonstrates 

 
Figure 80 CMG Slew Time-optimal Quaternion History 

 

Figure 81 CMG Slew Time-optimal Angular Rate History 
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Figure 82 CMG Slew Time-optimal Gimbal Angle History 

 

the state is reasonably well behaved and within the state constraints [ ],π π−  

imposed in the problem formulation.  The time required to complete the 

maneuver is 4.24 seconds.  This, as expected, is faster than the previous 

idealized actuator solution for this moment of inertia configuration (see Chapter 

III).  The torque available from the four actuators is higher than the previous 

idealized actuator toque numerical example and therefore we expect faster 

maneuvering.  So our engineering judgment leads us to believe that the solution 

is correct.  

 Next we evaluate the optimality of the feasible, candidate solution.  The 

switching functions are given in equations (6.10).  These are plotted overlaid with 

the control solution (Figure 83 through Figure 86).  Shown are the switching 

functions ( iS ) previously defined as the partial derivative of the Hamiltonian with 

respect to the control vector.  The KKT multiplier (Mu) is also shown plotted 

separately from the switching function.  The sum of the switching function and 

the KKT multiplier is the definition of the minimization of the Hamiltonian, 

equation(4.10), and should be numerically equal to zero. 
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Figure 83 CMG Control Switching Function and Control Solution 

 

 

Figure 84 CMG Control Switching Function and Control Solution (2) 

 



122 

 

Figure 85 CMG Control Switching Function and Control Solution (3) 

 

 

Figure 86 CMG Control Switching Function and Control Solution (4) 
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As before the switching function and control are related by the KKT conditions: 

 

maximum 0

* minimum 0
singular  0

i

i i

i

S

u S
S

<


= >
 ≡

 

These figures clearly illustrate that the control solution meets the necessary 

conditions for optimality established by the Hamiltonian minimization.   

The Hamiltonian transversality and evolution conditions were defined in 

equations (4.12) and (6.11).  The computed Hamiltonian is shown in Figure 87.  It 

is clear that the Hamiltonian is numerically well behaved and meets the 

necessary conditions for optimality. 

 

Figure 87 CMG Time-optimal Slew Solution Hamiltonian 
 

Based on an analysis of the necessary conditions and engineering 

judgment the solution obtained appears optimal for the system under 

consideration. 
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4. Numerical Considerations 

The principal problem associated with CMG systems for spacecraft 

attitude control is the well known geometric singularity condition.9  This refers to a 

condition in which no torque is generated for a commanded control torque in a 

certain “singular” direction.  Mathematically, this occurs when the A  matrix 

defined in equation (6.5) is singular or rank deficient.  By solving for the optimal 

control vector *u  to minimize an objective function we have required that the 

control solution satisfy equation (6.5) as part of the constraints in the problem 

formulation.  As a result the possibility of the matrix A  being singular is 

eliminated.  The condition number of A is an indication of how close this matrix is 

to being singular10.  Condition number is defined as the ratio of the largest to the 

smallest singular value of the matrix.  The condition number of an identity matrix 

is one and the condition number of a matrix approaches infinity as the matrix 

becomes singular.  The condition number of the A  matrix is shown in Figure 88.  

It is clear that the matrix is well behaved throughout the maneuver. 

 

 
Figure 88 Condition Number of CMG Control Solution Jacobian Matrix 
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The far-reaching effects of this singularity free solution will be discussed in the 

next chapter.  

 
 
 

5. Conclusions 

In this section the open loop time-optimal control for an asymmetric 

spacecraft equipped with four CMGs arranged in a pyramid configuration was 

determined.  The candidate solution was determined by propagation to be a 

feasible solution to the problem.  The optimality of the solution was validated 

through an analysis of the Hamiltonian minimization, switching functions and the 

behavior of the Hamiltonian.  Therefore, we conclude that the solution is feasible 

and meets the necessary conditions for optimality.  Additionally, it was shown 

that the control solution is completely free of singularities.  This leads us to 

conclude that if the control solution can be computed in real-time, then singularity 

avoidance in control moment gyro actuator based systems is unnecessary.   
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VII. CLOSED LOOP CONTROL  

A. INTRODUCTION  

Classical closed-loop control techniques are, in general, ill suited for slew 

maneuver time-optimal control.  This is due in part to the nonlinear nature of the 

problem and the inability of classical control techniques to generate time-optimal 

solutions.  Additionally, control solutions must be resolved into actuator input 

parameters to generate the desired torque.  This method, which requires 

inverting the actuator dynamics equation, has led to singularity problems that 

continue to plague engineers as evidenced by ongoing  research1,2,3,4,5. 

