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ABSTRACT 
 

The Development of a Droplet Formation and Entrainment 
Model for Simulations of Immiscible Liquid-Liquid Flows 

 
Wesley M. Wilson 

 
 
Droplet formation is a common phenomenon in turbulent mixing and has many practical 
applications in emulsion technology, surface agents, and liquid-liquid extraction.  The 
ability to predict the relative sizes and distributions of fluid droplets formed from mixing 
events is a complex problem which is dependent on many different parameters including 
geometric considerations, the nature and physical properties of the fluids in question, 
turbulence parameters, buoyancy and body forces, and flow history.  While there have 
been many researchers who have analyzed this problem for both liquid-liquid and gas-
liquid systems, the present study will focus only on droplet formation in immiscible 
liquid-liquid systems. 
 
A review of the literature has shown that previous attempts at describing fluid droplet 
sizes essentially fall into two categories: (1) phenomenological models, and (2) statistical 
models.  The use of phenomenological models usually involves semi-empirical analyses 
of a particular liquid-liquid or gas-liquid system, and typically employs a force balance to 
determine the conditions under which droplet formation or breakage occurs.  Statistical 
models, on the other hand, utilize flow history and probability density functions (PDF’s) 
to determine the size and number distribution of daughter droplets formed from the 
splitting of larger droplets or the coalescence of smaller ones.  In the present study we 
will adopt many of the methods of the former set of models, resulting in expressions 
which determine the sizes of the dispersed phase droplets based on local flow parameters 
including turbulence quantities, appropriate characteristic length scales, and 
dimensionless parameters such as the gradient Richardson number.  While much of the 
development of the droplet formation/entrainment (DFE) model comes from results from 
the literature concerning stratified shear flows, the model can be calibrated through the 
adjustment of certain constants to conform to a wide variety of flow scenarios. 
 
The present study is one element of a larger effort in cooperation with engineers and 
naval architects at the Naval Surface Warfare Center - Carderock Division (NSWC-CD) 
in Bethesda, Maryland, as well as faculty and students at Johns Hopkins University in 
Baltimore, Maryland, to study turbulent mixing events in compensated fuel/ballast tanks 
used in U.S. naval surface ships.  The overall goal of this project at WVU is to develop 
sub-models for the prediction of the extent and location of mixing of fuel and water, and 
to estimate the total flow-through time for the fuel, as well as the amount of water-
hideout.  Water hideout involves the amount of water that remains inside the fuel tanks 
after refueling is complete (i.e. when the fuel stream reaches the outlet), and presents a 
concern with regard to efficiency.  The fuel/water mixing, on the other hand, represents 
an environmental concern, as some of the fuel may become entrained in the 



compensating water that is forced overboard during refueling.  The prediction of the size 
and distribution of the fuel droplets that form during mixing is an integral part of the 
overall effort, both for accurate predictions of mixing events, as well as in estimating the 
amount of fuel entrainment that occurs. 
 
Numerical simulations have been performed at West Virginia University using the 
commercial CFD (Computational Fluid Dynamics) code, CFX-4, developed by AEA 
Technologies, to assess the performance of the droplet formation/entrainment model for 
several different flow configurations.  These include a stratified shear flow of two 
immiscible fluids of different densities, and a densely buoyant vertical jet flow of a 
higher density fluid impinging on a quiescent layer of lighter fluid.  The multiphase 
model used in these simulations was a single fluid, scalar transport (SFST) model, which 
is a mixture model based on Ishii's drift flux model [22].  The turbulence model used was 
a modified form of the standard k-ε model that includes additional terms to account for 
the effects of buoyant production/destruction. 
 
Both of the flow scenarios in question closely match the conditions for experiments 
currently being performed at Johns Hopkins University by Dr. Joseph Katz and his 
associates.  In this study, the results of the numerical simulations will be compared with 
qualitative observations from the experiments, as well as certain quantitative data 
collected with regard to the mixing length thickness in the case of the shear flow, and the 
maximum impingement depth in the case of the jet flow study.  The results of these 
simulations indicate logical trends for the size and distribution of the fluid droplets 
formed, as well as good agreement between the DFE model and the results of the 
experiments detailed above. 
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1.0 INTRODUCTION 
 

1.1 Background Information 
 
 
Compensated fuel/ballast tanks (CFBT’s) are used in US Navy ships for stability and 

ease of operation.  The tanks, which are located in the bottom of the ships, are linked 

together in groups of 2-5 tanks.  As the fuel is consumed during operation, seawater is 

allowed to enter the tank to retain ballast, and to provide a stable center of gravity for the 

ship.  The typical tank is broken up into a series of compartments that are connected by 

manholes and limberholes.  Each tank may hold anywhere from 30,000 to 120,000 liters 

(8,000 to 32,000 gallons) of fuel, with each set of tanks holding approximately 260,000 

liters (70,000 gallons).  As fuel is drawn off the top, seawater is allowed to enter the 

bottom of the tanks, and when empty, a tank typically has a 0.08 m (3 in) layer of fuel on 

the top.  During re-fueling, fuel enters near the top of the tank, through an upward inlet 

pipe, at flow rates between 60 to 95 liters/sec (950 to 1,500 gal/min.).  The compensating 

water is forced out of the bottom of the tank through an outlet, located in the last tank.  

The density of the fuel is about 850 kg/m3, compared to the density of the seawater, 

which is approximately 1,000 kg/m3.  Though buoyancy forces compete to keep the 

fluids separated, the turbulence that develops because of the relatively high shear rates 

causes some of the fuel to become entrained in the seawater that is discharged overboard.  

This is a concern not only because of the wasted fuel, but also primarily because of 

environmental considerations, as some of the fuel may be forced out of the tank during 

refueling.  Another problem typically encountered in these tanks is that of water hideout, 

where seawater is trapped at the bottom of a compartment, which may constitute a 
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significant portion of the tank volume and is an obvious inefficiency [9].  A sketch of a 

generic CFBT is shown in Figure 1.1 below. 

 

 
 
Figure 1.1 - Geometry of typical compensated fuel ballast tank (CFBT). 
 
 
 
The US Navy has undertaken an extensive research effort to analyze the flow that 

develops during the refueling of these tanks, and to assess the current performance 

characteristics and develop design improvements that may be implemented in future ship 

construction.  Computational fluid dynamics (CFD) analyses have focused on the Arleigh 

Burke (DDG-51) class of US Navy guided missile destroyers.  The current design of the 

DDG-51 class CFBT has a number of internal structures that promote mixing of the two 

fluid phases and cause fuel to be entrained in the compensating water.  This is especially 
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evidenced by buoyant flow events that occur when the fuel is forced from one 

compartment into the next via manholes, limberholes, or rectangular openings between 

the two compartments.  As the fuel enters the second compartment, buoyancy forces 

force the fuel towards the ceiling of the second tank.  The buoyant jet that develops 

causes large shear forces at the interface between the two fluids, thus leading to mixing of 

the fuel and water.  Increased mixing within the tank is a major concern regarding the 

amount of fuel that may be discharged overboard as the compensating water is forced out 

of the tank during refueling. 

 

There are a number of different phenomena that occur during the refueling process of a 

compensated fuel/ballast tank.  As the fuel is pumped into the tank, a buoyant jet issues 

from the vertical inlet pipe.  A similar buoyant jet event occurs when the fuel is forced 

from one compartment into the next through several different types of openings, and a 

shear layer region develops in the interior portions of the compartment between these 

openings.  Another issue concerns the breakup of the fuel into small droplets due to the 

competition of buoyancy, inertia, and shear forces.  In light of the discussion by Sullivan 

and List [33] and Fernando et al [16], we may also break up the flow into several 

different regimes based on the primary mixing mechanism, which may be due to local 

turbulence effects, or Kelvin-Helmholtz type instabilities that occur at the interface 

between the two fluids.  All of these can effect the overall mixing that occurs within the 

tanks, and the difficulty of the problem is compounded by the complexity of the 

geometry and the turbulent nature of the flow. 
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Work is currently being performed at West Virginia University to analyze the general 

flow characteristics, and to predict when and where mixing occurs within these tanks.  

Turbulent multiphase sub-models are being developed to characterize the flow of the two 

fluids and to predict fuel entrainment in light of results from the literature and 

experiments.  While true multiphase analysis of this type of flow may involve the 

modeling of each fluid as a separate phase, a single fluid, scalar transport (SFST) model 

is currently being used, which is a variant of the drift flux model suggested by Ishii [22].  

The homogeneous multiphase (HMP) model, which is a default model in CFX-4, was not 

used because a comparison demonstrated the advantages of the SFST model in terms of 

accuracy and computational efficiency.  The HMP model showed an overtly large 

amount of mixing, which also causes the fuel to reach the outlet prematurely.  The reason 

for this is believed to be the lack of any mechanism for fuel separation, in addition to the 

numerical diffusion present in the volume fraction equation [8].  For larger, more 

complex geometries, the HMP model was also limited in that a turbulence model could 

not be included because of extreme convergence difficulties.  Were the turbulence model 

present, however, an even greater amount of diffusion would occur, as the buoyant 

production/dissipation terms, which have the effect of damping the turbulence, would not 

be present [8]. 

 

In light of the convergence difficulties for more complex tank configurations, a 

comparison was made between the two models using a simplified two-compartment tank 

geometry [8].  This simplified geometry consists of two rectangular compartments 

separated by a manhole.  The fuel enters the first compartment through a vertical inlet 
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pipe, flows through the manhole, and exits through a vertical exit pipe located in the 

second compartment.  While being a simpler geometry, this configuration still exhibits 

many of the flow characteristics of compensated fuel/ballast tanks.  Figures 1.2 and 1.3 

show the volume fraction contours and velocity vectors within the two-compartment tank 

using the HMP model and SFST model respectively.  In Figure 1.2, the Reynolds number 

through the manhole is approximately Re = 100,000, and the overall Richardson number, 

Ri* is approximately Ri* = 1.4, where the overall Richardson number is given by 

    
( )
( )2

*

fuelwaterfuel

fuelwater

UU

gH
Ri

−

−
=

ρ

ρρ
    (1.1) 

 
Here H is the total height of the two layers, and U is the average velocity of the fuel and 

water layers.  In Figure 1.3, the Reynolds number through the manhole is approximately 

Re = 87,000, and the overall Richardson number is approximately Ri* = 2.0.  As the 

HMP model causes the fuel to reach the outlet prematurely, the increase in the Reynolds 

number is not surprising.  Nor is the decreased Richardson number, as the HMP model 

predicts a large increase in mixing owing to increased shear.  As the Richardson number 

is inversely proportional to the shear, this causes a decreased Richardson number in the 

case of the HMP model, which is indicative of more turbulent flow. 
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Figure 1.2 - Volume fraction and velocity vectors (manhole - two-compartment tank) at time = 15.0 
seconds (HMP). 
 
 
 

 
 
Figure 1.3 - Volume fraction and velocity vectors (manhole - two-compartment tank) at time = 15.0 
Seconds (SFST). 
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The results from Figures 1.2 and 1.3 above demonstrate the overly diffusive nature of the 

HMP model, indicated by the significant increase in the amount of mixed fluid.  This 

becomes an important issue regarding the accuracy of the calculations, as a large amount 

of numerical diffusion is introduced in the volume fraction equations.  Another important 

issue regarding the comparison of these two models is that of computational time.  

Simulations of the two-compartment geometry, for the same amount of elapsed time and 

using the same convergence criteria, demonstrated that the SFST model requires 

approximately 30% less time [8].  The savings from the SFST model would increase 

significantly as the number of cells increased, especially for realistic tank geometries. 

 

Due to the turbulent nature of the flow, requiring a turbulence model, and in light of 

increased computational efficiency, a single fluid, scalar transport (SFST) model was 

used to predict the bulk fluid motion and regions of mixing.  In general, the SFST model 

assumes that the two-fluid mixture can be considered as a whole, rather than as two 

separate phases.  Mixture quantities are used to discretize the conservation equations, 

which are formed by summing the individual phase equations.  This results in a mixture 

continuity equation, and a set of momentum equations similar to the single-phase Navier-

Stokes equations, which includes an additional source term to account for the relative slip 

between the two phases.  While there are many different relationships which could be 

used to describe the slip velocity (see e.g. [26], [27]), here we have used an empirical 

relation to model the relative or slip velocity as being predominately given by the 

terminal rise velocity of a fluid droplet, while also accounting for multi-particle effects.  

The second continuity equation is then put into a form where it can be used to determine 
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the concentration or volume fraction of one of the phases, the other volume fraction being 

given by the algebraic constraint that the two must sum to unity.  A modified form of the 

standard k-ε model is used to describe the turbulence, including turbulent 

production/dissipation resulting from the effects of buoyancy.  The complete set of 

equations for the SFST model is given in Appendix A.1. 

 

To analyze the shear regions that develop in the interior portions of the fuel/ballast tanks, 

the transport of a scalar at a turbulent sheared density interface was studied in light of the 

experiments by Sullivan and List [33].  Here the primary concern was the interfacial 

mixing or entrainment of one fluid into the other.  The flow was characterized by a 

Richardson number, defining the relative influence of buoyancy and shear forces.  

Results showed that the numerical model is reliable in predicting the resulting interface 

location and free stream velocities, and was reasonably accurate in predicting the shear 

layer thickness and concentration boundary layers that develop at the interface [7]. 

 

A similar study was performed in light of experiments being conducted at Johns Hopkins 

University.  Comparison with preliminary experimental observations and results indicate 

that the simulations produce reasonable results with regard to the overall flowfield, 

prediction of recirculation zones, and the development of the mixed-fluid layer, using an 

assumed average droplet diameter which is also reasonably close to the observed average 

droplet size [6,36].  By comparison between the simulation results and measurements, it 

was shown that the model predicts the growth of the shear layer with reasonable 

accuracy.  This type of flow is very similar to that which would develop in the interior 
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portions of a tank compartment.  The results of the simulations demonstrate the 

effectiveness of the use of the single fluid, scalar transport (SFST) model to predict the 

general characteristics of the flow, including the development of the shear layer and 

recirculation zones. 

 

Another flow phenomenon that occurs in compensated fuel/ballast tanks, and is important 

for overall mixing, is that of the buoyant jet.  This occurs both when the fuel enters the 

tank through the vertical inlet pipe, and when the fuel is forced from one tank 

compartment into the next via a manhole or other opening.  Because the density of the 

fuel is less than that of the compensating water, buoyancy forces compete with 

gravitational and inertial forces to separate the two fluids and draw the fuel towards the 

tank ceiling.  This produces a large amount of shear at the interface between the two 

fluids and promotes mixing.  Simulations of this type of flow have been performed in 

light of experiments being conducted at Johns Hopkins University to study the mixing 

mechanisms in such flows [38]. 

 

Another important issue regarding the inlet jet is that of impingement on the tank ceiling, 

which may cause the fuel jet to break up into small droplets.  This breakup phenomenon 

also becomes important for buoyant jet events, which occur when fuel is forced through 

compartment openings, as well as in the shear regions in the interior portions of the tank.  

In light of this, a droplet formation/entrainment (DFE) model is currently being 

developed to predict the size of the dispersed phase (i.e. fuel) droplets based on local 

flow parameters [6].  These would include local turbulence quantities, appropriate length 
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and velocity scales, and dimensionless parameters such as the Reynolds number and 

Richardson number.  The effects of surface tension may also be included through the use 

of a critical Weber number, which may determine the amount of shear necessary for 

breakage to occur.  The modeling of the relative motion or slip between the two fluids in 

the SFST model also necessitates the use of a locally determined droplet diameter for 

accurate simulations of the actual flow phenomena. 

 

CFD simulations of a full-scale model tank geometry indicate that the SFST model is 

very effective in predicting the bulk fluid motion of the fuel and water, and in predicting 

regions where fuel/water mixing and water hideout are likely to occur [6,8].  Buoyant jet 

events are observed from the transient calculations in the regions occupied by the inlet 

jet, and in regions of flow through the manholes.  Mixing events are also observed in 

regions of mixed-fluid, where droplet breakup is also likely to occur.  Water hideout near 

the bottom of the tank compartments can also be observed [6,8]. 

 

The numerical models used in all of these cases require validation based on experimental 

results.  To this end, observations and quantitative data from the experiments being 

conducted at Johns Hopkins University are used to validate the single fluid, scalar 

transport (SFST) model and droplet formation/entrainment (DFE) model in simulating 

these types of flows.  Future scale model experiments of an actual CFBT may also be 

used to verify the predictions of the numerical models with regard to the bulk fluid 

motion, and prediction of fuel/water mixing and water hideout in compensated 

fuel/ballast tanks.  These simulations may also then be used to develop full-scale testing 
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techniques and predict scale-up difficulties, as well as to analyze the effects of geometric 

modifications. 

 

1.2 Objectives 
 

The overall goal of the research effort at West Virginia University, of which the present 

study is an integral part, is to develop numerical models that can be used to predict 

fuel/water mixing and water hideout in compensated fuel/ballast tanks.  The development 

and application of the droplet formation/entrainment model in conjunction with the 

numerical models already in place is vital to the accurate prediction of mixing 

phenomena and general flow characteristics.  Therefore, the present study focuses on the 

implementation of the DFE model and the assessment of its performance in the prediction 

of experimental parameters in certain canonical flows that will also be important in the 

large-scale flow configuration of a typical CFBT. 

 

The objectives of the present study are primarily concerned with the development and 

validation of the droplet formation/entrainment model, while also examining certain case 

specific issues related to the shear flow and impinging jet experiments currently being 

conducted at Johns Hopkins University.  The first objective is the development and 

verification of the DFE model based on shear flow experiments, which would represent 

typical flow behaviors expected in the interior portions of the large-scale tank 

compartments.  The second objective involves validation of the DFE model in predictions 

of experimental observations concerning the impingement of a negatively buoyant 
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vertical jet into a quiescent environment as an independent case study.  This would 

represent phenomena that typically occur during the initial stages of refueling of a CFBT, 

as compensating water would be forced into the remaining fuel layer at the top of the 

tank.  Analyses from these simulations will also be important in assessing trends which 

would occur during the later refueling stages of a typical CFBT, as the lighter fluid 

(diesel fuel) would be forced into a more dense water layer. 

 

In all of these predictions, the primary objective is to assess the performance of the SFST 

and DFE models based on experimental observations and quantitative data available in 

the literature.  This assessment will provide validation for the use of these sub-models in 

future simulations of small-scale and full-scale geometries of the DDG-51 CFBT and 

other scale model tests. 

 

1.3 Overview 
 

First, a review of the literature concerning density stratified shear flows, vertical buoyant 

jets, and droplet formation and entrainment phenomenon will be examined.  This will 

provide information regarding the parameters of interest in each of these areas.  This 

review will include issues related to numerical and turbulence modeling, and will also 

provide experimental results and reviews as they relate to each of these phenomena. 

 

Following the literature review, an explanation of all of the numerical models will be 

given, including a detailed description of the SFST model for immiscible fluids.  This 
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section will also examine algebraic expressions for the slip velocity and modifications to 

the standard k-ε turbulence model for buoyant flows.  The proceeding chapter will 

discuss problems with mass conservation (i.e. conservation of the fuel volume) with the 

previous version of the SFST model.  In this section a new formulation for calculating the 

volume fraction will be discussed in light of this problem, and results will be presented 

detailing the improvements made through this new formulation. 

 

Following this, a complete description and derivation of the current version of the droplet 

formation/entrainment model will be presented, with reference to its origins in various 

literature sources.  Results from verification studies performed on a two-compartment 

tank will demonstrate that the values predicted for the droplet sizes are reasonable both in 

magnitude and physical distribution. 

 

The next section will provide results from simulations concerning the density stratified 

shear flow experiments being conducted at Johns Hopkins University in which the 

implementation of the DFE model will be examined and evaluated.  Some comparison 

will also be made between predictions from the model and actual experimental 

measurements for the variation in the mixed fluid thickness as a function of downstream 

distance. 

 

Following the simulations of the shear flow experiments, the droplet 

formation/entrainment model will be examined in light of experiments involving the 

impingement of a negatively buoyant vertical jet into a quiescent reservoir.  Here again, 
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comparisons will be made between numerical predictions and experimental 

measurements.  Modifications to the DFE model for this flow scenario and specific 

computational issues will also be discussed. 

 

Finally, some overall conclusions regarding the use of the SFST model in conjunction 

with the droplet formation/entrainment model will be presented.  Suggestions for future 

studies and improvements to the numerical sub-models will also be given. 
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2.0 REVIEW OF THE LITERATURE 
 

2.1 Introductory Definitions and Comments 
 

While the focus of the present study is divided between several different flow 

phenomena, including stratified shear flows, buoyant jet flows, and droplet formation and 

entrainment, there are several parameters that will become important in describing all of 

these.  First, we will discuss the relevant length scales that become important in 

characterizing each of these types of flows, followed by a discussion of the relevant 

dimensionless parameters.  Then, a review of the literature for stratified, shear flows, 

buoyant jet flows, and droplet formation studies will be presented. 

 

Characteristic Length Scales: 

Sullivan and List [33] performed experimental measurements of tracer dye concentrations 

in a density stratified, shear flow generated in a water channel apparatus.  In these 

experiments a layer of aqueous ethanol solution acts as the lighter fluid, and flows over a 

layer of aqueous saline (the heavier fluid).  They define a concentration boundary layer 

thickness, h, as the distance from the mean interface location, η , to the location (either 

above or below the interface) where the probability is 0.02 of finding fluid whose 

concentration differs from the local mean by 0.01C0.  Here C0 is the unmixed dye 

concentration in the lower layer.  Physically, this gives some measure of the level to 

which the turbulent motions are able to transport the scalar in the vertical direction.  
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While this definition applies to a tracer dye concentration in this particular case, it is 

easily applied to any transported scalar variable. 

 

Another important length scale based on the concentration profile is that of the interfacial 

thickness, δ.  Sullivan and List [33] define δ according to  

    ( ) ( )1.09.0 ≤−≥= CyCyδ     (2.1.1) 

where C again represents the tracer dye concentration.  In describing the velocity profile 

near the interface, they further define a maximum velocity gradient thickness, hs, given 

by 

                 
( )maxyu

U
hS ∂∂

∆
=     (2.1.2) 

where ∆U is a characteristic velocity which usually represents the difference in the free 

stream velocities of the two unmixed layers in a stratified shear flow, and ( )maxyu ∂∂  

represents the maximum mean velocity gradient at the interface in the vertical direction.  

The maximum velocity gradient thickness is also used by Atsavapranee and Gharib [1], 

though it is given by the notation δV. 

 

Atsavapranee and Gharib [1] define a similar parameter with regards to the density 

profile.  They define a maximum density gradient thickness, δρ, as 

     
( )maxy∂∂

∆
=

ρ
ρ

δ ρ     (2.1.3) 

where ∆ρ is the difference in the densities of the two unmixed layers, and ( )maxy∂∂ρ  is 

the maximum density gradient that occurs at the interface in the vertical direction.  Here 
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the maximum density gradient thickness has been defined similarly to the maximum 

velocity gradient thickness, but in terms of the density profile, rather than the velocity 

profile. 

 

Another important length scale is the mixed fluid thickness, which is defined as the 

vertical length over which a mixed concentration (or density) layer exists, defined 

similarly to a displacement thickness [1].  Here, the mixed fluid thickness is defined 

similarly to Eq. (2.1.1) as 

         ( ) ( )01.099.0 ≤−≥= CyCyδ    (2.1.4) 

This length scale is related to the maximum density gradient thickness by 

                mδδ ρ 2≈     (2.1.5) 

where δρ is defined by Eq. (2.1.3) above. 

 

The relevant streamwise length scale that characterizes mixing phenomena and wave 

motion at the interface is the Kelvin-Helmholtz instability wavelength, λKH [1].  This 

parameter can also be related to the maximum density gradient thickness at the interface 

through the use of a dimensionless wavenumber, α, given by 

           
KHλ

πδ
α ρ2

≅      (2.1.6) 

where λKH is the wavelength of the Kelvin-Helmholtz vortices.  The K-H wavelength, 

along with the mixed fluid thickness, will be of importance later during the discussion of 

the various mixing regimes as they relate to the formulation of the droplet entrainment 

model expressions in the present study. 
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Dimensionless Parameters: 

As the major forces that are responsible for interface mixing appear to be the buoyancy 

and inertial forces, the most appropriate dimensionless parameter for characterizing the 

types of flows in the current study is the Richardson number, which describes the relative 

influence of these two forces.  Here, a large Richardson number represents a large 

buoyancy force, with very little shear or turbulence, while a small Richardson number 

represents a large shear force, with little influence from buoyancy.  One common 

problem in the literature, however, is in how the Richardson number should be defined.  

In light of this, several different expressions for the Richardson number will be presented 

in this section.  To avoid confusion, the notation used in the present study may not 

necessarily coincide with that used in the literature. 

 

In characterizing the stratified shear flow of two fluid layers with different densities 

flowing over one another, Sullivan and List [33] use a layer Richardson number in 

describing the relative influence of buoyancy and inertia within a given layer.  This layer 

Richardson number, RiL, is given by 

     
( )2

i
L

uU

bh
Ri

−

∆
=     (2.1.7) 

where h is the boundary layer thickness of the layer, U represents the free stream velocity 

of the layer in question, and ui denotes the mean interface velocity.  The buoyancy jump 

across the interface, ∆b, is given by 

     
1ρ
ρ∆

=∆
g

b      (2.1.8) 
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where ∆ρ = ρ0 - ρ1 is the difference in the densities of the two layers, and ρ1 denotes the 

density of the lighter phase.  This term essentially represents the buoyancy force per unit 

mass.  The layer Richardson number is important in characterizing the flow of a given 

turbulent layer in a density stratified shear flow. 

 

Narimousa and Fernando [31] employ a similar expression in characterizing interfacial 

mixing events by assuming that the governing velocity scale is given by the mean 

interface velocity, u .  In their experiments, a mixed fluid layer was driven over a denser 

fluid layer, and the mixed fluid layer thickness and entrainment were examined.  Further, 

they assume the relevant length scale to be determined by the average depth of the mixed 

layer, h, resulting in a Richardson number of the form 

     
2

u

bh
Riu

∆
=      (2.1.9) 

To characterize the relative effects of the two fluid layers in the region of the interface, 

Sullivan and List [33] also define a mean shear Richardson number, Ris, given by 

     
( )2

10 UU

bh
Ri s

s
−

∆
=              (2.1.10) 

where U1 and U0 represent the free stream velocities of the upper (i.e. lighter fluid) layer 

and lower (i.e. heavier fluid) layer, respectively, and hs is the maximum velocity gradient 

thickness at the interface, as given by Eq. (2.1.2). 
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To allow for a more general characterization of the flow of two turbulent shear layers, 

sometimes an overall Richardson number is used, where the relevant length scale 

encompasses both fluid layers [14].  The overall Richardson number is defined by 

     
( )2

*

chU

bH
Ri

∆
=              (2.1.11) 

where H is the total depth of both fluid layers, and Uch is some characteristic velocity 

scale that is often taken equal to the difference between the free stream velocities of the 

two layers.  This parameter becomes important for characterizing general flow 

characteristics, and is also a convenient way of comparing different flow scenarios by 

using appropriate length and velocity scales. 

 

A similar expression can be used for buoyant jet flows, using the jet radius as the integral 

length scale.  The densimetric Froude number can be written as [40] 

     

nozgR

V
F

0

0

ρ
ρ∆

=             (2.1.12) 

where ∆ρ = ρ0 - ρa is the difference between the discharge fluid density of the jet and the 

ambient fluid density, Rnoz is the radius of the source (e.g. nozzle), and V0 is the mean 

exit velocity from the source.  This parameter is very similar to a Richardson number in 

that it also characterizes the relative influence of buoyancy and inertial forces.  It will 

become important in the examination of vertical buoyant jet flows, as the densimetric 

Froude number will be used to describe the amount of mixing, as well as the penetration 

depth of the jet. 
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Atsavapranee and Gharib [1] characterize interfacial instabilities through the comparison 

of the maximum density and velocity gradient thicknesses, which gives some measure of 

the relative influence of buoyancy and shear forces.  To this end, they define a flow 

Richardson number given by 

     
( ) 22 QU

g
Ri f

∆

∆
=

ρ

ρδ ρ             (2.1.13) 

where ρ  denotes the mean density, ∆U is again a characteristic velocity scale 

representing the difference in the free stream velocities, and Q is the ratio of δρ to δv.   

 

Many of the preceding definitions of the Richardson number have been based on average 

length and velocity scales relative to the entire fluid layer.  As a numerical simulation 

would require solution at all points within the domain, it may be more appropriate to 

examine a Richardson number based on local parameters.  The gradient Richardson 

number, Rig, is defined according to [33] 

     
( )

( )2yu

yg
Rig

∂∂

∂∂⋅−
=

ρρ
           (2.1.14) 

and allows for characterization of the flow in a particular local region, rather than based 

on large-scale integral parameters.  For much of the numerical implementation of the 

SFST model, the gradient Richardson number will be used, as it can be calculated at a 

given point based on local flow parameters.  This will also become important in the 

formulation of the droplet entrainment model for determining the local droplet diameter. 
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Another parameter that is useful in characterizing viscous flows is the Prandtl number, 

which represents a measure of the influence of viscosity and diffusion forces.  Here, the 

Prandtl number is defined according to  

      
D
ν

=Pr              (2.1.15) 

where ν  is the kinematic viscosity, and D is the diffusivity. 

 

Another parameter is the Peclet number, which also gives some measure of the influence 

of molecular diffusion.  It can be defined by [15] 

     
( )

D
Uh

Pe ch∆
=              (2.1.16) 

where h is the boundary layer thickness, and (∆U)ch is a characteristic velocity scale.  For 

the present work the velocity scale may be well represented by the interface velocity. 

 

 

2.2 Review of Literature for Stratified Shear Flows 
 

Narimousa and Fernando [31] studied interfacial phenomena during entrainment 

processes of two fluid layers subjected to interfacial velocity shear.  In their experiments 

a saltwater layer was driven over a quiescent fresh water layer (unstable stratification) by 

means of a disc pump.  Tracer dye was released into the flow, and the dispersions of the 

dye particles in space and time were studied through photographic techniques.  These 

photographs were then used to measure the changes in the mean velocity profile, and the 

thicknesses of the shear layer and momentum diffusive layer.  Their experiments were 



 23 

characterized by a Richardson number, Riu, which was defined in terms of interfacial 

parameters as [31] 

     
2

u

bh
Riu

∆
=      (2.2.1) 

where ∆b is the buoyancy jump across the interface (Eq. 2.1.7), h is the average depth of 

the mixed fluid layer, and u  is the mean velocity of the mixed-fluid layer.  The results of 

these experiments showed a sharp interfacial layer whose thickness, δ, increased linearly 

with the mixed-layer depth h, independent of the Richardson number, as h07.0≈δ .  The 

shear layer thickness, δs, was found to be independent of the Richardson number, and 

was approximately given by hs 20.0≈δ .  Variations in the wave amplitude, however, 

showed a Richardson number dependence.  The wave amplitude, δw, normalized by the 

mixed-layer depth, was found to follow a power-law relationship 

     61.0232.0 −≅ u
w Ri
h

δ
    (2.2.2) 

This relationship, along with the variations in the other characteristic length scales, will 

become important in the derivation of the model expressions for the droplet 

formation/entrainment model (see Section 5). 

 

Narimousa and Fernando [31] also observed large-scale coherent structures, appearing as 

regularly spaced billows with thin braids of fluid connecting them.  These interfacial 

instabilities were observed at relatively low values of the Richardson number (Riu < 5).  

As the Richardson number was increased, the frequency with which these structures 

appeared decreased, and mixing appeared to be caused by wave-breaking phenomena.  
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These wave-breaking events were observed over a wide range of Richardson numbers, 

with decreasing occurrences as the Richardson number increased.  At moderately high 

Richardson numbers, Narimousa and Fernando also observed the occurrence of large-

amplitude solitary waves, which traveled through the interfacial layer without breaking.  

At very large Richardson numbers, molecular diffusion processes became dominant in 

the entrainment mechanism. 

 

Fernando [15] provides some general review of the relevant mixing phenomena and flow 

regimes involved in flows of stratified fluids.  With regard to the different mixing 

regimes that develop, a similar development is postulated by which mixing is dominated 

either by the direct influence of turbulent eddies, or by local instabilities that develop at 

the interface of the two fluids.  These two phenomena can be delineated by an 

appropriately defined Richardson number, with the latter occurring at relatively large 

values of the Richardson number.  Other governing parameters for these types of flows 

include the ratio of the buoyancy and velocity interfacial layer thicknesses, δb/δv, and the 

normalized interfacial displacement, 2d/δv.  Here d represents the vertical distance 

between the interfaces of the buoyancy and velocity interfacial layers.  It is conjectured 

that when δv < 2δb, d=0 (i.e. the interfaces coincide), and the gradient Richardson 

number, Rig, is less than some critical value, then the shear layer becomes unstable and 

wavenumber-dependent Kelvin-Helmholtz type vortices develop at the interface [15].  

Here the critical value of the gradient Richardson number is usually assumed to be 

approximately 1/4. 
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Fernando [15] also discusses the processes of wave-breaking and diffusion-dominated 

entrainment.  The wave-breaking phenomenon requires that the rate at which energy is 

supplied to the waves be greater than the rate at which energy is dissipated by internal 

viscous forces.  If both of these are of the same order, then the waves will decay without 

breaking.  It was also found that wave breaking will not occur at low values of the Peclet 

number (i.e. when Pe < 200).  Entrainment by molecular diffusion processes was found to 

occur at large values of the Richardson number, at which time wave breaking no longer 

occurs.  A critical value for the Richardson number defining this transition was found to 

be given by 

     21Pr25.1 −= PeRic     (2.2.3) 

where Pr is the Prandtl number, and Pe is the Peclet number (see Eq. 2.1.15 and Eq. 

