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Abstract 
Unmanned Aerial Vehicles (UAVs) are rapidly becoming an integral part of contemporary 
military operations. In light of developments in UAV flight and payload technologies, the role of 
UAV operators is evolving into that of supervisory controller of complex automated system. 
However, it is well established that human operators perform poorly in this role. A growing body 
of literature points to the crucial role that trust in automation plays in determining the efficacy of 
human monitoring of automated systems. A recent compilation of research on trust in automation 
suggest that providing operators with information related to automation process and context-
specific automation reliability is essential in promoting appropriate trust in automation. 
 

This report presents a research plan to create innovative design concepts for cognitive artifacts 
that communicate these two types of information to UAV operators for the purpose of 
engendering appropriate trust in automated systems. It includes a categorization of the emerging 
automation technologies in UAV systems, an analysis of the changing tasks of UAV crews, and 
a selective review of relevant human-automation research. The report then introduces two 
human-machine interface concepts for selected types of UAV automation and proposes a 
research plan for testing and evaluating these design concepts. 

Résumé 
Les véhicules aériens sans pilote (UAV) sont rapidement en train de devenir une partie intégrante 
des opérations militaires contemporaines. À la lumière des progrès réalisés dans les technologies 
de vol et de charge utile des UAV, le rôle des opérateurs d’UAV est en train de se transformer en 
celui de contrôleur-superviseur de système automatisé complexe. Cependant, il est bien établi 
que les opérateurs humains sont mal adaptés pour ce rôle. Une masse croissante de 
documentation témoigne du rôle crucial que joue la confiance dans l’automatisation pour 
déterminer l’efficacité du contrôle humain sur des systèmes automatisés. D’après une récente 
compilation de la recherche menée sur la confiance dans l’automatisation, il serait essentiel de 
procurer aux opérateurs des informations sur le processus d’automatisation et sur la fiabilité de 
l’automatisation en contexte spécifique pour promouvoir un degré approprié de confiance dans 
l’automatisation. 
 

Le présent rapport présente un plan de recherche visant à créer des conceptions novatrices pour 
les artefacts cognitifs communiquant ces deux types d’informations aux opérateurs d’UAV dans 
le but d’engendrer la confiance appropriée dans les systèmes automatisés. Cela inclut une 
catégorisation des nouvelles technologies d’automatisation émergeant dans les systèmes d’UAV, 
une analyse des tâches changeantes des équipages d’UAV, et un examen sélectif de la recherche 
pertinente homme-automatisation. Le rapport introduit ensuite deux concepts d’interface 
homme-machine pour des types sélectionnés d’automatisation d’UAV et il propose un plan de 
recherches pour éprouver et évaluer ces conceptions.



Executive Summary 
This article presents an experimental plan for the evaluation of theory-driven human-automation 
interface concepts in the domain of Unmanned Aerial Vehicles (UAVs). The experiment is 
motivated by the evolution of UAV technology towards more highly automated systems and the 
relegation of human operators to the role of supervisory controller. Humans have consistently 
demonstrated themselves to be ill-suited for this role; thus, we anticipate that future UAV 
systems will be susceptible to human-automation breakdowns leading to mission failures.  

In an attempt to head off such failures, human factors researchers are exploring the role of 
human trust in automation as a means of managing the uncertainty inherent in mixed-initiative 
systems. A recent comprehensive review of the trust literature yields design guidelines for 
engendering appropriate levels of trust in automation. We followed these guidelines to produce 
example interface artifacts that show information about the automation process (i.e., the 
automation algorithm) and relevant context information that affects the automation’s behaviour.  

We propose an outline for a simulator study to evaluate these interface concepts with human 
operators. The study casts UAV operators opposite sensor fusion automation that identifies 
targets based on analysis of multiple sensor images. The task of the joint human-automation 
system is to correctly identify friendly and hostile military targets in a scene. The UAV operators 
will be assigned to four groups to test the differential effects of providing information about 
automation context and process. We hypothesize that providing either or both of these types of 
information about automation will engender more appropriate trust in the automation and lead to 
performance improvements over a control condition lacking this information. The results would 
constitute a unique and substantial contribution to both the human-automation interaction 
literature and to the ongoing development of UAV automation. 



Sommaire 
Le présent article présente un plan expérimental pour l’évaluation des concepts d’interface 
homme-automatisation à base théorique dans le domaine des véhicules aériens sans pilote (UAV). 
L’expérimentation est motivée par le fait que la technologie des UAV évolue vers des systèmes 
plus hautement automatisés et que les opérateurs humains sont relégués au rôle de contrôleurs-
superviseurs. Les humains ont constamment démontré qu’ils sont mal adaptés pour ce rôle; dès 
lors, il y a lieu de croire que les futurs systèmes d’UAV seront sujets à des pannes d’interface 
homme-automatisation entraînant des échecs de missions. 

 

Pour tenter d’éviter de tels échecs, les chercheurs spécialisés dans les facteurs humains explorent 
actuellement le rôle de la confiance humaine dans l’automatisation comme moyen de gérer 
l’incertitude inhérente aux systèmes à initiative mixte. Un examen exhaustif mené récemment 
sur la documentation relative à la confiance a fait ressortir les lignes directrices de conception 
pouvant engendrer des niveaux appropriés de confiance dans l’automatisation. Nous avons suivi 
ces lignes directrices pour produire des exemples d’artefacts d’interface qui montrent 
l’information sur le processus d’automatisation (par exemple, l’algorithme d’automatisation) et 
l’information sur le contexte pertinent qui affecte le comportement de l’automatisation. 