This chapter addresses the computation of real-time optimal controls for 

spacecraft slew maneuvers.  Prior research efforts were focused on minimizing 

deviations from a nominal optimal trajectory.  These neighboring optimal control 

(NOC) laws, presented by Bryson and others6,7 have been used in a variety of 

applications. 

More recently a two degree-of-freedom, non-linear optimal control system 

architecture was suggested by Strizzi, Yan, et al.8,9  This concept relied on the 

computational power of pseudospectral methods to develop optimal controls and 

NOC laws. 

In this work optimal control solutions to the non-linear plant are generated 

to implement a sampled-data feedback control law.10  Previous optimal solutions 

are used as guess for subsequent re-optimized trajectories and significant 

reductions in computation time are demonstrated. 

 

B. CLASSICAL CLOSED LOOP CONTROL 

A basic diagram of a classical closed loop spacecraft attitude control 

system is shown in Figure 89.  In this type of model sensors determine the 

attitude and attitude rates.  These are in some way compared with desired  
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Figure 89 Classic Closed Loop Spacecraft Attitude Control System 

 

attitude and rates and the difference or error signal is used to determine a 

desired control torque to reduce the error signal to zero.  Typical approaches for 

control command generation involve using Euler angle errors for small rotations 

and either a direction cosine error matrix or a quaternion error vector for large 

angular rotations.11  In either case proportional plus derivative gains are imposed 

in order to achieve desired performance.  This type of command generation has 

two inherent problems.  First, the command generation performs no better than 

an eigenaxis maneuver and in fact will seldom perform so well.  Second, 

generating a desired control torque for use as an actuator input has led to 

numerous singularity problems of which the best known is the control moment 

gyro problem. 

 

1. Error Signal Command Generation 

In previous sections we have seen that the time-optimal solution is a 

function of the magnitude of the maneuver and the spacecraft moment of inertia.  

While error signal command generation is capable of generating the eigenaxis 

path the command signal is not the familiar bang-bang we have come to expect 

from time-optimal solutions.  As the spacecraft approaches the desired attitude 

the command generated from the error signal approaches zero.  Additionally, the 

command generation algorithm does not utilize spacecraft moment of inertia 

information in developing the command.  Modern control system engineers have 



129 

made use of feedforward signals and other more imaginative techniques to 

improve slew performance however; these require an a priori knowledge of the 

maneuver and control solution.  This is in effect a step back from the autonomy 

that we seek to achieve. 

 

2. Singularity Issues 

We have seen that the command generation algorithm outputs a desired 

torque output from the actuator based on the error signals without regard to the 

method of torque generation.  This desired torque is sent to the actuator as a 

commanded torque signal to be accomplished.  The question to consider is 

under what circumstance is the commanded torque actually output from the 

actuator and what are the effects on the desired maneuver when the 

commanded torque is not output from the actuator. 

Consider an ideal, unlimited torque thruster which is mathematically 

modeled as: 

 
1 1

2 2

3 3

signal

signal

signal

1 0 0
0 1 0
0 0 1

out

out

out

T T

T T

T T

          =    
            

 

In this case the input signal ( signalT ), results in the corresponding output torque 

( outT ).  Therefore, given the desired actuator output torque ( outT ), from command 

generation, we can solve for the required input signal to the actuator ( signalT ) as, 

 
1 1

2 2

3 3

1
signal
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1 0 0
0 1 0
0 0 1

out

out

out

T T

T T

T T

−        =    
           

 

The actuator dynamics, represented in matrix form, in this case as the identity 

matrix, must be inverted to resolve the desired output torque.  In this case the 

commanded torque generates the output toque desired.  Unfortunately, actuator 

dynamics are seldom this simple.  As a result we define an actuator singularity as 
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a condition in which no control torque is generated for the commanded torque 

along a certain direction.  Mathematically, this is a condition in which the actuator 

dynamics matrix is singular. 