2.1.16). 

 

Sullivan and List [33] examined mixing and transport at the interface of a density 

stratified shear flow.  Their experiments consisted of measurements of tracer dye 

concentration in a laboratory water channel that was 5 m long and 10 cm wide.  Laser-

induced fluorescence (LIF) was used to measure the concentration of the tracer dye.  

These experiments were conducted for a range of layer Richardson numbers between 1.0 

and 10.0, where the layer Richardson number is given by Eq. (2.1.5).  This also 

corresponds to a range of approximately 0.2 to 2.0 for the mean shear Richardson number 

(Eq. 2.1.9).  This range of Richardson numbers corresponded to two distinct flow 

regimes, which the authors define as a Kelvin-Helmholtz (K-H) instabilities regime, and 

a shear-driven wave-breaking regime.  The K-H instabilities regime was observed for 
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mean shear Richardson numbers, Ris, up to approximately 0.4 - 0.45.  The wave-breaking 

regime was observed for somewhat larger Richardson numbers.  In both cases, the 

authors found that vertical transport of the mixed fluid was accomplished through eddy 

scouring, in which the turbulent eddies impinged on the interface and carry fluid away 

from its outer edges. 

 

Sullivan and List [33] also discuss two other mixing regimes.  These are the turbulent 

interface regime, which occurs for very low values of the Richardson number, and the 

diffusion-dominated regime at very large Richardson numbers.  According to Sullivan 

and List [33], at very low Richardson numbers, interfacial disturbances are not present, 

and only small-scale turbulence exists at the interface, where adjacent fluid is engulfed in 

the interface.  At larger Richardson numbers, K-H type instabilities are observed and the 

scale of the turbulence at the interface decreases.  As the Richardson number is further 

increased, the interfacial mixing is dominated by waves that become potentially unstable 

and are sheared off by turbulent eddies.  At very large Richardson numbers, the 

interfacial waves are suppressed and mixing is dominated by molecular diffusion.  This 

implies a Peclet number dependence as well.  This is a similar development of the 

relevant mixing phenomena as reported by Narimousa and Fernando [31] above.  Figure 

12 of the paper by Sullivan and List shows the different flow regimes as a function of the 

layer Richardson number [33].  This will become the basis for delineating the flow 

regimes in the droplet formation/entrainment model in Section 5.0. 
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Atsavapranee and Gharib [1] also examined two-dimensional mixing layer behavior by 

studying the temporal evolution of the layer in a stratified tilting tank.  Here the two fluid 

layers were of different densities, but similar indexes of refraction.  The two-dimensional 

density field was measured using laser-induced fluorescence (LIF).  In their experiments, 

an enclosed rectangular tank is half filled with fresh water or ethanol-water solution, then 

epsom-salt-water solution is introduced into the tank slowly through openings at the 

bottom of the tank.  To maintain a sharp interface, deflector plates were installed just 

above the openings.  At the interface, a density-gradient layer is formed whose thickness 

can be controlled by the time allowed for diffusion processes to occur.  The tank is then 

tilted about an axis, allowing for the two layers to accelerate in opposite directions, 

resulting in a shear flow at the interface.  After a certain time has elapsed, the tank is 

moved back into the horizontal position providing a steady flow, during which the 

development of Kelvin-Helmholtz type instabilities occurs. 

 

In these experiments, the shear layer is characterized by two vertical length scales: the 

maximum velocity gradient thickness (Eq. 2.1.2), δv, and the maximum density gradient 

thickness (Eq. 2.1.3), δρ.  The flow is also characterized by a Richardson number, given 

by Eq. (2.1.13).  Observations showed that increased stratification caused a decrease in 

mixing due to the reduction of the entrainment of fluid into Kelvin-Helmholtz type 

vortices, a reduction in vortex pairing, and a large decrease in the turbulence of the flow 

due to restratification.  Several secondary features were also observed including 

gravitational instability within the cores, vortex pairing, and the appearance of Holmboe 

type instabilities. 
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The density thickness of the diffusive interface layer was determined by calculating an 

equivalent mixed-fluid thickness, δm, defined in a similar manner to the displacement 

thickness.  Atsavapranee and Gharib found that the maximum density gradient thickness, 

δρ, was approximately twice δm.  It was also found that the dimensionless wavenumber 

(Eq. 2.1.5), α, of the K-H type instabilities, was independent of the Richardson number, 

with an average value of approximately 0.4.  The height of the Kelvin-Helmholtz waves, 

normalized by the wavelength, α, was measured as a function of the Richardson number, 

and is given in Fig. 10 of their text.  These measurements show that with increasing 

stratification (i.e. with increasing Richardson number) the K-H vortices entrain less fluid 

into increasingly smaller cores.  This in turn causes a decrease in the level of turbulence, 

and a decreased amount of mixing [1].  This observation was also confirmed by 

measurements of the mixed-fluid thickness as a function of the Richardson number.  

These results are given graphically in Fig. 17 of the original paper, where the mixed-fluid 

thickness is normalized by the maximum velocity gradient thickness, δv [1]. 

 

A power-law curve fit of the data in the present study resulted in the following 

relationship 

     23017.0 −≅ Ri
v

m

δ
δ

    (2.2.4) 

This relationship will be used in the derivation of the model expressions for the droplet 

formation/entrainment model (Section 5).  On a general note, the authors also provide 

several images detailing the evolution of the flow, including the development of the 
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Kelvin-Helmholtz type vortices, roll-up and pairing, and the destruction of these waves 

through shear-driven wave-breaking events. 

 

Wu and Katz [38] conducted experiments involving a stratified shear layer flow of diesel 

fuel and water.  Of primary interest in these experiments was identifying certain mixing 

mechanisms that develop, as well as some examination of the onset of droplet formation.  

Two different flow structures were identified, including finger-like structures and large-

scale Kelvin-Helmholtz type vortices.  Digital images showing the formation and 

evolution of these structures (see Figs. 6.19-6.21 of this work) are given for a range of 

inlet parameters, primarily based on changes in the inlet velocities of the two fluids.  The 

results of these experiments showed an increase in the mixed-fluid layer with decreasing 

Richardson number [38].  The mixed-fluid layer also reached a maximum just after the 

rollup of the large-scale vortices, then decreased with time until the rollup of the next 

vortices.  The presence of vortex pairing was identified for cases involving large inlet 

velocities [38].  The formation of fluid droplets was observed due to the rollup of large-

scale vortices, and the shearing off of finger-like structures.  Some subsequent breakage 

of these droplets into smaller droplets was also observed, and the characteristic droplet 

size decreased with increased velocity [38]. 
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2.3 Review of Literature for Vertical Buoyant Jet Flows 
 

Fernando et al [16] conducted experiments involving a planar turbulent buoyant jet 

impinging on a stable density interface.  This phenomenon is similar to the buoyant jet 

events that occur in compensated fuel/ballast tanks (CFBT's) as fuel is forced 

horizontally from one tank compartment into the next, and buoyancy causes the jet to 

flow vertically towards the ceiling of the tank.  In the experiments by Fernando et al [16] 

the jet was injected horizontally into a homogeneous lower layer, where the top fluid 

layer was separated from the homogeneous layer by a density jump.  Measurements were 

made for the entrainment velocity, time evolution of the vertical density profiles, and the 

interfacial layer thickness.  In these experiments, the lower layer consisted of salt 

dissolved in tap water, and the top layer consisted only of water.  The discharge 

temperature of the jet was manipulated to allow for highly buoyant, slightly buoyant, or 

neutrally buoyant cases.  Flow visualization was performed using fluorescent dye 

particles and dye lines, which were then illuminated by a vertical laser sheet for still 

photographs and video recording.   

 

In the case of the neutrally buoyant jet, mixing occurs due to shear instabilities, where 

high shear at the interface causes Kelvin-Helmholtz type vortices in the region near the 

jet impingement.  Farther downstream from the jet impingement region turbulent mixing 

is greatly decreased [16].  In the case of the slightly buoyant jet, the interface becomes 

patchy in the region of the jet impingement, and mixing takes place within the 

intermittent patches.  As the patches merge with the rest of the mixed layer, the mixed-

layer thickness increases [16].  Here, the mixed layer is assumed to be the bottom layer, 
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which has constant density, ρm.  In the highly buoyant case, the vertical velocity of the jet 

is considerably higher, causing an elevation of the interface in the form of a cap.  This 

causes sloshing of the fluid into the mixed layer [16]. 

 

Zhang and Baddour examined the maximum vertical penetration of both round [40] and 

plane [39] densely buoyant jets.  With respect to the present study, the information for 

round vertical jets is more applicable.  These experiments involved the discharge of 

saltwater into a quiescent tank filled with freshwater, for a range of three different sizes 

of round nozzles.  The temperature of both the fresh water and salt water was maintained 

at a constant value to avoid thermal effects.  A series of experiments was conducted by 

which the Froude number of the jet was varied, while maintaining turbulent flow 

conditions at the exit of the nozzle.  It was determined that the jet penetration and mixing 

increased with increasing Froude number, where the Froude number of the jet was given 

by Eq. (2.1.12). 

 

The results of the experiments by Zhang and Baddour [40] for round vertical jets showed 

two empirical relationships for the maximum vertical penetration of the jet depending on 

the value of the Froude number.  For large Froude number (F > 7), the maximum 

penetration zm was given by 

     F
R
z

noz

m 06.3=      (2.3.1) 

where Rnoz is the radius of the nozzle, and F is the Froude number.  For small Froude 

numbers (F < 7), the empirical relationship for the maximum penetration was given by 
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     3.07.1 F
L
z

m

m =      (2.3.2) 

where Lm is a characteristic length scale related to the momentum flux and buoyancy flux 

of the jet [40].  All of the numerical simulations in the present study are within the small 

Froude number regime. 

 

Friedman and Katz [17] examined the impingement of a liquid/liquid interface by a 

densely buoyant vertical jet (see Fig. 7.1 of the present work).  This study is of practical 

significance in analyzing the flow phenomena that occur during the refueling process in 

compensated fuel/ballast tanks (CFBT's) using in U.S. Navy surface ships.  At the start of 

the refueling process, there is a thin residual layer of fuel at the top of the tanks.  As the 

fuel begins to enter the upstream tanks, the later tanks in the series experience a vertical 

jet consisting of compensating water from the upstream tanks.  This vertical jet impacts 

the residual fuel layer that remains at the tank ceiling.  In the experiments conducted by 

Friedman and Katz, a densely buoyant water jet issuing from a nozzle impacts a 

quiescent fuel layer, a similar phenomenon to that which occurs during refueling of 

CFBT's.  The experiments conducted also allowed for the height of the inlet nozzle to be 

varied such that the distance between the nozzle exit and the fuel/water interface could be 

varied. 

 

A dimensional analysis showed that the relevant parameters for this type of flow include 

the Richardson number, which measures the relative influence of buoyancy and inertial 

forces, the Reynolds number, and the Weber number.  It was found, however, that for the 
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experimental conditions under consideration the surface tension forces, and hence the 

Weber number, had very little influence on the dynamics of the flow [17]. 

 

According to Turner [36], a negatively buoyant jet which is directed upward will collapse 

and fall around a rising central core.  A similar phenomenon was observed during the 

experiments by Friedman and Katz [17], where it was found that the penetration depth of 

the core increased with increasing exit velocity.  Several different mixing regimes were 

identified, where the dominant mixing mechanism differs in each case.  Flow regime 1 

was observed at large values of the Richardson number (Rii > 10).  Here the Richardson 

number is defined in terms of interface parameters by 

     2
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    (2.3.3) 

where ∆ρ is the density difference between the two fluids, and Di and Ui represent the 

diameter and velocity of the jet at the interface, respectively.  In regime 1 a smooth stable 

deformation forms at the interface, and fluid exiting the deformation remains attached 

along the liquid/liquid interface.  No mixing was observed in this regime [17].  Regime 2 

occurs for moderate values of the Richardson number (10 > Rii > 1).  As the jet velocity 

increases, the height of the deformation at the interface increases.  The sides of the 

deformation become increasingly steeper until a separation develops at the edge of the 

deformed interface.  When the downward velocity of the falling water is large enough, a 

portion of the fuel layer is drawn down below the fuel/water interface.  Mixing occurs 

when the fuel that is drawn down is broken into droplets, this being further promoted as 

the velocity of the jet is increased [17]. 



 34 

Flow regime 3 occurs for relatively small values of the Richardson number (Rii < 1) and 

the velocity of the jet is significantly higher.  In this regime large droplets are formed, 

and may either return immediately to the fuel layer or break into smaller droplets.  This 

regime is characterized by extensive mixing.  A secondary mechanism was also observed 

by which the upward velocity of fuel droplets returning to the fuel layer was sometimes 

great enough as to drag some of the water upward into the fuel layer.  This is the only 

observed mechanism by which water droplets are formed in the fuel layer [17].  Regime 4 

occurs at even smaller Richardson numbers where the jet velocity is sufficient to impact 

the impingement plate.  In this regime there is extensive mixing, and upon impacting the 

impingement plate, the water jet causes a splattering of very fine droplets in a radial 

pattern, creating an extensive cloud of water droplets in the fuel layer.  While the small 

size of the droplets formed make measurements difficult, it is believed that the droplet 

diameter decreases with increased jet velocity [17]. 

 

Friedman and Katz [17] also present results for the onset of droplet formation as a 

function of the interface Richardson number and the Reynolds number.  In all cases, the 

onset of droplet formation was distinct and repeatable.  Measurements were also made for 

the ratio of the jet penetration height to the interface jet diameter (aspect ratio).  This 

parameter was found to be a function of the interface Richardson number [17].  This 

observation inspired us to formulate Eq. 8.2.7.  Comparison will be made between the 

measurements of the aspect ratio and the results of the numerical simulations (Section 7). 
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2.4 Review of Literature for Droplet Formation and Breakage 
 

One of the earlier works involved with droplet formation was that performed by 

Hayworth and Treybal [19], who studied drop formation of a liquid dispersion from 

simple nozzles of one liquid into another immiscible liquid.  The relevant governing 

parameters were assumed to be the densities and viscosities of the dispersed and 

continuous phases, interfacial tension, velocity of the dispersed phase through the nozzle, 

the nature of the flow of the continuous phase, which phase (light or heavy) became 

dispersed, and integral parameters including the geometry of the nozzle.  Experiments 

were conducted using different size nozzles, and various liquid/liquid pairs, for injection 

into a stationary continuous phase.  Their results indicated that drop size was increased 

by increased interfacial tension, decreased density difference between the two phases, 

increased viscosity of the continuous phase, and increased nozzle diameter [19].  It was 

also found that drop size was independent of which fluid was dispersed and showed 

negligible influence of the dispersed phase viscosity [19]. 

 

In order to determine a method for predicting drop sizes exiting the nozzle, Hayworth and 

Treybel [19] utilized a force balance on the droplet.  The important forces acting on the 

droplet were assumed to be due to buoyancy, FB, interfacial tension,  Fσ, and the kinetic 

energy of the jet fluid entering the droplet, FK.  From these forces, several partial volumes 

were obtained, each of which was assumed to contribute either to the growth or 

destruction of the fluid droplet.  Then, the volume of the fluid droplet was given by the 

sum of these partial volumes, including (1) the volume necessary to overcome interfacial 

tension forces, (2) the volume necessary to produce a rising velocity of the droplet at least 
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equal to the exit velocity of the nozzle, and (3) the volume of the kinetic energy supplied 

by the exiting fluid.  This eventually led to an empirical relationship for the droplet 

diameter in terms of fluid and integral parameters given by [19] 
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which could be solved for the fluid droplet volume, QF, and in turn yield the droplet 

diameter.  Here, V is the exit velocity from the nozzle, dN is the nozzle diameter, and the 

subscripts c and d refer to the continuous and dispersed phase, respectively.  While this is 

a useful relationship in examining the general effects of certain parameters on the droplet 

size, it also involves certain integral parameters that are specific to a given geometry and 

flow type, and therefore it can not be used for comparison with our computational results. 

 

In another earlier work involving droplet formation and breakup, Hinze [21] examined 

the conditions necessary for droplet breakage to occur, as well as the different types of 

droplet deformation.  This analysis was primarily based on a balance of the important 

forces, including surface tension, pressure forces, inertial forces, and viscous stresses.  

This force budget leads to several dimensionless groups, whose magnitudes are examined 

in light of the conditions required for the droplet to break.  These include a Weber 

number, given by 
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and a dimensionless group involving viscosity, given by 
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where τ is the surface force per unit area, D is the diameter of the fluid droplet, σ is the 

interfacial tension, and the subscript d denotes the dispersed phase.  As the Weber 

number increases, the ratio of the external surface force to the restoring force due to 

surface tension increases until some critical value (We)crit is attained whereby the droplet 

breaks.  In general, (We)crit will be a function of NVi, yielding the following relationship 

[21] 

     ( ) ( )[ ]Vicrit NCWe ϕ+= 1    (2.4.4) 

where the function ϕ  decreases to zero as NVi approaches zero, and C is the value of the 

critical Weber number when the effects of viscosity are negligible. 

 

Hinze [21] also examines the dispersion of one liquid in another.  It is assumed that 

turbulent fluctuations are responsible for the breakup of the droplets, and that these 

fluctuations increase with increasing wavelength. 

 

This yields 

     ( )
σ

ρ max
2Du

We c
crit =     (2.4.5) 

where 2u  is the average value of the squares of the velocity differences over a distance 

Dmax.  For the case of isotropic, homogeneous turbulence, the main contribution to the 

kinetic energy is made by fluctuations where the wavelength is within the range valid for 

the Kolmogorov energy distribution law.  With this assumption, the turbulence pattern 

will be solely determined by the dissipation rate of turbulent kinetic energy, ε.  It can be 

shown for this region that 
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     ( ) 32
1

2 DCu ⋅= ε     (2.4.6) 

where C1 is approximately 2.0.  The same power-law relationship was also determined by 

Kuboi et al [25] (see also Tennekes and Lumley [34]). 

 

Martinez-Bazan et al examined the size particle distribution function (PDF) [29] and the 

break-up frequency [28] of an air bubble injected into a fully developed turbulent flow.  

While this analysis involves gas-liquid interaction, it is assumed that some of their 

discussion and results will also hold true for liquid-liquid systems.  While we have 

chosen to use phenomenological models for the droplet size in the present study, the 

statistical aspects of their experiments will not be discussed in detail; however, the 

authors also present a model for the critical droplet size, which will be used for 

comparison with the numerical simulations. 

 

In their experiments, air bubbles were injected into a high Reynolds number, vertical 

water jet at a prescribed distance along its centerline corresponding to fully developed 

turbulent flow.  The Reynolds number of the jet was varied from 2.5x104 to 9x104.  The 

downstream location of the injection point of the air bubbles was also varied in the 

streamwise direction from 10 to 50 jet diameters, allowing for variations in the turbulent 

kinetic energy of the underlying turbulence.  The size of the injected air bubbles was also 

varied by changing the flowrate of the air through the injection needle.  Digital imaging 

techniques were then used to track the evolution of the droplet size distribution as a 

function of downstream distance. 
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Martinez-Bazan et al [28] developed a model for the break-up frequency of the injected 

air bubbles.  While we are not interested in the statistical aspects of this model, an 

important relationship results from their analysis describing the critical droplet diameter, 

Dc, as a function of surface tension forces and the turbulent dissipation rate, ε.  Here, the 

critical droplet diameter represents the largest bubble (droplet) diameter that will be 

stable and not break.  According to their analysis, for a bubble to break, the deformation 

forces caused by turbulent stresses in the surrounding water must be greater than the 

surface restoring pressure.  The minimum energy required to deform a bubble of size D is 

     ( ) 2DDE s πσ=     (2.4.7) 

where σ is the interfacial tension.  The corresponding surface restoring pressure is  
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The average deformation for per unit surface produced by turbulent stresses due to 

velocity fluctuations existing in the liquid at two points separated by a distance D is 

approximated by [28] 

     ( ) ( )DuDt
2

2
1

∆= ρτ     (2.4.9) 

where ρ is the density of the water.  If the deformation force is greater than the surface 

restoring force, then the bubble will break.  By setting the two equal to each other, a 

critical droplet diameter is defined such that droplets of smaller diameters will always be 

stable and will not break.  Following Kolmogorov's theory, and assuming homogeneous 

isotropic turbulence, the mean value of the velocity fluctuations between two points 

separated by a distance D can be approximated by 
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   ( ) ( ) ( ) 3222 ,(, DtxutDxuDu εβ=−+=∆             (2.4.10) 

where β  is a constant, approximately equal to 8.2 [3].  This is a different statement of Eq. 

(2.4.6).  Substituting Eq. (2.4.9) into Eq. (2.4.8), and equating it with Eq. (2.4.7) yields 

the following expression for the critical droplet diameter 
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Although not directly applicable to the present study as these analyses were done for a 

gas-liquid system, this is a good example of a similar type of phenomenological model 

for determining the fluid droplet size based on certain flow parameters. 

 

 



 41 

3.0 DESCRIPTION OF VARIOUS MATHEMATICAL MODELS 
 

In this section we will describe the different mathematical models used and derive some 

of the model expressions.  First, a description of the SFST model will be given, along 

with the form of the k-ε turbulence model used, including extra terms to account for 

buoyant production/destruction, and the correlation used for the slip velocity.  The model 

expressions for the droplet formation/entrainment (DFE) model will be derived and 

presented in Section 5.0.  For further information regarding the derivation of other model 

equations the reader is directed to Appendix A. 

 

3.1 SFST Model Formulation for Immiscible Fluids 
 

For the numerical predictions in this study, the multiphase model that was used was a 

mixture model, where only one set of momentum equations was solved for the given two-

fluid system.  Specifically, the model that was used was, to some extent, a simplified 

variation of the drift flux model as given by Ishii [22].  Essentially, the present study 

adopts the definitions for the mixture quantities and the form of the individual phase mass 

and momentum equations as given by Ishii [22].  From these definitions and equations, a 

model is developed for turbulent flows where two liquids mix and the relative velocity 

between the liquids is non-zero as is typical for buoyant flow of immiscible fluids.  This 

model is described as being a single fluid, scalar transport (SFST) model. 
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The primary assumptions that are used in formulating the SFST model are: (i) the 

individual phases are incompressible, (ii) the flow is isothermal, (iii) the density 

difference between the phases is small compared to the density of the mixture.  These 

assumptions allow certain terms to be neglected in the model equations for turbulent 

flows.  Another important assumption involves the use of a gradient diffusion model for 

the average turbulent stresses in the momentum equations.  The SFST model is described 

in the following sections, and the equations presented are written in terms of time-

averaged variables. 

 

As with any mixture model, the basic concept is to consider the two-phase mixture as a 

whole, rather than as two separate phases.  The mixture variables are defined as: 

 

the center of mass velocity (or mixture velocity) 

     
m

m

ruru
u

ρ

ρρ βββααα )( +
=    (3.1.1) 

mixture density 

     ββαα ρρρ rrm +=     (3.1.2) 

and mixture viscosity 

     ββαα µµµ rrm +=     (3.1.3) 

where the unmixed phase quantities are denoted by the subscripts α and β (e.g. uα is the 

velocity of phase alpha) and r is the phase volume fraction.  In light of these definitions, 

the current model expresses the conservation of mass and momentum for the two-phase 

mixture by summing the individual phase equations to form a single equation.  Here the 
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momentum inter-phase transfer terms, as would be found in a two-fluid model, cancel 

each other in the addition.  The resulting equations are then put into a form similar to the 

single-phase Navier-Stokes equations where the variables of interest are the mixture 

variables.  Since the flowfield is turbulent, the model equations are modified to account 

for turbulent stresses and turbulent diffusion.  The additional terms that appear in the 

equations because of time averaging are modeled using an eddy viscosity model.  The 

mixture density fluctuations in the multiphase equations do present some complications 

in the derivation of the model equations.  Though these fluctuations in the density do 

exist, for cases where the density of either phase is large compared to the density 

difference, they may be neglected in the continuity and momentum equations.  

Fortunately for the cases under consideration in this study, the assumption concerning the 

density difference being small is valid. 

 

The conservation of mass equation is given by 
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which is derived from the addition of the individual phase continuity equations.  The 

assumption that the density fluctuations in the mixture density may be neglected allows 

the time-averaged mixture continuity equation to be given by the same form as the 

instantaneous mixture continuity equation. 

 

The individual phase momentum equations are added and the resulting equation is put 

into a form that is similar to the single-phase Navier-Stokes equations for Newtonian 

fluids with variable properties (see Umbel [37]). 
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The resulting momentum equations for a turbulent flow are then given by 
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where the respective phases are denoted by α and β, and indicial notation is used where 

repeated indices indicate summation.  The slip (or relative) velocity in Eq. (3.1.5) is given 

by 

          )( ,,, iiiS uuu βα −=      (3.1.6) 

In the mixture momentum equation, an additional flux due to the relative motion between 

the phases appears as the second term on the right hand side of equation (3.1.5).  This 

extra term is sometimes referred to as the drift flux term, and originates from using the 

mixture velocity definition in the convective terms.  It accounts for the macroscopic flux 

of momentum due to the relative velocity between the phases and is written on the right 

hand side of the equation as a fictitious stress term.  This is somewhat analogous to the 

microscopic transport of momentum due to the molecular transport that produces 

viscosity. 

 

The primary assumption of the mixture model is that the dynamics of the two phases can 

be expressed by the preceding mixture momentum equation and some algebraic equation 

for the slip velocity between the phases.  In general, the model assumes an empirical slip 

velocity relation of the form 

     .....),,,,( gurfu mmS ρα=    (3.1.7) 
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This assumption is justified if the motion of the two phases is strongly coupled.  Since the 

freedom of using one of the phase momentum equations is still available, it can be used 

to aid in determining the slip velocity equation.  An equation for the slip velocity can be 

determined by assuming that the slip velocity is a function of the terminal velocity of an 

average size droplet.  For flows in which more extensive relationships are needed, 

experiments can be used to aid in determining equations for the slip velocity.  These 

assumptions reduce the two individual phase momentum equations into a single 

momentum equation with one extra term that is a function of the slip velocity.  The form 

of the slip velocity used in the present study will be discussed in Section 3.3. 

 

The volume fractions are solved from one of the individual phase continuity equations 

and from the algebraic constraint that the individual phase volume fractions must sum to 

unity (i.e. rα +  rβ = 1).  It should be noted that the turbulent fluctuations in the volume 

fraction must be maintained in the formulation; hence, to account for turbulent diffusion 

of the volume fraction (i.e. turbulent flux terms mur ′′− α ), the turbulent transport terms are 

modeled using an eddy diffusivity model.  In the present study, the α-phase continuity 

equation is put into the form of a scalar transport equation, with a source term that is a 

function of the slip velocity.  The time-averaged form of the modeled transport equation 

in the SFST model is given by (See Appendix A.2 for a detailed derivation): 
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where R = ρα/ρβ represents the ratio of the two fluid densities, and Γ represents the 

effective diffusivity.  Here the slip velocity, us, appears in an additional convective term 

(treated as a source term), and the equation is solved for the scalar variable, φ. 

 

From this, then, the volume fraction of the lighter phase (i.e. the fuel) is solved from the 

following algebraic relation: 

     
( )φφ
φ

α −+
=

1R
r     (3.1.9) 

The volume fraction of the heavier phase is then solved from the algebraic constraint that 

the two must sum to unity.  This solution of the volume fraction is particularly appealing 

since it is not directly dependent on the solution of the mixture density, which in turn 

depends on the solution of the volume fraction (see Eq. (3.1.2)), requiring an iterative 

procedure.  It should be noted that this methodology for the solution of the volume 

fraction differs from that used in the previous version of the SFST model [8,37] in that it 

requires no simplifying assumptions concerning the density variations.  A full derivation 

of Eq. (3.1.8) and Eq. (3.1.9) is given in Appendix A.2. 

 

In summary, Eqs. (3.1.4), (3.1.5), (3.1.7), and (3.1.8) represent four coupled equations 

which can be solved for the mixture velocity, pressure, phase volume fractions, and 

relative velocity between the phases.  This model maintains the provision of reducing to a 

set of single-fluid equations with variable properties and some additional source terms, 

which may be easily added in any single-phase code.  Hence, the name single fluid, scalar 

transport (SFST) model is based on the model’s close ties to its corresponding single-
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phase equations.  It should be noted that in light of this fact, the SFST model does 

provide for the expected density variation in the continuity and momentum equations and 

also provides for relative velocity effects between the phases.  These capabilities are 

important features of the model, making it attractive in any extensive computational 

effort for predicting immiscible multiphase flows. 

 

3.2 k-ε  Turbulence Model for Buoyant Flows 
 

While most turbulence is generated as a function of shear, in flows with appreciable 

density gradients the turbulent eddies may receive or lose energy due to the effects of 

buoyancy.  For flows with density gradients, it can be shown that the specific turbulent 

kinetic energy equation is given by (see e.g. [32]) 
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where the density fluctuations in the inertial terms have been neglected.  Here (') denotes 

a fluctuating component.  Each of the terms in Eq. (3.2.1) are accounted for in the 

original modeled k-equation, except for the extra term represented by 

     guG ik '' ρ=      (3.2.2) 

which is referred to as buoyant production and represents the rate of work done against 

buoyancy forces by the turbulent motion.  This is essentially a transfer of either potential 

energy to turbulent kinetic energy, as would be the case in an unstably stratified flow, or 

a transfer of turbulent kinetic energy to potential energy, as would be the case in the 
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mixing of a heavy fluid with a lighter fluid against the action of gravity (stably stratified 

flow). 

 

The buoyancy production term is usually modeled as [32] 

    
i

t
iiik x

gugG
∂
∂ρ

ρσ
µ

ρ
ρ

=−= ''    (3.2.3) 

Here σρ is a kind of turbulent Prandtl number that is usually taken equal to 1.0.  A 

negative density gradient corresponds to a stably stratified flow and the term acts as a 

sink on turbulent kinetic energy.  The correlation between the fluctuating vertical velocity 

component and fluctuating density tends to be positive.  For positive density gradients an 

unstable stratification exists and the term acts as a source for k; this corresponds to the 

negative correlation between the fluctuating vertical velocity component and fluctuating 

density. 

 

The epsilon equation is modified by adding the source term given by 

          )0,max(3
1

kGC
k

C
G ε

ε
ε

ε
=     (3.2.4) 

where Cε3 is a constant [32].  This term increases ε for unstable stratification and gives no 

change in ε for stable stratification.  In CFX, Gk and Gε are included using the thermal 

expansion coefficient; for isothermal flows, when a generic scalar transport equation is 

solved, they must be added via user FORTRAN. 

 

With the modeled equations defined as above, the k-ε turbulence model for buoyant flows 

in a Cartesian coordinate system is given by: 



 49 

the k-equation: 
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and the ε-equation: 
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where 
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with the closure coefficients given by 

Cε1 = 1.44, Cε2 = 1.92, Cε3 = 1.0,  Cµ = 0.09, σk = 1.0, σε = 1.3, 

σr = 1.0,  σρ = 1.0 

 

In Eqs. (3.2.5) - (3.2.9) ρ represents the mixture density ρm. 

 

3.3 Empirical Correlation for the Slip Velocity 
 

The correlation used for the slip velocity in the present form of the SFST model assumes 

that the relative velocity between the two phases is proportional to the terminal velocity 

of a single particle in an infinite medium.  The effects of multiple droplets are then 
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included via a function of the volume fraction of the continuous phase, with the condition 

that the slip velocity must approach the terminal velocity in the dilute limit (i.e. when the 

volume fraction of the dispersed phase approaches zero). 

 

According to Ishii and Zuber [24], the terminal velocity of a single solid particle in an 

infinite medium, ∞rV , is given by 
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where ∞DC  represents the drag coefficient for a single particle in an infinite medium, rd 

is the radius of the particle or droplet, and the subscripts c and d denote the continuous 

and dispersed phase, respectively.  Writing Eq. (3.3.1) in terms of the droplet diameter 

yields 
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For a multiple particle system, the relative velocity between the two phases is given by 

[24] 
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where dα  represents the dispersed phase void fraction.  Next we assume that in Allen’s 

regime, the drag coefficient for the single particle system displays a direct similarity to 

that for the multiple particle system.  Allen’s regime is typically defined for particle 

Reynolds numbers between 1 and 1000, where the particle Reynolds number, Rep, is 

defined according to 
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The form of the drag coefficient, CD, in this flow regime is given by [24] 
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Here, we make a slight simplification by assuming a power-law curve fit of Eq. (3.3.5) 

given by [37] 
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This is done to avoid costly iteration in the numerical algorithm.  Substituting for Eq. 

(3.3.6) and Eq. (3.3.4) in Eq. (3.3.3) yields 
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which becomes 
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It can then be shown that by simply solving for the terminal velocity for a single particle 

system yields the bracketed term on the right hand side of Eq. (3.3.8).  Therefore, the 

relative or slip velocity for a multiple particle system can be written as a function of the 

dispersed phase volume fraction multiplied by the terminal velocity for a single particle.  