 

Nous proposons un aperçu d’une étude par simulateur visant à évaluer ces concepts d’interface 
avec des opérateurs humains. L’étude fait entrer en jeu les opérateurs d’UAV en les mettant en 
opposition à l’automatisation avec fusion des capteurs qui identifie les cibles à partir de l’analyse 
des images de capteurs multiples. La tâche du système conjoint homme-automatisation consiste à 
identifier correctement les cibles militaires amies et hostiles dans une scène donnée. Les 
opérateurs UAV seront assignés à quatre groupes chargés d’éprouver les effets différentiels 
rattachés au fait de fournir de l’information sur le contexte de l’automatisation et sur le processus 
d’automatisation. Nous formulons l’hypothèse que le fait de fournir l’un ou l’autre de ces types 
d’informations, ou les deux, au sujet de l’automatisation suscitera une confiance plus appropriée 
dans l’automatisation et de meilleures performances que dans une situation de contrôle où cette 
information est absente. Les résultats constitueraient une contribution unique et substantielle 
autant à la documentation de l’interaction homme-automatisation qu’au développement continu 
de l’automatisation des UAV. 

 



Introduction 
Unmanned Aerial Vehicles (UAVs) are rapidly becoming an integral part of military operations, 
serving mission-critical roles previously allocated to vehicles operated by humans [21]. Many of 
these missions are of the “dull, dirty and dangerous” variety1 [1] where supplanting a human 
operator with a machine is welcome on many levels. However, anticipated developments in 
UAV flight and payload technologies suggest that the role of the UAV operator is evolving into 
that of a supervisory controller of a complex system [9], a task for which the human is ill-suited.  

Two characteristics of complex systems that challenge human operators are uncertainty and 
automation2. Uncertainty refers to the inevitable incompleteness of sensed data. This could be a 
function of an absence of sensors, limitations in sensor fidelity, impairment by environmental 
conditions, or degradation in sensor performance over time. The result is that the human operator 
can never know the true state of the world, and her impoverished view of the world will rarely 
match that of any other actor. Automation, in effect, serves as an additional actor in complex 
systems. To varying degrees it acquires, analyses, makes decisions about, and acts on its own 
impoverished set of sensed data. One of the many extraordinary challenges of human interaction 
with complex systems is supporting human-automation interaction in the face of uncertainty. 

A key insight into addressing this challenge is that human reactions to computers under 
uncertainty parallel interpersonal reactions under similar conditions. Trust is the attitude that 
another agent (be it human or machine) will act to achieve a person’s goals in uncertain 
situations [24]. This attitude plays a major role in guiding the decision to rely on that agent. For 
this reason, human-automation trust has emerged as a central human factors research theme. And 
because human-automation interaction occurs through cognitive artifacts (e.g., training, 
procedures, decision support systems, human-machine interfaces), it is imperative that these 
artifacts be designed to engender appropriate trust in automation under uncertainty.   

While the design goal is clear, there is very little consensus in the human factors community 
regarding which cognitive artifacts hold the most promise for supporting human operators 
performing supervisory control. Moreover, these are competing approaches designing these 
artifacts. For example, various researchers have proposed design guidelines for human-
automation interfaces [7][24]. To date, there has been no direct empirical study of any of these 
sets of guidelines3. 

We thus observe in the UAV domain a confluence of changing roles for human operators and a 
scarcity of disciplinary understanding of how to support humans in that role. Specifically, we 
anticipate that UAV operators will increasingly be faced with the challenge of supervising 
complex automation that is susceptible to uncertainty and we recognize that empirical support 

                                                 
1 "Dull" referring to extended missions with low event rates (e.g., patrolling a ‘no-fly’ zone); "dirty" referring to missions 
undertaken in environments that are not conducive to healthy or safe operation (e.g., chemical and biological agent-sensing); 
"dangerous" referring to missions that expose aircraft and aircrews to hostile enemy action (e.g., air defence suppression). 
2 Vicente [41] lists eleven characteristics of complex systems: Large problem spaces, social dynamics, heterogeneous 
perspectives, spatial, distribution, dynamic system response, hazard, coupling between subsystems, automation, uncertainty, 
mediated interaction, and disturbances. Clearly more than uncertainty and automation are present in UAV operations. We focus 
on these two to narrow our problem. 
3 This is not to say that there have been no empirical evaluations of human-automation interface concepts. Rather, none of the 
interface concepts evaluated appear to have been the direct product of theory-driven design guidelines. 



for theory-driven design guidance is effectively absent. The goal of the proposed research is to 
apply Lee and See’s [24] guidelines for the design of information about automation for the 
purpose of engendering appropriate trust in that automation. Towards that end, this report: 

1. Discusses the changing tasks of UAV crews, 

2. Categorizes UAV automation and some of the ways that uncertainty manifests therein, 

3. Reviews contemporary UAV human-automation research, 

4. Introduces two human-machine interface concepts for selected types of UAV automation, 
and  

5. Proposes a research plan for testing and evaluating those design concepts. 

UAV Work Domain  

UAV Sensor Payload  
Table 1 summarizes some characteristics of the two most prevalent sensors used in current UAV 
systems. Although other sensors are in use and more are forthcoming, these will suffice for our 
current purposes. 

Table 1. Summary of Sensor Characteristics 
Sensor Characteristics 

EO/IR An electro-optic/infra-red (EO/IR) camera [6] provides both optical and infrared 
photographic imagery. Digital enhancement enables further sharpening of 
images. IR sensors can detect heat sources but cannot spot vehicles or aircraft on 
the ground once their engines are cold. They are also unable to penetrate clouds 
and darkness and are only slightly less likely to be fooled by camouflage. IR 
sensors can also be fooled by dummy heat sources and can be blocked to some 
degree by special IR-netting. In addition the UAV camera output is not 
appropriate for wide area search and monitoring because of its narrow field of 
view.  