 Consider the case of the asymmetric spacecraft subject to CMG control.  

This case was examined in detail in Chapter VI.  Since we have determined that 

the error command generation algorithm is unsuited for generating bang-bang 

controls suppose that we elect to feed forward the bang-bang control structure 

shown in Figure 90.  This control torque on the spacecraft would result in a 135 

degree slew about the x-axis for NPSAT 1 .  

 

 

Figure 90 Asymmetric Eigenaxis Rotation Torque Control Solution 
 

In this case the torque command signal becomes the input to the CMG actuator 

in our spacecraft model (Figure 91).  The input or commanded torque signal must 

be resolved into a gimbal angle rate.  This is generally accomplished in 

accordance with a command pseudoinverse steering logic12.  In this steering 

logic for the commanded torque input (u ), the CMG momentum rate command 

(h& ) is defined as: 
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 h u hω= − − ×&  

and the gimbal rate command (δ& ) is then obtained by: * 

 ( ) 1T TA h A AA hδ
−+= =& &&  

 

Figure 91 Spacecraft Model with CMG Actuators 

 

where the matrix A  is a function of the gimbal angles (δ ) and was previously 

defined in Chapter VI (Equation (6.5)).  If the matrix A  becomes rank deficient for 

certain sets of gimbal angles the pseudoinverse fails to exist and singular states 

are encountered.  Previously, we showed that the time-optimal CMG solution 

resulted in well behaved condition numbers for the matrix A (See Figure 88).  In 

this case the bang-bang control solution, when used as the desired torque on the 

spacecraft, produced the A  matrix condition numbers shown in Figure 92.  

These results are four-orders of magnitude larger than those obtained in the  

                                                 
* A+ is also called the Moore-Penrose inverse of A or the generalized inverse of A. 
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Figure 92 Condition Number of CMG Jacobian Matrix with Independent 
Torque Solution 

 
Figure 93 Gimbal Angle Rates From Pseudoinverse Steering Logic 

 

previous section.  As a result of the poor condition of this matrix the algorithm  

attempts to drive the gimbal angle rates to infinity.  Gimbal angle rates resulting  
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from this simulation are shown in Figure 93.  The zoomed in view of the gimbal 

angle rates from 4-6 seconds is shown in Figure 94.   

 
Figure 94 Gimbal Angle Rates from Pseudoinverse Steering Logic 

(Close-up) 

 

Gimbal angle rates are driven towards infinity as the singular states are 

approached.  Clearly, the singularity is not caused by the bang-bang structure of 

the input torque.  Comparing the commanded torque signal (Figure 90) with the 

condition number plot (Figure 92) or the gimbal angle rates (Figure 93) indicates 

that the singular states are encountered prior to the control switch. 

 Singularity avoidance is an unintended and yet significant benefit of the 

time-optimal control algorithm.  In effect the singularity problem is avoided both 

mathematically and physically by requiring that the time-optimal control vector 

satisfy the actuator constraints in the problem formulation such that, 

 ( ) ( )*u A hδ δ ω δ = − − × 
&  

The actuator dynamics are solved iteratively from left to right vice right to left.  

The previous matrix inversion is eliminated and the solution is optimal with regard 

to the actuator capabilities. 
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 In this example we have examined the CMG singularity problem since it is 

well known.  However, the same logic could be applied to any actuator system 

that is not an ideal torque generating device.  Magnetic torque rods represent a 

second well known system for which the actuator has known singularities.  In this 

case, a desired torque output from the torque rod must be resolved in the 

magnetic dipole moment of the torque rod.  The torque output of a magnetic 

torque rod is given by:  

 3 2 1

3 1 2

2 1 3

0
0

0

T m B

B B m
T B B m

B B m

= ×

−   
   = −   
   −   

r rr

r  (7.1) 

 

Therefore, given the desired torque output we have: 
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−
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   = −   
   −   

r

144424443

 (7.2) 

The inverse of equation (7.1) does not exist.  Therefore it is impossible to 

achieve control of the three body axes by means of the created magnetic dipole 

vector in the satellite13.  However, using the time-optimal control formulation as 

demonstrated in Chapter III and Chapter IV we require that the optimal control 

vector (m ) satisfy equation (7.1).  Again, the singular condition is avoided by 

eliminating the matrix inversion and iteratively solving the problem from right-to-

left.  