The general form of this expression then is given by [24] 

     ( ) ∞−= s
m

ds uu α1     (3.3.9) 

where ∞su  represents the terminal velocity for a single particle in an infinite medium, and 

the exponent “m” will be investigated in later chapters.  This empirical correlation is a 
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rather simple one.  For more advanced relationships, an alternative slip velocity 

correlation is given in Appendix A.3. 
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4.0 MASS CONSERVATION IN THE SFST MODEL 
 

Due to questions regarding fuel mass (volume) conservation in the previous version of 

the SFST model, a new algorithm has been formulated for determining the volume 

fraction of the light phase (i.e. the fuel).  These problems arose when it was found that the 

previous version of the SFST model did not conserve the fuel volume in the domain 

within a reasonable error.  It is important to keep in mind that the present study is an 

element of a larger project, which is constantly undergoing modification.  In this section, 

the new formulation for the solution of the volume fraction will be given, along with 

results detailing the improvement in the conservation of the fuel volume as compared 

with results from the previous model.  Further details concerning the previous version of 

the SFST model can be found in Celik et al [8], and Umbel [37]. 

 

 

4.1 Validation and Case Specific Issues 
 

To validate the new formulation for the solution of the volume fraction in the SFST 

model, and for comparison with previous results, a two-dimensional test case was 

developed involving a shear layer flow within a filling process.  A schematic of the 

geometry used is given in Figure 4.1.  The overall dimensions of the center compartment 

were 40 cm long by 20 cm high by 20 cm wide.  For the two-dimensional simulation, 

however, the z-direction is ignored, using only one cell length in the direction of the tank 

width.  The dimensions of the inlet and outlet compartments each measured 10 cm long 
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by 10 cm high.  A uniform grid was employed such that each computational cell 

measured 5 mm long by 5 mm high, with a volume of 5.0x10-6 m3.  While this 

computational mesh was somewhat course, it was used for economy of computational 

time so that several different parameters could be investigated. 

 

Figure 4.1 - Schematic of two-dimensional test case geometry. 
 

The tank was initially filled with water, having a density of 1000.0 kg/m3 in the lower 

portion of the tank, and fuel, having a density of 850.0 kg/m3, in the upper portion.  The 

initial condition was prescribed in this manner so that only one fluid would be present at 

the inlet and outlet and the boundary conditions could be examined.  The inlet consisted 

of specified values of the velocity and volume fraction.  Here the inlet velocity was 

specified as 0.01 m/s, corresponding to a Reynolds number of 1,000, and 0.2353 m/s, 

corresponding to a Reynolds number of 10,000, for a laminar and turbulent flow case, 

respectively. 
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For the turbulent flow cases, the values of the turbulence quantities, k and ε, were 

specified at the inlet according to [12] 

     2
1 inlpinl Uck =      (4.1.1) 

and 
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where DH is the hydraulic diameter, and cp1 and cp2 are empirical constants with values of 

0.002 and 0.3, respectively.  Hence, Dirichlet boundary conditions were set on all 

variables at the inlet, except for the pressure, which was extrapolated from downstream.  

The outlet was modeled by setting a zero-derivative condition on all transported 

variables. 

 

Of primary interest in these simulations was the comparison of the predicted fuel volume 

within the tank with the theoretical value that was expected if mass (volume) were 

conserved.  Here, the theoretical value of the fuel volume was determined from the 

following relation 

   ( ) ( )[ ] tQQVV
outfinf

old
f

new
f ∆⋅−+=    (4.1.3) 

where Vf is the total fuel volume contained in the tank, Qf is the volumetric flowrate of 

the fuel, ∆t is the time step, and the superscripts represent the corresponding time step.  In 

cases with constant fuel flow at the inlet, and where there is no fuel exiting the domain, 

this expression reduces to the product of the inlet flowrate and the elapsed time, given by 

     ( ) tQV
inff =      (4.1.4) 
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The predicted value of the total fuel volume in the tank was determined using integral 

methods across the entire domain.  In order to accomplish this integration, a rectangular 

(mid-point) rule was employed, where the volume of fuel contained in each 

computational cell was summed over the entire domain at each time step.  While a more 

accurate integration scheme such as Simpson’s rule could have been employed, it was 

found that the much simpler mid-point rule was sufficient for the present task.  It should 

also be noted that Simpson’s rule does not perform well for cases involving sharp 

gradients.  This would be the case for the laminar flow cases studied, as the fuel/water 

interface would remain sharp in the absence of mixing.  In order for an independent 

comparison to be made between the two formulations for the solution of the volume 

fraction, then, the mid-point rule was applied in all cases. 

 

All numerical simulations were performed as transient, two-dimensional flows, where 

time marching was accomplished using Euler's method.  A total elapsed time of 20.0 

seconds was used for each run, as this was expected to be a reasonable amount of time to 

investigate the changes in the fuel volume within the tank.  For the turbulent flow cases, 

where the inlet velocity was much higher, this elapsed time also allowed for some of the 

fuel to exit the domain, so that the boundary conditions at the exit could be examined. 

 

The velocity components were discretized using the higher-order upwind scheme, while 

the turbulence quantities used the HYBRID scheme, and the Poisson equation for the 

pressure was discretized using central differencing.  During the course of our 

investigations, it was determined that some improvement could be achieved by using a 
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flux limiting scheme for the solution of the volume fraction, rather than the first-order 

upwind scheme as recommended by the CFX User’s Manual [12].  Here we have chosen 

to use a MUSCL scheme, namely the MIN-MOD scheme.  In order to illustrate this 

improvement, results are presented below for a laminar flow case using the geometry 

described previously.  Figure 4.2 shows the predicted variations in the fuel volume 

compared with the theoretical value, using both upwinding and MIN-MOD. 

 

Fuel Volume Influx vs. Time: Old VF Formulation
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Figure 4.2 – Comparison of predicted fuel volume using upwind and MIN-MOD schemes. 
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It is seen in Fig. 4.2, the predictions of the fuel volume using the MIN-MOD scheme 

more closely match the theoretical values.  The errors in these predictions are given in 

Fig. 4.3 below and serve to better clarify this point. 

Error in Fuel Volume vs. Time: Old VF Formulation
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Figure 4.3 – Errors in predicted fuel volume using upwind and MIN-MOD schemes. 
 

Figure 4.3 above provides a much clearer picture concerning the predictions of the 

variation in the fuel volume using these two schemes.  After an elapsed time of 20.0 

seconds, the predictions of the fuel volume using first-order upwinding differ from the 

theoretical value by approximately 4.5%, while those using the MIN-MOD scheme are in 

error by slightly less than 3%.  In a typical simulation with a large number of 
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computational cells, this can become a considerable error.  It should be noted that this 

result differs from the recommendation in the CFX User’s Manual [12], which suggests 

that first-order upwinding be used for user-defined scalar variables. 

 

Having illustrated the improvement in using the MIN-MOD scheme, we will now present 

results in which comparison will be made between the new formulation for the solution 

of the volume fraction and that used in the previous version of the SFST model.  Figures 

4.4 and 4.5 below show the predicted fuel volume using both formulations and the errors 

in those predictions, respectively, for the laminar flow case. 
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Figure 4.4 – Comparison of variations in predicted fuel volume with time (laminar flow case). 
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As can be seen in Fig. 4.4 above, the new formulation for the volume fraction predicts the 

fuel volume in the tank nearly exactly, while there is some error in the predictions using 

the previous formulation.  This result was expected, as certain simplifying assumptions 

were made in the previous version of the SFST model, while the new formulation 

involves no assumptions except those involved in the turbulence modeling.  Figure 4.5 

below depicts the errors in the predicted fuel volume and shows that the error in the new 

formulation is very nearly zero (to at least 7 decimal places), while the predictions using 

the previous formulation show a significant error. 
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Figure 4.5 – Errors in predicted fuel volume as a function of time (laminar flow case). 
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In order to ensure that the new formulation of the volume fraction is indeed conservative 

for all flow scenarios, we will next present results for the turbulent flow case as described 

previously.  Similar profiles for the variation in the fuel volume and the errors upon 

comparison with the theoretical values are given in Figures 4.6 and 4.7, respectively. 
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Figure 4.6 – Comparison of variations in predicted fuel volume with time (turbulent flow case). 
 

Again we can see that the new formulation for the solution of the volume fraction 

predicts the fuel volume within the tank with very little error.  This is further 
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demonstrated by the errors in the predicted fuel volume when compared with the 

theoretical value depicted in Fig. 4.7 below. 
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Figure 4.7 – Errors in predicted fuel volume as a function of time (turbulent flow case). 
 

The new volume fraction formulation was next applied to a fully turbulent, three-

dimensional flow case.  A wireframe sketch of the two-compartment geometry used for 

these simulations is given in Fig. 4.8.  The overall dimensions of the tank were 1.2 m 

long by 1.2 m wide by 0.8 m high.  The relatively course uniform grid used was 

24x24x16, for a total of approximately 9,200 cells, each with a volume of 1.25x10-4 m3.  
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As in the two-dimensional case, we have chosen to use a course grid for economy of 

computational time, while allowing that this may cause some numerical errors. 

 

Figure 4.8 – Wireframe sketch of two-compartment geometry. 
 

The inlet velocity was specified as 1.0 m/s, resulting in a Reynolds number of 

approximately 85,000 based on the inlet parameters.  The same differencing schemes as 

were used for the two-dimensional case were used for all variables.  A total elapsed time 

of 20.0 seconds was simulated using the geometry given above.  This case allowed for a 

fully turbulent, three-dimensional flow scenario to be simulated using the new 

formulation for the volume fraction, and to study the conservation of the fuel volume. 

 

The variations in the fuel volume and errors when compared with the theoretical values 

are given in Figures 4.9 and 4.10, respectively.  Again, we have shown that the solution 
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of the fuel volume as a function of time is extremely accurate.  In this case, the error does 

not exceed 0.18 % after an elapsed time of 20.0 seconds. 
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Figure 4.9 – Predicted variations in fuel volume with time (3-D turbulent flow case). 
 

 

The errors shown in Fig. 4.10 below further demonstrate the accuracy in predictions of 

the fuel volume using the new formulation for the solution of the volume fraction 

equation. 
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Error in Fuel Volume vs. Time
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Figure 4.10 – Errors in predicted fuel volume vs. time (3-D turbulent flow case). 
 

 

4.2 Summary and Conclusions 
 

Due to questions regarding the conservation of mass (volume) in the SFST model, a new 

formulation for the solution of the volume fraction was developed.  To validate the new 

model, an extensive series of tests was conducted, using both a two-dimensional and 

three-dimensional geometry, for both laminar and turbulent flow scenarios.  During the 

course of the investigations, it was found that the differencing scheme used to discretize 
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the volume fraction equation, namely first-order upwind, was not a good choice.  In light 

of this, a flux-limiting scheme, namely MIN-MOD, was used as it provided boundedness 

in the solution of the volume fraction.  Following this careful analysis, it has been 

demonstrated that the new formulation for the volume fraction shows a high degree of 

accuracy in the prediction of the fuel volume for a variety of flow conditions and 

geometries. 
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5.0 DERIVATION OF DROPLET FORMATION/ENTRAINMENT 
MODEL 

 

A mathematical model is currently being developed to predict the local size of any 

dispersed phase (i.e. fuel) droplets, which are formed as a result of instabilities at the 

fluid interface.  The current form of the model follows the discussion by Sullivan & List 

[33] in dividing the flow into several different regimes.  According to Figure 12 [33], 

these flow regimes include a turbulent interface regime, Kelvin-Helmholtz (K-H) regime, 

a wave-breaking regime, and a molecular-diffusion-dominated regime.  Each of these 

regimes can be delineated by an appropriately defined Richardson number, in this case 

the layer Richardson number which is defined according to 

     
( )2

1 U

hgRiL
∆

∆=
ρ

ρ      (5.0.1) 

where ∆ρ is the difference in the two unmixed fluid densities, h is the boundary-layer 

thickness, ρ1 is the density of the lighter phase, and ∆U is the difference in the free 

stream velocities of the two fluid layers. 

 

Since in both the K-H regime and the wave-breaking regime the interface mixing 

mechanism involves Kelvin-Helmholtz type waves, we have chosen to combine these 

two into one, referred to as the Kelvin-Helmholtz vortices regime.  The present form of 

the model does not include the molecular-diffusion-dominated regime, which occurs at 

very large values of the Richardson number, as we expect that this regime will not occur 

often in our application.  At a later time this regime may be included by utilizing a newly 
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formed length scale based on the mixture kinematic viscosity.  This will be discussed 

later. 

 

5.1 Description of Flow Regimes 
 

For our simulations, we have chosen to consider the two flow regimes that we believe 

will occur most often in our application.  These include the turbulent interface regime for 

very low values of the Richardson number, and the K-H vortices regime for moderate 

values of the Richardson number.  The latter was composed of the K-H regime and the 

wave-breaking regime as described by Sullivan & List [33].  Descriptions of the various 

flow regimes are given below. 

 

Turbulent Interface Regime 

This regime occurs at very low values of the Richardson number.  As the Richardson 

number is a measure of the relative influence of buoyancy and shear forces, this would 

correspond to areas where the effects of shear forces are dominant.  We will assume that 

for this regime, the size of any droplets formed is directly controlled by the local 

turbulence quantities k and ε (e.g. see Eq. 2.4.12). 

 

K-H Vortices Regime 

The second regime that we have considered in the present droplet model is that of the 

Kelvin-Helmholtz vortices regime, which occurs for moderate values of the Richardson 

number.  In this regime, the fluid interface becomes unstable and waves develop.  The 
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mixture mechanism is dominated by the roll-up and pairing of K-H type vortices, which 

scour fluid away from the mixed fluid region.  Depending on the value of the Richardson 

number these waves will either grow and collapse cyclically, or, if buoyancy forces are 

great enough (i.e. the Richardson number is large enough), then the waves will become 

too large, leading to gravitational instability, and will break.  We assume that in this 

regime the size of any droplets formed is proportional to the height of these K-H type 

waves, which develop as a result of instabilities at the interface.  Through our analysis of 

some of the results from the literature for two-dimensional stratified shear flow, we have 

related this wave height to an appropriately defined length scale and to the Richardson 

number.  The length scale determination will be discussed later. 

 

Molecular-Diffusion Regime 

This regime occurs for relatively large values of the Richardson number, where the 

effects of shear are very small compared to buoyancy.  Because of this, very few or no 

instabilities occur at the interface, and the mixing is dominated by molecular diffusion.  

At the present time we are ignoring this regime, as we expect that it will not occur often 

in our application.  In the future, this regime may be included by making use of a 

characteristic length scale ld = ν/V, where ν is the kinematic viscosity and V is the 

vertical velocity.  This length scale can then be substituted into the expression for the 

droplet diameter in the K-H vortices regime, and it may also account for the changing 

Richardson number, which will be much higher in this regime.  (See section 5.3) 
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5.2 Flow Regime Boundaries 
 

As stated above, we have divided the flow into several different regimes, each of which is 

delineated by an appropriately defined Richardson number.  The discussion by Sullivan 

& List [33] used the layer Richardson number; however, for our simulations we have 

chosen to use the gradient Richardson number given by Eq. (2.1.14) because it is a local 

quantity measuring the relative influence of shear forces and buoyancy.   

 

The next step then is to relate the gradient Richardson number to the layer Richardson 

number so that appropriate limiting values can be determined separating the different 

flow regimes.  The gradient Richardson number can be approximated as follows: 
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This is done by simply approximating the partial derivatives as differences, and assuming 

that ∆y scales as δm in the case of the density gradient and δV in the case of the velocity 

gradient.  Here δm is the mixed-fluid, or interface, thickness (see Eq. 2.1.4) and δV is the 

maximum velocity gradient thickness, as defined by Eq. (2.1.2).  By inspection, we can 

relate the approximate expression for the gradient Richardson number with the definition 

of the layer Richardson number if we also assume that the boundary layer thickness, h, 

scales as the velocity layer thickness δV.  This yields 

     
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From Figure 17 of Atsavapranee & Gharib [1], the ratio of the mixed-fluid thickness to 

the velocity gradient thickness can be approximated by a curve fit, given by 

     23017.0 −⋅≅ Ri
V

m

δ
δ

    (5.2.3) 

where Ri is a kind of Richardson number defined by 
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Here ρ  is the mean density and δρ is the maximum density gradient thickness, given by 

Eq. (2.1.3), which is approximately equal to twice the mixed fluid thickness, δm, as given 

by Eq. (2.1.5).  By substituting Eq. (2.1.5) into Eq. (5.2.4) we obtain 

     
m

Vg
Ri

δρ
δρ

⋅⋅
⋅∆⋅

=
2

2

    (5.2.5) 

By examination of Eq. (5.2.5) and Eq. (5.2.1) we can then relate Ri to the gradient 

Richardson number by 

     gRiRi
2
1

=      (5.2.6) 

and by substituting Eq. (5.2.6) into Eq. (5.2.3) we find  

             230481.0 −⋅≅ g
V

m Ri
δ
δ

    (5.2.7) 

With this expression we can now relate the gradient Richardson number to the layer 

Richardson number.  This yields 

     22.12.0 Lg RiRi ⋅≅     (5.2.8) 

which will in turn allow us to determine the flow regime boundaries in terms of the 

gradient Richardson number, which can be determined locally in the CFX model. 
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According to Figure 12 of Sullivan & List [33], the different flow regimes are delineated 

by the value of the layer Richardson number; however, as we are using a locally defined 

gradient Richardson number, we have converted the flow regime boundaries.  Table 5.1 

below describes the different values used to separate these flow regimes.  It should be 

noted that we have combined the Kelvin-Helmholtz regime and the wave-breaking 

regime into a single K-H vortices regime. 

 

Table 5.1 - Flow Regime Boundaries for DFE Model 
 
FLOW REGIME RICHARDSON NUMBER 
Turbulent Interface Regime RiL < 1 

Rig < 0.2 

K-H Vortices Regime 1.0 < RiL < 20 
0.2 < Rig < 7.5 

Molecular Diffusion Regime RiL > 20 
Rig > 7.5 

 

 

5.3 Model Equations 

In this section we will develop the model equations implemented in the SFST model for 

the different flow regimes described above.  First we will examine the turbulent interface 

regime, which occurs for values of the gradient Richardson number less than 

approximately 0.2, and the K-H vortices regime for intermediate values of the gradient 

Richardson number (between approximately 0.2 and 7.5). 
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Turbulent Interface Regime 

From the discussion by Hinze [21], the product of the droplet diameter and the turbulent 

dissipation, raised to the 2/3 power, is proportional to the square of the fluctuating 

vertical velocity component.  The constant of proportionality is found to be 

approximately 2.0.  This yields 

     ( ) 322 0.2 du ⋅⋅≅′ ε     (5.3.1) 

This expression was also determined by Kuboi et al [25] from the analysis of 

experimental results for stirred tanks and turbulent pipe flow.  From the definition of the 

turbulent kinetic energy, k, 

     ( )222

2
1

wvuk ′+′+′=    (5.3.2) 

and assuming isotropic turbulence we obtain 

     ( )23
2
1

uk ′=      (5.3.3) 

If we then substitute for 2u′  into Eq. (5.3.1) we find 

     ( ) 320.2
3
2

dk ⋅⋅≅ ε  

which can be solved for the droplet diameter in terms of k and ε 

     







⋅≅

ε

23

1925.0
k

d p     (5.3.4) 

For the CFX model, we will next include a function of the volume fraction to account for 

the fact that there should be no droplets formed in regions where only one phase is 

present and where that phase forms the continuum. 
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This yields, with a constant of proportionality C1, 

    ( ) ( ) 







⋅−⋅⋅≅

εαα

23

1 1
k

rrCd nm    (5.3.5) 

where rα is the volume fraction of the dispersed phase (i.e. the fuel), and (1-rα) is the 

volume fraction of the continuous phase (i.e. water).  This is the model expression for the 

droplet diameter in the turbulent interface regime (i.e. where Rig < 0.2).  The model 

coefficient C1 was set to approximately 0.2, and the exponents m and n were arbitrarily 

set to 2 in both cases.  This causes the droplet diameter to become very small as rα 

approaches 1 (i.e. approaching a continuous fuel layer where we expect no droplets) or 0 

(i.e. continuous water layer).  Equation (2.4.11) indicates that this coefficient should be a 

function of the Weber number. 

 

In Eq. (5.3.5), ε23k  is a length scale that is a measure of the size of the turbulent eddies 

at a given location within the domain.  This is the integral turbulence length scale used by 

most two-equation turbulence models. 

 

K-H Vortices Regime 

As stated previously, in this regime we will assume that the size of any dispersed phase 

droplets formed is proportional to the height of the K-H type waves that form at the fluid 

interface.  From Figure 15 of Narimousa & Fernando [31], the wave amplitude δw 

normalized by the mixed-layer depth, h, can be expressed as 

     61.0232.0 −⋅≅ u
w Ri
h

δ
    (5.3.6) 
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where the Richardson number Riu is defined as 

     
2

u

hg
Riu

⋅∆⋅
=

ρ
    (5.3.7) 

and u  is the mean velocity of the mixed-fluid layer.  The mixed-layer depth h can be 

related to the shear layer thickness δs by [31] 

      2.0≅
h

sδ
 

By substitution for h into Eq. (5.3.6) we find 

     61.016.1 −⋅≅ u
s

w Ri
δ
δ     (5.3.8) 

Again we face the problem of converting the Richardson number into a gradient 

Richardson number for use in the CFX model.  By examination of Eq. (5.3.7) and Eq. 

(5.2.1), and assuming that the flow is characterized by the mean interface velocity u , we 

find that this is a simple relation 

     gu RiRi ⋅= 5.1      (5.3.9) 

If we now substitute for Riu into Eq. (5.3.8), and assume that the shear layer thickness δs 

scales as the maximum velocity gradient thickness δv, we find 

     61.0905.0 −⋅⋅≅ gvw Riδδ            (5.3.10) 

Multiplying and dividing the right hand side of Eq. (5.3.10) by the mixed-fluid thickness, 

δm, yields 

         61.0905.0 −⋅







⋅⋅≅ g

m

v
mw Ri

δ
δ
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We have already determined the relationship between the ratio of the mixed-fluid 

thickness to the maximum velocity gradient thickness and the gradient Richardson 

number in Eq. (5.2.10).  Substituting for this expression yields 

     89.08.18 gmw Ri⋅⋅≅ δδ             (5.3.11) 

As stated previously, in this regime we assume that the droplet diameter is proportional to 

the wave height.  Here we will assume that the constant of proportionality is 

approximately 1/4.  This seems reasonable in that it assumes that during a wave-breaking 

event the wave breaks up into approximately four droplets ( wpd δ25.0≅ ).  With this 

assumption, the droplet diameter is given by 

     89.07.4 gmp Rid ⋅⋅≅ δ             (5.3.12) 

More generally we can express Eq. (5.3.12) in terms of some appropriate length scale lch 

and with some constant C2 by 

     89.0
2 gchp RilCd ⋅⋅≅             (5.3.13) 

This was done so that the length scale included in the model expression could account 

both for regions where the flow acts like a stratified flow, as well as regions that are 

occupied by either the inlet jet or the buoyant jet that occurs through the manholes of the 

different tank geometries.  This will be explained in greater detail later. 

 

Again we choose to include a function of the volume fraction as we did in the turbulent 

interface regime to account for regions where only the lighter phase is present.  This 

yields the model expression for the K-H vortices regime: 

    ( ) ( ) 89.0
2 1 gch

nm
p RilrrCd ⋅⋅−⋅⋅≅ αα            (5.3.14) 
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where C2 is a model constant on the order of 5.0, and m and n are again set to 2. 

 

 

Determination of Length Scales 

As we have seen from the model expression derived above, there can be several different 

length scales which characterize the flow in a given flow regime.  These will be discussed 

in this section. 

 

For the turbulent interface regime, we assume that the characteristic length scale is that of 

the turbulent eddy size given by 

     
ε

23k
lte =              (5.3.15) 

For the K-H vortices regime there are several different length scales that might be used to 

characterize the flow.  The derivation of the model expression based on the results from 

the literature on two-dimensional stratified shear flows yielded a length scale based on 

the mixed-fluid thickness.  This length scale is determined from the volume fraction 

profile as the distance over which the dispersed phase volume fraction changes from 0.01 

to 0.99.  The limitation of this, however, is that it is derived from two-dimensional shear 

flow experiments, which do not include three-dimensional effects.  Also, for the 

geometries used in our CFX models, this would not account for regions of the flow in 

which an impinging jet occurs, nor would it include regions of buoyant jet phenomena.  

To account for all of these we have included a much more general length scale expression 

in the model equation for this flow regime.  We will assume that the size of any droplets 
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formed will be determined by the smallest, locally determined, characteristic length scale, 

as given by 

    ( )walltemzmymxch lMinl δδδδ ,,,,=            (5.3.16) 

where δmx, δmy, and δmz represent the mixed-fluid thickness in each of the three 

coordinate directions.  lte is the turbulent eddy length scale defined by Eq. (5.3.15), and 

δwall is the distance from the cell node to the nearest wall, which limits the size of the 

droplets by their proximity to a solid boundary, where lte changes approximately as 0.4yn, 

yn being the normal distance from the wall.  For the calculation of the three mixed-fluid 

thicknesses, we employ a method based on the volume fraction profile by which we 

sweep the domain in each coordinate direction to determine a mixed fluid thickness.  The 

wall distance term in Eq. (5.3.16) is included to account for the fact that near solid 

boundaries the size of a given droplet must be bounded in a physical sense by the 

distance to the nearest wall, which determines the local turbulent length scale near a wall.  

Our implementation of the CFX model calculates all of these length scales locally at each 

grid node and determines the smallest one to include in the model expression for this 

flow regime. 

 

In the molecular diffusion regime we have already conjectured that we may include a 

new length scale based on the local kinematic viscosity and include it in the model 

expression for the K-H vortices regime using a higher Richardson number.  This length 

scale is given by 

             
V

lch
ν

=              (5.3.17) 
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where the kinematic viscosity ν  and the vertical velocity V are determined locally at 

each grid node.  The vertical velocity component was chosen as we expect that any 

diffusion that occurs will be dominated by the vertical component. 

 

 

Summary of Model Expression for Various Flow Regimes 

In the previous sections we have derived expressions to predict the dispersed phase 

droplet diameter based on local flow quantities.  A summary of these expressions for 

each corresponding flow regime as they are implemented in the CFX code is given in 

Table 5.2 below. 

 

 

Table 5.2 - DFE Model Equations for Different Flow Regimes 
 
Flow Regime Model Expression Richardson numbers 
Turbulent Interface 

( ) ( ) 







−⋅≅

εαα

23
22 12.0

k
rrd p  

RiL < 1.0 
Rig < 0.2 

K-H Vortices ( ) ( ) 89.022 10.5 gchp Rilrrd ⋅⋅−⋅≅ αα  
where 
lch = MIN(δmx, δmy, δmz, lte, δwall) 

1.0 < RiL < 20 
0.2 < Rig < 7.5 

Molecular Diffusion ( ) ( ) 89.022 10.5 gp Ri
V

rrd ⋅





⋅−⋅≅

ν
αα

 

RiL > 20 
Rig > 7.5 
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General Expressions  

It is important to keep in mind that the expressions for the droplet diameter were derived 

from the analysis of results in the literature for two-dimensional stratified shear flows 

involving miscible fluids.  The actual flow scenario may involve a much more complex 

three-dimensional mixing of immiscible liquids (e.g. vertical buoyant jet flow).  In light 

of this, we can rewrite the droplet model expressions for the three different flow regimes 

in a more general form.  Table 5.3 below shows the general form of the model equations. 

 

Table 5.3 - General Model Expressions for the Droplet Diameter 
 

Flow Regime Model Expression Richardson numbers 
Turbulent Interface 

( ) ( ) 







−⋅≅

εαα

23

1 1
k

rrCd nm
p  

RiL < K1 
Rig < k1 

K-H Vortices ( ) ( ) 89.0
2 1 gch

nm
p RilrrCd ⋅⋅−⋅≅ αα  

where 
lch = Min(δmx, δmy, δmz, lte, δwall) 

K1 < RiL < K2 
k1 < Rig < k2 

Molecular Diffusion ( ) ( ) 89.0
3 1 g

nm
p Ri

V
rrCd ⋅






⋅−⋅≅

ν
αα  

RiL > K2 
Rig > k2 

 

 

In the above generalized expressions, the model coefficients C1, C2, and C3, the 

exponents m and n, and the flow regime boundary limits on the Richardson number, K1, 

k1, K2, and k2, would need to be determined from experimental results. 
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5.4 Verification of the DFE Model 
 

To verify the droplet formation/entrainment model, a two-compartment geometry was 

used in conjunction with the SFST model and the model expressions for the DFE model 

as described above.  It should be noted that these verification studies were done prior to 

the modifications made to the solution of the volume fraction as described in the previous 

chapter.  A wireframe sketch of the geometry used is given in Fig. 5.1 below. 

 

 
 

Figure 5.1 - Wireframe sketch of two-compartment tank geometry. 
 
 
The physical dimensions of the tank are 1.2 meters long by 1.2 meters wide by 0.8 meters 

high.  The uniform grid used is 60 x 24 x 24, for a total of approximately 35,000 cells, 

and an average cell volume of 3.33 x 10-5 m3.  The inlet was modeled as a mass flow 

boundary with specified flux of 8.0 kg/s, corresponding to an inlet velocity of 

approximately 6.7 ft/s and an inlet volumetric flowrate of approximately 150 gal/min; the 
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exit was modeled as a pressure boundary.  The advection scheme used was second order 

upwind, while the k and ε equations were discretized using the hybrid scheme.  The 

volume fraction used upwinding, and the time discretization used backward Euler 

differencing. 

 

The model equations for the droplet diameter in each of the different flow regimes were 

implemented for the above geometry, using the SFST model, including the buoyancy 

terms in the k-ε equations.  The results of these simulations are discussed in the next 

section. 

 

Results are given for the volume fraction, and the droplet diameter solved for as a passive 

scalar. That is, the locally calculated diameter was not included in the slip velocity 

expression dynamically.  With regard to the droplet diameter contour plots there are two 

figures included.  The first shows the larger scale fuel droplets, and the second is used to 

show the smaller droplets by altering the scale of the contour plot.  Due to the color 

interpolation performed by the CFX post-processor, CFX-Visualize, this was necessary 

since the smaller scale droplets would not appear on the contours without altering the 

scale.  Any values larger than the upper limit of the display scale are shown as the high 

value (i.e. red in a color plot).  Velocity vector plots representing the flow field for each 

time value are also included in the results presented below. 

 

In the following sections, several different views are presented for the variables in 

question.  Three vertical planes corresponding to the z-value of the inlet pipe, manhole, 
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and exit pipe (the z-direction being the dimension into the page), and one horizontal 

plane at a height of H/2 (H being the total height of the tank), are shown at time equal to 

15.0 seconds.  It is important to be mindful of the scale shown for each figure, as they are 

not always the same, except in the case of the small scale contours for the droplet 

diameter, which all have an upper limit of 0.0005 m (0.5 mm). 

 

Observations made concerning the results given indicate that the droplet model seems to 

predict reasonable values for the dispersed phase diameter.  The values range from 

extremely small droplets up to larger droplets whose diameters are on the order of 1-2 

cm.  Based on the qualitative observations of the shear flow experiments conducted at 

Johns Hopkins University this range appears to be quite reasonable.  Also, with regard to 

geometric trends, there are no droplets predicted in regions where only one phase is 

present, and the majority of the droplets predicted by the model appear in regions at or 

near the interface of the two fluids.  The larger the droplets, the closer they are to the 

mean interface of the two fluids. 
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Inlet Plane at Time = 15.0 seconds  
 

 
 
Figure 5.2 - Volume fraction (inlet - front view) at t = 15.0 sec. 
 
 

 
 
Figure 5.3 - Velocity vectors (inlet - front view) at t = 15.0 sec. 
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Figure 5.4 - Droplet diameter (inlet - front view) - large scale at t = 15.0 sec. 
 
 
 

 
 
Figure 5.5 - Droplet diameter (inlet - front view) - small scale at t = 15.0 sec. 
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Manhole at Time = 15.0 seconds  
 

 
 
Figure 5.6 - Volume fraction (manhole - front view) at t = 15.0 sec. 
 
 
 

 
 
Figure 5.7 - Velocity vectors (manhole - front view) at t = 15.0 sec. 
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Figure 5.8 - Droplet diameter (manhole - front view) - large scale at t = 15.0 sec. 
 
 
 

 
 
Figure 5.9 - Droplet diameter (manhole - front view) - small scale at t = 15.0 sec. 
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Exit Plane at Time = 15.0 seconds  
 

 
 
Figure 5.10 - Volume fraction (exit - front view) at t = 15.0 sec. 
 
 
 

 
 
Figure 5.11 - Velocity vectors (exit - front view) at t = 15.0 sec. 
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Figure 5.12 - Droplet diameter (exit - front view) - large scale at t = 15.0 sec. 
 
 
 

 
 
Figure 5.13 - Droplet diameter (exit - front view) - small scale at t = 15.0 sec. 
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Top View (y = H/2) at Time = 15.0 seconds  
 

 
 
Figure 5.14 - Volume fraction (top view - y = H/2) at t = 15.0 sec. 
 
 

 
 
Figure 5.15 - Velocity vectors (top view - y = H/2) at t = 15.0 sec. 
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Figure 5.16 - Droplet diameter (top view - y = H/2) - large scale at t = 15.0 sec. 
 