SAR/MTI Synthetic Aperture Radar (SAR) uses microwave signals to provide all weather, 
day/night imagery of terrain features and man-made objects. The sensor also 
provides range and bearing information. However, the resolution of SAR imagery 
is inferior to that of EO/IR and requires a higher level of skill to analyze. SAR 
images are also subject to noise caused by unfavorable conditions such as rough 
seas or large, metallic surfaces. In addition, the radar system is also susceptible to 
jamming. 
One drawback of SAR is that it only shows the position of stationary targets. 
Moving Target Indicator (MTI), in contrast, uses radar to show only targets that 
are in motion.  

Crew Complement and Task Allocation 
When we refer to a UAV, we are referring to a system [1]. A fully operational UAV system 
consists of one or more aircraft, a payload of sensors and/or effectors, a control station, and a 
data communications architecture. Also included in that system is a crew of human operators 
with various roles depending on the UAV system, mission, nationality, and service branch. 



A US Defense Department road map for UAVs [30] lists the training programs for several UAV 
systems, thereby identifying crew complement and roles for each system. Although these differ 
across platform, it is sufficient for our purposes to characterize common features of UAV 
crewing.  

Generally speaking, a contemporary UAV crew consists of a pilot (also known as an air vehicle 
operator) and one or more sensor (or payload) operators and a mission planner or tactical 
navigator [23] [39]. The pilot is responsible for flying the UAV, sometimes using traditional 
stick and rudder controls and at other times by engaging an autopilot or waypoint fixing [23] [30]. 
The sensor operators are responsible for manipulating sensors, optimizing them for data 
collection, and interpreting the data collected [39]. For example, an operator might select and 
tune a sensor to locate a target through cloud cover, identify the target, and communicate its 
location and identity to other assets in the battlespace. The tactical navigator acts as the mission 
commander, and is responsible for managing the use of available resources (including multiple 
UAVs and the control station itself) to accomplish the mission goals [39]. 

Although human factors research in UAV operation is beginning to pick up speed, there are few 
publicly available analyses of UAV operator tasks. Perhaps the best source is a cognitive task 
analysis performed by Gugerty et al (1999) based on interviews with UAV crews. They present a 
goal hierarchy for a typical Predator mission (see Figure 1). The analysis shows the emphasis on 
reconnaissance missions and the particular difficulties involved in re-planning missions. 
However, there is little treatment of automation in the analysis, perhaps because, at the time that 
it was completed, few of the crew tasks were automated. 

 
Figure 1. Goal hierarchy for a Predator mission. 



A clearly defined future goal for UAV operations is to reduce the ratio of operators-to-aircraft by 
having operators serve multiple roles [45]. The anticipated means of achieving this is through 
automation. The first role that is likely to be assigned to automation is flight control. Operators 
of future UAV systems are envisioned to issue navigation waypoints with flight paths planned 
and executed by automation. Tasks that are currently allocated to the sensor operator and tactical 
navigator will also become more automated. Automated target recognition and data fusion 
algorithms are expected to relieve the sensor operator of much of the information analysis burden, 
presenting him with conclusions to verify and courses of action to approve.  

Unfortunately, we have not identified any task analyses of operations of more highly automated 
UAVs. Moreover, we have not had direct access to any subject matter experts to conduct our 
own analyses. Therefore, many of our assumptions about the future role of UAV operators are 
drawn from sources that promote UAV technology without direct consideration for human 
factors issues. The clear implication of these sources is that the task of the future UAV payload 
operator in particular will be increasingly one of monitoring automation processes.  

This foresight should raise warning flags with human factors engineers. Elsewhere in aviation [3] 
and in other domains [47], advances in automation technology have frequently failed to deliver 
the expected improvements in system performance. These failures are often attributed to poorly 
designed human-automation interaction. There is a sense in that human factors community that 
UAVs may be a domain where we can make an impact on the design of future UAV systems to 
head off human-automation interaction problems.  

Automation Categories 
Emerging automation technologies in UAV systems fall into several categories [40]: 

1. Sensor Fusion: integrating information from various sensors.  

2. Communications: handling communication and coordination between multiple agents in 
the presence of incomplete and imperfect information. 

3. Flight Path Planning and Trajectory Generation: determining an optimal path and 
enabling control maneuvers to allow a vehicle to meet objectives and respect constraints 
such as no-fly zones.  

4. Task Allocation and Scheduling: determining the optimal distribution of tasks amongst a 
group of agents, with time and equipment constraints.  

5. Cooperative Tactics: formulating an optimal sequence and spatial distribution of 
activities between agents in order to maximize chance of success in any given mission 
scenario.  

In many situations, these types of automation will interact. For example, motion planning and 
cooperative tactics automation will determine the path of the UAV, and therefore influence the 
information acquired from sensors.  

Selection of Sensor Fusion Automation 
The current research goal is to develop human-automation interfaces that assist UAV operators 
supervising less than perfectly reliable automation under uncertainty. We are particularly 
interested in how environmental context may influence the automation performance in specific 
situations [2] [7] [28]. Sensor fusion automation appears to fit our requirements:  



 The output of the sensor fusion automation typically includes a degree of uncertainty 
[46], providing a list of possible target types and their probabilities.  

 Sensor fusion automation is not perfectly reliable. Efforts to improve sensor fusion 
algorithms are underway [19], [29] and [46], but the technology is still relatively 
immature.  

 Sensor fusion automation is limited by incomplete and noisy raw data collected by the 
sensors, often as a result of environment conditions. For example, cloud cover, dust and 
smoke interfere with many sensors. As well, the data link may be lost due to obstacles 
between the UAV and the control station [39]. Finally, adversaries may employ 
countermeasures to degrade the quality of data collected [29]. 