 

C. BELLMAN’S PRINCIPLE OF OPTIMALITY 

Bellman’s principle of optimality is a powerful tool when applied to closed 

loop time-optimal control.  It states that given an optimal trajectory from a point A 

to a point B, the trajectory to point B from a point C lying on the optimal trajectory 

is also optimal14. 



135 

 

A 
B 

C 

 
Figure 95 Principle of Optimality 

 

In this work this principle serves three purposes.  First, it verifies optimality 

in the absence of costate information.  Optimal trajectories are obtained and 

verified by recalculating the trajectory from an intermediate point on the 

trajectory.  Second, in the presence of a disturbance torque, this principle allows 

the use of previous optimal solutions as guesses for subsequent trajectories.  

Since the disturbed state is near the optimal state using the previously calculated 

state trajectory as a guess for the re-optimized state trajectory significantly 

reduces the computation time.  Finally, it allows us to evaluate the accuracy of a 

solution based on a finite number of LGL points. 

Shown in Figure 96 is the now familiar quaternion trajectory for the 

asymmetric spacecraft time-optimal slew maneuver.  The intermediate point 

selected is on the optimal trajectory and marked with a bold square.  The 

subsequent solution is overlaid with “+” marks.   
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Figure 96 Asymmetric Time-optimal Quaternion Solution – Bellman’s 
Principle of Optimality 

 

The subsequent solution clearly obeys Bellman’s Principle of Optimality.  While 

this may not be sufficient to mathematically demonstrate the optimality of the 

solution it can certainly be considered a necessary condition.  The original 

solution was obtained using 30 LGL points (nodes) and was based on a two-

point guess defined by the initial and final conditions.  The subsequent solution 

also used 30 nodes but was provided with a guess which consisted of 15 points 

from the previous solution.  The computation times† as determined by the 

MATLAB tic and toc commands are shown in Table 9. 

                                                 
† All computations were performed on a Pentium 4 Windows based operating system at 3.06 

GHz with 512 MB RAM using MATLAB 6.5.0.1 Release 13.  Emphasis is placed on the relative 
vice absolute computational time. 
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Computation Time 

Original Solution 42.5310 seconds 

Subsequent Solution 2.6250 seconds 

Reduction, %  93.83 

Table 9 Bellman Principle Effect on Computational Time 

 

The accuracy of the solution obtained is related to the number of nodes 

used in the algorithm.  The number of nodes also has a significant effect on 

computational time.  Therefore, we strive to choose a number of nodes that 

meets our accuracy goal without creating excessively long computational times.  

As the number of nodes increases, the values returned, states, costates, etc. 

converge so that the difference between solutions approaches zero.  Therefore, if 

the number of nodes is increased and the behavior of the solution changes 

considerably the original solution is shown to be inaccurate.  In Figure 97, a low 

node (6 nodes) solution is overlaid with a high node solution (30 nodes) from an  

 

Figure 97 Effect of Increasing Nodes on Quaternion Solution 
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intermediate point on the optimal trajectory.  The significant change visible in the 

state trajectory and final time are indications that the low node solution has 

questionable accuracy. 