 
 

 
 
Figure 5.17 - Droplet diameter (top view - y = H/2) - small scale at t = 15.0 sec. 
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From the figures given above, it can be seen that the droplet formation/entrainment model 

produces reasonable values of the dispersed phase droplet diameter.  The typical range of 

droplet sizes extend to approximately 2 cm at the maximum value.  This seems quite 

reasonable by comparison with results from the experiments being performed at Johns 

Hopkins University for stratified shear flows.  As we expected, there are no droplets 

predicted in regions where only one phase is present (i.e. where the volume fraction is 

either zero or one), and the majority of the fluid droplets are formed at or near the 

interface of the two fluids. 
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6.0 SFST MODEL PREDICTIONS FOR STRATIFIED SHEAR 
FLOWS 

 

The SFST model, as described previously, was applied to the simulations of an 

experimental facility at Johns Hopkins University [38] to investigate certain mixing 

phenomena in stratified shear flows.  The droplet formation/entrainment (DFE) model 

was also used in conjunction with this model for verification purposes and to investigate 

the droplet size distributions predicted by the numerical models.  Of primary interest in 

these simulations were the predictions of the overall flowfield, as well as the prediction 

of the mixed fluid thickness as a function of downstream distance.  Wherever possible, 

comparisons will be made between the results of the numerical simulations and the 

experimental measurements. 

 

6.1 Experimental Conditions Simulated 
 

The experimental setup consisted of a laboratory channel apparatus in which two 

stratified, immiscible fluids flow opposite to each other.  A sketch of the apparatus is 

given in Fig. 6.1.  The overall dimensions are approximately 150.0 cm long by 32.0 cm 

high by 7.5 cm wide, and both the water and fuel inlets span a vertical distance of 

approximately 11.0 cm.  In the experiments, fuel with a density of 850.0 kg/m3 entered 

the tank through the upper left inlet, while water, with a density of 1000.0 kg/m3 and 

flowing at a much higher velocity than the fuel, entered the tank through the lower right 

inlet.  The incoming fuel and water layers were separated at the left and right walls by 

thin splitter plates, and the fuel layer was smoothly transitioned into the oncoming water 
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by means of the inlet diffuser shown.  Here, the angle between the inlet diffuser and the 

left splitter plate could be varied for different flow conditions, but remained fixed for a 

given experimental trial.  As the purpose of the inlet diffuser is to prevent any of the 

water from being entrained in the fuel layer and being drawn above the left splitter plate, 

the angle of the inlet diffuser needed to be changed depending on the inlet velocity of the 

water layer.  Some of the fuel exited the tank through the upper right outlet and returned 

to the fuel reservoir, while the majority of the fuel was entrained in the water and exited 

via the lower left outlet.  The outlet weir located below the inlet diffuser acted to direct 

the flow of water along the fuel/water interface. 

 

 

Figure 6.1 – Johns Hopkins shear flow experimental setup. 
 

The main shear region, which is located between the inlet diffuser and the splitter plate 

above the water inlet, was approximately 0.8 m in length.  Typical inlet flow rates for the 

fuel were approximately 9.464x10-4 m3/s (15.0 gal/min), corresponding to an inlet 

velocity of approximately 0.15 m/s.  Inlet flow rates for the water ranged from 0.00505 
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m3/s to 0.00757 m3/s (or 80 gal/min to 120 gal/min), corresponding to mean inlet 

velocities of 0.8345 m/s to 1.2517 m/s.  The overall Richardson number, as given by Eq. 

(2.1.11), was used to characterize each of the different cases simulated.  Here the 

characteristic velocity scale was taken as the difference between the mean inlet velocities 

of the fuel and water inlets. 

 

6.2 Computational Details 
 

To simulate the experimental setup, a two-dimensional model was configured using 

CFX-4.  Here, the SFST model, as was described in Section 3.1, was used.  The effects of 

turbulence were modeled using the modified k-ε model, described in Section 3.2, 

including the additional terms to account for buoyant production/destruction.  The 

constitutive equation for the relative motion between the phases was given by the slip 

velocity relation described in Section 3.3. 

 

Several different flow scenarios were simulated, encompassing two different overall 

Richardson numbers, defined in terms of inlet parameters.  For each value of the 

Richardson number, three numerical runs were performed, where two assumed a 

constant, average droplet diameter, and the third utilized the droplet 

formation/entrainment (DFE) model.  For cases involving the DFE model, the droplet 

diameter that was calculated during the course of the simulation was dynamically 

implemented in the slip velocity relationship at all points in the domain. 
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A 20-block geometry was configured using CFX-Meshbuild to simulate the experimental 

setup.  A sketch of this configuration is given in Fig. 6.2, where all block structures and 

dimensions are shown as they were modeled in CFX.  Lines inside the domain represent 

inter-block boundaries, and shaded regions denote boundary patches.  The dimensions of 

this model followed those used in the experiments at Johns Hopkins University [38]. 

 

The grid used for the simulations consisted of approximately 29,175 cells.  In the main 

shear region, between the splitter plates, 150 cells were used in the longitudinal 

(streamwise) direction, and 104 cells were used in the vertical direction.  In this region, 

the mesh was concentrated towards the lower wall and center of the model using a 

geometric progression factor of 1.02.  This gave the smallest cell at or near the interface 

dimensions of approximately 5.0 mm long by 1.0 mm high. 

 

 

Figure 6.2 – Johns Hopkins shear flow geometry used in CFX. 
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Boundary conditions for the inlets were modeled by setting a fixed velocity such that the 

overall Richardson numbers matched those in the experiments based on the inlet flow 

rates used.  The volume fraction was also specified at the inlets, corresponding to the 

pure, unmixed fluid values.  The turbulence quantities, k and ε, were estimated at the 

inlets using Eq. (4.1.1) and (4.1.2), and pressure at the inlets was extrapolated from 

downstream.  Therefore, Dirichlet boundary conditions were specified at the inlets on all 

quantities except the pressure. 

 

Boundary conditions at the outlets were set as if the fluid were exiting the domain with a 

free surface at the top of the outlet boundary in the longitudinal direction, with 

atmospheric conditions at the top of the boundary.  For stratified flows exiting the 

domain perpendicular to the gravity vector, the discretized pressure for this condition is 

set according to 

    ( )( )dygPP
j

j
refmjj ∫

+

+ −+=
1

1 ρρ    (6.2.1) 

where the gravitational acceleration acts downward, and the j index indicates the vertical 

direction.  Here ρref is a reference density, which was set equal to the average of the 

unmixed phase densities.  In addition to the hydrostatic distribution, constant pressures of 

approximately 2,600.0 Pa and 5,300.0 Pa were set at the upper right outlet for the lower 

and higher Richardson number cases, respectively, corresponding to pressure differences 

of approximately 0.375 psi and 0.75 psi between the upper and lower outlets.  This was 

done since the fuel outlet tank on the right of the apparatus was typically pressurized 
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during the experiments.  Boundary conditions for all other quantities at the outlets were 

modeled by setting a zero-derivative condition. 

 

Six different cases were simulated, encompassing two different values for the overall 

Richardson number, with variations in the droplet diameter, dp.  For each value of the 

overall Richardson number, two cases were simulated using two different values for the 

droplet diameter as a constant, average value.  A third case was also simulated, 

implementing the droplet formation/entrainment model, and dynamically updating the 

droplet diameter value used in the slip velocity relation.  Table 6.1 below illustrates the 

boundary conditions and overall parameters for each case. 

 

Table 6.1 – Boundary Conditions and Overall Parameters for CFX model 
 
Water Inlet Parameters Overall Parameters

Case u (cm/s) ρ (kg/m 3) k (cm 2/s2) ε (cm2/s3) dp (mm) Ri*
1 73.72 1000.0 10.87 15.68 2.00 0.7
2 73.72 1000.0 10.87 15.68 6.00 0.7
3 73.72 1000.0 10.87 15.68 variable 0.7
4 84.37 1000.0 14.23 20.04 2.00 0.32
5 84.37 1000.0 14.23 20.04 6.00 0.32
6 84.37 1000.0 14.23 20.04 variable 0.32

Fuel Inlet Parameters
Case u (cm/s) ρ (kg/m 3) k (cm 2/s2) ε (cm2/s3)

1 0.1467 850.0 0.4304 0.12044
2 0.1467 850.0 0.4304 0.12044
3 0.1467 850.0 0.4304 0.12044
4 0.1467 850.0 0.4304 0.12044
5 0.1467 850.0 0.4304 0.12044
6 0.1467 850.0 0.4304 0.12044  

 

A second order upwind scheme was used to discretize the velocity components, and 

central differencing was used for the pressure.  As was discussed in Section 4.1, it was 
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found that a flux-limiting scheme performed better in discretizing the volume fraction 

equation; therefore, the MIN-MOD scheme was used.  The turbulence quantities were 

calculated using the Hybrid scheme. 

 

All simulations were performed using transient marching to steady state.  Typically, 50 to 

75 outer iterations were performed for a total elapsed time of 20.0 seconds, where a 

constant time step of 0.1 seconds was used throughout.  The total elapsed time 

corresponded to approximately 2 flow-through times for the fuel, and approximately 10 

to 15 flow-through times for the water.  At this time the outlet flow rates and vertical 

profiles of all quantities remained essentially constant, and the solution was taken as the 

steady state. 

 

 

6.3 Results and Discussion 
 

In this section, results will be presented for the different simulations outlined above.  

Wherever possible, comparison will be made with experimental measurements, 

particularly in relation to the streamwise variation in the mixed fluid thickness, δM, for 

each case.  Also in this section will be discussion of the calibration of various parameters 

involved in the SFST and DFE models by using the comparison of the predicted values 

for δM.  Following this, the final predictions from the calibrated models will be presented. 
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The first important parameter in the SFST model that required calibration was the 

exponent used in the slip velocity relationship.  Recall, that the slip velocity was related 

to the terminal velocity of a single particle by 

     ( ) ∞−= uru m
s α1  

Ishii and Zuber [24] recommended a value for the exponent m of 5/7.  After several 

simulations where the exponent was varied while maintaining all other parameters, it was 

found that this was an appropriate value to use in the slip velocity equation. 

The difficulty that arises in determining the proper expression for the slip velocity lies in 

the interaction of the source term in the volume fraction equation with certain 

boundedness checks, which are designed to ensure that the volume fraction does not go 

below 0.0 or above 1.0.  The boundedness checks essentially only enforce physical 

limitations to the amount of scalar that can be transported from one cell to another, in a 

similar manner to the donor-acceptor method.  They allow that a given cell cannot donate 

more fuel to an adjacent cell than it has available, and it cannot accept more fuel than the 

amount of water available in it to be displaced.  The extent to which this is allowed to 

occur is determined by the constant β , which must be a value between 0 and 1.0.  This 

term then, represents the percentage of the available fuel volume that the current cell will 

allow to be donated to an adjacent cell.  In the present study, β  is given a value of 0.9 (i.e. 

90% of the available fuel volume may be displaced). 

 

During the solution of the volume fraction equation, the magnitudes of the source term at 

the north and south cell faces are compared with the corresponding boundedness terms, 

and the minimum is taken in each case according to 
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   UNSRC = MIN(USLN1, USLN2, USLN3)   (6.3.1) 

   USSRC = MIN(USLS1, USLS2, USLS3)   (6.3.2) 

where USLS1 and USLN1 represent the source term calculated at the north and south cell 

face in terms of the slip velocity, and USLS2, USLS3, USLN2, and USLN3 represent the 

two boundedness checks each at the north and south faces, respectively.  For more 

information on the boundedness parameters, see Appendix B.3.3, which details the 

FORTRAN implementation of the various models. 

 

The difficulty that arises, then, is in the fact that if the calculated source term is too large, 

then the algorithm will always take one of the boundedness checks to determine the 

source term in the volume fraction equation.  This is good for ensuring a physical (viable) 

solution, but in effect this will damp the effect of the droplet size on the relative velocity.  

This in turn will influence the amount of separation (segregation) that occurs following 

unstable density stratification and will alter the solution of the volume fraction field. 

 

So, to determine the appropriate value to be used for the exponent in the slip velocity 

expression, was one of the important tasks.  Several different numerical simulations were 

performed, where the exponent was varied while keeping all the other parameters 

constant, and the source term and boundedness parameters were printed as a function of 

vertical position for several different streamwise locations.  It was found that the value of 

5/7 given by Ishii and Zuber [24] was the most appropriate choice.  Figures 6.4 and 6.5 

below show a comparison of these terms at approximately halfway between the right 

splitter plate and the inlet diffuser (i.e. at x/L = 0.5).  The volume fraction is also plotted 
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to show the location of the interface.  The case plotted here corresponds to Ri* = 0.7 and 

droplet diameter dp = 2mm.  As it is seen from these figures, the source term calculated in 

terms of the slip velocity (USLS1 and USLN1) is at all points either less than the 

boundedness checks, or very close.  For regions away from the fuel/water interface, the 

relative magnitudes of the three terms is either zero, in the case of an unmixed fluid layer 

(i.e. where rα = 0 or 1), or so small that the differences are negligible. 
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Figure 6.3 – Comparison of south cell face source term with boundedness checks; Ri*=0.7, dp=2mm. 
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Figure 6.4 – Comparison of north cell face source term with boundedness checks; Ri*=0.7, dp=2mm. 
 
 
 
After having determined the exponent to use in the slip velocity, simulations were 

performed to investigate the influence of the droplet diameter for both values of the 

overall Richardson number, Ri* = 0.7 and Ri* = 0.32.  The results of these simulations 

are given below.  The figures that depict the streamlines (Figs. 6.6 and 6.8) reflect the 

complex nature of the flow, and the development of several recirculation zones 

throughout the test apparatus.  The presence of these recirculation zones, particularly in 

the region near the inlet diffuser, was confirmed by experimental observation at Johns 

Hopkins University. 

 

An important conclusion from the figures given below is that the mixed fluid thickness 

decreases with increasing droplet size.  This of course makes sense as a larger fluid 
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droplet will have a larger terminal velocity and will tend to move towards the fluid 

interface at a faster rate than a smaller droplet.  This then also increases the rate at which 

settling, or separation, occurs by which fluid droplets will tend to return to their original 

fluid layer, and the system moves towards a stable density stratification.  As the mixed 

fluid thickness is a measure of the amount of fluid at the interface that has not returned to 

a continuous fluid layer, an increase in the rate of separation would cause δM to decrease. 

 

It can also be seen by comparing corresponding figures for both values of the overall 

Richardson number (e.g. Fig. 6.7 and Fig. 6.11), that δM increases as Ri* decreases.  

Again, this makes sense because since Ri* is a measure of the ratio of buoyancy to shear 

forces, a decrease in the Richardson number indicates an increase in turbulence, and 

hence increased mixing. 
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Figure 6.5 – Volume fraction contours; Ri* = 0.7, dp  = 6mm. 
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Figure 6.6 – Streamlines and volume fraction contours; Ri* = 0.7, dp  = 6mm. 
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Figure 6.7 – Volume fraction contours; Ri* = 0.7, dp  = 2mm. 
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Figure 6.8 – Streamlines and volume fraction contours; Ri* = 0.7, dp  = 2mm. 
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Figure 6.9 – Volume fraction contours; Ri* = 0.32, dp  = 6mm. 
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Figure 6.10 – Streamlines and volume fraction contours; Ri* = 0.32, dp  = 6mm. 
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Figure 6.11 – Volume fraction contours; Ri* = 0.32, dp  = 2mm. 
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Figure 6.12 – Streamlines and volume fraction contours; Ri* = 0.32, dp  = 2mm. 
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The decrease in the mixed fluid thickness, however, is really only noticeable far 

downstream from the right splitter plate, near the fuel inlet diffuser.  Here there is a 

noticeable change in the amount of mixed fluid, by comparison of Fig 6.5 and Fig. 6.7.  

In the region near the right splitter plate, there appears to be very little change as a result 

of the increased droplet size.  Figure 6.13 below shows the mixed fluid thickness plotted 

as a function of downstream distance x, normalized by the total streamwise distance L 

between the right splitter plate and the inlet diffuser, for both values of the droplet 

diameter.  The above-mentioned conclusions regarding the influence of the droplet 

diameter can be much more clearly seen in this figure. 
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Figure 6.13 – Mixed fluid thickness vs. normalized downstream distance for varying droplet diameter; 
Ri*=0.7. 
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An investigation of the influence of the droplet size for the case of Ri* = 0.32 yielded 

similar results.  The mixed fluid thickness variations as a function of downstream 

distance for Ri* = 0.32 are given in Fig. 6.14 below.  The results indicate a similar trend 

with respect to the decrease in the mixed fluid thickness with increasing droplet diameter, 

as well as an increase in the mixed fluid thickness in the streamwise direction from the 

right splitter plate towards the inlet diffuser. 
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Figure 6.14 – Mixed fluid thickness vs. normalized downstream distance for varying droplet size; Ri* = 
0.32. 
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After having shown the influence of the droplet diameter, an investigation was also 

performed for the influence of the turbulent Prandtl number, σφ, for the scalar equation.  

Recall that the scalar transport equation used to solve for the volume fraction was altered 

from the previous version of the SFST model by changing the source term.  This would 

in term cause a change in the value of σφ compared to σα.  The diffusion term here is 

given by 
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where φΓ  represents the molecular diffusivity, and µt and σφ represent the eddy viscosity 

and turbulent Prandtl-Schmidt number, respectively.  As it is not known a priori what the 

value of σφ should be used for the new variable mr ρρφ αα=  (see Eqs. A.2.11, A.2.17), 

simulations were performed to investigate the influence of changing σφ.  For these 

simulations, a characteristic droplet diameter of 4mm was chosen as a good 

approximation for the average droplet size, as per discussion with the researchers 

conducting the experiments.  The variation in the mixed fluid thickness as a function of 

downstream distance for σφ = 1.0 and σφ = 1.5 is given in Figs. 6.15 and 6.16 below. 

These results are also plotted along with the data from the experiments so that a 

comparison can be made. 

 

 

 

 



 116 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

X/L

0

1

2

3

4

5

6

Ri*=0.7, experiment
Ri*=0.7, dp=4mm ( = 1.0)
Ri*=0.7, dp=4mm ( = 1.5)

δ M
(c

m
)

σφ
σφ

 

Figure 6.15 – Mixed fluid thickness vs. normalized downstream distance; Ri*=0.7, dp = 4mm (influence of 
σφ). 
 
 

As expected, the mixed fluid thickness decreases with increasing turbulent Prandtl 

number, σφ (Fig. 6.15).  An increase in the turbulent Prandtl number for the scalar causes 

a decrease in the diffusion term present in the scalar transport equation used to solve for 

the volume fraction.  This would in turn cause the thickness of the mixed fluid regions to 

decrease.  Similar results for Ri* = 0.32 are given in Fig. 6.16 below. 
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Figure 6.16 – Mixed fluid thickness vs. normalized downstream distance; Ri*=0.32, dp=4mm (influence of 

σφ). 
 

 

Results for the mixed fluid thickness variation with downstream distance show good 

agreement with the experimental results with regard to trends, as well as in magnitude for 

the case of σφ=1.5.  By comparing Fig. 6.15 and Fig. 6.16 above, it appears that this 

agreement is better in the case of Ri*=0.32.  The reason for this is most probably due to 

the fact that the characteristic droplet size should increase as the overall Richardson 

number increases; therefore, while good agreement was found for Ri*=0.32, the same 

should not be true for a higher Ri* using the same characteristic droplet size. 
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One comment should be made here with regard to the errors in the experimental data.  In 

measuring the mixed fluid thickness, a series of high-speed photographs were taken, and 

the mixed fluid thickness at each downstream location was then averaged over time.  

While the error in the data has not yet been fully analyzed, by comparison of several 

different measurements at different times for the same location, it would appear that the 

error is on the order of approximately ± 0.25 cm.  After accounting for this error, the 

agreement between the experiments and the numerical predictions is quite good. 

 

One cause for concern in Fig. 6.15 and Fig. 6.16 above is in regard to the slope of the 

predicted values of δM very near the right splitter plate (i.e. for x/L approaching 0).  As 

shown in the above figures, the rate at which the predicted values for δM change near the 

left hand side of the figure is much greater than that observed in the experiments.  One 

possible explanation for this was thought to be that the computational mesh needed to be 

refined further in the vertical direction near the location of the interface, as well as in the 

streamwise direction near the right splitter plate.  To investigate the effects of this mesh 

refinement, a finer grid was constructed such that 250 cells would be used in the 

streamwise direction in the mixing region (there were 150 cells in the previous mesh), 

and 150 cells in the vertical direction (there were 104 cell in the previous mesh).  To 

demonstrate the influence of this refinement, a value of 2mm was used for the droplet 

diameter in simulating both the Ri*=0.7 and Ri*=0.32 cases, as the smaller diameter 

produces more mixing, and so any changes would be more apparent.   
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The results for the variation in δM with x/L are given below in Fig. 6.17 and Fig. 6.18, 

and are plotted along with the results from the courser mesh described in Section 6.2.  As 

can be seen in both cases, there is some improvement in the region near the right splitter 

plate in that the slope has been decreased, but this is only a minor improvement.  It is 

believed, then, that for the cases simulated in the present study that the results are nearly 

grid independent with regard to the mixed fluid thickness.  It is further believed that 

much of this discrepancy with regard to the slope near the right splitter plate is most 

probably due to the turbulence model, and possibly the corresponding inlet conditions, 

used.  It would be beneficial to investigate the use of a low-Reynolds number model, 

which would more accurately describe the turbulence levels in those regions just above 

the splitter plate in the fuel layer, which are probably essentially laminar.  It may also be 

that a more accurate solution of the turbulence quantities through the use of a second 

moment closure model, or algebraic stress model may be necessary. 
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Figure 6.17 – Mixed fluid thickness vs. normalized downstream distance; Ri*=0.7 (influence of grid 
refinement). 
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Figure 6.18 – Mixed fluid thickness vs. normalized downstream distance; Ri*=0.32 (influence of grid 
refinement). 
 

 

 

Several digital images were taken [38] during the actual experiments at three different 

locations in the streamwise direction.  They are given below in Figures 6.19-6.21.  They 

depict the downstream development of the mixture layer for the case of an inlet water 

flowrate of 120 gal/min, which corresponds to Ri* = 0.32.  Some comparison can be 

made between these photographs and the results of the simulations, although it is 

important to remember that these are instantaneous images, whereas the simulations 

provide a time-averaged solution. 
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Figure 6.19 – Instantaneous mixing layer near water inlet; After Wu and Katz [38]. 
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Figure 6.20 – Instantaneous mixing layer near central section; After Wu and Katz [38]. 
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Figure 6.21 – Instantaneous mixing layer near fuel inlet diffuser; After Wu and Katz [38]. 
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Figures 6.19-6.21 indicate that the thickness of the mixture layer increases with 

downstream distance, as more of the outlying fuel is entrained into the water layer.  This 

trend is confirmed by the numerical simulations detailed previously.  It is also interesting 

to note the Kelvin-Helmholtz (K-H) type waves that develop as the flow progresses 

downstream.  Roll-up and pairing phenomena have also been observed experimentally.  

The presence of these types of waves further lends some credibility to the numerical 

model for predicting the droplet size, as the model expressions were derived from 

analyses of K-H instabilities.  It is also important to note here that the numerical 

predictions in this study utilize time-averaged quantities.  The numerical models cannot 

account for the types of transient phenomena evidenced in Figs. 6.19-6.21, such as the 

roll-up and pairing of K-H vortices, and the interface fluctuations.  

 

In the next section, results will be presented from the predictions of the simulations in 

which the SFST model was used in conjunction with the DFE model, and the locally 

calculated droplet size was implemented in the slip velocity relationship for each 

individual fluid cell.  Here, it was decided that a value of 1.3 was an appropriate value for 

the turbulent Prandtl number in the scalar equation, σφ, based on the previous 

investigation of its influence in the simulations performed with a constant, average 

droplet size. 

 

In order to properly use the dynamic DFE model, the model expressions given in Table 

5.2 were abandoned in favor of the general model expressions given in Table 5.3.  The 

two constants C1 and C2, and the exponents m and n were then calibrated based on 
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predictions for the variations in the mixed fluid thickness in the streamwise direction, as 

well as the average droplet size in the vertical direction.  Results are given below for the 

predictions from simulations in which the calibrated model was used.  The final values of 

the two exponents and two constants after having completed the calibration procedures 

are given in Table 6.2 below. 

Table 6.2 – Model Coefficients in Calibrated DFE Model 
 

EXPONENTS CONSTANTS 

m n C1 C2 

0 0.1 4.0 15.0 

 

In order to apply some physical limitations to the droplet sizes predicted, the droplet 

diameter was limited by half of the mixed fluid thickness in the vertical direction, based 

on observations from the experiments, as well as the distance to the nearest wall.  Results 

for the droplet diameter and gradient Richardson number profiles will be presented later. 

 

The volume fraction contour and fluid streamlines are given in Fig. 6.22 and Fig. 6.23 for 

the simulations using the dynamic DFE model for the case of Ri* = 0.7.  As can be seen 

from examining these figures, there is not a large change in the volume fraction profiles 

as compared with the results from simulations using a constant, average droplet size.  

This demonstrates that the use of the dynamic DFE model does not cause drastic changes 

in the flowfield, and maintains reasonable results for the volume fraction field.  Results 

for the droplet diameter and gradient Richardson number profiles are given at several 

different downstream locations following these figures. 
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Figure 6.22 – Volume fraction contours; Ri* = 0.7, dp = variable. 
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Figure 6.23 – Volume fraction contours and streamlines; Ri* = 0.7, dp  = variable. 
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Next, we will examine the droplet diameter profiles using the dynamic DFE model for 

the case of Ri* = 0.7.  The predicted droplet sizes are plotted along with the volume 

fraction profile as a function of vertical position at downstream locations of x/L = 0.25, 

0.5, and 0.75 in Figures 6.24 – 6.26 below.  Here the droplet diameter is normalized by 

the maximum value across the shear layer of 2.0 cm. 
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Figure 6.24 – Normalized droplet diameter with volume fraction; Ri* = 0.7, x/L = 0.25. 
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Figure 6.25 – Normalized droplet diameter with volume fraction; Ri* = 0.7, x/L = 0.5. 
 

 

As can be seen by examining Figs. 6.24 – 6.26, the droplet diameter profile is not 

unreasonable, both in magnitude and location.  There are no droplets predicted in the 

regions where the volume fraction approaches 0.0 or 1.0, and the maximum value is not 

unreasonable based on experimental observations.  It is also interesting to note that the 

droplet diameter first increases and then decreases in the streamwise direction, and also 

that the vertical distance over which droplets are generated follows the same progression.  
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This is indicative of the manner in which the mixed fluid thickness first increases and 

then decreases, as was observed in the experiments for these conditions. 
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Figure 6.26 – Normalized droplet diameter with volume fraction; Ri* = 0.7, x/L = 0.75. 
 

 

Similar studies have also been performed for the cases of Ri* = 0.32, which corresponds 

approximately to an inlet water velocity of 1.2 m/s in the experiments at Johns Hopkins 

University [38].  Here, the model coefficients were already set through the calibration 



 132 

studies performed for the Ri* = 0.7 case, and these simulations were performed to assess 

any Richardson number effects. 

 

The volume fraction contours and streamlines are presented in Fig. 6.27 and Fig. 6.28.  

Here again, we can infer from the volume fraction contours that the DFE model produces 

reasonable results with regard to gross parameters, and that no striking changes have 

occurred by comparison with the predictions using a constant, average droplet size.  Of 

note here is the slightly mixed region in the fuel layer, owing to the recirculation zone 

near the inlet diffuser, a feature that was observed during the experiments.  This 

recirculation zone is clearly evident in Fig. 6.28. 
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Figure 6.27 – Volume fraction contours; Ri* = 0.32, dp  = variable. 
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Figure 6.28 – Volume fraction contours and streamlines; Ri* = 0.32, dp  = variable. 
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Next, we will examine the predictions of the fuel droplet size for the case of Ri* = 0.32.  

The vertical droplet diameter and volume fraction profiles are presented in Fig. 6.29 and 

Fig. 6.30 for x/L = 0.25 and 0.5, respectively.  Here, we have chosen not to present 

profiles for further downstream, as these results would be influenced by the presence of 

the recirculation zone near the inlet diffuser.  Again, the droplet diameter is normalized 

with respect to the maximum droplet size that occurs across the entire shear layer, in this 

case 3.2 cm.   
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Figure 6.29 – Normalized droplet diameter with volume fraction; Ri*=0.32, x/L = 0.25. 
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Figure 6.30 – Normalized droplet diameter with volume fraction; Ri* = 0.32, x/L = 0.5. 
 

 

The results presented in Figs. 6.29 and 6.30 above confirm the observations made 

concerning the Ri* = 0.7 case.  Here again we can see that the droplet size and vertical 

range over which droplets are generated increases with downstream distance, owing to 

the increase in the size of the mixture layer as we proceed downstream.  The size of the 

predicted fuel droplets is very reasonable by comparison with experimental observations, 

and we find no droplets are predicted in regions where only one phase is present.  It is 

also interesting to note from Fig. 6.30 that the predicted droplets show some bias towards 
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the water layer near the bottom of the test section.  This makes sense, since we are only 

concerned with the prediction of lighter phase (i.e. fuel) droplets, which should not be 

present in the fuel layer.  The water layer, on the other hand, should contain small fuel 

droplets that are generated at the interface. 

 

Now that we have shown some reasonable results with regard to the predictions of the 

droplet size using the DFE model, we will next examine the gradient Richardson number 

profiles for the two different cases.  Figures 6.31 and 6.32 depict the gradient Richardson 

number profile at different downstream locations for Ri* = 0.7 and Ri* = 0.32, 

respectively.  Here again, we have limited the range over which results are presented for 

the case of Ri* = 0.32 to avoid the influence of the recirculation zone near the inlet 

diffuser. 

 

An important observation from these figures is that in the region near the interface Rig 

generally increases with downstream location.  This is a result of the velocity layer 

spreading, as well as the fact that ( )2yu ∂∂  decreases more rapidly than the density 

gradient.  Tennekes and Lumley [34] comment that for Rig < 0.2 turbulence will persist at 

the interface in typical shear flows.  According to Miles [30], for unbounded parallel 

shear flows, if Rig > 0.25, then no turbulent instabilities will be present, owing to 

damping of the turbulence by buoyancy forces.  However, for bounded shear flows, the 

criterion for this transition can be much lower [15]. 
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In light of these findings, it seems reasonable to estimate from Fig. 6.32 that the interface 

was probably fully turbulent for the case of Ri* = 0.32, while for the case of Ri* = 0.7 the 

interface was probably characterized partially by Kelvin-Helmholtz vortices.  These 

observations are also in good agreement with the flow regime boundaries for the DFE 

model (see Section 5.2).  In formulating the DFE model it was found that the critical 

gradient Richardson number for transition from the fully turbulent interface regime to the 

Kelvin-Helmholtz vortices regime is approximately 0.2. 
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Figure 6.31- Gradient Richardson number profiles; Ri* = 0.7, dp  = variable. 
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Figure 6.32 – Gradient Richardson number profiles; Ri* = 0.32, dp  = variable. 
 

 

Next, we will examine the variations in the predicted mixed fluid thickness profile for the 

case of Ri* = 0.7 using the dynamic DFE model.  Results for the vertical mixed fluid 

thickness profile is given in Fig. 6.33 below.  As can be seen from this figure, the 

dynamic DFE model performs reasonably well in predicting the mixed fluid thickness.  

While the magnitudes are somewhat large, the trend in the downstream direction is well 

represented.  Discrepancies between the predicted and measured magnitudes of the mixed 

layer thickness reflect the need for further calibration of the model coefficients; however, 
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as shown in Fig. 6.33, the variable droplet size allows for a more accurate representation 

of the flow dynamics. 
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Figure 6.33 – Mixed fluid thickness vs. normalized downstream distance; Ri* = 0.7, dp = variable. 

 

 

The same simulations were also performed for the case of Ri* = 0.32, using the same 

parameters and the same coefficients in the DFE model.  The mixed fluid thickness 

profile is shown in Fig. 6.34.  Here again only about half of the mixture layer is shown, as 



 141 

results at larger x/L values would be influenced by the recirculation zone near the inlet 

diffuser. 
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Figure 6.34 – Mixed fluid thickness vs. normalized downstream distance; Ri*=0.32, dp  = variable. 

 

 

The existence of the different flow regimes is evident in Figs. 6.33 and 6.34 in the 

manner in which the mixed fluid thickness changes as a function of downstream distance.  

For the case of Ri* = 0.32, interface mixing is entirely dominated by turbulence effects, 
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as evidenced by the fact that the gradient Richardson number remains small throughout 

the mixing layer (see Fig. 6.32).  Because of this, the slope of the mixed fluid thickness 

remains approximately constant.  In the case of Ri* = 0.7, however, this is not the case.  

Initially, the interface is likely to be dominated by turbulence effects, and so the mixed 

fluid thickness increases steadily.  At further downstream locations, however, the 

turbulence becomes damped by buoyancy forces, and the slope decreases towards a value 

of zero and the mixed layer stabilizes.  As we continue further downstream, the influence 

of the droplet size becomes more important, as was shown previously.  Here, the slip 

velocity becomes more dominant, and has the influence of separating the two fluid layers, 

thus causing the mixed fluid thickness to decrease.  These trends in the mixed fluid 

thickness were also confirmed in the experiments at Johns Hopkins University [38]. 

 

In general, we have shown that the SFST model, with constant droplet size, performs 

quite well and accurately represents the flow dynamics.  Results from the DFE model 

indicate that improvements have been made in the accuracy of the solution of the flow, as 

evidenced by improvements in matching the trends in the mixed fluid thickness profiles.  