Sensor Fusion Algorithm Example 
Sensor fusion automation aggregates data from multiple sensors to support target detection, 
target identification and tactical decision-making. An application of Dempster-Shafer theory 
provides a good example of sensor fusion automation [46]. The inputs to this sensor fusion 
automation are two lists of possible target types and possibilities provided by independent 
automatic target recognition (ATR) systems. Each ATR system processes a sensor image and 
passes its assessment of targets in the scene to the sensor fusion automation4.  

The fusion algorithm is built on Dempster-Shafer theory; a mathematical theory of evidence used 
to combine independent pieces of information (or evidence) to find the probability of a 
hypothesis. Some basic concepts in Dempster-Shafer theory follow. A frame of discernment (θ) 
is defined as the universal set of all propositions being considered. For example, consider the 
case of identifying whether an object is a T34 tank. The frame of discernment contains the 
following propositions: 

 {T34}: the object is a T34 tank 
 {¬T34}: the object is not a T34 tank 
 {T34,¬T34}: it is inconclusive whether or not the object is a T34 tank (this is called the 

“ignorance set”) 
Each proposition in this set can be assigned a degree of belief (the function Bel) based on the 
reliability of sensor data. As an example, suppose sensor data determines an object to be a T34 
tank. The probability that the sensor is reliable is 0.8 and the probability that it is unreliable is 0.2. 
These probabilities justify a degree of belief of 0.8 that the object is a T34. However, the degree 
of belief that the object is not a T34 is 0, which means that no evidence has led to the possibility 
that the object is not a T34. Intuitively, this makes sense because the detection algorithm does 
not explicitly test whether an object fails to be a T34. Note that a zero degree of belief is 
different from a zero probability, which would mean that there is no chance that the object is a 
T34. Mathematically, the degree of belief in this example can be represented by: 

 Bel({T34}) = 0.8 
 Bel({¬T34}) = 0 
 Bel({T34,¬T34}) = 0.2 

This simple example illustrates how the degree of belief for one hypothesis (“Is the object a T34 
tank?”) can be obtained using one item of evidence. Obtaining the belief function from multiple 
                                                 
4 As the name implies, ATR is automation itself so this example is one of coupled automation. 



sets of uncertain evidence (e.g., acquired through multiple sensors on the same UAV, multiple 
sensors on different UAVs, or multiple instances from the same sensor at multiple times) is more 
complicated. 

For example, assume that UAV sensors on the battlefield scan an area of terrain and output a list 
of candidate identities for each target (T34 tank, M12 tank, etc.) with their respective confidence 
levels. The identity with the highest confidence level initially determines the active frame of 
discernment, although this may change once additional evidence is added. These frames of 
discernment can disagree: one sensor may indicate that the target is most likely a T34 tank, while 
another may indicate that it is probably an M12 tank. Multiple candidate lists can be “fused” to 
produce an aggregate belief function for all potential target identities. To do this, a confusion set 
is formed for each list by taking all members above a confidence level threshold σ. The belief 
function for a frame of discernment  

Any two confusion sets S1 and S2 are fused according to one of three scenarios: 

1. S1 and S2 have the same active frame of discernment (i.e. the identity with the highest 
confidence level in each set is the same). The belief functions of the two sets are fused 
according to Dempster’s rule of combination (not described here). 

2. S1 and S2 have different frames of discernment, with some shared members. The single 
member with the highest confidence level in either set is chosen to be the active frame of 
discernment (say this is I1 in S1). If I1 is not in the other list, we use the belief function 
of S1 as the result. Otherwise, we combine the belief functions of both sets for I1. 

3. S1 and S2 have different frames of discernment, with no shared members. No combining 
occurs, and we use the belief function for S2. 

The general idea in the algorithm presented by Yu, et al. (2004) is to obtain belief functions from 
the confidence levels outputted by ATRs. The belief functions can then be fused and refined as 
additional evidence is collected. 

Analytical Redundancy 
The principle of analytical redundancy suggests that providing information on the context of the 
automation in the interface can allow an operator to more easily identify the exact source of 
erroneous or unreliable automation. An interface in the UAV sensor domain can incorporate 
analytical redundancy by displaying the signals from all elements in the system, as shown in 
Figure 2. The output of the UAV sensor is an image of the field. This data is processed by an 
Automatic Target Recognition (ATR) system, which outputs a list of candidate identities with 
respective confidence levels. In the information aggregation stage, confusion sets are determined 
based on a threshold σ and belief functions are calculated. These sets are fused and the aggregate 
belief function is outputted. 



 
Figure 2: Generic UAV sensor fusion automation. 

Human-Automation Interface Concept 1 
The display shown in Figure 1 supports analytical redundancy by revealing information about 
the input and output signals to every element in the UAV sensor system. Moreover, it provides 
the operator with a description of how the automation performs information aggregation by 
displaying information at the intermediate steps of the belief function, the confusion sets and 
fusion of the sets. We believe that this satisfies the design guidelines for process information as 
described by Lee & See (2004). The theory-driven design framework predicts that providing this 
information will help the operator to isolate any errors in the system and establish an appropriate 
level of trust in the automation. 