 

D. REAL-TIME OPTIMAL CONTROL 

In this section we provide two examples of closed loop time-optimal 

control.  In each case the simulation is as shown in Figure 98.  The primary 

tuning parameter for spacecraft performance is the open-loop propagation 

interval.  Ignoring computational delay, the state is sampled and an open loop 

control solution is generated time-indexed to the predicted spacecraft state.  This 

solution is propagated for a set interval, the propagation interval, after which the 

state is re-sampled and a re-optimized trajectory is computed.  Currently, 

computation times are recorded for comparison and evaluation but ignored in the 

simulation. 
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Figure 98 Closed Loop Simulation Model 

 

1. Asymmetric Spacecraft with Idealized Actuator Control 

The time-optimal reorientation of an asymmetric spacecraft with idealized 

actuator control was addressed in detail in Chapter III.  The spacecraft and 

orbital parameters remain unchanged for the closed loop simulation and are 

OR 



139 

available in Chapter III.  A constant disturbance torque has been added to the 

model.  This disturbance torque will perturb the model off the optimal trajectory 

and require re-optimization.  Since we know from the previous chapter that the 

time-optimal open loop maneuver is approximately 6 seconds the disturbance 

torque has been amplified from what might be considered normal for graphical 

visualization.  The disturbance torque has been selected as: 

 

0.108 N m
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 The open loop time-optimal control solution and the propagated solution in 

the presence of this disturbance torque are shown in Figure 99.  The solid lines 

indicate the optimal trajectory; the propagated trajectory is marked as ‘+’.  It is  

Figure 99 Asymmetric Spacecraft Time-optimal State Solution and 
Propagation 

 

clear that in presence of a disturbance torque the open loop solution would not 

deliver acceptable performance.   

 The propagation interval for this closed loop simulation was selected as 1 

second.  The results of the first interval of propagation are shown in Figure 100 

and Figure 101.  At this time the spacecraft state is sampled and the time-optimal   
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Figure 100 Asymmetric Spacecraft  Quaternion Propagation Interval 1 

 

Figure 101 Asymmetric Spacecraft Angular Rate Propagation Interval 1 

 

solution is computed from the current attitude and rate to the desired attitude and 

rate.  In the next two figures, (Figure 102 and Figure 103) the re-optimized 

trajectory is shown along with the original trajectory.  The basic structure of the 

optimal state trajectories is the same and the end point conditions are met.  
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Figure 102 Asymmetric Spacecraft Quaternion Propagation Interval 2 

 

 

Figure 103 Asymmetric Spacecraft Angular Rate Propagation Interval 2 

The sample and update cycle continues from Figure 104 through Figure 

113.  Each time the state is sampled the time-optimal solution is generated and 

propagation continues with the updated solution. 
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Figure 104 Asymmetric Spacecraft Quaternion Propagation Interval 3 

 

 

Figure 105 Asymmetric Spacecraft Angular Rate Propagation Interval 3 

 

With each update it is clear that a re-optimized trajectory is generated from the 

current state of the spacecraft to the final state which remains a constant. 

 Updated 
Solution 
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Figure 106 Asymmetric Spacecraft Quaternion Propagation Interval 4 

 

 

 

Figure 107 Asymmetric Spacecraft Angular Rate Propagation Interval 4 
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Figure 108 Asymmetric Spacecraft Quaternion Propagation Interval 5 

 

 

Figure 109 Asymmetric Spacecraft Angular Rate Propagation Interval 5 

 

Previous 
Solutions 
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Figure 110 Asymmetric Spacecraft Quaternion Propagation Interval 6 

 

 

Figure 111 Asymmetric Spacecraft Angular Rate Propagation Interval 6 
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Figure 112 Asymmetric Spacecraft Quaternion Propagation Interval 7 

 

 

Figure 113 Asymmetric Spacecraft Angular Rate Propagation Interval 7 

 

The completed maneuver is shown in Figure 112 and Figure 113.  The 

time required to complete the 135 degree reorientation about the x-axis in the 
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presence of the disturbance torque is 7.2652 seconds.  The original solution 

time, modeled without a disturbance was 6.1825 seconds.  Each subsequent 

solution calculated from the sampled state met the feasibility and optimality 

criteria that were established for this problem formulation in Chapter III. 