Discrepancies between the predicted values and the experimental measurements can most 

likely be accounted for by further calibration of the model coefficients.  It is also possible 

that three-dimensional effects in the experiments need to be explored. 
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7.0 SFST MODEL PREDICTIONS FOR VERTICAL BUOYANT JET 
FLOWS 

 

The SFST model, as described in Section 3.0, was used in conjunction with a 

computational grid modeled after the experimental facility being used at Johns Hopkins 

University [17] to study the impingement of a water jet on a fuel/water interface.  Of 

primary interest in these simulations were the predictions of the overall flowfield as 

compared with experimental observations, as well as verification of the droplet 

formation/entrainment model with regard to trends in the prediction of the fuel droplet 

sizes, and the prediction of the maximum penetration depth of the jet.  Here, comparisons 

will be made between the numerical predictions of the jet penetration depth with results 

from the literature [40] and experimental results from the actual flow facility [17]. 

 

7.1 Experimental Conditions Simulated 
 

As mentioned above, the numerical simulations were modeled after the experimental 

facility being used at Johns Hopkins University.  Here, a vertical water jet impinges on an 

initially quiescent layer of fuel.  A schematic of the actual flow facility being used is 

given in Fig. 7.1.  The fuel layer is contained in the upper center portion of the tank by 

two fuel weirs, and the water enters the tank through the vertical inlet pipe.  As the water 

penetrates the fuel layer, mixing will occur if the shear forces are great enough compared 

with the buoyancy, or gravity, forces (i.e. if the Richardson number is small enough).  As 

the water becomes entrained in the fuel layer, the excess water is forced to the sides of 

the tank and exits through the drains located in the upper left and right compartments.  If 
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no mixing occurs, then the excess fuel will be forced over the fuel weir where it can 

return to the fuel supply.  An impingement plate is located in the center of the tank above 

the inlet pipe.  If the velocity of the incoming water is great enough, then the jet will 

impinge on the plate.  This will cause breakage of the inlet jet and the formation of fluid 

droplets, which will cascade back towards the fuel/water interface. 

 

 

Figure 7.1 - Fuel impingement experimental test facility, after Friedman & Katz [17]. 
 

Due to the complexity of the geometry, and because we are mainly interested with 

phenomena near the interface and in the fuel layer, some simplifications were made in the 

computational geometry.  First, the curved fuel weirs were assumed to be vertical walls to 

avoid skewness in the grid in these regions, and the drain pipes and fuel supply return 

pipe were neglected.  The upper portion of the tank, which is vented to the atmosphere, 

was also neglected; here the upper interface was modeled using a plane of symmetry.   
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7.2 Computational Details 
 

Having made the simplifications describe in the previous section, the computational 

geometry used in the simulations is given in Fig. 7.2 below. 

 

Figure 7.2 - Schematic of computational geometry used to model the impinging jet facility. 
 

The overall dimensions of the tank are 0.9144 m (36 inches) long by 0.5588 m (22 

inches) high by 0.6096 m (24 inches) wide, and matched the dimensions of the 

experimental facility after having neglected the upper portion of the tank that is vented to 

the atmosphere.  The fuel weirs on either side of the fuel layer were modeled as internal 

solids that were 2.54 cm (1 inch) thick, and the impingement plate measured 40.64 cm 

(16 inches) square, and was also modeled as a solid with thickness of 2.54 cm.  While the 

height and thickness of the inlet pipe were variable in the experiments, here we have used 

an inlet pipe that measured 5.08 cm (2 inches) in diameter, with the height extending to 
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the depth of the fuel/water interface.  In the experiments, the height of the impingement 

plate was also variable; however, we have chosen to set the height of the impingement 

plate at 17.78 cm (7 inches) above the fuel/water interface, which corresponds to the 

maximum height used in the experiments. 

 

The relatively fine grid that was used consisted of 72x46x24 cells, for a total of 

approximately 79,500 computational cells.  A uniform mesh was used in the x-direction, 

while in the z-direction the cells were concentrated towards the center using a symmetric 

geometric progression (SGP) factor of 0.96.  In the vertical direction, the cells were 

focused towards the exit of the inlet pipe, using several different geometric progression 

factors above and below the interface.  This was done to provide a greater resolution in 

the region containing the exit of the inlet pipe and the fuel layer. 

 

The SFST model was used, with the k-ε turbulence model including buoyant 

production/destruction for turbulent flow cases, as detailed in Sections 3.1 and 3.2, 

respectively, and the calibrated dynamically implemented DFE model described in the 

previous section.  All simulations were performed as three-dimensional, transient flows.  

The velocity components were discretized using higher-order upwinding, while the 

HYBRID scheme was used for the turbulence quantities where appropriate.  The first-

order upwind scheme was used for the density, and the scalar, φ, was discretized using 

the MUSCL scheme, Min-Mod.  Transient time marching was accomplished using 

backward differencing approaching steady state. 
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While several different mixing regimes were studied in the experiments, here only one 

case has been simulated, by setting the inlet velocity of the water jet to produce the same 

Richardson number.  Here, the Richardson number is defined in terms of the interface jet 

width by 

     
2

i

i
i

U
gD

Ri
βρ

ρ∆
=      (7.2.1) 

where Di is the diameter of the jet at the fuel/water interface, ∆ρ = ρβ-ρα is the density 

difference between the two fluids, and Ui is a characteristic velocity scale, which in this 

case corresponds to the interface velocity.  Because the flow is characterized by 

parameters at the interface, the reason for setting the height of the inlet pipe at the 

fuel/water interface becomes apparent.  By doing so, the interface jet diameter and 

velocity are easily represented by the diameter of the inlet pipe and the velocity of the 

water as it exits the pipe. 

 

One case was simulated using CFX-4 with the SFST model as described previously and 

the k-ε turbulence model including the effects of buoyancy production/destruction.  As 

reported by Friedman and Katz [17], there are several different mixing regimes which 

develop, each of which can be characterized by the value of the interface Richardson 

number given by Eq. (7.2.1).  Regime 1 has not been considered in this study, as it is 

essentially a laminar flow with little to no mixing, and is therefore of little interest.  Table 

7.1 below illustrates the inlet parameters for each of the different regimes investigated in 

the experiments, including boundary conditions on the inlet velocity and turbulence 
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quantities, as well as the relevant dimensionless parameters.  Here F is the densimetric 

Froude number based on the inlet quantities, given by Eq. (2.1.12). 

 

Table 7.1 – Inlet Parameters for Impinging Jet Experiments 
 

Regime Rii Vinlet (m/s) kinlet (m
2
/s

2
) εinlet (m

2
/s

3
) Reinlet F

2 0.65 0.3391 2.30E-04 2.29E-04 17,226 1.754
3 0.21 0.5966 7.12E-04 1.25E-03 30,308 3.086
4 0.12 0.7893 1.25E-03 2.89E-03 40,096 4.083  

 

In the above table, the regimes listed represent those as defined by Friedman and Katz 

[17], as was discussed in Section 2.3.  While in the experiments, the pipe diameter can 

vary, Table 7.1 corresponds only to the case of a pipe diameter of 2.0 inches, which is 

used in this study.  Regime 4 indicates the regime in which the momentum of the fluid jet 

was sufficient to impact the impingement plate.  For the present study, only regime 3 will 

be studied, as this entails the majority of the mixing mechanisms, while avoiding other 

complicated phenomena resulting from the inlet jet impacting the tank ceiling. 

 

 

7.3 Results and Discussion 
 

In this section, results will be presented for the volume fraction and streamline profiles 

for the simulations performed related to the impinging jet experiments currently being 

conducted at Johns Hopkins University.  Results are presented for simulations of flow 

regime 3 using the SFST model in conjunction with the droplet formation/entrainment 
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model, where the predicted droplet size was dynamically implemented in the slip velocity 

relation.  Results with regard to the prediction of the maximum jet penetration depth will 

also be compared with experimental results as provided by Friedman and Katz [17]. 

 

Upon review of the literature on vertical, buoyant jet flows, an article was found by 

Zhang and Baddour [40], in which the authors investigated the maximum penetration 

depth for vertical, round dense jets.  In this article, the authors make a distinction between 

the flow phenomena that occur in jet with small (<7.0) and large (>7.0) Froude numbers.  

Here, the Froude number is defined according to Eq. (2.1.12).  It was determined that the 

conditions of the present study were such that it fell into the small Froude number regime 

(see Table 7.1).  For this regime, the authors determine a relationship for the maximum 

penetration depth given by 

     3.07.1 F
L
z

m

m =      (7.3.1) 

where zm is the maximum vertical penetration, r is the radius of the source (e.g. nozzle 

radius), F is the densimetric Froude number, and Lm = rF is a characteristic length scale.  

Substituting for Lm, Eq. (7.3.1) becomes 

     3.17.1 rFzm =      (7.3.2) 

 

This result was found to be in good agreement with the experimental results of Friedman 

and Katz [17].  The experimental results are reported in the form 

     ( )i
i

Rif
D
y

AR == max     (7.3.3) 
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where AR is the ratio of the maximum vertical penetration and the diameter of the jet at 

the interface (which corresponds to the diameter of the nozzle for the case where the exit 

of the pipe was set at the same depth as the interface).  In order for a comparison of the 

two authors’ results to be made, the densimetric Froude number in Eq. (7.3.2) was 

rewritten in terms of the interface Richardson number reported by Friedman and Katz 

[17].  This yields 

     65.03338.1 −= i
i

m Ri
D
z

    (7.3.4) 

Figure 7.3 below illustrates the comparison between the results reported by both sets of 

authors, and shows good agreement.  Results from numerical simulations in the present 

study will also be compared with these results. 
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Figure 7.3 – Comparison of results for normalized maximum vertical penetration as a function of the 
interface Richardson number. 
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The steady-state volume fraction contours are shown in Fig. 7.4 for the case of Ri* = 

0.21.  Here, blank areas indicate solid boundaries (e.g. impingement plate, fuel weirs, 

etc.).  Again, it is important to remember that these simulations produce time-averaged 

solutions.  They do not account for transient phenomena, in this case the fluctuation of 

the height of the inlet jet.  For this case, the inlet jet is highly turbulent and the 

momentum of the jet is sufficient to extend through the majority of the fuel layer, but not 

enough to impact the impingement plate.  For these flow conditions, the inlet jet is highly 

unstable and large falling blobs of water drag significant amounts of fuel down into the 

water layer.  There is also significant fuel droplet generation below the interface, 

primarily caused by the shearing off of long finger-like structures [17]. 

 

 

Figure 7.4 – Volume fraction contours; Ri* = 0.21, dp  = variable. 
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Figure 7.5 shows a digital image taken from the experiments for these flow conditions.  

As you can see by comparison with the predicted volume fraction contours in Fig. 7.4, 

the numerical simulations seem to be accurately predicting the gross flow dynamics. 

 

 

Figure 7.5 – Instantaneous image of impinging jet facility for Ri* = 0.21; after Friedman and Katz [17]. 
 

 

One of the parameters investigated in these experiments is the maximum impingement 

depth as a function of interface Richardson number.  Here, the maximum penetration 

depth is measured by the ratio of the maximum vertical penetration to the pipe diameter 

(see Eq. 7.3.3).  The results from the experiments by Friedman and Katz [17], and the 

discussion by Zhang and Baddour [40] have already been discussed previously (see Fig. 
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7.3).  During the simulations in this study, the maximum penetration depth was calculated 

from the volume fraction profile in the vertical direction above the center of the inlet 

pipe.  Figure 7.6 shows the calculation for the case of Ri* = 0.21, plotted along with the 

results from the experiments.  As you can see, there is excellent agreement between the 

predicted value and the experimental measurements.  This is expected, of course, as the 

maximum penetration depth should be primarily dependent on the momentum of the jet 

exiting the pipe, which should be primarily determined by the inlet conditions. 
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Figure 7.6 – Comparison of predicted aspect ratio with experimental results [17]. 
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Next we will examine the predictions of the droplet size by the DFE model for this case.  

Figure 7.7 depicts the droplet diameter contour for the case of Ri*=0.21.  Here we can 

see that there is a large range of droplet sizes predicted.  The larger sizes would represent 

the large blobs of fuel that are dragged down into the water layer by the falling pockets of 

water due to instabilities in the vertical jet.  The smaller sizes would then represent the 

smaller discrete droplets that are generated at the interface or are broken off of the finger-

like structures of fuel that penetrate the water layer.  In Fig. 7.7 there are some droplets 

predicted in regions outside of the two fuel weirs.  This is a product of the fact that the 

fuel weirs are not completely accurately represented (i.e. in the experiments they are 

curved, see above discussion).  In any event, we are primarily interested in the regions in 

the proximity of the inlet pipe, which appears to be well represented by comparison with 

the experiments. 

 

In Fig. 7.7 we can see that the predictions for the droplet diameter seem reasonable based 

on observations from the experiments.  As yet there are not quantitative measurements of 

the spatial distribution of the droplet sizes; however, there are no droplets predicted in 

regions where only one phase is present, and the location and size of the droplets seems 

reasonable.  The larger size blobs of fuel are shown in the region of the fuel/water 

interface on either side of the inlet pipe as expected, and the smaller droplets appear in 

the water layer below the interface, and at the edges of the vertical jet. 
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Figure 7.7 – Droplet diameter contours; Ri* = 0.21. 
 

 

In Fig. 7.7 we can also see regions where some pockets of fuel that have been dragged 

down into the water layer have become separated from the interface.  This is indicative of 

the shearing off of the finger-like structures that penetrate the water layer, which is then 

broken into smaller droplets [15]. 

 

In general, it would appear that this independent test case for the DFE model shows 

reasonable results with regard to gross flow parameters, and that the predicted size and 

location of the fuel droplets makes sense based on observations from the experiments.  
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Further analysis of these results requires quantitative data from the experiments regarding 

the size and spatial distribution of the fuel droplets. 
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8.0 CONCLUSIONS 
 

8.1 Summary 
 

While true multiphase modeling requires that each phase be solved for independently, a 

simpler approach is to use a mixture model.  Here the mixture is treated as a whole, 

solving only one set of momentum equations, having defined mixture quantities for the 

velocity, density, and viscosity.  The volume fraction of each phase is then solved for 

separately.  A key problem with this approach, however, lies in maintaining the 

conservative nature of the governing equations without increasing the complexity of the 

problem, while appropriately accounting for the slip between the two phases.  To this 

end, a new formulation was derived for the solution of the volume fraction in which no 

simplifying assumptions were made, and which satisfies mass (volume) conservation of 

the individual phases.  Results from simple two-dimensional and three-dimensional test 

cases, for both laminar and turbulent flows, showed that this new formulation is 

extremely accurate in the predictions of the individual phase volumes for a variety of 

different geometries and flow conditions.  This is a significant improvement over the 

previous version of the SFST model [6,7,8,37]. 

 

A numerical model has also been developed to predict the dispersed phase droplet 

diameter in two-phase liquid-liquid flows.  Here the droplet size is determined locally at 

each individual computational cell based on local flow parameters.  These include certain 

length scales, as well as local turbulence quantities, and dimensionless parameters such as 
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the gradient Richardson number.  The model was further divided into several different 

flow regimes based on results and discussion from certain shear flow literature, in which 

the primary mixing mechanism changes.  Each of the different flow regimes can be 

delineated by an appropriately defined Richardson number.  The DFE model allows for 

more accurate predictions of actual flow phenomena by correctly accounting for the 

changes in the relative velocity between the two phases as a function of the local droplet 

size. 

 

Verification studies were performed for the droplet formation/entrainment model using a 

simple two-compartment tank, with a single inlet and outlet, and a manhole separating 

the two compartments.  While much simpler, this configuration exhibits many of the flow 

phenomena observed in the full-scale compensated fuel/ballast tanks.  Results from these 

studies showed that the DFE model produced logical trends with respect to the location 

and size of the dispersed phase droplets, in that no fluid droplets were formed in regions 

where only one phase was present, and the predicted sizes were reasonable in comparison 

with experimental observations. 

 

Simulations were then performed for a developing shear layer of diesel fuel and water, 

based on the experimental configuration being used currently at Johns Hopkins 

University.  Comparisons were made between the predictions for the streamwise 

variations in the mixed fluid thickness with the experimental measurements.  These 

results were used to calibrate certain parameters in the slip velocity expression in the 

SFST model, as well as important constants in the DFE model. 
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After having calibrated the SFST and DFE models, simulations were performed to 

investigate the influence of the dispersed phase droplet diameter on the mixed fluid 

thickness.  Here, the droplet size was specified by the user, and was assumed to be a 

constant, average value everywhere in the flow domain.  It was found that, as expected, 

increasing the droplet size caused a decrease in the amount of mixing that occurred.  

Comparisons of predictions of the mixed fluid thickness showed good agreement with the 

experimental results. 

 

Following these studies, simulations were performed in which the DFE model was used 

to predict the local size of any fuel droplets formed in each computational cell.  The local 

predicted droplet size was then dynamically implemented in the slip velocity used in the 

source term in the volume fraction equation.  The general form of the DFE model was 

used, and the model constants and exponents were then calibrated based on the 

predictions of the mixed fluid thickness profiles, as well as the average droplet diameter 

at each downstream location.  With the calibrated model, predictions were made for both 

Ri* = 0.7 and Ri* = 0.32.  Results from these predictions indicated good results with 

respect to the droplet diameter and gradient Richardson number profiles in the vertical 

direction, as well as the downstream variations in the mixed fluid thickness. 

 

Finally, with the newly validated DFE model, simulations were performed for a densely 

buoyant vertical jet, where a heavier fluid impinged on a quiescent layer of lighter fluid.  

In this case, no changes were made to any of the model parameters.  This served 

essentially as an independent check that the DFE and SFST models performed properly 
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for different flow configurations.  The results of this simulations showed reasonable 

results with regard to the size and location of the predicted fuel droplets.  Comparison of 

the volume fraction contours with digital images from the experiments indicated that the 

large-scale flow dynamics were well represented.  This was also confirmed by good 

agreement between the predicted maximum penetration depth of the inlet jet with the 

experimental measurements.  It was also found that certain characteristics of the droplet 

generation mechanisms were also predicted by the numerical simulations.  Further 

analysis of these results requires quantitative experimental measurements concerning the 

size and spatial distribution of the fuel droplets. 

 

 

8.2 Recommendations for Future Work 
 

It is important to remember that this is a work in progress, and that much of the sub-

model development has yet to be completed.  One important phenomenon that has yet to 

be included in the DFE model is the effect of surface tension.  This could be done 

through the use of some critical Weber number.  The conditions under which droplets 

would break would then be determined through the competition of shear forces and 

surface tension forces.  A typical K-H shear layer instability is shown in Fig. 8.1 below. 
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Figure 8.1 – Typical Kelvin-Helmholtz shear layer instability. 
 

 

Here, a characteristic length scale lch is defined in terms of the width across the interfacial 

waves, and a characteristic velocity ∆U = U2-U1 is defined in terms of the difference 

between the velocity of the surface of the wave and ambient fluid.  From these, we can 

then define certain dimensionless parameters, including a Reynolds number and a Weber 

number, given by 
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where σ is the interfacial tension.  The conditions for droplet breakage would then be 

determined by equating the shear force and the surface tension force. 

         Fshear = Fsurface tension    (8.2.2) 
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If we then divide both sides by ( ) 22
chlU∆ρ  then 
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If we then assume that ∆y scales as the velocity layer thickness δV, then 
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where we have replaced We by (We)cr, since we know that when the two forces are equal 

defines the critical Weber number.  Multiplying and dividing by lch yields 

          ( ) ( )
Re

1
1 








≈







∆
≈

ch

V

ch

Vch
CR l

C
l

lU
We

δδ
µ

ρ
π

  (8.2.7) 

 

The dispersed phase droplet diameter, normalized by the velocity layer thickness, could 

then be written in a form similar to 
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If we further defined the quantity ( )chV lδ  in terms of a Richardson number, as was done 

for the model expressions in the current form of the DFE model, then the droplet 

diameter could be written as some function of the Reynolds number, Richardson number, 

and Weber number as 

     ( )WeRif
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    (8.2.9) 
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Another improvement that could be made would be to determine a better length scale to 

use in the model expressions for the droplet size.  At present, the characteristic length 

scale is determined as the smallest of either a turbulent length scale or a mixed fluid 

thickness defined in terms of the volume fraction profile.  This method is, however, 

computationally expensive for determining the mixed fluid length scales.  It would be 

much more efficient to define a new characteristic length scale, perhaps based on 

turbulence quantities, or some measure of the vorticity. 

 

With regard to the simulations of the shear flow experiments, it would be helpful to 

perform some investigation into the effects of the turbulence model used.  It might be 

beneficial to use a low-Reynolds number k-ε model, as much of the fuel layer at the top is 

probably laminar, even very close to the fluid interface.  It may also be beneficial to 

refine the mesh near the interface further until a grid independent solution is attained.  A 

finer grid near the interface would also improve predictions of the turbulence parameters, 

should a different turbulence model be used.  The influence of three-dimensional effects 

for this facility may also need to be examined.  The simulations in this study were 

performed as two-dimensional; however, the ratio of the test section width and height is 

not negligible (approximately 0.2).  Velocity field measurements were unavailable to 

investigate any influence of the tank walls. 

 

With regard to the new formulation used for the solution of the volume fraction, it was 

found that to maintain the same amount of diffusion, the turbulent Prandtl number for the 

scalar equation (i.e. the volume fraction), σφ, should be increased from 1.0 to 
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approximately 1.3.  Some further investigation into the effects of this change would 

generate some improvement in the numerical predictions for the mixed fluid thickness, as 

was demonstrated in Section 6.3. 

 

Finally, there are still some further calibration procedures that need to be performed on 

the dynamic DFE model.  As seen in the results for the mixed fluid thickness profiles, 

some improvement still needs to be made so that the predicted magnitudes of δM more 

closely match the experimental results.   

 

In light of recent findings, there are some improvements that could be made to the model 

expressions included in the DFE model.  As the solution of the droplet diameter is a non-

linear problem in relation to the mixed fluid thickness, it would seem that some measure 

of δM should be included in the model expression for the turbulent interface regime.  In 

doing so, the need to limit the droplet diameter by 1/2 of δM would already be accounted 

for in the model expressions.  This would then eliminate the truncation of the droplet size 

and allow for a continuous function in the vertical direction. 

 

From recent analysis of the model coefficients, and the exponent used for the function of 

the volume fraction, it has been found that the calculated droplet sizes are too large, 

which are then truncated by the limiting function imposed.  In light of this, and the need 

to included δM in the model expression for the turbulent interface regime, it has been 

conjectured that the model expressions should be changed to the following form: 

     ( ) ch
n

p lrCd α−= 1              (8.2.10) 
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with 

   5.1≅C    5.0=m             (8.2.12) 

 

The problem that remains, however, is that in allowing a more continuous function of the 

droplet size we have, in effect, reduced the characteristic droplet size for a given 

downstream location.  This would, in turn cause the magnitudes of δM to increase.  Other 

causes for the discrepancy in the predicted and measured values are currently being 

investigated. 
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APPENDIX A: DERIVATION AND EQUATIONS FOR THE SFST 
MODEL 

 
 

A.1: Complete Set of Equations for the SFST Model 
 

Mixture Momentum:  
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Scalar transport equation: 
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Volume fraction: 
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ε equation:  
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Auxiliary equations: 
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In the above equations ρ, u, and µ are taken to be the mixture quantities defined by Eqns. 
(A.7), and α and β  represent the respective phases.  Tensor notation is used, where 
repeated indices indicate summation. 
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A.2: New Formulation for Solution of the Volume Fraction 
 
First, we start with the single-phase continuity equation for the α-phase, given by 
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From the definition of the mixture velocity, um, 
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we can write 

    βββααα ρρρ ururumm +=     (A.2.3) 

But rβ is equal to 1-rα, from the algebraic constraint that the two must sum to unity.  

Substituting for rβ in Eq. (A.2.3) yields 

    ( ) βαβααα ρρρ ururumm −+= 1    (A.2.4) 

The slip velocity, us, is given by 

     βα uuuS −=      (A.2.5) 

Rewriting in terms of uβ yields 

     Suuu −= αβ      (A.2.6) 

Substituting Eq. (A.2.6) into Eq. (A.2.4) yields 

    ( )[ ]Smm uururu −−+= ααβααα ρρρ 1  

which becomes 

              ( )[ ] ( ) Smm ururru αβααβαα ρρρρ −−⋅−+= 11    (A.2.7) 

The terms in the brackets, however, is simply the definition of the mixture density.   
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Substituting yields 

    ( ) Smmm uruu αβα ρρρ −−= 1     (A.2.8) 

Next, we rewrite Eq. (A.2.1) by multiplying and dividing each term by the mixture 

density, ρm.  This yields 
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Next, we substitute for ρmuα from Eq. (A.2.8), which yields 
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If we make a variable substitution, say 
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then we can rewrite Eq. (A.2.10) in terms of φ as 
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By adding a diffusion term, we can rewrite Eq. (A.2.12) as a scalar transport equation 

with a source term based on the slip velocity by 
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Equation (A.2.13) provides a generic scalar transport equation, which can be solved for 

the variable φ, from which we may solve for the volume fraction, rα, from the algebraic 

expression given above (Eq. A.2.11).  Equation (A.2.13) is particularly appealing because 

we have made no simplifying assumptions and are solving an exact equation.  For 

laminar flow cases, where there is no mixing, the slip velocity will be zero, and hence, 
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the source term in Eq. (A.2.13) will be zero.  For turbulent flow cases it will need to be 

included. 

 

The solution of the volume fraction from the scalar variable, φ, can be performed as 

follows.  We can rewrite Eq. (A.2.11) by using the definition of the mixture density as 
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Next, we multiply and divide the RHS of Eq. (A.2.14) by ρβ, which yields 
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If we let R = ρα/ρβ, then Eq. (A.2.15) becomes 
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From Eq. (A.2.17), we can substitute for rα in Eq. (A.2.13) so that it only involves φ.  

This yields 
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re-arranging yields 
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Using the definition of R, this can be simplified to 
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In the numerical model in CFX, the scalar φ is solved from Eq. (A.2.19), and the volume 

fraction is then determined using Eq. (A.2.17).  This is particularly appealing because the 

volume fraction is solely determined from an algebraic expression in which we have 

eliminated the mixture density.  This in turn eliminates the need for an iterative 

procedure, as the mixture density requires the solution of the volume fraction. 
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A.3: Alternative Empirical Correlation for the Slip Velocity 
 
One of the more extensive compilations of empirical data concerning the slip velocity has 

been performed by Kumar and Hartland [25,26].  Through the analysis of 998 published 

experiments for 29 liquid/liquid systems from 14 different data sources, they formulate a 

correlation for the slip velocity in terms of the drop diameter and physical properties 

given by 
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Here d is the diameter of the dispersed phase fluid particle, ε is the hold-up ratio of the 

dispersed phase, Vs is the slip velocity, and the subscript c denotes the continuous phase.  

The constants in the above equation are given by: 
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Equation (A.3.1) may be put into a similar form given by 
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where ∞,sV  is the terminal velocity of a single fluid droplet in an infinite continuous 
liquid, and Re is a Reynolds number given by 
 

     
c

sc dV
µ

ρ
=Re      (A.3.4) 
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APPENDIX B: DOCUMENTATION FOR THE SFST MODEL 
 

B.1 Introduction 
 
This section is intended to provide a more detailed explanation of the requirements for 
the implementation of the SFST model in CFX.  A numerical simulation in CFX-4 
requires a geometry file, detailing all relevant grid information, a command file, which 
dictates certain command options, and a user FORTRAN file, which is used for 
modifications to the governing equations and for solution monitoring.  While there are 
several different grid generation packages that can be used with CFX-4, CFX-Meshbuild 
was used in the present study.  In this section, descriptions will be given for the relevant 
information needed in all three of these files as they relate to the SFST model.  This will 
not include any general information as related to the CFX code, as this is left to the CFX 
Users Manual [12].  An explanation will also be given concerning modifications that can 
be made by the user to include different forms of the slip velocity, and for models to 
specify the droplet sizes. 
 
 
 

B.2 Overview 
 
The numerical algorithm used is a single fluid, scalar transport (SFST) model, which can 
be used for simulations of flows involving two immiscible fluids.  The governing 
equations include one set of momentum equations and one scalar transport equation that 
is solved for a generic scalar variable, φ, from which the volume fraction of the dispersed 
phase is solved using an algebraic relation.  An equation for solving for the mixture 
density in variable density flows may also be included.  Additional terms may be added 
to the governing equations through the use of a user subroutine for adding source terms.  
For example, the convective flux that originates in the volume fraction equation because 
of the slip velocity is added through the subroutine, USRSRC.  There are several different 
turbulence models that can be used for numerical simulations in CFX-4, including the 
standard k-ε model, low-Reynolds number model, and k-ω model.  The current form of 
the SFST model employs the standard k-ε model with modifications to include a source 
term, which accounts for production/destruction of turbulent kinetic energy by buoyancy 
forces.  For ease of implementation with different geometries and flow scenarios, the 
current form of the SFST model is designed in such a way that future changes can be 
made without large modifications to the source code.  It can be used with any flow 
problem, provided that certain guidelines are followed concerning user modifications to 
the command file and FORTRAN file, as well as certain semantics in generating the 
computational grid. 
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B.3 Configuring the CFX Files for the SFST Model 
 
As mentioned previously, a numerical simulation using CFX-4 requires three files: the 
geometry file, the command file, and the FORTRAN file.  In this section, certain 
guidelines will be presented as the manner in which these files are used, as well as how 
modifications can be made to simulate different geometries and flow scenarios.  Text that 
appears in the Courier New font indicates the actual syntax used in one of these files.  
It is important to keep in mind, also, that any specific values set in the following sections 
are given in SI units.  It should also be noted that in some sections text is staggered 
between lines because of the page limits, whereas this text would not be staggered in the 
actual FORTRAN code. 
 
 
 
 
B.3.1 The Geometry File 
 
In generating the computational grid, the procedure is the same as for any other geometry 
using CFX-Meshbuild.  For use with the SFST model, however, the following guidelines 
and conventions should be used. 
 
1. It is important that all IJK coordinate systems in each individual block have the J 

index pointed in the opposite direction as the gravity vector in the global XYZ 
coordinate system.  This is most easily accomplished by setting the J index in each 
block in the positive y-direction according to the global axes.  Then the gravity vector 
is supplied in the command file as being -9.81 in the y-direction.  It is also convenient 
to orient each individual block within a multi-block structure such that all coordinate 
axes are the same and match those of the global coordinate system.  This eliminates a 
great deal of confusion, both in setting grid constraints within blocks, and also in 
determining cell locations for specifying parameters or acquiring output data. 

 
2. In CFX-Meshbuild, block naming can be done in any convenient manner designated 

by the user; however, for use with the SFST model, a certain naming convention must 
be applied.  The blocks should be numbered BLOCK-NUMBER-1 to BLOCK-
NUMBER-N, where N is the total number of blocks, excluding any internal blocks 
used as child constraints.   

 
3. Any internal solid blocks which are used as child constraints within larger active 

blocks should be named INTSOLID1 through INTSOLIDN.  Here N would 
represent the total number of internal solid blocks used as child constraints. 

 
4. There are five primary boundary patch types in CFX-Meshbuild.  These are inlets, 

walls, pressure boundaries, mass-flow boundaries, and thin surfaces.  These types of 
patches are the most common and should be used for specifying boundary conditions 
on a given geometry.  It has also been found that pressure boundaries are far superior 
to mass-flow boundaries for specifying outlet conditions. 
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B.3.2 The Command File 
 
In order to perform a simulation in CFX-4, a command file is required.  The purpose of 
the command file is to specify constant boundary conditions, problem sizes, flow types 
(i.e. laminar, turbulent), grid types (e.g. body-fitted, unmatched), the equation solvers to 
be used, under-relaxation parameters, turbulence model parameters, scalar parameters, 
and time step and output options.  Variable boundary conditions must be set in the user 
subroutine, USRBCS.  In the following section, a detailed explanation will be given for 
all of the relevant parameters set in the command file, along with values used for the 
SFST model, and recommendations for modifications for use with different geometries or 
flow scenarios. 
 
The first section of the command file is used to specify the workspace parameters used by 
the flow solver during a simulation.  In a simulation where a geometry has been 
generated through the use of some pre-processor, then these workspace limits are not 
necessary.  An example of this portion of the command file is given below, which was 
sufficient for many of the simulations performed in this study. 
 