 
Figure 3: Cognitive Artifact Concept #1 for information aggregation based on Dempster-Shafer theory 

The main elements in this interface concept are sensors images (top), candidate list graph 
(bottom left), and active candidate graph (bottom right). The sensor images are the output signals 
from the UAV sensors (two are assumed in this case), which show the ground area hypothesized 
to contain a tank. 
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The candidate list graph contains information on each sensor ATR’s candidate list with 
respective confidence levels represented by the height of each non-black bar. In this example, the 
stacked columns on the left corresponds to sensor 1 and the columns on the right corresponds to 
sensor 2. Confusion sets are determined by applying a threshold σ = .15 (indicated by the dotted 
line). Members which are not part of any confusion set are white to reduce their visual presence. 
The belief function is calculated for each member “T” contained in the confusion sets and 
displayed in the following manner: 

 Bel({T}) is coloured orange if it is the active frame of discernment, and grey otherwise 
 Bel({¬T}) is coloured black 
 Bel({T,¬T}) is not shown (its value corresponds to the “missing” space) 

The active candidate graph provides a visualization of the aggregate belief function after fusion 
of the confusion sets, and corresponds to the active frame of discernment. It follows the same 
colour scheme as the candidate list graph, such that the operator can easily identify the active 
frame of discernment in both graphs. 

An example where this interface concept can be applied is for a UAV that has one SAR sensor 
for stationary object identification and one MTI sensor for moving object identification. Both 
sets of sensor data generate independent candidate lists, but one may be more reliable than the 
other under certain conditions (e.g., climate, UAV altitude, time of day, prior knowledge that the 
object is stationary or moving). The operator can isolate one sensor’s belief function in cases 
where the aggregate belief function is likely to provide misleading results. 

Human-Automation Interface Concept 2 
The second interface concept, shown in Figure 4, also incorporates analytical redundancy by 
revealing information about all signals in the UAV sensor system and by displaying information 
at the intermediate steps of the automation. 

The main elements in this interface concept are sensor images (top) and a candidate list gauge 
(bottom). Information from Concept #1’s candidate list graph and active candidate graph are 
incorporated into a single interface element, the candidate list gauge. As in Concept #1, the 
sensor images are the output signals from two UAV sensors, showing the ground area 
hypothesized to contain a tank. 

The candidate list gauge contains information on each sensor’s candidate list with respective 
confidence levels represented by triangular markers pointed toward a value on the gauge line. 
Sensor 1 data corresponds to orange markers with the number “1” while sensor 2 data 
corresponds to green markers with the number “2.” As in Concept #1, confusion sets are 
determined by applying a threshold σ = .15 (indicated by the dotted line in the upper section of 
the gauge). The gauge is vertically split in the middle, with values for Bel({T}) above the zero 
line and values for Bel({¬T}) below the zero line (for each candidate T). Note that Bel({¬T}) 
values are only computed for candidates belonging to confusion sets. Bel({T,¬T}) is not shown, 
although its value can be inferred. 

 



 
Figure 4: Cognitive Artifact Concept #2 for information aggregation based on Dempster-Shafer theory 

The candidate list gauge provides a visualization of the aggregate belief function for the active 
frame of discernment, the value of which is represented by the position of a circle. The circle 
interface element also indicates how the confusion set information is fused as shown in Figure 5. 

 
Figure 5: Fusion of confusion set information indicated by the circle interface element 

As in Concept #1, this interface concept allows the operator to distinguish the confidence levels 
obtained from each sensor, by looking at either colour of the triangular marker or the number 
beside it. This separation is of value when one sensor is known to be more reliable under certain 
environmental conditions. The interface also allows the operator to easily identify the values for 
Bel({T}) and Bel({¬T}), above and below the zero line respectively. Presenting the aggregate 
belief function in the gauge allows the operator to directly compare the component effects of 
each sensor’s belief function. 

Comparison of Human-Automation Interface Concepts 
The two concepts presented here are initial low-fidelity prototypes that have not undergone any 
evaluation. Before they are included in a research study, they should be subjected to both 



feasibility and usability analyses. Such analyses are included in a research plan below, but will 
not be detailed here. 

Current Research in UAV Automation 
UAVs are quickly becoming the domain de jure for human factors research for at least four 
reasons. First, the wide range of UAV operator tasks allows for many types of behavioral 
research. Second, the applicability of UAVs across a broad range of military (lethal and non-
lethal) and quasi-military (e.g., intelligence gathering, border security) operations aligns with a 
similarly broad range of government funding sources for research and development. Third, cases 
for civilian application (e.g., law enforcement, forest-fire fighting) are plausible enough to 
classify the technologies as dual-use. Finally, UAVs offer the allure of aviation without the 
required domain expertise that comes with piloting.  

For these reasons, a host of UAV research programs are emerging to explore a range of research 
issues. This trend suggests two likely benefits for near-term human factors research. First, we 
can be optimistic that a well-conceived research program couched in the domain has a reasonable 
chance of securing sustaining funding5. Second, we can be optimistic that such a program will 
also find outlets for its results in quality industry and academic journals. 

Synthetic Environments and Tasks in UAV Research 
In this section, we review the experimental environments currently in use in UAV human factors 
research. The review for each research programme includes: 

 a description of the synthetic task environment, 

 an account of the tasks allocated to the human operators, 

 a characterization of the type of automation employed 

This review contributes to the current work in two ways.  First, it will establish requirements for 
a ‘state of practice’ synthetic environment that can provide valid findings regarding the 
theoretical issues to be investigated. Second, the review will help to identify the tasks of UAV 
crews that we may wish to emulate. Detailed descriptions of such tasks are scarce in the 
available literature and we have not been afforded the opportunity to conduct a task analysis with 
subject matter experts. The synthetic tasks used in the reference literature, while artificial, are 
systematically abstracted from corresponding real-world tasks by other human factors 
practitioners [23]. Therefore, we have some confidence that this literature can help to overcome 
our knowledge deficiency with respect to real-world UAV operator tasks.  

Dixon, Wickens, et al.  