Computation time is related to propagation interval in that longer 

propagation intervals in the disturbance field cause the spacecraft to deviate 

further from the optimal trajectory.  This results in longer computation times.  The 

computation times for the simulation are shown in Figure 114.  The average 

value of the update solutions (solutions 2 through 7) is 11.9296 seconds.  This is 

due to the large disturbance torque modeled to aid in the visual clarity of the 

graphics.  When the disturbance torque is modeled as something more realistic 

for the spacecraft and orbital parameters the previous disturbances are reduced 

by 5 orders of magnitude.  The resulting update computation times then 

decrease to an average value of 4.0566 seconds. 

 

 

Figure 114 Asymmetric Spacecraft  Idealized Actuator Time-optimal 
Solution Computation Time 
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a. Numerical Considerations and Notes 

Simulated spacecraft states were numerically generated by a 

MATLAB ODE45 propagation subroutine.  The generated control vector plus the 

disturbance torque were used as input; the spacecraft state was extracted 

following propagation to simulate a sensor reading.  In some cases due to 

numerical approximations and truncation errors the norm of the quaternion was 

not equal to one to the precision required for the optimization algorithm (DIDO) to 

determine a feasible solution.  In order to resolve this problem the sampled-state 

quaternion vector was normalized as follows: 

 sample

normal

2

i
i

q
q

q
=  

Additionally, Figure 114 indicates, and it was observed, that the 

computation time for the final re-optimization of a trajectory was in general longer 

than previous computation times.  Since this algorithm was originally conceived 

for large angle slew maneuvers constant scaling parameters were applied based 

on the maneuver open loop solution.  As the maneuver approaches completion 

and the trajectory is re-optimized the magnitude of the problem has changed to 

the extent that the original scaling parameters are poorly chosen.  The problem 

requires a scaling parameter adjustment based on the remaining horizon. 

 

2. Asymmetric Spacecraft with Magnetic Torque Rod Control 

The time-optimal reorientation of an asymmetric spacecraft under 

magnetic torque control was treated in detail in Chapter IV.  Once again the 

spacecraft and orbital parameters are based on the NPSAT 1 small satellite 

program and found in Table 5.  

The closed loop simulation, while made more complex by the time-varying 

magnetic field, is accomplished as shown in Figure 98.  The constant disturbance 

torque selected for propagation is: 
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The larger disturbance torque, used in the previous example for visual clarity, 

would overpower the torque available from the system and make the spacecraft 

uncontrollable.  Recall that the time-optimal open-loop maneuver required 

approximately 273 seconds.  The state trajectories resulting from the propagation 

of the open loop solution in the presence of the disturbance torque are shown in 

Figure 115 and Figure 116.  The end point error, although difficult to see in the 

graphical presentation is significant enough to warrant correction.  A comparison 

of the actual vs. desired state is shown in Table 10.   

 

 

Figure 115  Magnetic Torque Open Loop Solution Propagated with 
Disturbance Torque 
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Figure 116 Magnetic Torque Open Loop Solution Propagated with 
Disturbance Torque (2) 

 

 

State Desired Actual Error
q1 0.9239 0.9216 0.0023
q2 0 -0.01 0.01
q3 0 0.0206 0.0206
q4 0.3827 0.3879 0.0052

Omega 1 0.00 -1.00E-04 1.00E-04
Omega 2 7.72E-04 7.00E-04 7.25E-05
Omega 3 7.72E-04 1.30E-03 5.28E-04

Propagation Error with Disturbance

 
Table 10 State Trajectory Propagation Error with Disturbance 

 

A  propagation interval of 15 seconds was selected for this simulation 

based on the open loop maneuver time and the magnitude of the disturbance 

torque.  As before, following propagation the spacecraft state is sampled and the 

trajectory is re-optimized from the current state. 
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DIDO has internal constraints which define the accuracy with which the 

optimal trajectory must reach the defined end points.  In order to facilitate the 

solution, box constraints were applied to the desired end state.  These form an 

upper and lower bound on the end state such that and acceptable end state is ± 

epsilon from the exact end state.  For this simulation epsilon was set as, 

 
0.006

0.0001

qε

εω

=

=
 

The end state box constraints appeared to increase computational speed.  

In Figure 117, the first update to the disturbed quaternion trajectory is shown and 

appears to complete the maneuver faster than the original undisturbed solution.  