>>CFXF3D 
  >>SET LIMITS 
    TOTAL INTEGER WORK SPACE 18000000 
    TOTAL CHARACTER WORK SPACE 50000 
    TOTAL REAL WORK SPACE 35000000 
 
The next portion of the command file specifies all of the different grid and flow options, 
including laminar or turbulent flow, coordinate systems, buoyancy and heat transfer 
options, and grid types.  These parameters as set in the SFST model are given below 
 
>>OPTIONS 
    THREE DIMENSIONS 
    BODY FITTED GRID 
    CARTESIAN COORDINATES 
    TURBULENT FLOW 
    ISOTHERMAL FLOW 
    COMPRESSIBLE FLOW 
    BUOYANT FLOW 
    TRANSIENT FLOW 
    USER SCALAR EQUATIONS 9 
 
Simulations may also be performed in two-dimensions and in cylindrical coordinates.  
The use of the COMPRESSIBLE FLOW option is done so that a variable density field can 
be specified through the use of a user subroutine.  Under the compressibility options, the 
flow is specified as weakly compressible to allow for this changing density.  If the 
incompressible flow option is specified, then the density field is given a constant value at 
all points in the domain.  The TRANSIENT FLOW option allows for time-dependent 
solutions, as opposed to steady-state calculations.  The final option is the number of user 
scalar equations that are specified for use in the FORTRAN. 
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In the SFST model, with the implementation of the droplet formation/entrainment model, 
scalar arrays are designated for the following variables: 
 
>>VARIABLE NAMES 
    USER SCALAR1 'SCALAR PHI' 
    USER SCALAR2 'USRD DP' 
    USER SCALAR3 'USRD CELLID' 
    USER SCALAR4 'USRD UDMX' 
    USER SCALAR5 'USRD UDMY' 
    USER SCALAR6 'USRD UDMZ' 
    USER SCALAR7 'USRD UDWALL' 
    USER SCALAR8 'USRD VOLFR' 
    USER SCALAR9 'USRD RICHARDS NMBR' 
 
SCALAR PHI is the generic scalar variable, φ, solved for in the transport equation.  
From it, the volume fraction of the dispersed phase, rα, is solved from an algebraic 
relationship.  The values of rα at each cell node for all time values are stored in the USRD 
VOLFR scalar array.  USRD UDMX, USRD UDMY, and USRD UDMZ represent the scalar 
arrays used to store the three mixed-fluid thicknesses in the three coordinate directions, 
which are used in calculating the droplet diameter.  USRD UDWALL is the array used to 
store the distance to the nearest wall at each cell node.  The last scalar array is used for 
storing the values of the gradient Richardson number at each cell node.  The use of the 
USRD option in the name of the scalar array indicates that the scalar transport equation 
will not be solved for that variable. 
 
There are many user FORTRAN subroutines that can be utilized in a numerical 
simulation in CFX-4.  The primary subroutines used in the SFST model are included 
below: 
 
>>USER FORTRAN 
    USRBCS 
    USRDEN 
    USRINT 
    USRSRC 
    USRTRN 
 
USRINT and USRDEN are used to implement the initial conditions and for setting the 
mixture density equation, respectively.  USRSRC is used to implement the source term in 
the scalar transport equation, and USRTRN is used for solution monitoring and acquiring 
output data.  The subroutine USRBCS is used for implementing variable boundary 
conditions, while constant boundary conditions may be supplied simply through the use 
of the MODEL BOUNDARY CONDITIONS option in the command file. 
 
There are also several options for the differencing schemes used for the different 
variables that are solved for during the course of a numerical simulation.  The following 
set of schemes has been found to work well with the SFST model and DFE model.  These 
may be adjusted by the user to suit different problems. 
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>>DIFFERENCING SCHEME 
    U VELOCITY 'HIGHER UPWIND' 
    V VELOCITY 'HIGHER UPWIND' 
    W VELOCITY 'HIGHER UPWIND' 
    PRESSURE 'CENTRAL' 
    DENSITY 'UPWIND' 
    K 'HYBRID' 
    EPSILON 'HYBRID' 
    SCALAR PHI 'MIN-MOD' 
 
The use of the MUSCL scheme, Min-Mod, for the solution of the scalar, φ, was discussed 
in Section 4.0, where it was found that a significant improvement was made over the use 
of upwinding in the scalar transport equation.  Again, this result does not agree with the 
recommendation in the CFX Users Manual [12], which suggests that upwinding be used 
for user scalar variables. 
 
The PHYSICAL PROPERTIES command is used for setting buoyancy and 
compressibility parameters, as well as time marching information, turbulence parameters, 
and fluid properties.  Under the sub-command BUOYANCY PARAMETERS, the gravity 
vector and buoyancy reference density is set.  In this case, the gravity vector acts 
downward in the vertical direction, and the buoyancy reference density is set as the 
average of the two unmixed phase densities.   
 
>>MODEL DATA 
  >>PHYSICAL PROPERTIES 
    >>BUOYANCY PARAMETERS 
        GRAVITY VECTOR 0.0 -9.8 0.0 
        BUOYANCY REFERENCE DENSITY 9.2500E+02 
    >>COMPRESSIBILITY PARAMETERS 
        WEAKLY COMPRESSIBLE 
        UNIVERSAL GAS CONSTANT 1.0 
        FLUID MOLECULAR WEIGHT 1.0 
        REFERENCE PRESSURE 10000.0 
    >>TRANSIENT PARAMETERS 
        >>FIXED TIME STEPPING 
          INITIAL TIME 0.0 
          BACKWARD DIFFERENCE 
 
The use of the WEAKLY COMPRESSIBLE option allows for a density equation to be set 
by the user in the subroutine USRDEN.  This option instructs the code to solve the 
equations as if they were incompressible, but with a variable density field.  The other 
parameters are included as the default density equation is the ideal gas law.  However, 
these will only be used for the initialization of the density field, and the values will be 
overwritten using the user implemented density equation on the first outer iteration of the 
solver.  Under TRANSIENT PARAMETERS, fixed time stepping is used, although 
adaptive time stepping may also be adopted, and backward differencing is used for the 
time discretization.  The INITIAL TIME should always be set to 0.0 unless a restart is 
used from a previously generated dump file. 
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CFX-4 allows for several different equation solvers to be used.  Again, while these may 
be adjusted by the user depending on the flow scenario, the following options were found 
to be adequate in the use of the SFST model. 
 
>>SOLVER DATA 
  >>EQUATION SOLVERS 
      U VELOCITY 'AMG' 
      V VELOCITY 'AMG' 
      W VELOCITY 'AMG' 
      PRESSURE 'ICCG' 
      K 'STONE' 
      EPSILON 'STONE' 
      SCALAR PHI 'AMG' 
 
A velocity field which satisfies conservation of mass is very important in not allowing for 
an unbounded value for the scalar, φ, or in turn the volume fraction.  In order to facilitate 
this, the residual reduction factor for the pressure equation is set to a smaller value than 
the default value supplied.  The value given under REDUCTION FACTORS by 
 
>>SOLVER DATA 
  >>REDUCTION FACTORS 
      PRESSURE 0.05 
 
has been used successfully.  This ensures that the velocity field passed to the scalar 
transport equation, while not necessarily satisfying the momentum equations early in the 
outer iterations, will still satisfy continuity. 
 
In order the use the droplet formation/entrainment (DFE) model, the following keywords 
must be set with regard to the USRD UDWALL variable, which stores the distances to the 
nearest wall at each cell center. 
 
>>CREATE GRID 
  >>GRID OPTIONS 
    COMPUTE DISTANCES TO WALLS 
 
This instructs the code to compute the distances from each cell node to the nearest wall 
patch at the beginning of the simulation.  This information is then stored in the array 
DISWAL, which can be accessed from the USRINT subroutine. 
 
 
 
 
 
 
 
 
 
 



 183 

B.3.3 User FORTRAN implementation of the SFST and DFE Models 
 
In this section, details concerning the implementation of the SFST and DFE model will 
be provided.  The user FORTRAN file used for the numerical simulations includes the 
subroutines UBCND, UGRDNT, USRINT, USRDEN, USRSRC, USRTRN, and LENGTH.  Of 
these, USRINT, USRDEN, USRSRC, and USRTRN are CFX user subroutines, while the 
others are called from within the CFX subroutines.  Further details regarding many of 
these will be presented in the following sections.  The CFX subroutines USRBCS and 
USRTRN area used for implementing variable boundary conditions and solution 
monitoring, respectively, and will not be examined as these are problem specific issues. 
 
 
General Notes: 
 
Before presenting a detailed review of each of the user subroutines, some general notes 
concerning the FORTRAN code need to be addressed.  Firstly, at the beginning of each 
CFX subroutine, the user subroutine UBCND needs to be called before attempting to 
prescribe any information.  This ensures that the correct values for the fluid properties 
and geometric information are passed to the current subroutine.  This will always appear 
at the beginning of USER AREA 5.  Following this, the user scalar variable numbers 
need to be called and assigned variable strings.  This is done using the GETSCA utility 
routine as follows: 
 
C GET THE SCALAR NUMBERS CORRESPONDING TO THE APPROPRIATE VARIABLES 
 CALL GETSCA('SCALAR PHI',ISCAL,CWORK) 
 CALL GETSCA('USRD DP',ISCDP,CWORK) 
 CALL GETSCA('USRD CELLID',ISCCI,CWORK) 
 CALL GETSCA('USRD UDMX',ISCMX,CWORK) 
 CALL GETSCA('USRD UDMY',ISCMY,CWORK) 
 CALL GETSCA('USRD UDMZ',ISCMZ,CWORK) 
 CALL GETSCA('USRD UDWALL',ISCDW,CWORK) 
 CALL GETSCA('USRD VOLFR',ISCVF,CWORK) 
 CALL GETSCA('USRD RICHARDS NMBR',ISCGR,CWORK) 
 
The utility routine will then access the scalar number corresponding to the appropriate 
scalar variable array, and store it as the variable prescribed in the third option (e.g. 
ISCAL).  This is done so that the scalar numbers can be accessed easily within the user 
subroutines, and also prevents any mistakes in accessing the correct array if scalar 
variables are removed from, or added to, the current problem. 
 
If any information needs to be accessed or prescribed concerning a specific coordinate 
location, then the following options need to be set in USER AREA 3: 
 
C VARIABLES TO BE USED FOR THE BLOCK NAMING  
 CHARACTER SUBNAME*5, CHTIME*7 
 CHARACTER*20 UBNAME(20) 
 CHARACTER*20 UISNME(20) 
 CHARACTER BASENAME*20, CH1*1, CH2*2 
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These commands reserve character workspace for the descriptions of the various blocks.  
The character space for UISNME need only be used for geometries containing internal 
solid blocks used as child constraints. 
 
With these options set, the following must also be added in USER AREA 5, following 
the call of the UBCND subroutine, and accessing the user scalar variable numbers: 
 
C********************************************************************** 
C*************** INITIALIZE THE BASENAME MATRICES ********************* 
C********************************************************************** 
 
C DETERMINE THE NUMBERS OF CHARACTERS IN BASENAME FOR BLOCKS 
 BASENAME='BLOCK-NUMBER-' 
 CALL LENGTH(BASENAME,20,NUMCHA) 
 
C FILL THE UBNAME MATRIX WITH THE APPROPRIATE STRINGS OF BLOCK NUMBERS 
 DO I=1,UNB 
  IF(I.LE.9) THEN 
  WRITE(CH1,'(I1)') I 
  UBNAME(I)=(BASENAME(1:NUMCHA)//CH1) 
  ELSE 
  WRITE(CH2,'(I2)') I 
  UBNAME(I)=(BASENAME(1:NUMCHA)//CH2) 
  END IF 
 END DO 
 
C DETERMINE THE NUMBERS OF CHARACTERS IN BASENAME FOR INTERNAL SOLIDS 
 BASENAME='INTSOLID' 
 CALL LENGTH(BASENAME,20,NUMCHA) 
 
C FILL THE UBNAME MATRIX WITH THE APPROPRIATE STRINGS OF BLOCK NUMBERS 
 DO I=1,UNIS 
  IF(I.LE.9) THEN 
  WRITE(CH1,'(I1)') I 
  UISNME(I)=(BASENAME(1:NUMCHA)//CH1) 
  ELSE 
  WRITE(CH2,'(I2)') I 
  UISNME(I)=(BASENAME(1:NUMCHA)//CH2) 
  END IF 
 END DO 
 
C********************************************************************** 
 
This portion of the code will fill the variable arrays UBNAME and UISNME with the 
appropriate value corresponding to a given block number.  Again, UISNME would only 
be used for geometries containing internal solid blocks.  This must be done before any 
information about a specific location can be accessed. 
 
In order to return the correct block numbering information prescribed above, the utility 
routine IPREC is used, for example, in looping over all of the blocks: 
 
C BEGIN THE LOOP OVER THE BLOCKS 
 DO N=1,UNB 
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 CALL LENGTH(UBNAME(N),20,NUMCHA)  
 CALL IPREC(UBNAME(N)(1:NUMCHA),'BLOCK','CENTERS',IPT,ILEN,JLEN, 
     &KLEN,CWORK,IWORK) 
 
Here the user subroutine LENGTH determines the correct block number, from which the 
utility routine IPREC will return the number of subdivisions in each of the three 
coordinate directions (ILEN, JLEN, KLEN) within that specific block.  The utility routine 
IPALL will serve the same function, but will return only a one-dimensional array.  A 
given three-dimensional location is then determined using the utility routine IP as 
follows 
 

INODE = IP(I,J,K) 
 
The variable INODE can then be used in determining the coordinate space location of the 
given cell node, from which all other information can be accessed (e.g. YP(INODE) 
represents the y-location of the cell node). 
 
 
 
 
Subroutine LENGTH: 
 
The block number is returned from this subroutine and is used to fill the block name 
matrices.  This subroutine is given below: 
 
SUBROUTINE LENGTH(STRING,MAX,NUMCHA) 
   
 CHARACTER*(*) STRING 
 
 DO I=1,MAX 
  IF(STRING(I:I).EQ.' ') GOTO 1 
 END DO 
 
1  NUMCHA=(I-1) 
 RETURN 
 
 END 
 
 
 
 
Subroutine UBCND: 
 
The purpose of this subroutine was to allow for different options to be set with regard to 
the SFST and DFE model without having to modify extensive portions of the FORTRAN 
code within the different subroutines.  These include certain fluid properties for the two 
phases, flags to set the source terms in the scalar transport equation and turbulence 
equations, and options for setting a constant droplet diameter or allowing the DFE model 
to calculate the droplet size at each computational cell. 
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The first section is used to set the turbulent Prandtl number for k, which is used in setting 
the buoyant source terms in the turbulence equations.  Here we use a value of 1.0. 
 
C TURBULENCE SOURCE CONSTANTS 
 UTPN = 1.0  !BUOYANT SOURCE PRANDTL NUMBER 
 
The next section is for setting the fluid properties, and the average droplet diameter in the 
case where the DFE model is not used dynamically.  The fluid properties include the 
unmixed densities of the two phases (in this case water and diesel fuel), as well as their 
molecular viscosities. 
 
C FLUID PROPERTIES 
 URHOW = 1000.0  !DENSITY OF HEAVY FLUID 
 URHOF = 850.0  !DENSITY OF LIGHT FLUID 
 UVISW = 0.001  !VISCOSITY OF HEAVY FLUID 
 UVISF = 0.002  !VISCOSITY OF LIGHT FLUID 
 UDIAP = 0.001  !AVERAGE PARTICLE (DROP) DIAMETER 
 
Following this, the boundedness parameter for limiting the source term in the scalar 
transport equation is set.  This term represents the percentage of the total fuel that can be 
donated from a given cell to its adjacent acceptor cell.  Here the value is set to 0.75, 
though this may need to be adjusted to allow for more or less influence of the slip 
velocity.  This will be explained in greater detail in the discussion of the USRSRC 
subroutine later.  Here also, the exponent to be used for the function of the volume 
fraction in the slip velocity is set (see Section 3.3). 
 
C SLIP VELOCITY 

USBND = 0.9  !SOURCE TERM BOUNDEDNESS PARAMETER 
UEXP1 = 0.71429  !EXPONENT TO BE USED IN SLIP VELOCITY 

 
The geometric information that needs to be set includes the total number of active blocks, 
and the total number of internal solid blocks used as child constraints.  The following 
values are those pertaining to the simulations of the impinging jet facility.  If there are no 
internal solid blocks, then UNIS should be set to 0.  This value is used for setting certain 
boundary conditions later in the code. 
 
C SET GEOMETRIC INFORMATION 
 UNB = 9  !NUMBER OF BLOCKS 
 UNIS = 3  !NUMBER OF INTERNAL SOLIDS USED AS CHILD  

CONSTRAINTS 
 
In the case of the shear flow simulations, there are certain parameters that need to be set 
to control the output generated by CFX for use in plotting the various profiles as a 
function of streamwise distance (e.g. the mixed fluid thickness).  The user must specify 
the i-location to begin the data dumps, as well as the final i-location, and the total number 
of dumps to be written to the output file and the final time of the simulation.  During the 
final time step, then, CFX outputs the volume fraction, density, and streamwise velocity 
as a function of vertical position, for each streamwise location specified.  From this data 
file, a reduction program is used to generate the data files necessary for plotting the 
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various profiles.  A typical example of how these parameters were set for the present 
study are given below. 
 
C DEFINE ON WHAT “X” LOCATION TO TAKE THE SHOTS AND WHEN 
 UISHOT = 1  !INITIAL Y SHOT 
 UFSHOT = 150 !FINAL Y SHOT 
 USHOTI = 1  !SHOT INCREMENT 
 UTIME = 20.0 !THE TIME TO WRITE THE DATA 
 
This, then, would instruct the code to write out the appropriate data starting at i=1 and 
going to i=150 in the mixing layer region, in increments of 1, so that the data would be 
output at every cell in the streamwise direction. 
 
 
Finally, the various flags for different run options need to be set.  This is the primary 
purpose, and benefit, of using the UBCND subroutine.  It allows for these different options 
to be changed for different simulations without major modifications to multiple sections 
of the code.   
 
C SET SOLVER PARAMETERS 

USADD = 5  !OUTER ITERATION TO BEGIN SETTING SCALAR SOURCE 
 UTADD = 5  !OUTER ITERATION TO BEGIN SETTING TURB SOURCE  

TERMS 
 USFST = 1  !FLAG TO INCLUDE SLIP SOURCE TERM IN SCALAR  

TRANSPORT EQUATION 
 UKEPS = 1  !FLAG TO INCLUDE BUOYANT K AND EPSILON SOURCE  

TERMS 
 UMNVF = 1  !FLAG TO MONITOR SCALAR PHI AND CORRECT 
 UDYNM = 1  !FLAG TO USE DYNAMIC DROPLET MODEL 
 
The terms USADD and UTADD represent an integer value for CFX to begin setting the 
scalar and buoyant source terms, respectively.  The other terms are simply flags to turn 
certain options on (value = 1) or off (value = 0).  This allows for several different cases to 
be simulated while only changing a few values in this subroutine.  No other modifications 
need to be made in the remaining CFX subroutines. 
 
 
 
 
Subroutine UGRDNT: 
 
This is simply a subroutine that can be called to perform one-dimensional gradient 
calculations of different variables.  It is used, for example, in calculating the density and 
velocity gradients used in determining the gradient Richardson number.  The values that 
need to be passed to the subroutine are described below:  
 
 
UPHI = VALUE OF VARIABLE AT CELL WHERE GRADIENT IS TO BE CALCULATED 
UPHIP1 = VALUE OF VARIABLE AT HIGH CELL (J+1, K+1, ETC.) 
UPHIM1 = VALUE OF VARIABLE AT LOW CELL (J-1, K-1, ETC.) 
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UX = COORDINATE AT CELL WHERE GRADIENT IS TO BE CALCULATED 
UXP1 = COORDINATE AT HIGH CELL (J+1, K+1, ETC.) 
UXM1 = COORDINATE AT LOW CELL (J-1, K-1, ETC.) 
UWH = CFX WEIGHTING FACTOR AT HIGH FACE 
UWL = CFX WEIGHTING FACTOR AT LOW FACE 
 
 
Finally, UGRD is the variable name used for the returned value of the gradient calculation.  
The gradient is then calculated by linear interpolation between the high and low faces of 
the cell in question.  In the case of a cell that is adjacent to a boundary, a one-sided 
difference should be used by setting 
 

UPHI = UPHIP1   for a high boundary  
UPHI = UPHIM1   for a low boundary. 

 
The one-dimensional gradient calculation is performed using the following algorithm: 
 
SUBROUTINE UGRDNT(UPHI,UPHIP1,UPHIM1,UX,UXP1,UXM1,UWH,UWL,UGRD) 
 
C ****************** CALCULATION OF GRADIENTS ************************* 
 
 UXH = UX + UWH*(UXP1-UX) 
 UXL = UX - UWL*(UX-UXM1) 
 UPHIH = (1.0-UWH)*UPHI + (UWH)*UPHIP1 
 UPHIL = (1.0-UWL)*UPHI + (UWL)*UPHIM1 
 
 UGRD = (UPHIH-UPHIL)/(UXH-UXL) 
 
 
 
 
CFX Subroutine USRINT: 
 
This is a CFX subroutine that is used for implementing any initial conditions within the 
domain.  As these details will change with a given problem, a detailed description will 
not be given.  Of note, however, is one option that needs to be set concerning the scalar 
array USRD UDWALL, which stores the wall distance information at each cell node.  
With the COMPUTE DISTANCES TO WALLS option set in the command file, at the 
beginning of the simulation CFX will determine the distance to the nearest wall at each 
cell node.  This information is stored in the array DISWAL, which can be accessed in this 
subroutine.  The following options need to be set when using the DFE model. 
 
C SET DISTANCES TO NEAREST WALLS 
 DO N=1,UNB 
 CALL LENGTH(UBNAME(N),20,NUMCHA)  
 CALL IPREC(UBNAME(N)(1:NUMCHA),'BLOCK','CENTERS',IPT,ILEN,JLEN, 
     &KLEN,CWORK,IWORK) 
 
 DO I=1,ILEN 
 DO J=1,JLEN 
 DO K=1,KLEN 
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 INODE=IP(I,J,K) 
 SCAL(INODE,1,ISCDW) = DISWAL(INODE) 
 
 END DO 
 END DO 
 END DO 
 END DO 
 
Here, SCAL(INODE,1,ISCDW) represents the scalar array used to store the nearest 
wall distance in each computational cell.  In the case of two-dimensional geometries, this 
value should be limited by the domain thickness in the third coordinate direction, say 
 
 SCAL(INODE,1,ISCDW) = MIN(DISWAL(INODE),0.0127) 
 
 
 
CFX subroutine USRDEN: 
 
In this subroutine the mixture density equation is set by the user.  This, along with the 
option WEAKLY COMPRESSIBLE, allows for a variable density field to be set, while 
maintaining the incompressibility condition in the solution of the governing equations.  
Here, the mixture density is defined according to 
 
     ββαα ρρρ rrm +=  
 
where the subscripts α and β  represent the light and heavy phase, respectively, and r is 
the volume fraction.  The density equation is prescribed as follows: 
 
C****************** AREA FOR MIXTURE DENSITY EQUATION****************** 
 
C SET THE NEW EQUATION OF STATE 
 
       CALL IPALL('*','*','BLOCK','CENTRES',IPT,NPT,CWORK,IWORK) 
       DO I=1,NPT 
        INODE = IPT(I) 
 
  DENN(INODE,1)=URHOF*SCAL(INODE,1,ISCVF)+ 
     &      URHOW*(1-SCAL(INODE,1,ISCVF))  
 
         DRHODP(INODE,1) = 0.0 
       END DO 
 
       CALL IPALL('*','*','PATCH','CENTRES',IPT,NPT,CWORK,IWORK) 
       DO I=1,NPT 
         INODE = IPT(I) 
 
  DENN(INODE,1)=URHOF*SCAL(INODE,1,ISCVF)+ 
     &      URHOW*(1-SCAL(INODE,1,ISCVF)) 
 
         DRHODP(INODE,1) = 0.0 
       END DO 
C********************************************************************** 
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CFX Subroutine USRSRC: 
 
This CFX subroutine is used for setting additional source terms in the governing 
equations.  In the case of the SFST model and DFE model, this subroutine is used for 
setting the source terms in the scalar transport and turbulence equations, as well as for 
calculating the droplet diameter and determining the slip velocity. 
 
Following the initialization of the name matrices (see General Notes above), the user 
scalar array USRD CELLID is filled with the appropriate values corresponding to 
different boundary cell specifiers.  These values are used in determining certain boundary 
conditions when the active cell is adjacent to a boundary or patch.  These calculations are 
only performed once, at the beginning of the simulation. 
 
C********************************************************************** 
C*** SET THE CELL SPECIFIERS ACCORDING TO WHAT BOUNDARY PATCHES EXIST * 
C********************************************************************** 
 
 IF(TIME.EQ.DT.AND.NITER.EQ.1) THEN 
 CALL GETBCS('USRSRC','INLET ',IILVEL,NIPTCH,NILBEL,NICV,IISTRT) 
 CALL GETBCS('USRSRC','WALL  ',IWLVEL,NWPTCH,NWLBEL,NWCV,IWSTRT) 
 CALL GETBCS('USRSRC','PRESS ',IPLVEL,NPPTCH,NPLBEL,NPCV,IPSTRT) 
 CALL GETBCS('USRSRC','OUTLET',IMLVEL,NMPTCH,NMLBEL,NMCV,IMSTRT) 
 
 
 !THE CELL INDICATORS 
 !0 - INTERNAL SOLID CELL THAT IS PART OF A CHILD CONSTRAINT 
 !1 - TYPICAL CELL 
 !2 - HIGH WALL 
 !3 - LOW WALL 
 !4 - HIGH PRESSURE/MFB/INLET 
 !5 - LOW PRESSURE/MFB/INLET 
 
 DO N=1,UNB 
 CALL LENGTH(UBNAME(N),20,NUMCHA)  
 CALL IPREC(UBNAME(N)(1:NUMCHA),'BLOCK','CENTERS',IPT,ILEN,JLEN, 
     &KLEN,CWORK,IWORK) 
 
 DO K = 1, KLEN 
 DO J = 1, JLEN 
 DO I = 1, ILEN 
 
 INODE = IP(I,J,K) 
 IFCES=IPFACN(INODE,5) 
 IFCEN=IPFACN(INODE,2) 
 
C SET FLAG FOR NORMAL CELLS 
 SCAL(INODE,1,ISCCI)=1.0 
 
C SET FLAG FOR WALLS 
 DO NW=IWSTRT,(IWSTRT+NWCV-1) 
     IF (IFCEN.EQ.IPFACB(NW)) THEN 
      SCAL(INODE,1,ISCCI)=2.0 
     END IF 
     IF (IFCES.EQ.IPFACB(NW)) THEN 
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      SCAL(INODE,1,ISCCI)=3.0 
     END IF 
 END DO 
 
C SET FLAG FOR INLETS 
 DO NW=IISTRT,(IISTRT+NICV-1) 
     IF (IFCEN.EQ.IPFACB(NW)) THEN 
      SCAL(INODE,1,ISCCI)=4.0 
     END IF 
     IF (IFCES.EQ.IPFACB(NW)) THEN 
      SCAL(INODE,1,ISCCI)=5.0 
     END IF  
 END DO 
 
C SET FLAG FOR PRESSURE PATCHES 
 DO NW=IPSTRT,(IPSTRT+NPCV-1) 
     IF (IFCEN.EQ.IPFACB(NW)) THEN 
      SCAL(INODE,1,ISCCI)=4.0 
     END IF 
     IF (IFCES.EQ.IPFACB(NW)) THEN 
      SCAL(INODE,1,ISCCI)=5.0 
     END IF  
 END DO 
 
C SET FLAG FOR MASS FLOW BOUNDARIES 
 DO NW=IMSTRT,(IMSTRT+NMCV-1) 
     IF (IFCEN.EQ.IPFACB(NW)) THEN 
      SCAL(INODE,1,ISCCI)=4.0 
     END IF 
     IF (IFCES.EQ.IPFACB(NW)) THEN 
      SCAL(INODE,1,ISCCI)=5.0 
     END IF  
 END DO  
 
C SET FLAG FOR INTERNAL SOLIDS 
 DO IS=1,UNISC 
 IF(UISBLK(IS).EQ.INODE) THEN 
  SCAL(INODE,1,ISCCI)=0.0 
 END IF 
 END DO 
 
 END DO 
 END DO 
 END DO 
 END DO 
 
 END IF 
C********************************************************************** 
 
 
 
Following this, the values of SCALAR PHI are monitored (if the appropriate flag, 
UMNVF, has been set) and corrected if the local value is less than zero or greater than one 
by at least 5.0x10-3.  The information concerning the times that these values are 
overwritten is stored in the two user text files shown.  This process is performed at the 
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beginning of an outer iteration (as the solution starts with U VELOCITY), and is only 
performed if the number of iterations exceeds USADD.  This was done for improved 
convergence, so that the first few values obtained were ignored. 
 
C********************************************************************** 
C ************************** MONITOR THE SCALAR PHI ******************* 
C********************************************************************** 
 IF((UMNVF.EQ.1).AND.(CALIAS.EQ.'U VELOCITY')) THEN 
 
C OPEN THE FILES TO MONITOR THE VOLUME FRACTION (SCALAR) 
 OPEN(82,FILE='negvf.txt',STATUS='NEW') 
 OPEN(83,FILE='posvf.txt',STATUS='NEW') 
 
 DO N=1,UNB 
 CALL LENGTH(UBNAME(N),20,NUMCHA) 
 CALL IPREC(UBNAME(N)(1:NUMCHA),'BLOCK','CENTERS',IPT,ILEN,JLEN, 
     &KLEN,CWORK,IWORK) 
 
 DO K = 1, KLEN 
 DO J = 1, JLEN 
 DO I = 1, ILEN 
 
 INODE = IP(I,J,K) 
 
 IF(SCAL(INODE,1,ISCAL).LT.0.0) THEN 
 IF(ABS(SCAL(INODE,1,ISCAL)).GT.0.005.AND.NITER.GT.USADD) THEN 
      WRITE(82,108)'VF= ',SCAL(INODE,1,ISCAL),'TIME= ',TIME,'NITER= ', 
     &NITER,' BLOCK= ',N,' J= ',J 
 END IF 
 SCAL(INODE,1,ISCAL)=0.0 
 END IF 
 
 IF(SCAL(INODE,1,ISCAL).GT.1.0) THEN 
 IF(ABS(SCAL(INODE,1,ISCAL)).GT.1.005.AND.NITER.GT.USADD) THEN 
      WRITE(83,108)'VF= ',SCAL(INODE,1,ISCAL),'TIME= ',TIME,'NITER= ', 
     &NITER,' BLOCK= ',N,' J= ',J 
 END IF 
 SCAL(INODE,1,ISCAL)=1.0 
 END IF 
 
 END DO 
 END DO 
 END DO 
 END DO 
 
 ENDIF 
 
C********************************************************************** 
 
 
The next section of subroutine USRSRC is used for calculating the volume fraction from 
the scalar variable, φ.  This was discussed in Section 4.0.  As in the case of monitoring 
the scalar, this process if performed at the beginning of the outer iteration.  Once the 
volume fraction is calculated for a given cell, the mixture density is immediately updated, 



 193 

so that the current value of the mixture density will be used in the solution of the 
momentum equations. 
 
C********************************************************************** 
C*************** CALCULATE VOLUME FRACTION FROM PHI ******************* 
C********************************************************************** 
 IF(CALIAS.EQ.'U VELOCITY') THEN 
 
 DO N=1,UNB 
 CALL LENGTH(UBNAME(N),20,NUMCHA)  
 CALL IPREC(UBNAME(N)(1:NUMCHA),'BLOCK','CENTERS',IPT,ILEN,JLEN, 
     &KLEN,CWORK,IWORK) 
 
 DO K = 1, KLEN 
 DO J = 1, JLEN 
 DO I = 1, ILEN 
 INODE = IP(I,J,K) 
 UPHI=SCAL(INODE,1,ISCAL) 
 SCAL(INODE,1,ISCVF)= UPHI/(UPHI+(URHOF/URHOW)*(1-UPHI)) 
 
C UPDATE THE DENSITY FIELD WITH THE NEW VF DATA 
 DEN(INODE,1)=URHOF*SCAL(INODE,1,ISCVF)+ 
     &   URHOW*(1-SCAL(INODE,1,ISCVF)) 
 
      END DO 
      END DO 
      END DO 
      END DO 
 
 
C SET VOLUME FRACTION IN ALL PATCHES 
 
      CALL IPALL('*','*','PATCH','CENTRES',IPT,NPT,CWORK,IWORK) 
       DO I=1,NPT 
         INODE = IPT(I) 
 
        UPHI=SCAL(INODE,1,ISCAL) 
 SCAL(INODE,1,ISCVF)= UPHI/(UPHI+(URHOF/URHOW)*(1-UPHI)) 
 
C UPDATE THE DENSITY FIELD WITH THE NEW VF DATA 
 DEN(INODE,1)=URHOF*SCAL(INODE,1,ISCVF)+ 
     &   URHOW*(1-SCAL(INODE,1,ISCVF)) 
 
      END DO 
 
      ENDIF 
 
C********************************************************************** 
 
 
The next portion of subroutine USRSRC is used for calculating the droplet diameter.  This 
is only done if the proper flag (i.e. UDYNM) has been set.  Here, the local volume fraction 
is checked, and if below some small value, then the droplet diameter is set to zero.  This 
would correspond to regions that are occupied primarily by only the water phase.  Next 
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the three mixed fluid thicknesses are calculated in each of the three coordinate directions, 
using a sweep method from the active cell, based on the volume fraction profile.  From 
the active cell, the domain is swept in each direction and looks for either a solid boundary 
or a region where the volume fraction is relatively small (i.e. a cell filled mostly with 
water).  This would define the edges of the mixed fluid thickness in that direction.  This 
process is repeated along both the positive and negative axes for each of the three 
coordinate directions.  The mixed fluid thickness is then determined by subtracting the 
two positions. 
 
In the case of the shear layer simulations, and for any multi-block geometry where the 
interface may extend across inter-block boundaries, the sweep may need to extend 
through several blocks.  In order to assure that the interface is captured, the sweeps 
performed in the horizontal and vertical directions are checked to make sure that either 
the extent of the mixed fluid thickness has been found or a solid boundary has been 
reached, else the process continues into the adjacent block.  In this case, the problem is 
two-dimensional, and so the z-direction sweep is neglected.  For a three-dimensional 
problem, this would be included in the same manner.  The specific functions used for 
determining the adjacent block numbers must be determined by the user for a specific 
geometry.  The implementation used for the shear flow geometry is given below. 
 