Institute: University of Illinois Institute of Aviation, Aviation Human Factors Division 

References: 
[14] [15] [16] [17] [43] 

                                                 
5 Assuming that the program is carried out in a jurisdiction eligible to access those funding.  



Synthetic Environment 
A series of studies on human interaction with UAV automation have been conducted using a 
UAV synthetic task environment. VEGA6 was used as the overall graphical scene controller [see 
Figure 6]. The interface was displayed on a 19-inch monitor with 1280x1024 resolution. The 
interface (see Figure 6) was divided into four view ports with four dedicated process views: 

 3-D visual image display with two modes: 

o fixed viewing angle and zoom in ‘tracking’ mode, and  

o variable viewing angle and zoom in ‘loitering’ mode  

 2-D navigational display 

 system gauges for monitoring for system failures, and 

 message box to receive instructions 

The control devices include a digital 3D joystick and an X-Key 20-button keypad. The joystick is 
used to manipulate the UAV and the camera while the keypad is used to indicate responses.  

 
Figure 6. The UIUC synthetic experiment environment (from [15]) 

                                                 
6 A software application development designed for the creation and deployment of real-time 3D simulation, training, 
and visualization applications. 
 



Synthetic Tasks 
Undergraduate and graduate students were asked to fly one UAV through several mission legs, 
while completing three main tasks:  

1. Mission Completion: subjects were tasked (via the message box) with traveling to map 
locations to perform a target inspection and reporting task.  

2. Target Search: in between map locations, subjects were tasked with detecting and 
reporting low visibility targets of opportunity. These targets were camouflaged and their 
occurrence and location were unknown to participants. Moreover, they were much 
smaller than those in the mission completion task. 

3. System Monitoring: when a system gauge went “out of bounds”, participants had to 
press a button to detect the system failure, indicate which gauge had failed, and then 
report the current location of the UAV. The detection and acknowledgement sub-task 
appears to be taken from the Multi-Attribute Task (MAT) battery. 

The measurements taken in these experiments include the objective performance in different 
tasks as well as some subjective ratings, such as trust. Trust was assessed by questionnaire; for 
example, “How do you assess the trustworthiness of the auto-pilot?” ([15], pp.64) 

Automation 
The studies have examined several types of pilot interaction with perfect and imperfect 
automation. Each of the three tasks above can be assigned to the participant or to automation aids. 
The target detection automation was designed to provide an auditory signal when it sensed a 
target of opportunity in the 3-D image display. However, it did not designate the specific 
location of the target.  

Ruff, et al.  

Institute: Air Force Research Lab, Human Effectiveness Directorate & Sytronics, Inc. 

References:  
[37] 

Synthetic Environment 
The purpose of the research is to investigate the human factors in supervisory control of multiple 
UAVs. It used the Multi-Model Immersive Intelligent Interface for Remote Operation (MIIIRO) 
test bed, which is described as “a generic UAV operator interface simulation testbed” ([37], pp. 
218). The MIIIRO workspace consists of two monitors as shown in Figure 7. The tactical 
situation display on the left shows the UAV routes, suggested route re-plans, waypoints, targets, 
threats, and unidentified aircraft. The image management display on the right shows camera 
images taken by UAVs with hostile targets highlighted by an automatic target recognizer (ATR). 
Below the image is an image queue. The control devices are a keyboard and a mouse.  



 
Figure 7. The MIIIRO synthetic task environment: Tactical Situation Display (left) and Image Management 
Display (right) (from [37]) 

Synthetic Tasks 
Participants (whose characteristics were not mentioned) were required to complete to four 
prioritized tasks:   

1. Respond to a highly unexpected, non-routine, high-priority event. 

2. Accept/reject route replanning solutions suggested by automation in response to 
unanticipated targets and threats. 

3. Accept/reject automated target identifications. 

4. Acknowledge changes in mission mode. 

The measurements taken from the experiments [37] include the time and accuracy in each task, 
subjective rating of task difficulty, workload, trust, automation and self-confidence. The 
approaches for soliciting subjective rating were not mentioned in the paper.  

Automation 
Two kinds of automation were employed, automatic route planning and automatic target 
detection. For both automated systems, the reliability and automation level (management-by-
consent vs. management-by-exception) served as independent variables.  



Cooke, et al.  

Institute: New Mexico State University’s, Cognitive Engineering Research 
on Team Tasks (CERTT) Laboratory 

References: 
[9][10][11][12] 

Synthetic Environment 
CERTT’s UAV-STE simulates the ground control operations of a UAV. The interface allows 
users to navigate the UAV to a position and perform a reconnaissance task of photographing 
designated targets. CERTT uses the setup to study team cognition with experiments involving a 
three-person team. 

The experimental set-up is composed of four participant consoles and one experimenter control 
station, as shown in Figure 8 and Figure 9. 

 
Figure 8: Participant consoles 

  
Figure 9: Experimenter Control Station 

Each participant console contains the following: two computers, one monitor, headsets and an 
intercom. Each team member has a separate role, either Air Vehicle Operator (AVO), Payload 
Operator (PLO), or Tactical Navigator. Their respective displays are shown in Figures 3-5. 



  
Figure 10. Screenshots of AVO display. 

  
Figure 11. Screenshots of PLO display 

  
Figure 12. Screenshots of Tactical Navigator display 

The STE is Windows-based and implemented through user-defined objects developed in the 
Rapid™ Development Environment. The setup involves a combination of custom-built and off-
the-shelf hardware. 

Synthetic Tasks 
This STE is used to study UAV operations and team coordination. The individual responsible 
tasks for each operator are shown below. However, to fulfill the mission, they have to coordinate 
in order to maneuver their UAV. 