This is not surprising.  The open loop solution was formulated to the end point 

and the subsequent solution was formulated to the end point with the addition of 

the box constraint.  Additionally, it is possible that the constant disturbance 

torque is initially providing some benefit to maneuver speed.  However, the final 

closed loop state trajectories (Figure 118 and Figure 119) demonstrate that to 

meet the established accuracy requirements in the presence of the disturbance 

torque requires additional time. 
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Figure 117 Magnetic Torque Quaternion Propagation Interval 2 

 

 

Figure 118 Magnetic Torque Quaternion Propagation – Maneuver 
Completion 

 

Re-optimized 
Trajectory 
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Figure 119 Magnetic Torque Angular Rate Propagation – Maneuver 

Completion 

A comparison of the open loop maneuver with the disturbed closed loop 

maneuver shows that the disturbance increases the overall maneuver time. 

The disturbance free simulation required 273.4117 seconds to complete the 135 

degree x-axis slew.  The close loop maneuver in the presence of the disturbance 

torque required 285.3174 seconds.  The overall accuracy improvement is shown 

in Table 11.  The improvement appears significant enough to warrant the 

application of closed loop control.  Again, all subsequent solution updates met 

the feasibility and optimality necessary conditions that were established in 

Chapter IV. 

State Desired Actual Error Error Reduction, %
q1 0.9239 0.9263 0.0024 4.35
q2 0 0.0042 0.0042 58.00
q3 0 0.006 0.006 70.87
q4 0.3827 0.3767 0.006 15.38

Omega 1 0.00 -1.00E-04 1.00E-04 0.00
Omega 2 7.72E-04 8.00E-04 2.75E-05 62.01
Omega 3 7.72E-04 7.00E-04 7.25E-05 86.26

Closed Loop Propagation Error

 
Table 11 Closed Loop State Propagation Results 
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 As before, computation time is the key to establishing the feasibility of 

closed loop real-time optimal control.  The computation of magnetic torque time-

optimal maneuvers is significantly complicated by the time-varying magnetic 

fields.  This is illustrated by the long computation time required for the open loop 

solution shown in Figure 120.  The open loop solution was based on a two-point 

guess, the end points, and calculated over 30 nodes.  The subsequent solutions 

 

 

Figure 120 Magnetic Torque Time-optimal Maneuver Computation Time 

 

were also calculated over 30 nodes but used the previous state, control solution 

as a guess.  The time required for the open loop solution was 324.9680 seconds, 

subsequent solutions had an average time of 12.3407 seconds.  This represents 

a computation time reduction of 96.2 percent. 

 

E. CONCLUSIONS  

This section has demonstrated that classical feedback control theory is ill 

equipped to handle time-optimal maneuvers.  More recent techniques employing 

neighboring optimal control laws have improved slew performance but still 

require inverting the actuator dynamics and therefore require singularity 
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avoidance.  By requiring that the control solution satisfy the actuator dynamic 

constraint equations singularity avoidance is automatically eliminated. 

Strizzi et al.15 noted, and engineering common sense agrees, that if open 

loop control solutions can be generated in real-time they become equivalent to 

feedback control laws.  Computational power and numerical methods have come 

together to make this a reality. 

The two numerical examples presented in this section illustrate the 

concept of fast and slow dynamics.  In the idealized actuator example, a 

computational time of 10 seconds would not suffice for real-time control.  

However, that computation time applied to the magnetic torque example would 

seem an excessive requirement.  The computational speed required to achieve 

real-time optimal control is a product of both the plant dynamics and desired 

performance characteristics. 

Empirically it was observed that the time required to calculate the 

subsequent trajectories is a function of two factors, deviation from optimal 

trajectory and amount maneuver remaining.  As the frequency at which updates 

are made increases, the amount of deviation from the optimal trajectory due to 

disturbance torques and plant uncertainties necessarily decreases.  Therefore, 

computation time required decreases as update frequency increases.  Second, 

as the maneuver approaches completion the computation time required 

asymptotically approaches a minimum value. 