 
C********************************************************************** 
C ********************* CALCULATE THE DROPLET DIAMETER **************** 
C********************************************************************** 
 
C CHECK FOR FLAG TO USE DROPLET MODEL 
 IF(UDYNM.EQ.1) THEN 
 
C -- USE SWEEP METHOD TO DETERMINE LENGTH SCALES ------ 
 
 DO N=1,UNB 
C GET THE THREE DIMENSIONAL ADDRESSES OF THE CELLS 
 CALL LENGTH(UBNAME(N),20,NUMCHA) 
 CALL IPREC(UBNAME(N)(1:NUMCHA),'BLOCK','CENTERS',IPT,ILEN,JLEN, 
     &KLEN,CWORK,IWORK) 
 
 DO K=1,KLEN 
 DO I=1,ILEN 
 DO J=1,JLEN 
 
 INODE=IP(I,J,K) 
 
IF(SCAL(INODE,1,ISCVF).LT.(0.01).OR.SCAL(INODE,1,ISCVF).GT.(0.99)) THEN 
 SCAL(INODE,1,ISCMX)=0.0 
 SCAL(INODE,1,ISCMY)=0.0 
 SCAL(INODE,1,ISCMZ)=0.0 
 
 ELSE 
 
 IEFLAG=0 
 IWFLAG=0 
 INFLAG=0 
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 ISFLAG=0 
 ITFLAG=0 
 IBFLAG=0 
 
 ISTART=I 
 JSTART=J 
 KSTART=K 
 
 
C -- SWEEP THE DOMAIN IN ALL SIX DIRECTIONS ------- 
 
C ----- SWEEP EAST IN X-DIRECTION 
 
 CALL LENGTH(UBNAME(N),20,NUMCHA) 
 CALL IPREC(UBNAME(N)(1:NUMCHA),'BLOCK','CENTERS',IPT, 
     &ILEN,JLEN,KLEN,CWORK,IWORK) 
 
   DO IE=ISTART,ILEN 
   INODEP=IP(IE,JSTART,KSTART) 
   INODEE=IPNODN(INODEP,1) 
 
   IF(SCAL(INODEE,1,ISCVF).LE.(0.01)) THEN 
   IEFLAG=IEFLAG+1 
      IF(IEFLAG.EQ.1) THEN 
  XE=0.5*(XP(INODEP)+XP(INODEE)) 
  GOTO 1000 
  ENDIF 
   ENDIF 
 
   IF((IE.EQ.ILEN).AND.(IEFLAG.EQ.0)) THEN 
 
   N2E = N 
C DO WHILE LOOP TO CHECK ADJACENT BLOCKS 
   KITERE=1 
   DO WHILE (KITERE.LE.4) 
 
   IF((N2E.GE.13).AND.(N2E.LE.16)) THEN 
   XE=0.5*(XP(INODEP)+XP(INODEE)) 
   GOTO 1000 
   ELSEIF((N2E.EQ.18).OR.(N2E.EQ.19).OR.(N2E.EQ.2)) THEN 
   XE=0.5*(XP(INODEP)+XP(INODEE)) 
   GOTO 1000 
 
C CONTINUE IN ADJACENT BLOCK 
   ELSEIF((N2E.EQ.3).OR.(N2E.EQ.17)) THEN 
   NADJE = N2E+1 
   ELSEIF(N2E.EQ.20) THEN 
   NADJE = N2E-18 
   ELSEIF(N2E.EQ.1) THEN 
   NADJE = N2E+4 
   ELSEIF((N2E.GE.4).AND.(N2E.LE.12)) THEN 
   NADJE = N2E+3 
   ENDIF 
 
 CALL LENGTH(UBNAME(NADJE),20,NUMCHA) 
 CALL IPREC(UBNAME(NADJE)(1:NUMCHA),'BLOCK','CENTERS',IPT, 
     &ILEN,JLEN,KLEN,CWORK,IWORK) 
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   DO IADJ=1,ILEN 
   INODEP=IP(IADJ,JSTART,KSTART) 
   INODEE=IPNODN(INODEP,1) 
 
   IF(SCAL(INODEE,1,ISCVF).LE.(0.1)) THEN 
   IEFLAG=IEFLAG+1 
      IF(IEFLAG.EQ.1) THEN 
  XE=0.5*(XP(INODEP)+XP(INODEE)) 
  GOTO 1000 
  ENDIF 
   ENDIF 
 
   END DO 
 
C REPLACE BLOCK NUMBER WITH ADJACENT BLOCK NUMBER AND CONTINUE 
   N2E = NADJE 
   KITERE=KITERE+1 
 
C END DO-WHILE LOOP 
   END DO 
 
   ENDIF 
   END DO 
 
1000   CONTINUE 
 
C ----- SWEEP WEST IN X-DIRECTION 
 
 CALL LENGTH(UBNAME(N),20,NUMCHA) 
 CALL IPREC(UBNAME(N)(1:NUMCHA),'BLOCK','CENTERS',IPT, 
     &ILEN,JLEN,KLEN,CWORK,IWORK) 
 
   DO IW=ISTART,1,-1 
   INODEP=IP(IW,JSTART,KSTART) 
   INODEW=IPNODN(INODEP,4) 
 
   IF(SCAL(INODEW,1,ISCVF).LE.(0.1)) THEN 
   IWFLAG=IWFLAG+1 
  IF(IWFLAG.EQ.1) THEN 
  XW=0.5*(XP(INODEP)+XP(INODEW)) 
  GOTO 2000 
  ENDIF 
   ENDIF 
 
   IF((IW.EQ.1).AND.(IWFLAG.EQ.0)) THEN 
 
   N2W=N 
C DO WHILE LOOP TO CHECK ADJACENT BLOCKS 
   KITERW=1 
   DO WHILE (KITERW.LE.4) 
 
   IF((N2W.EQ.1).OR.(N2W.EQ.3).OR.(N2W.EQ.20).OR.(N2W.EQ.19)) THEN 
   XW=0.5*(XP(INODEP)+XP(INODEW)) 
   GOTO 2000 
   ELSEIF((N2W.EQ.16).OR.(N2W.EQ.17).OR.(N2W.EQ.6)) THEN 
   XW=0.5*(XP(INODEP)+XP(INODEW)) 
   GOTO 2000 
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C CONTINUE IN ADJACENT BLOCK 
   ELSEIF(N2W.EQ.2) THEN 
   NADJW = N2W+18 
   ELSEIF((N2W.EQ.4).OR.(N2W.EQ.18)) THEN 
   NADJW = N2W-1 
   ELSEIF(N2W.EQ.5) THEN 
   NADJW = N2W-4 
   ELSEIF((N2W.GE.7).AND.(N2W.LE.15)) THEN 
   NADJW = N2W-3 
   ENDIF 
 
 
   CALL LENGTH(UBNAME(NADJW),20,NUMCHA) 
   CALL IPREC(UBNAME(NADJW)(1:NUMCHA),'BLOCK','CENTERS',IPT, 
     &ILEN,JLEN,KLEN,CWORK,IWORK) 
 
   DO IADJ=ILEN,1,-1 
   INODEP=IP(IADJ,JSTART,KSTART) 
   INODEW=IPNODN(INODEP,4) 
 
   IF(SCAL(INODEW,1,ISCVF).LE.(0.1)) THEN 
   IWFLAG=IWFLAG+1 
      IF(IWFLAG.EQ.1) THEN 
  XW=0.5*(XP(INODEP)+XP(INODEW)) 
  GOTO 2000 
  ENDIF 
   ENDIF 
    
   END DO 
 
C REPLACE BLOCK NUMBER WITH ADJACENT BLOCK NUMBER AND CONTINUE 
   N2W = NADJW 
   KITERW=KITERW+1 
 
C END DO-WHILE LOOP 
   END DO 
 
 
   ENDIF 
   END DO 
 
2000 CONTINUE 
 
 
C ----- SWEEP NORTH IN Y-DIRECTION 
 
 CALL LENGTH(UBNAME(N),20,NUMCHA) 
 CALL IPREC(UBNAME(N)(1:NUMCHA),'BLOCK','CENTERS',IPT, 
     &ILEN,JLEN,KLEN,CWORK,IWORK) 
 
   DO JN=JSTART,JLEN 
   INODEP=IP(ISTART,JN,KSTART) 
   INODEN=IPNODN(INODEP,2) 
 
   IF(SCAL(INODEN,1,ISCVF).GE.(0.99)) THEN 
   INFLAG=INFLAG+1 
  IF(INFLAG.EQ.1) THEN 
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  YN=0.5*(YP(INODEP)+YP(INODEN)) 
  GOTO 3000 
  ENDIF 
   ENDIF 
 
   IF((JN.EQ.JLEN).AND.(INFLAG.EQ.0)) THEN 
 
 
   N2N=N 
C DO WHILE LOOP TO CHECK ADJACENT BLOCKS 
   KITERN=1 
   DO WHILE (KITERN.LE.4) 
 
 
   IF((N2N.EQ.20).OR.(N2N.EQ.3).OR.(N2N.EQ.7).OR.(N2N.EQ.10)) THEN 
   YN=0.5*(YP(INODEP)+YP(INODEN)) 
   GOTO 3000 
   ELSEIF((N2N.EQ.17).OR.(N2N.EQ.18).OR.(N2N.EQ.4)) THEN 
   YN=0.5*(YP(INODEP)+YP(INODEN)) 
   GOTO 3000 
   ELSEIF((N2N.EQ.1).OR.(N2N.EQ.5).OR.(N2N.EQ.11).OR.(N2N.EQ.14)) 
THEN 
   YN=0.5*(YP(INODEP)+YP(INODEN)) 
   GOTO 3000 
 
 
C CONTINUE IN ADJACENT BLOCK 
   ELSEIF(N2N.EQ.19) THEN 
   NADJN = N2N-17 
   ELSEIF((N2N.EQ.2).OR.(N2N.EQ.6).OR.(N2N.EQ.12).OR.(N2N.EQ.15)) 
THEN 
   NADJN = N2N-1 
   ELSEIF((N2N.EQ.8).OR.(N2N.EQ.9)) THEN 
   NADJN = N2N-1 
   ELSEIF(N2N.EQ.13) THEN 
   NADJN = N2N+3 
   ELSEIF(N2N.EQ.16) THEN 
   NADJN = N2N+1 
   ENDIF 
 
   CALL LENGTH(UBNAME(NADJN),20,NUMCHA) 
   CALL IPREC(UBNAME(NADJN)(1:NUMCHA),'BLOCK','CENTERS',IPT, 
     &ILEN,JLEN,KLEN,CWORK,IWORK) 
 
   DO JADJ=1,JLEN 
   INODEP=IP(ISTART,JADJ,KSTART) 
   INODEN=IPNODN(INODEP,2) 
 
   IF(SCAL(INODEN,1,ISCVF).LE.(0.1)) THEN 
   INFLAG=INFLAG+1 
      IF(INFLAG.EQ.1) THEN 
  YN=0.5*(YP(INODEP)+YP(INODEN)) 
  GOTO 3000 
  ENDIF 
   ENDIF 
 
   END DO 
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C REPLACE BLOCK NUMBER WITH ADJACENT BLOCK NUMBER AND CONTINUE 
   N2N = NADJN 
   KITERN=KITERN+1 
 
C END DO-WHILE LOOP 
   END DO 
 
 
   ENDIF 
   END DO 
 
3000 CONTINUE 
 
 
C ----- SWEEP SOUTH IN Y-DIRECTION 
 
 CALL LENGTH(UBNAME(N),20,NUMCHA) 
 CALL IPREC(UBNAME(N)(1:NUMCHA),'BLOCK','CENTERS',IPT, 
     &ILEN,JLEN,KLEN,CWORK,IWORK) 
 
   DO JS=JSTART,1,-1 
   INODEP=IP(ISTART,JS,KSTART) 
   INODES=IPNODN(INODEP,5) 
 
   IF(SCAL(INODES,1,ISCVF).LE.(0.01)) THEN 
   ISFLAG=ISFLAG+1 
  IF(ISFLAG.EQ.1) THEN 
   YS=0.5*(YP(INODEP)+YP(INODES)) 
  GOTO 4000 
  ENDIF 
   ENDIF 
 
   IF((JS.EQ.1).AND.(ISFLAG.EQ.0)) THEN 
 
 
   N2S=N 
C DO WHILE LOOP TO CHECK ADJACENT BLOCKS 
   KITERS=1 
   DO WHILE (KITERS.LE.4) 
 
 
   IF((N2S.EQ.20).OR.(N2S.EQ.19).OR.(N2S.EQ.6).OR.(N2S.EQ.9)) THEN 
   YS=0.5*(YP(INODEP)+YP(INODES)) 
   GOTO 4000 
   ELSEIF((N2S.EQ.12).OR.(N2S.EQ.15).OR.(N2S.EQ.18)) THEN 
   YS=0.5*(YP(INODEP)+YP(INODES)) 
   GOTO 4000 
   ELSEIF((N2S.EQ.3).OR.(N2S.EQ.4).OR.(N2S.EQ.10).OR.(N2S.EQ.13)) 
THEN 
   YS=0.5*(YP(INODEP)+YP(INODES)) 
   GOTO 4000 
 
 
C CONTINUE IN ADJACENT BLOCK 
   ELSEIF((N2S.EQ.1).OR.(N2S.EQ.5).OR.(N2S.EQ.11).OR.(N2S.EQ.14)) 
THEN 
   NADJS = N2S+1 
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   ELSEIF(N2S.EQ.2) THEN 
   NADJS = N2S+17 
   ELSEIF((N2S.EQ.7).OR.(N2S.EQ.8)) THEN 
   NADJS = N2S+1 
   ELSEIF(N2S.EQ.17) THEN 
   NADJS = N2S-1 
   ELSEIF(N2S.EQ.16) THEN 
   NADJS = N2S-3 
   ENDIF 
 
 
   CALL LENGTH(UBNAME(NADJS),20,NUMCHA) 
   CALL IPREC(UBNAME(NADJS)(1:NUMCHA),'BLOCK','CENTERS',IPT, 
     &ILEN,JLEN,KLEN,CWORK,IWORK) 
 
   DO JADJ=JLEN,1,-1 
   INODEP=IP(ISTART,JADJ,KSTART) 
   INODES=IPNODN(INODEP,5) 
 
   IF(SCAL(INODES,1,ISCVF).LE.(0.1)) THEN 
   ISFLAG=ISFLAG+1 
      IF(ISFLAG.EQ.1) THEN 
  YS=0.5*(YP(INODEP)+YP(INODES)) 
  GOTO 4000 
  ENDIF 
   ENDIF 
 
   END DO 
 
C REPLACE BLOCK NUMBER WITH ADJACENT BLOCK NUMBER AND CONTINUE 
   N2S = NADJS 
   KITERS=KITERS+1 
 
C END DO-WHILE LOOP 
   END DO 
 
 
   ENDIF 
   END DO 
 
4000 CONTINUE 
 
 
C ----- CALCULATE THE THREE MIXED-FLUID THICKNESSES LOCALLY 
 
 SCAL(INODE,1,ISCMX)=(XE-XW) 
 SCAL(INODE,1,ISCMY)=(YN-YS) 
 SCAL(INODE,1,ISCMZ)=0.0 
 
C --- ENDIF FOR LOCAL VOLUME FRACTION CHECK 
 ENDIF 
 
 END DO 
 END DO 
 END DO 
 END DO 
C********************************************************************** 
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Following the determination of the mixed fluid thickness in each coordinate direction, the 
gradient Richardson number is calculated in each computational cell.  Here, the density 
and velocity gradients are determined using subroutine UGRDNT, and the boundary 
specifiers, given by USRD CELLID, determine whether a one-sided difference should be 
used for cells adjacent to a boundary or patch (e.g. a wall). 
 
 
C********************************************************************** 
C************* CALCULATE THE GRADIENT RICHARDSON NUMBER *************** 
C********************************************************************** 
 
C LOOP OVER ALL THE BLOCKS 
 DO N=1,UNB 
 
C GET THE THREE DIMENSIONAL ADDRESSES OF THE CELLS 
 CALL LENGTH(UBNAME(N),20,NUMCHA) 
 CALL IPREC(UBNAME(N)(1:NUMCHA),'BLOCK','CENTERS',IPT,ILEN,JLEN, 
     &KLEN,CWORK,IWORK) 
 
 DO K=1,KLEN 
 DO I=1,ILEN 
 DO J=1,JLEN 
 
 INODE = IP(I,J,K) 
 INODEH = IP(I,J+1,K) 
 INODEL = IP(I,J-1,K) 
 INODES = IPNODN(INODE,5)     !CFX NUMBER FOR SOUTH NODE 
 INODEN = IPNODN(INODE,2)     !CFX NUMBER FOR NORTH NODE 
 IFACES = IPFACN(INODE,5)     !CFX NUMBER FOR THE SOUTH FACE 
 UWGTS = WFACT(IFACES)      !THE SOUTH INTERPOLATING FACTOR 
 IFACEN = IPFACN(INODE,2)     !CFX NUMBER FOR THE NORTH FACE 
 UWGTN = WFACT(IFACEN)      !THE NORTH INTERPOLATING FACTOR 
 UBCSP = INT(SCAL(INODE,1,ISCCI))  !THE BOUNDARY SPECIFIER 
 
 
C CALCULATE THE U,W, DENSITY GRADIENTS IN THE Y-DIRECTION 
 
C DERIVATIVE FOR AN AVERAGE CELL 
 IF(UBCSP.EQ.1) THEN 
 CALL UGRDNT(U(INODE,1),U(INODEN,1),U(INODES,1),YP(INODE), 
     &  YP(INODEN),YP(INODES),UWGTN,UWGTS,UDUDY) 
 CALL UGRDNT(W(INODE,1),W(INODEN,1),W(INODES,1),YP(INODE), 
     &  YP(INODEN),YP(INODES),UWGTN,UWGTS,UDWDY) 
 CALL UGRDNT(DEN(INODE,1),DEN(INODEN,1),DEN(INODES,1),YP(INODE), 
     &  YP(INODEN),YP(INODES),UWGTN,UWGTS,UDRDY)  
 
 
C DERIVATIVE FOR A CELL THAT IS NEXT TO A HIGH WALL OR BOUNDARY 
 ELSEIF((UBCSP.EQ.2).OR.(UBCSP.EQ.4)) THEN   
 CALL UGRDNT(U(INODE,1),U(INODE,1),U(INODES,1),YP(INODE), 
     &  YP(INODE),YP(INODES),UWGTN,UWGTS,UDUDY) 
 CALL UGRDNT(W(INODE,1),W(INODE,1),W(INODES,1),YP(INODE), 
     &  YP(INODE),YP(INODES),UWGTN,UWGTS,UDWDY) 
 CALL UGRDNT(DEN(INODE,1),DEN(INODE,1),DEN(INODES,1),YP(INODE), 
     &  YP(INODE),YP(INODES),UWGTN,UWGTS,UDRDY) 
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C DERIVATIVE FOR A CELL THAT IS NEXT TO A LOW WALL OR BOUNDARY 
 ELSEIF((UBCSP.EQ.3).OR.(UBCSP.EQ.5)) THEN  
 CALL UGRDNT(U(INODE,1),U(INODEN,1),U(INODE,1),YP(INODE), 
     &  YP(INODEN),YP(INODE),UWGTN,UWGTS,UDUDY) 
 CALL UGRDNT(W(INODE,1),W(INODEN,1),W(INODE,1),YP(INODE), 
     &  YP(INODEN),YP(INODE),UWGTN,UWGTS,UDWDY) 
 CALL UGRDNT(DEN(INODE,1),DEN(INODEN,1),DEN(INODE,1),YP(INODE), 
     &  YP(INODEN),YP(INODE),UWGTN,UWGTS,UDRDY) 
 END IF 
 
 
C CALCULATE THE GRADIENT RICHARDSON NUMBER 
 UBUOY=-9.81/MAX(URHOF,DEN(INODE,1)) 
 UNUMO=(UBUOY*UDRDY) 
 UDENO=MAX(1E-6,((UDUDY*UDUDY)+(UDWDY*UDWDY))) 
 SCAL(INODE,1,ISCGR)=MIN(15.0,MAX(0.000001,(UNUMO/UDENO))) 
  
 END DO 
 END DO 
 END DO 
 END DO 
 
The next portion is for the actual calculation of the droplet diameter in each cell based on 
the value of the gradient Richardson number and using the appropriate length scales.  
This is done as follows: 
 
 
C********************************************************************** 
C***************** CALCULATE THE DROPLET DIAMETER ********************* 
C********************************************************************** 
 
 DO N=1,UNB 
 
 CALL LENGTH(UBNAME(N),20,NUMCHA) 
 CALL IPREC(UBNAME(N)(1:NUMCHA),'BLOCK','CENTERS',IPT,ILEN,JLEN, 
     &KLEN,CWORK,IWORK) 
 
 DO K=1,KLEN 
 DO I=1,ILEN 
 DO J=1,JLEN 
 
 INODE = IP(I,J,K) 
 
 IF(SCAL(INODE,1,ISCVF).LE.(0.00001)) THEN 
 SCAL(INODE,1,ISCDP) = 0.0 
 ELSEIF(SCAL(INODE,1,ISCVF).GT.(0.00001)) THEN 
C---- DETERMINE THE APPROPRIATE CHARACTERISTIC LENGTH SCALE 
 
 UTURB=(TE(INODE,1)**(3/2))/MAX(ED(INODE,1),1E-10) 
 DMX=SCAL(INODE,1,ISCMX) 
 DMY=SCAL(INODE,1,ISCMY) 
 DMZ=SCAL(INODE,1,ISCMZ) 
 DWALL=SCAL(INODE,1,ISCDW) 
 UDMMAX=MAX(DMX,DMY,DMZ) 
 IF(UDMMAX.EQ.0) THEN 
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  IF(TE(INODE,1).EQ.0) UCHLEN=DWALL 
  IF(TE(INODE,1).GT.0) UCHLEN=MIN(UTURB,DWALL) 
 ELSEIF(UDMMAX.GT.0) THEN 
   DMMIN=MIN(DMX,DMY,DMZ) 
  IF(DMMIN.GT.0) THEN 
     IF(TE(INODE,1).EQ.0) UCHLEN=MIN(DMMIN,DWALL) 
     IF(TE(INODE,1).GT.0) UCHLEN=MIN(DMMIN,UTURB,DWALL) 
  ELSEIF(DMMIN.EQ.0) THEN 
   IF(DMX.EQ.0) THEN 
   MINX=MIN(DMY,DMZ) 
    IF(MINX.EQ.0) UDMMIN=MAX(DMY,DMZ) 
    IF(MINX.GT.0) UDMMIN=MINX 
   ELSEIF(DMY.EQ.0) THEN 
   MINY=MIN(DMX,DMZ) 
    IF(MINY.EQ.0) UDMMIN=MAX(DMX,DMZ) 
    IF(MINY.GT.0) UDMMIN=MINY 
   ELSEIF(DMZ.EQ.0) THEN 
   MINZ=MIN(DMX,DMY) 
    IF(MINZ.EQ.0) UDMMIN=MAX(DMX,DMY) 
    IF(MINZ.GT.0) UDMMIN=MINZ 
   ENDIF 
     IF(TE(INODE,1).EQ.0) UCHLEN=MIN(UDMMIN,DWALL) 
     IF(TE(INODE,1).GT.0) UCHLEN=MIN(UDMMIN,UTURB,DWALL) 
  ENDIF 
 ENDIF  
 
C------------------------------------------------ 
C ----- DROP DIAMETER CALCULATIONS -------------- 
 
 IF(SCAL(INODE,1,ISCGR).LE.(0.2)) THEN 
 CONST=4.0*((1-SCAL(INODE,1,ISCVF))**0.1) 
 UDPCALC=CONST*(TE(INODE,1)**(3/2))/MAX(ED(INODE,1), 
1E-10) 
 SCAL(INODE,1,ISCDP)=MIN(UDPCALC,(0.5*DMY),DWALL) 
 
 ELSEIF(SCAL(INODE,1,ISCGR).GT.(0.2).AND. 
     &SCAL(INODE,1,ISCGR).LE.(7.5)) THEN 
 CONST=15.0*((1-SCAL(INODE,1,ISCVF))**0.1) 
 UDPCALC=CONST*UCHLEN*(SCAL(INODE,1,ISCGR)**(0.89)) 
 SCAL(INODE,1,ISCDP)=MIN(UDPCALC,(0.5*DMY),DWALL) 
 
 ELSEIF(SCAL(INODE,1,ISCGR).GT.(7.5)) THEN 
 SCAL(INODE,1,ISCDP)=0.0 
 ENDIF 
 ENDIF 
 
 END DO 
 END DO 
 END DO 
 END DO 
 
 
If the flag to use the droplet model has not been set, then the scalar array for the droplet 
diameter is filled using the constant average value set in UBCND, UDIAP. 
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C********************************************************************** 
C************** CONSTANT AVERAGE DROPLET DIAMETER ********************* 
C********************************************************************** 
 
C IF FLAG NOT SET THEN USE CONSTANT, AVERAGE DROPLET DIAMETER 
 ELSEIF(UDYNM.EQ.0) THEN 
 
 DO N=1,UNB 
 CALL LENGTH(UBNAME(N),20,NUMCHA) 
 CALL IPREC(UBNAME(N)(1:NUMCHA),'BLOCK','CENTERS',IPT,ILEN,JLEN, 
     &KLEN,CWORK,IWORK) 
 
 DO K=1,KLEN 
 DO I=1,ILEN 
 DO J=1,JLEN 
 
 INODE = IP(I,J,K) 
 SCAL(INODE,1,ISCDP) = UDIAP 
 
 END DO 
 END DO 
 END DO 
 END DO 
 
C ENDIF FOR FLAG TO USE DYNAMIC DROPLET DIAMETER 
 ENDIF 
 
C********************************************************************** 
 
 
The next portion of CFX subroutine USRSRC is for setting the source terms in the scalar 
transport equation, which is a function of the slip velocity.  Here, the slip velocity is 
given by 
 
     ( ) ∞⋅−= uru m

s α1  
 
where ∞u  is the terminal velocity for a single particle in an infinite medium, given by 
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and the drag coefficient is given by 
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as discussed in Section 3.3.  Then, the source term that appears in the scalar transport 
equation is given by 
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where R = ρα/ρβ represents the ratio of the unmixed phase densities. 
 
One note should be made here concerning the boundedness of the volume fraction as it 
relates to the slip velocity in setting the scalar source term.  It was found that the 
formulation given by 
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is very useful in ensuring boundedness by allowing any values of the scalar, φ, above one 
or less than zero to be corrected during the course of the outer iterations in the solver.  
Essentially, this is a physical limitation, which dictates that the active cell cannot donate 
more scalar than it has to an adjacent cell, and that the adjacent cell cannot receive more 
scalar than it can displace.  The extent to which this limitation is enforced is determined 
by the boundedness parameter, β  (e.g. β=0.9 means only 90% of the total fuel volume in 
the active cell can be donated, or 90% of the total water volume in the adjacent cell can 
be displaced). 
 
The nomenclature used above is as follows: V is the cell volume, A is the area normal to 
the slip velocity, φ is the scalar, ∆t is the time step used in the discretization, and β  is the 
boundedness parameter that the user sets as USBND in UBCND.  Subscripts s and n refer 
to the south and north faces on a control cell and the subscript i refers to the cell in 
question, with i+1 indicating a cell located above cell i and i-1 indicating a cell below cell 
i.  The subscript m refers to the mixture, and the subscript β  refers to the heavy phase (i.e. 
the water).  It can be seen that the correction provided by these equations is conservative 
in that it can only spatially redistribute the scalar, not destroy or produce it. 
 
Another issue that may be of some concern to the user involves how the flux due to the 
slip velocity is calculated in the vertical direction when the grids are non-orthogonal.  
The solution to this problem is facilitated by the fact that CFX stores the three area 
components on each of the six faces.  Hence when the flux due to the slip velocity is 
calculated in the vertical direction, only the area component normal to the vertical 
direction is used. 
 
It should also be mentioned that if the user wants to set different relationships for the slip 
velocity it should be done in the following loop where the source terms are set in the 
scalar transport equation. 
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C********************************************************************** 
C*************************** SFST MODELS ****************************** 
C********************************************************************** 
 
C SET SOURCE TERMS IF FLAGS HAVE BEEN SET AND IF EQUATION IS BEING 
SOLVED 
      IF ( ((USFST.EQ.1).AND.(CALIAS.EQ.'SCALAR PHI')) 
     &  .OR. ((UKEPS.EQ.1).AND.(CALIAS.EQ.'K'     )) 
     &  .OR. ((UKEPS.EQ.1).AND.(CALIAS.EQ.'EPSILON' ))    ) THEN 
 
C********************************************************************** 
C********************* SCALAR EQUATION SOURCE TERM ******************** 
C********************************************************************** 
 
 IF((CALIAS.EQ.'SCALAR PHI').AND.(NITER.GE.USADD)) THEN 
C START THE LOOP OVER ALL THE BLOCKS 
 
 DO N=1,UNB 
 CALL LENGTH(UBNAME(N),20,NUMCHA)  
 CALL IPREC(UBNAME(N)(1:NUMCHA),'BLOCK','CENTERS',IPT,ILEN,JLEN, 
     &KLEN,CWORK,IWORK) 
 
 DO K = 1, KLEN 
 DO J = 1, JLEN 
 DO I = 1, ILEN 
 
 INODE = IP(I,J,K) 
 INODES = IPNODN(INODE,5) 
 INODEN = IPNODN(INODE,2) 
 UBCSP = INT(SCAL(INODE,1,ISCCI)) 
 
C VERTICAL AREA AND INTERPOLATING FACTORS 
 IFACES=IPFACN(INODE,5)  !THE SOUTH FACE 
 USRAS=AREA(IFACES,2)  !THE SOUTH AREA 
 UWGTS=WFACT(IFACES)  !THE SOUTH INTERPOLATING FACTOR 
 IFACEN=IPFACN(INODE,2)  !THE NORTH FACE 
 USRAN=AREA(IFACEN,2)  !THE NORTH AREA 
 UWGTN=WFACT(IFACEN)  !THE NORTH INTERPOLATING FACTOR 
 
 
C CALCULATE THE VALUES OF STUFF AT THE SOUTH FACE 
 IF((UBCSP.EQ.1).OR.(UBCSP.EQ.2).OR.(UBCSP.EQ.4)) THEN 
 !INTERPOLATE DROPLET DIAMETER 
   UDIAPS=(1.-UWGTS)*SCAL(INODE,1,ISCDP)+ 
     &     (UWGTS)*SCAL(INODES,1,ISCDP) 
 
 !INTERPOLATE THE DENSITY AND SCALAR 
  UTHETS = (1.-UWGTS)*SCAL(INODE,1,ISCAL)+ 
     &     (UWGTS)*SCAL(INODES,1,ISCAL) 
  UDENS = (1.-UWGTS)*DEN(INODE,1)+(UWGTS)*DEN(INODES,1) 
  UVFS = (1.-UWGTS)*SCAL(INODE,1,ISCVF)+ 
     &      (UWGTS)*SCAL(INODE,1,ISCVF) 
 
 !SLIP VELOCITY 
  IF(UDIAPS.LE.0.000001) THEN 
  USLIPS=0.0 
  ELSE 
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 !CALCULATE THE TERMINAL VELOCITY 
 UCON1=(4*9.81*(UDIAPS**(1.6)))/(54*UVISW**(0.6)) 
 UCON2=((URHOW-URHOF)/(URHOW**(0.4)) 
 UTERM = (UCON1*UCON2)**(0.71429) 
 
 USLIPS = ((1-UVFS)**(UEXP1))*UTERM 
 
  ENDIF 
 END IF 
 
 IF(UBCSP.EQ.5) THEN 
 !SET ZERO DERIVATIVE CONDITION IF BOUNDARY IS OUTLET OR INLET 
  UDIAPS = SCAL(INODE,1,ISCDP) 

UTHETS = SCAL(INODE,1,ISCAL) 
  UDENS = DEN(INODE,1) 
  UVFS=SCAL(INODE,1,ISCVF) 
 
 !SLIP VELOCITY 
  IF(UDIAPS.LE.0.000001) THEN 
  USLIPS=0.0 
  ELSE 
 
 !CALCULATE THE TERMINAL VELOCITY 
 UCON1=(4*9.81*(UDIAPS**(1.6)))/(54*UVISW**(0.6)) 
 UCON2=((URHOW-URHOF)/(URHOW**(0.4)) 
 UTERM = (UCON1*UCON2)**(0.71429) 
 
 USLIPS = ((1-UVFS)**(UEXP1))*UTERM 
 
  ENDIF 
 END IF 
 
 IF((UBCSP.EQ.3).OR.(UBCSP.EQ.0)) THEN 
 !SET EQUAL TO ZERO IF BOUNDARY IS A WALL 
 UDIAPS=0.0 
 UTHETS=0.0 
 UDENS=0.0 
 USLIPS=0.0 
 END IF 
 
 
C CALCULATE THE VALUES OF STUFF AT THE NORTH FACE   
 IF((UBCSP.EQ.1).OR.(UBCSP.EQ.3).OR.(UBCSP.EQ.5)) THEN  
 !INTERPOLATE DROPLET DIAMETER 
 UDIAPN=(1.UWGTN)*SCAL(INODE,1,ISCDP)+(UWGTN)*SCAL(INODEN,1,ISCDP) 
 