 Air vehicle operator: controls UAV airspeed, heading, and altitude and monitor air 
vehicle systems. 

 Sensor operator: control camera settings, takes photos, and monitors camera systems. 
 Tactical navigator: navigator, mission planner, plans route from target to target under 

constraints. 



In the experiment, Cooke, et al. (2000) recruited 108 New Mexico State University students in 
the experiment. Outcomes, team process behaviors, tam situation awareness, taskwork 
knowledge and teamwork knowledge were measured in the experiment. Outcome included 
mission completion rate, time to complete mission, and experimenter ratings of team 
performance.  

Automation: 
Automation settings are not mentioned in the papers.  

Prabhala, et al.  

Institute: Russ Engineering Center  

References: 
[35]   

Synthetic Task Environment 
Rather than describing a research program, this article describes the development of a UCAV 
synthetic task environment for human factors studies of multiple UAV control. This synthetic 
task environment consists of interface software developed in VEGA and simulation software 
developed in JAVA. A screenshot of the interface is shown in Figure 13. A status panel and 
control panel are layered at the lower part of the interface, and a map display is shown on the 
upper part. The map display is further divided into three different view ports: satellite view, 
camera view and following view. The interface is displayed on a 21 inch monitor, and input 
devices include a mouse, keyboard and voice [35].  

 
Figure 13. Screenshot of the human controller interface (from [35]) 



Synthetic Tasks 
The interface and simulation design was driven by a suppression of enemy aerial defenses 
mission.  Therefore, the synthetic task environment has mechanism to support various tasks in 
control of UCAV, including: “navigation, flight paths, UCAV updates, target tracking, target 
identification, target destruction, and elements that aid the UCAVs” ([35], pp. 1036).  In a typical 
UCAV operation scenario, the operator would complete the following tasks: 

1. System Monitoring: monitor and control the UCAVs for unanticipated variability. 

2. Route Planning: make adjustments to the flight paths to detect, identify and destroy 
target and return to base.  

3. Target Detection & Identification: detect and identify targets via simulated sensors.  

4. Target Destroy: select the right kind of ammunition to engage different types of target.  

Automation 
Based on the description provided in the paper, the UCAV waypoint tracking and target 
acquisition are automated. The target acquisition serves as an example of sensor fusion 
automation. A simulated long-range sensor detects targets while a second, short-range, sensor 
identifies the targets. No explicit information is provided about the automation in the interface. 

Bush, L.  

Institute: MIT Lincoln Laboratory 

References 
[5] 

Synthetic Task Environment 
The purpose of this research [5] is to study how cueing data from Moving Target Indicator (MTI) 
automation can be communicated to a Predator UAV camera operator. The synthetic task 
environment simulates the Predator UAV user interface. The user interface is displayed on two 
monitors, the left one shows the simulated UAV video, the right one shows a situational 
awareness map. The cues generalized by the MTI algorithm are highlighted on the situational 
awareness map with red dots.  



 
Figure 14. Screenshot of the synthetic task environment: Simulated UAV Video (Left), MTI Cue & 
Situational Awareness Display (right) (quoted from [5]) 

Synthetic Tasks 
The task designed for future experiments is to collect battlefield convoy information. This task 
involves selecting a cue, directing the UAV video sensor to collect the information from the cued 
location, searching for and identifying the convoys, counting the number of vehicles in convoys 
and acquiring an image of them [5].  

Automation 
The automation algorithm studied in this research utilizes the information from MTI Radar to 
predict the location and activity of convoys.  

Summary of Findings Regarding UAV Research 
1. The synthetic task environments employed in current human factors UAV research 

domain are generally high in fidelity. They offer realistic images from payload sensors 
and simulate various tasks in UAV operation [5] [14] [15] [16] [17][43] . A high fidelity 
synthetic task environment increases the likelihood that a controlled experiment would 
provide results that are relevant to the real world. However, a low fidelity synthetic task 
environment may suffice for some research [27] which is only interested in one task.  

2. Participants in human-automation interaction studies in the UAV domain are not UAV 
operator practitioners but undergraduate and graduate students [14] [15] [16] [17] 
[27][43].  

3. Operators are being placed in both single-task [5] [27] and multiple-task [14][15] [16] 
[17] [37][43] environments. 

4. The synthetic task may involve control of one [14] [15] [16] [17] [43] or multiple 
[35][37] UAVs. 

5. The range of synthetic tasks is broad and not consistent between studies at one institution, 
let alone between institutions. 



6. Types of automation simulated include tracking, route planning, system monitoring, and 
target acquisition. The reliability of the automation was the independent variable in most 
of the studies. However, in no study is information about automation process or context 
presented in the interface. Moreover, while automation performance information is 
frequently provided, it is usually introduced either as part of the training or as feedback 
following a trial. These findings were very surprising to us. While we were not expecting 
to find research reports that referred explicitly to process, performance or context 
information in an interface, we did expect to find it in interfaces for UAV automation. 
Although it is possible that we have overlooked relevant literature, it appears that very 
little, if any, research has been reported on evaluations of interfaces to support operator 
interaction with UAV automation.  

Experimentation  
Cognitive artifacts were designed in this research to support operator’s decision making process 
associated with automation on UAVs. The purpose of this experiment is to test the effect of those 
artifacts on operator’s interaction with automation. In the experiment, the participants will be 
asked to complete multiple tasks in order to control one UAV in a target acquisition mission. 
Sensor fusion automation will be provided to help them detect and identify hostile targets. The 
output of the sensor automation contains uncertainty and its reliability is contingent on several 
context factors (e.g., weather, terrain and enemy camouflage). The cognitive artifacts convey the 
automation process and the context information to operators. We expect that these artifacts will 
aid participants in establishing appropriate levels of trust in, and reliance on, the automation. We 
further expect an overall increase of human-automation system performance in the target 
acquisition mission. 