Using previous solutions to jump start the updated solution was shown to 

significantly reduce solution computation time.  Further reductions in actual 

computation time are predicted by reducing operating system overhead and 

employing field programmable gate arrays. 
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VIII. FUTURE WORK 

The work in this thesis is by no means ready for on-orbit testing.  What 

follows are areas of improvement and future research that time precluded. 

 

A. ALGORITHM IMPROVEMENT AND OPTIMIZATION 

This algorithm was originally conceived for large angle slew maneuvers.  

To that end, numerical scaling was used to adjust all parameters to within the 

same order of magnitude.  This improved the accuracy of results and reduced 

computational time.  However, as the spacecraft moment of inertia was varied 

there were conditions under which separate scaling for the angula r rates of the 

body axes would have improved performance.  A scaling format based on 

structure array variables1 would simplify coding and allow separate scaling for 

each variable. 

Additionally, the time scaling was designed for the initial open loop 

solution and held constant throughout the closed loop simulation.  Therefore, as 

the time-to-go horizon decreased, the problem was poorly scaled in some cases.  

As the spacecraft state is sampled for each re-optimization the time scale should 

be adjusted so as to ensure that subsequent solutions are well scaled for 

accuracy and to reduce computational time. 

Though great emphasis has been placed on computational time in the 

realization of real-time optimal control, the algorithms used in this work were not 

designed to be time-efficient.  Some reconfiguration of the loops and control 

structure of the algorithms would undoubtedly result in additional computational 

speed.  

Finally, though not the subject of this work, increasing the speed of the 

reusable software package DIDO is being investigated.  Through encoding 

analytic Jacobian significant computational speed enhancements are possible.2,3 
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B. COMPUTATIONAL DELAY MODELING 

Key to the implementation of this algorithm is the computational delay 

associated with the solution to the optimal control problem.  As shown in Figure 

121 the computational delay ( cδ ) is the time from when the state is observed at t1 

until the time when the re-optimized control solution is available at t2.  During that 

time the state is continuing to propagate under the previous control solution. 

 

 

 

* 

+ 

* 

+ 

x 

u 

t 

t 
t0 t1 

dc 

t2 

* 

 

Figure 121 Conceptual Computational Delay Model 
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Bellman’s principle of optimality says that in the absence of a disturbance 

torque the sampled state at t1 would lie on the optimal trajectory and the updated 

control solution would be identical to the original solution.  However, in the 

presence of a disturbance, the sampled state could be off the optimal trajectory 

and the updated control solution would not be applied until some non-zero time 

later.  In this case, the re-optimized solution would be applied to a system whose 

state has propagated to another point, presumably off the re-optimized trajectory 

thus inducing some error into the system.  In this work, the computational delay 

was taken to be negligibly small.  In fact, the effect of the computational delay is 

a function of both the spacecraft dynamics and the desired performance.  

Numerical modeling and simulation of the effect of computational delay is 

necessary to determine both a sample rate and maximum acceptable 

computational delay. 

 

C. EXTENSION TO HARDWARE 

Finally, much research is needed, and has begun, to implement these 

algorithms in hardware.  Implementation via field programmable gate arrays 

(FPGA) is in ongoing.  Through the efforts of others this project will see air-

bearing testing and eventual on-orbit testing. 

 



160 

 
                                                 

ENDNOTES 
 

1 Hanselman, D. and Littlefield, B.  (2001).  Mastering MATLAB 6 – A Comprehensive 
Tutorial and Reference.  Prentice Hall, Upper Saddle River, NJ. 

2 Strizzi, J., Ross, I.M., Fahroo, F.  (2002).  “Towards Real-Time Computation of Optimal 
Controls for Nonlinear Systems.”  Proceedings of the AIAA Guidance, Navigation, and Control 
Conference, Monterey, CA, August 2002.  AIAA Paper No.  2002-4657. 

3 Ross, I.M. and Fahroo, F., “Issues in the Real-Time Computation of Optimal Control,”  
Mathematical and Computer Modeling, An International Journal, Vol. 40, Pergamon Publication, 
to appear. 



161 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 