 !INTERPOLATE THE DEN AND SCALARS 
  UTHETN = (1.-UWGTN)*SCAL(INODE,1,ISCAL)+ 
     &(UWGTN)*SCAL(INODEN,1,ISCAL) 
  UDENN = (1.-UWGTN)*DEN(INODE,1)+(UWGTN)*DEN(INODEN,1) 
  UVFN = (1.-UWGTN)*SCAL(INODE,1,ISCVF)+ 
     & (UWGTN)*SCAL(INODE,1,ISCVF) 
 
 !INTERPLOLATE SLIP VELOCITY 
  IF(UDIAPN.LE.0.000001) THEN 
  USLIPN=0.0 
  ELSE 
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 !CALCULATE THE TERMINAL VELOCITY 
 UCON1=(4*9.81*(UDIAPN**(1.6)))/(54*UVISW**(0.6)) 
 UCON2=((URHOW-URHOF)/(URHOW**(0.4)) 
 UTERM = (UCON1*UCON2)**(0.71429) 
 
 USLIPN = ((1-UVFN)**(UEXP1))*UTERM 
 
  ENDIF 
 END IF 
 
 IF(UBCSP.EQ.4) THEN 
  UDIAPN=SCAL(INODE,1,ISCDP) 
  UTHETN = SCAL(INODE,1,ISCAL) 
  UDENN = DEN(INODE,1) 
  UVFN=SCAL(INODE,1,ISCVF) 
 
 !SLIP VELOCITY 
  IF(UDIAPN.LE.0.000001) THEN 
  USLIPN=0.0 
  ELSE 
 
 !CALCULATE THE TERMINAL VELOCITY 
 UCON1=(4*9.81*(UDIAPN**(1.6)))/(54*UVISW**(0.6)) 
 UCON2=((URHOW-URHOF)/(URHOW**(0.4)) 
 UTERM = (UCON1*UCON2)**(0.71429) 
 
 USLIPN = ((1-UVFN)**(UEXP1))*UTERM 
 
  ENDIF 
 END IF 
 
 IF((UBCSP.EQ.2).OR.(UBCSP.EQ.0)) THEN 
 UDIAPN=0.0 
 UTHETN=0.0 
 UDENN=0.0 
 USLIPN=0.0 
 END IF 
 
 
C LIMIT THE SCALAR SOURCE TO GIVE BOUNDED VOLUME FRACTIONS 
C SOUTH SOURCE 
 IF((UBCSP.EQ.1).OR.(UBCSP.EQ.2).OR.(UBCSP.EQ.4)) THEN 
 UCON1 = URHOF*UTHETS*(1-UTHETS)*USLIPS 
 UCON2 = UTHETS+(URHOF/URHOW)*(1-UTHETS) 
 USLS1=USRAS*(UCON1/UCON2) 
 
 
 USLS2=USBND*DEN(INODE,1)*VOL(INODE)*(1.-SCAL(INODE,1,ISCAL))/(DT) 
 USLS3=USBND*DEN(INODES,1)*VOL(INODES)*SCAL(INODES,1,ISCAL))/(DT) 
 USSRC=MIN(USLS2,USLS3,MAX(0.0,USLS1)) 
 END IF 
 
 IF(UBCSP.EQ.5) THEN 
 UCON1 = URHOF*UTHETS*(1-UTHETS)*USLIPS 
 UCON2 = UTHETS+(URHOF/URHOW)*(1-UTHETS) 
 USLS1=USRAS*(UCON1/UCON2) 
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 USLS2=USBND*DEN(INODE,1)*VOL(INODE)*(1.-SCAL(INODE,1,ISCAL))/(DT) 
 USSRC=MIN(USLS2,MAX(0.0,USLS1)) 
 END IF 
 
 IF((UBCSP.EQ.3).OR.(UBCSP.EQ.0)) THEN 
 USSRC=0.0 
 END IF 
 
C NORTH SOURCE 
 IF((UBCSP.EQ.1).OR.(UBCSP.EQ.3).OR.(UBCSP.EQ.5)) THEN 
 UCON1 = URHOF*UTHETN*(1-UTHETN)*USLIPN 
 UCON2 = UTHETN+(URHOF/URHOW)*(1-UTHETN) 
 USLN1=USRAS*(UCON1/UCON2) 
 
 USLN2=USBND*DEN(INODEN,1)*VOL(INODEN)*(1-
SCAL(INODEN,1,ISCAL)/(DT) 
 USLN3=USBND*DEN(INODE,1)*VOL(INODE)*SCAL(INODE,1,ISCAL))/(DT) 
 UNSRC=MIN(USLN2,USLN3,MAX(0.0,USLN1)) 
 END IF 
 
 IF(UBCSP.EQ.4) THEN 
 UCON1 = URHOF*UTHETN*(1-UTHETN)*USLIPN 
 UCON2 = UTHETN+(URHOF/URHOW)*(1-UTHETN) 
 USLN1=USRAS*(UCON1/UCON2) 
 
 USLN3=USBND*DEN(INODE,1)*(VOL(INODE)*(SCAL(INODE,1,ISCAL)))/(DT) 
 UNSRC=MIN(USLN3,MAX(0.0,USLN1)) 
 END IF 
 
 IF((UBCSP.EQ.2).OR.(UBCSP.EQ.0)) THEN 
 UNSRC=0.0 
 END IF 
 
C CALCULATE AND SET THE SOURCE INTO THE CFX SOURCE ARRAY 
 USRCS=(USSRC-UNSRC) 
 SU(INODE,1)=SU(INODE,1)+USRCS 
 
 END DO 
 END DO 
 END DO 
 
 END DO 
 
 END IF 
 
 
Following this, the source terms are set in the k and ε equations.  These represent 
turbulent production/destruction due to buoyancy effects, and were discussed in Section 
3.2. 
 
C********************************************************************** 
C *********************** K AND EPSILON SOURCE TERM ******************* 
C********************************************************************** 
 
 IF( ((CALIAS.EQ.'K').AND.(NITER.GE.UTADD)) 
     &  .OR.((CALIAS.EQ.'EPSILON').AND.(NITER.GE.UTADD))) THEN 
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C LOOP OVER THE CELLS 
 DO N=1,UNB 
 
 CALL LENGTH(UBNAME(N),20,NUMCHA)  
 CALL IPREC(UBNAME(N)(1:NUMCHA),'BLOCK','CENTERS',IPT,ILEN,JLEN, 
     &KLEN,CWORK,IWORK) 
 
 DO K = 1, KLEN 
 DO J = 1, JLEN 
 DO I = 1, ILEN 
 
 INODE = IP(I,J,K) 
 INODES = IPNODN(INODE,5) !CFX NUMBER FOR SOUTH NODE 
 INODEN =IPNODN(INODE,2)  !CFX NUMBER FOR NORTH NODE 
 IFACE=IPFACN(INODE,5)  !CFX NUMBER FOR THE SOUTH FACE 
 UWGTS=WFACT(IFACE)  !THE SOUTH INTERPOLATING FACTOR 
 IFACE=IPFACN(INODE,2)  !CFX NUMBER FOR THE NORTH FACE 
 UWGTN=WFACT(IFACE)  !THE NORTH INTERPOLATING FACTOR 
 UBCSP = INT(SCAL(INODE,1,ISCCI)) 
 
 
C CALCULATE THE DENSITY DERIVATIVE IN THE VERTICAL DIRECTION 
 !DERIVATIVE FOR AN AVERAGE CELL 
 IF(UBCSP.EQ.1) THEN 
 CALL UGRDNT(DEN(INODE,1),DEN(INODEN,1),DEN(INODES,1), 
     &  YP(INODE),YP(INODEN),YP(INODES),UWGTN,UWGTS,UDRDY) 
 END IF  
 
 !DERIVATIVE FOR A CELL THAT IS NEXT TO A HIGH WALL OR BOUNDARY 
 IF((UBCSP.EQ.2).OR.(UBCSP.EQ.4)) THEN 
 CALL UGRDNT(DEN(INODE,1),DEN(INODE,1),DEN(INODES,1), 
     &  YP(INODE),YP(INODEN),YP(INODES),UWGTN,UWGTS,UDRDY) 
 END IF  
 
 !DERIVATIVE FOR A CELL THAT IS NEXT TO A LOW WALL OR BOUNDARY 
 IF((UBCSP.EQ.3).OR.(UBCSP.EQ.5)) THEN 
 CALL UGRDNT(DEN(INODE,1),DEN(INODEN,1),DEN(INODE,1), 
     &  YP(INODE),YP(INODEN),YP(INODES),UWGTN,UWGTS,UDRDY) 
 END IF  
 
C CALCULATE THE K AND EPSILON SOURCE TERMS 
 UVIS = VIS(INODE,1) 
 UDEN = MAX(URHOF,MIN(URHOW,DEN(INODE,1))) 
 UTE  = TE(INODE,1) 
 UEPS = ED(INODE,1) 
 
C AVOID DIVIDING BY ZERO (ASSUME IF K IS VERY SMALL EPSILON IS VERY 
SMALL) 
 IF(UTE.GT.0.000001) THEN 
 UEOK = UEPS/UTE 
 END IF 
 IF(UTE.LT.0.000001) THEN 
 UEOK = 1.0 
 END IF 
 
C CALCULATE K SOURCE (UNITS ARE (KG M^2/S^2)/S ) 
 USRCK = UVIS*9.81*UDRDY/(UTPN*UDEN) 
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C LIMIT K SUCH THAT SOURCE CANNOT REMOVE MORE RHO*K FROM A CELL THAN 75 
PERCENT 
 USRCKL = -0.75*UTE*UDEN/DT 
 USRCK = MAX(USRCKL,USRCK) 
 
 
C CALCULATE EPSILON SOURCE (UNITS ARE (KG M^2/S^3)/S ) 
 USRCE = 1.44*UEOK*(MAX(0.0,USRCK)) 
 
C SET THE SOURCE IN THE K EQUATION 
 IF((CALIAS.EQ.'K').AND.(NITER.GE.UTADD)) THEN 
 SU(INODE,1) = SU(INODE,1) + USRCK*VOL(INODE) 
 END IF 
 
C SET THE SOURCE IN THE EPSILON EQUATION 
 IF((CALIAS.EQ.'EPSILON').AND.(NITER.GE.UTADD)) THEN 
 SU(INODE,1) = SU(INODE,1) + USRCE*VOL(INODE) 
 END IF 
 
 
 END DO 
 END DO 
 END DO 
 
 END DO 
 
 END IF 
 
C********************************************************************** 
C***************** END THE IF STATMENTS TO SET THE SOURCES ************ 
C********************************************************************** 
 END IF 
 
 
C********************************************************************** 
C************************* END OF SOURCE TERMS ************************ 
C********************************************************************** 
 
 
This completes the implementation of the SFST and DFE models.  Further details 
concerning the different arrays and utility routines used can be found in the CFX Users 
Manual [12]. 
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Appendix C: Details on Shear Flow Data Reduction Program 
 
 
To acquire the appropriate data for the various plots from the shear flow simulations, a 
data reduction program was written by Matthew Umbel [37].  This program was then 
modified to account for the altered definition of the mixed fluid thickness as discussed 
previously in Section 6.3.  For each simulation performed, an output file was generated 
directly from CFX-4 that contained vertical line data for the volume fraction, density and 
streamwise velocity for each horizontal position as specified in subroutine UBCND.  
Recall that in UBCND, the user specifies the i index location to begin writing the data, 
the final location, and the total number of dumps (see Appendix B.3.3).   
 
After the simulation has finished, the output file generated by CFX is modified to include 
certain specifications at the beginning of the file.  They are added to the file in list format 
in the following form: 
 
1 fuel density (kg/m3) 
2 water density (kg/m3) 
3 fuel inlet flowrate (gpm) 
4 water inlet flowrate (gpm) 
5 height of lower layer (m) 
6 height of upper layer (m) 
7 width of test apparatus (m) 
8 horizontal length over which shearing takes place (m) 
9 height of test apparatus at shear flow section (m) 
10 mean droplet size (m) 
11 number of vertical sets of data  
12 number of points in each set of data 
13 LOW VALUE OF Y TO BEGIN CALCULATING PARAMETERS AT 
14 HIGH VALUE OF Y TO BEGIN CALCULATING PARAMETERS AT 
15 LOW VALUE OF X IN PERCENT TO BEGIN CALCULATING PARAMETERS AT 
16 HIGH VALUE OF X IN PERCENT TO BEGIN CALCULATING PARAMETERS AT 
 
 
Following this one time list, the x-location of each vertical profile is written, followed by 
columns containing the mixture density, volume fraction, vertical location, and 
streamwise velocity.  The data reduction program then reads in all of the relevant 
information at each streamwise location, and performs several calculations to determine 
the important parameters, and then output each in a data file in a format readable by 
TECPLOT, which was used to generate the plots.  At each x-location, the program 
calculates the interfacial thickness (defined as the distance between where the volume 
fraction is 0.1 and 0.9), the mixed fluid thickness (here defined as the distance between 
where the volume fraction is 0.03 and 0.97, as discussed previously), the vertical location 
of the fluid interface, and the maximum gradient Richardson number.  It also calculates 
the gradient Richardson number, density gradient, and streamwise velocity gradient as a 
function of y at each streamwise location. 
 
The FORTRAN used to perform the data reduction is given below. 
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C********************************************************************* 
C******************* THE KATZ DATA REDUCTION PROGRAM ***************** 
C********************************************************************* 
 
C WRITTEN BY: MATTHEW ROBERT UMBEL 
C DATE: 9/26/98 
 
C MODIFIED: 9/8/99 
C ALTERED DEFINITION OF THE MIXED FLUID THICKNESS: 0.03 - 0.97 
 
C DECLARE VARIBLES 
C RHOF:       FUEL DENSITY 
C RHOW:       WATER DENSITY 
C VELINF:     VELOCITY OF FUEL AT UPPER INLET 
C VELINW:     VELOCITY OF WATER AT LOWER INLET 
C HLOW:       HEIGHT OF LOWER INLET 
C HHIGH:      HEIGHT OF UPPER INLET 
C XSHOT:      LONGITUDINAL LOCATION OF DATA SET 
C DELLOW:     Y LOCATION TO LOWER EDGE OF INTERFACIAL THICKNESS 
C DELHI:      Y LOCATION TO UPPER EDGE OF INTERFACIAL THICKNESS 
C HCLLOW:     Y LOCATION TO LOWER EDGE OF MIXED FLUID THICKNESS 
C HCHI:       Y LOCATION TO UPPER EDGE OF MIXED FLUID THICKNESS 
C HCLOW:      THICKNESS OF LOWER CONCENTRATION BOUNDARY LAYER 
C HCHIGH:     THICKNESS OF UPPER CONCENTRATION BOUNDARY LAYER 
C YINTER:     Y LOCATION TO CONCENTRATION INTERFACE 
C YINTRV:     Y LOCATION TO VELOCITY INTERFACE 
C NSHOT:      NUMBER OF VERTICAL SETS OF DATA 
C NPOINT:     NUMBER OF POINTS IN EACH SET OF DATA 
C DUDYMX:     MAXIMUM VELOCITY GRADIENT IN THE DATA 
C HGT:        HEIGHT OF TEST APPARATUS AT SHEAR FLOW SECTION 
C DEL:        INTERFACIAL THICKNESS  
C DELM:       MIXED FLUID THICKNESS 
C DELMA:      AVERAGE MIXED FLUID THICKNESS 
C QINF:       FUEL INLET FLOWRATE 
C QINW:       WATER INLET FLOWRATE 
C BUOYA:      BUOYANCY PARAMETER 
C WIDT:       WIDTH OF TEST APPARATUS 
C DP:         DROPLET SIZE 
C LSHEAR:     HORIZONTAL LENGTH OVER WHICH SHEARING TOOK PLACE 
C YLOW:       LOW VALUE OF Y TO BEGIN CALCULATING PARAMETERS AT 
C YHIGH:      HIGH VALUE OF Y TO BEGIN CALCULATING PARAMETERS AT 
C XLOW:       LOW VALUE OF X IN PERCENT TO BEGIN CALCULATING PARAMETERS 
C XHIGH:      HIGH VALUE OF X IN PERCENT TO BEGIN CALCULATING 
PARAMETERS AT 
C XCONC:      VARIABLE WITH NORMALIZED X VALUES 
C DRDY:       DERIVATIVE OF DENSITY WRT VERTICAL 
C DUDY:       DERIVATIVE OF U VELOCITY WRT VERTICAL 
C DELI:       INTERFACIAL OFFSET 
C GRMX:       MAXIMUM GRADIENT RICHARDSON NUMBER 
 
 
C DECLARE THE REALS 
      REAL RHOF,RHOW,VELINF,VELINW,HLOW,HHIGH,XSHOT, 
     &DELLOW,DELHI,HCLOW,HCHIGH,HGT,HCLLOW,HCHI,DRDY,DUDY, 
     &DUDYMX,BUOYA,WIDT,DP,LSHEAR,RHO,FUELVF,Y,VEL,YG,GRICH, 
     &TEMPG,DEL,DELM,YINTER,YINTRV,DUMMY,XTOSTR,PERC, 
     &DELRHO,DELUVL,DELHGT,GRMX 
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C DECLARE INTEGERS  
      INTEGER I,J,K,N,NSHOT,NPOINT,CNTRX,CNTRY 
 
C DECLARE CHARACTERS 
      CHARACTER*50 INSTRING 
 
C DIMENSION ARRAYS 
      DIMENSION RHO(300),FUELVF(300),Y(300),VEL(300),YG(300),GRMX(300), 
     &GRICH(300),TEMPG(300),DEL(300),DELM(300),YINTRV(300), 
     &YINTER(300),XCONC(300),HCHIGH(300),HCLOW(300),DUDY(300),DRDY(300) 
 
C GET THE NAME OF THE INPUT FILE 
      PRINT*,'ENTER THE NAME OF THE INPUT FILE: ' 
      READ*, INSTRING 
 
C OPEN THE INPUT FILE AND CREATE THE FILES FOR OUTPUT 
      OPEN(10,FILE=INSTRING,STATUS='OLD') 
      OPEN(11,FILE='GRY.DAT',STATUS='NEW')  
      OPEN(12,FILE='GRMX.DAT',STATUS='NEW') 
      OPEN(13,FILE='DELX.DAT',STATUS='NEW') 
      OPEN(14,FILE='DELMX.DAT',STATUS='NEW')  
      OPEN(15,FILE='OUTPUT.TXT',STATUS='NEW') 
      OPEN(16,FILE='YINTR.DAT',STATUS='NEW') 
      OPEN(17,FILE='HCBL.DAT',STATUS='NEW') 
      OPEN(18,FILE='DUDY.DAT',STATUS='NEW') 
      OPEN(19,FILE='DRDY.DAT',STATUS='NEW') 
 
C READ THE RELEVANT "ONE TIME" VARIABLES 
      READ(10,*) RHOF,RHOW,QINF,QINW,HLOW,HHIGH,WIDT,LSHEAR,HGT, 
     &DP,NSHOT,NPOINT,YLOW,YHIGH,XLOW,XHIGH 
 
C CALCULATE INITIAL PARAMETERS 
      BUOYA  = 981.0*(RHOW-RHOF)/RHOF    
      VELINW = 100.*(QINW * 1./15850.)/(HLOW *WIDT) 
      VELINF = 100.*(QINF * 1./15850.)/(HHIGH*WIDT) 
      HHIGH  = HHIGH*100.0 
      HLOW   = HLOW*100.0 
      WIDT   = WIDT*100.0 
      DP     = DP*100.0   
      LSHEAR = LSHEAR*100.0 
 
      XTOSTR = 0.725 
      CNTRX = 0 
      CNTRY = 0 
 
C WRITE THE RELEVANT ONE TIME PARAMETERS TO THE OUTPUT FILE 
      WRITE(15,99)'INPUT FILE NAME: ',INSTRING 
      WRITE(15,100)' ' 
      WRITE(15,101)'FUEL DENSITY (KG/M^3)         =', RHOF 
      WRITE(15,101)'WATER DENSITY (KG/M^3)        =', RHOW 
      WRITE(15,101)'FUEL INLET FLOWRATE (GPM)     =', QINF 
      WRITE(15,101)'WATER INLET FLOWRATE (GPM)    =', QINW  
      WRITE(15,101)'FUEL INLET VELOCITY (CM/S)    =', VELINF 
      WRITE(15,101)'WATER INLET VELOCITY (CM/S)   =', VELINW 
      WRITE(15,101)'FUEL INLET HEIGHT (CM)        =', HHIGH 
      WRITE(15,101)'WATER INLET HEIGHT (CM)       =', HLOW 
      WRITE(15,101)'HORIZONTAL SHEAR DOMAIN (CM)  =', LSHEAR 
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      WRITE(15,101)'BUOYANCY (CM/S^2)             =', BUOYA 
      WRITE(15,101)'AVERAGE DROPLET SIZE (CM)     =', DP 
      WRITE(15,101)'LOWEST Y/H VALUE IN Y DOMAIN  =', YLOW/HGT 
      WRITE(15,101)'HIGHEST Y/H VALUE IN Y DOMAIN =', YHIGH/HGT 
      WRITE(15,101)'LOWEST X/L VALUE IN X DOMAIN  =', XLOW 
      WRITE(15,101)'HIGHEST X/L VALUE IN X DOMAIN =', XHIGH 
 
C WRITE OUT THE HEADINGS TO TECPLOT FILE FOR VARIABLES THAT ARE F(X) 
      WRITE(11,100) 'VARIABLES="RIG","Y"' 
      WRITE(12,100) 'VARIABLES="X/L","RIGMAX"' 
      WRITE(12,100) 'ZONE T="MAX GRADRICH"' 
      WRITE(13,100) 'VARIABLES="X/L","DEL"' 
      WRITE(13,100) 'ZONE T="DEL"' 
      WRITE(14,100) 'VARIABLES="X/L","DELM"' 
      WRITE(14,100) 'ZONE T="MIXED THICKNESS"' 
      WRITE(16,100) 'VARIABLES="X/L","YINTR","YVELINTR"' 
      WRITE(16,100) 'ZONE T="INTERFACES"' 
      WRITE(17,100) 'VARIABLES="X/L","HCLOW","HCHIGH"' 
      WRITE(17,100) 'ZONE T="CONC BNDRY LAYERS"' 
      WRITE(18,100) 'VARIABLES="DUDY","Y"' 
      WRITE(19,100) 'VARIABLES="DRDY","Y"' 
 
 
C ***************** BEGIN LOOP TO READ IN SETS OF DATA **************** 
      DO K=1,NSHOT 
      READ(10,*) XSHOT 
      READ(10,*) (RHO(I),FUELVF(I),Y(I),VEL(I),DUMMY, I=1,NPOINT) 
 
      PERC = 1.0 - (XSHOT-XTOSTR)*100.0/LSHEAR 
 
C IF THE X VALUE IS IN RANGE BEGIN CALCULATIONS      
      IF(  (PERC.GE.XLOW).AND.(PERC.LE.XHIGH)  ) THEN 
      CNTRX=CNTRX+1 
      XCONC(CNTRX) = PERC 
      CNTRY=0 
 
C *************** BEGIN THE 1ST LOOP OVER THE VERTICAL DATA *********** 
      DO J=1,NPOINT 
 
 
C IF THE Y VALUE IS IN RANGE BEGIN CALCULATIONS 
      IF( (Y(J).GE.YLOW).AND.(Y(J).LE.YHIGH) ) THEN 
      CNTRY=CNTRY+1 
 
 
C FIND THE Y LOCATION TO THE LOWER EDGE OF THE INTERFACIAL THICKNESS 
      IF((FUELVF(J).LT.0.1).AND.(FUELVF(J+1).GT.0.1)) THEN 
      CALL INTRPL(Y(J+1),Y(J),FUELVF(J+1),FUELVF(J),0.1,DELLOW) 
      END IF  
C FIND THE Y LOCATION TO THE UPPER EDGE OF THE INTERFACIAL THICKNESS 
      IF((FUELVF(J).LT.0.9).AND.(FUELVF(J+1).GT.0.9)) THEN 
      CALL INTRPL(Y(J+1),Y(J),FUELVF(J+1),FUELVF(J),0.9,DELHI) 
      END IF 
C USE VALUES TO FIND Y LOCATION OF INTERFACE AND INTERFACIAL THICKNESS 
      YINTER(CNTRX)=100.0*(DELLOW + 0.5*(DELHI-DELLOW)) 
      DEL(CNTRX) = 100.0*(DELHI-DELLOW) 
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C FIND THE Y LOCATION TO THE LOWER EDGE OF THE CONC BOUNDARY LAYER 
      IF((FUELVF(J).LT.0.03).AND.(FUELVF(J+1).GT.0.03)) THEN 
      CALL INTRPL(Y(J+1),Y(J),FUELVF(J+1),FUELVF(J),0.03,HCLLOW) 
      END IF  
C FIND THE Y LOCATION TO THE UPPER EDGE OF THE CONC BOUNDARY LAYER 
      IF((FUELVF(J).LT.0.97).AND.(FUELVF(J+1).GT.0.97)) THEN 
      CALL INTRPL(Y(J+1),Y(J),FUELVF(J+1),FUELVF(J),0.97,HCHI) 
      END IF 
C USE VALUES TO FIND MIXED FLUID THICKNESS 
      DELM(CNTRX)=100.0*(HCHI-HCLLOW) 
 
 
C CALCULATE THE DENSITY AND VELOCITY GRADIENTS IN THE VERTICAL 
DIRECTION 
 
      DELRHO = RHO(J+1) - RHO(J-1) 
      DELUVL = VEL(J+1) - VEL(J-1) 
      DELHGT =   Y(J+1) - Y(J-1) 
      DRDY(CNTRY) = DELRHO/DELHGT 
      DUDY(CNTRY) = DELUVL/DELHGT       
      YG(CNTRY) = 100.0*(Y(J+1)+Y(J-1))*0.5 
 
C FIND THE Y LOCATION OF THE VELOCITY INTERFACE (VEL=0.0) 
      IF((VEL(J).LT.0.0).AND.(VEL(J+1).GT.0.0)) THEN 
      CALL INTRPL(Y(J+1),Y(J),VEL(J+1),VEL(J),0.00,YINTRV(CNTRX)) 
      YINTRV(CNTRX)=100.0*YINTRV(CNTRX) 
      END IF 
 
 
C END THE IF SETTING THE BOUNDS ON THE Y RANGE 
      END IF 
 
C***************** END THE 1ST LOOP OVER THE VERTICAL DATA ************ 
      END DO 
 
 
C *************** BEGIN THE 2ND LOOP OVER THE VERTICAL DATA *********** 
C CALCULATE THE GRADIENT RICHARDSON NUMBER  
      CNTRY=0  
      DO J=1,NPOINT 
C IF THE Y VALUE IS IN RANGE BEGIN CALCULATIONS 
      IF( (Y(J).GE.YLOW).AND.(Y(J).LE.YHIGH) ) THEN 
      CNTRY=CNTRY+1 
 
      IF((Y(J).GT.HCLLOW).AND.(Y(J).LT.HCHI)) THEN 
      TEMPG(CNTRY)=-9.81*DRDY(CNTRY)/(RHO(J)*DUDY(CNTRY)*DUDY(CNTRY)) 
      ELSE 
      TEMPG(CNTRY)=0.0 
      END IF 
 
      END IF 
      END DO 
C***************** END THE 2ND LOOP OVER THE VERTICAL DATA ************ 
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C SMOOTH THE GRADIENT RICHARDSON NUMBER USING 1D DIFFUSION EQUATION 
      DO J=2,CNTRY-1 
      DY = 0.5*(YG(J+1)-YG(J-1)) 
      IF(J.EQ.2) DELTA=1.1*DY 
      DELTA = MIN(DY,DELTA) 
      END DO 
 
      DT = 0.10*DELTA*DELTA 
 
      DO N=1,5 
       DO J=2,CNTRY-1 
       DY = 0.5*(YG(J+1)-YG(J-1)) 
       GRICH(J) = (1. - 2.*DT/(DY*DY))*(TEMPG(J)               )+ 
     &            (  DT/(DY*DY)      )*(TEMPG(J+1) + TEMPG(J-1) ) 
       END DO 
 
       DO J=1,CNTRY 
       TEMPG(J)=GRICH(J) 
       END DO 
      END DO 
 
 
C DETERMINE THE SIZE OF THE CONCENTRATION BOUNDARY LAYERS 
      HCHIGH(CNTRX) = 100.*HCHI - YINTER(CNTRX) 
      HCLOW(CNTRX) = YINTER(CNTRX) - 100.*HCLLOW 
 
 
C WRITE OUT THE HEADER TO TECPLOT FILE FOR GRICH,DUDY,DRDY AT X 
LOCATIONS 
      WRITE(11,105) 'ZONE T=" X/L = ',PERC,'"' 
      WRITE(11,103) 'I=',CNTRY,',J=1,K=1,F=POINT' 
      WRITE(18,105) 'ZONE T=" X/L = ',PERC,'"' 
      WRITE(18,103) 'I=',CNTRY,',J=1,K=1,F=POINT' 
      WRITE(19,105) 'ZONE T=" X/L = ',PERC,'"' 
      WRITE(19,103) 'I=',CNTRY,',J=1,K=1,F=POINT' 
 
C CALCULATE THE MAXIMUM DUDY AND WRITE THE F(Y) DATA TO FILE 
      DUDYMX=0.0 
      GRMX(CNTRX) = 0.0 
 
      DO J=1,CNTRY  
       WRITE(11,106) GRICH(J),YG(J) 
       WRITE(18,106) DUDY(J),YG(J) 
       WRITE(19,106) DRDY(J),YG(J) 
 
       DUDYMX = MAX(DUDYMX,ABS(DUDY(J))) 
       GRMX(CNTRX) = MAX(GRMX(CNTRX),ABS(GRICH(J))) 
      END DO 
 
C CALCULATE PARAMETERS THAT ARE COMBINATIONS OF OTHER PARAMETERS 
      DELI = ABS(YINTER(CNTRX) - YINTRV(CNTRX)) 
 
C WRITE THE PARAMETERS TO THE OUTPUT FILE 
      WRITE(15,100)' ' 
      WRITE(15,101)'X/L                           = ',PERC 
      WRITE(15,101)'INTERFACE LOCATION (CM)       = ',YINTER(CNTRX) 
      WRITE(15,101)'VEL INTERFACE LOCATION (CM)   = ',YINTRV(CNTRX) 
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      WRITE(15,101)'INTERFACIAL OFFSET (CM)       = ',DELI   
      WRITE(15,101)'INTERFACIAL THICKNESS (CM)    = ',DEL(CNTRX) 
      WRITE(15,101)'MIXED LAYER THICKNESS (CM)    = ',DELM(CNTRX) 
      WRITE(15,101)'LOWER CONC BL THICKNESS (CM)  = ',HCLOW(CNTRX) 
      WRITE(15,101)'UPPER CONC BL THICKNESS (CM)  = ',HCHIGH(CNTRX) 
      WRITE(15,101)'MAXIMUM VELOCITY GRAD  (1/S)  = ',DUDYMX 
      WRITE(15,101)'MAXIMUM GRADIENT RICHARDSON   = ',GRMX(CNTRX) 
 
 
 
C*****************END THE IF SETTING THE BOUNDS ON THE X RANGE********* 
      END IF 
 
 
C******************* END THE DO LOOP OVER THE SETS OF DATA ************ 
      END DO 
 
 
 
C WRITE OUT THE NUMBER OF SHOTS AND POINTS THAT DATA WAS CALCULATED 
FROM 
      WRITE(15,100)' ' 
      WRITE(15,102)'NSHOT                         =', CNTRX 
      WRITE(15,102)'NPOINT AT LAST DATA SHOT      =', CNTRY 
      WRITE(15,100)' ' 
 
 
 
C WRITE THE HEADERS TO THE TECPLOT FILE FOR THE PARAM(X) DATA 
      WRITE(12,103) 'I=',CNTRX,',J=1,K=1,F=POINT' 
      WRITE(13,103) 'I=',CNTRX,',J=1,K=1,F=POINT' 
      WRITE(14,103) 'I=',CNTRX,',J=1,K=1,F=POINT' 
      WRITE(16,103) 'I=',CNTRX,',J=1,K=1,F=POINT' 
      WRITE(17,103) 'I=',CNTRX,',J=1,K=1,F=POINT' 
 
 
C WRITE THE DATA TO THE TECPLOT OUTPUT FILES FOR PARAM(X) DATA 
      DO I=1,CNTRX 
      WRITE(12,106)XCONC(I),GRMX(I) 
      WRITE(13,106)XCONC(I),DEL(I) 
      WRITE(14,106)XCONC(I),DELM(I) 
      WRITE(16,107)XCONC(I),YINTER(I),YINTRV(I) 
      WRITE(17,107)XCONC(I),HCLOW(I),HCHIGH(I) 
      END DO 
 
 
99    FORMAT(A,A) 
100   FORMAT(A) 
101   FORMAT(A,F15.7) 
102   FORMAT(A,I7) 
103   FORMAT(A,I3,A) 
104   FORMAT(A,F11.5,A) 
105   FORMAT(A,F7.5,A) 
106   FORMAT(F15.6,F15.7) 
107   FORMAT(F15.6,F15.7,F15.7) 
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C END TO MAIN PROGRAM 
      END 
 
C********************************************************************** 
C****************************** SUBROUTINES *************************** 
C********************************************************************** 
 
C DEFINE SUBROUTINE TO INTERPOLATE 
      SUBROUTINE INTRPL(XH,XL,PHIH,PHIL,PHIX,X) 
 
C DEFINE REAL STUFF 
      REAL XH,XL,PHIH,PHIL,X,PHIX 
 
      X = XL + (XH-XL)/(PHIH-PHIL)*(PHIX-PHIL) 
 
      END 
 
 
 
 
 