Introduction 
The goal [45] to enable one operator to control multiple UAVs in the future implies that more 
and more tasks that are originally assigned to human operators will be reallocated to automation. 
However, automation on UAV systems is not always perfectly reliable, for example, the result 
from path plan automation [20] can be less than optimal, and the sensor fusion automation will 
be affected by noisy raw data.  

Problematic Use of Automation 
Human factors problems of imperfect automation have been noticed and studied for a long time. 
Parasuraman, et al. (1997) classified these problems into three categories: misuse, disuse and 
abuse of automation. Misuse occurs when operators excessively trust the automation and rely on 
it even when it fails. Studies revealed that highly reliable automation will lull operators into a 
state of complacency [2] [32] which undermines operators’ ability to detect and respond to 
automation failures. Disuse happens when operators mistrust and fail to rely on capable 
automation. For example, Dzindolet, et al. (2003) found that people distrust even reliable 
automation after observing it make errors. Whereas the first two problems are related to 
operators, abuse of automation is a problem of system designers or managers, which occurs 
when they incorporate as much as automation into the system without considering the 
consequence on human operators, such as mental workload, manual skill degradation, loss of 
situation awareness and complacency [33]. Parasuraman, et al. (2000) developed the model of 
types and levels of automation to guide the implementation of automation in a particular system.  



Trust in Automation 
The problematic use of automation occurs when people fail to rely on the automation properly 
[24].  People’s reliance on automation is affected by many factors, such as self confidence, trust 
in automation, perceived risk, and fatigue, amongst others [31]. Among all these factors, trust 
has been shown to be particularly important for understanding human reliance on automation. 
Therefore, engendering appropriate trust is seen as critical to supporting appropriate reliance on 
automation.  

The appropriateness of trust depends on the user’s knowledge about the automation aid: the 
performance history of the automation, the automation process, and the purpose of the 
automation [24]. In each of the UAV human-automation studies that we have reviewed, the 
purpose of automation has been provided to operators during training. In many studies, an 
indicator of automation performance (or expected performance) is provided as well, often in 
terms of a reliability level. Dzindolet, et al. (2003) suggested that it was not realistic to provide 
continuous feedback of automation performance to operators. Therefore in this experiment, only 
cumulative feedback of the automation performance will be provided to participants after each 
trial. With regard to process, Lee & See (2004) recommended showing the algorithms of the 
automation by revealing intermediate results.  

For example, target detection automation first returns real-valued detection scores for each 
suspicious object and then thresholds these scores into binary categories to cue operators [38]. St. 
John, et al. [38] tried to help operators make better use of unreliable target detection automation 
by revealing the real-valued detection scores to operators. This changed the target detection 
automation from a target detector to an information tool for directing search. And the result 
indicated a general improvement in participants’ detection performance.  

One concern about  revealing intermediate results to operators is the possible increase in 
workload due to the interpretation of those results [7].  

Context, Automation, and Trust 
Lee & See (2004) demonstrate that the appropriateness of trust can be divided into three 
dimensions: calibration, resolution, and specificity. Calibration is the correspondence between 
the trust level and the true quality of automation; resolution refers to how precisely trust 
differentiates levels of automation capability; specificity is the change of trust for different 
components in an automation system or over time.  Calibration emphasizes the value -- the 
appropriate level of trust, while resolution and specificity highlight the discriminability. 
Sometimes the automation performance is not constant, and it can change over time or in 
different situations [7]. For example, the performance of UAV surveillance automation [20] 
varies according to the task characteristics, such as the number of targets, target distribution, 
target cost variability and spatial scale. In these cases, the correct calibration of trust is 
unachievable without high resolution and specificity, therefore resolution takes precedence over 
calibration [7].   

One important reason for the variation of automation performance is that there are contextual 
factors in the environment that may not be explicitly considered in the automation algorithm but 
still affect the automation performance [24] [28]. Cohen, et al. [7] asserted that the “user must 
learn, or be trained, to recognize and act on uncertain quality about the automation and to 
understand how such uncertainty can change from situation to situation” (pp.1). Their dynamic 



model of trust and reliance on automation [7] indicates that the context can influence the 
performance of the automation and therefore the calibration of trust often depends on how 
sensitive people are to the influence of context. The design implication common to both models 
is that automation designers must help users to relate context to the capability of the automation. 

Several studies have attempted to explore the influence of revealing context to automation usage: 

1. Dzindolet, et al. (2003) asked participants to indicate the presence or absence of a 
camouflaged soldier in still images with an imperfect automated decision aid. In their 
first study, they found that participants tend to distrust reliable aids after having observed 
it to make errors. In an attempt to mitigate this effect, participants in their second study 
were provided with an explanation as to why the automated aid might err: the decision 
aid may confuse a tree with soldier if the tree is in a human-like form. The results 
showed that the explanation increased participants’ trust and reliance in decision aid. For 
those participants who were using highly reliable automation, the increase of trust and 
reliance was appropriate. However, for those using unreliable automation, the increase in 
trust was inappropriate.  

2. Parasuraman, et al. (1993) examined people’s reliance on system monitoring automation 
in a multi-task environment, in which automation with constant reliability lulled the 
participant into complacency. Bagheri (2004) replicated this paradigm but informed the 
participants the context-related nature of automation reliability. The result revealed that 
providing context information mitigated the complacency effect and improved 
participants’ performance with constant and highly reliable automation.  

3. Masalonis & Parasuraman (2003) tested participants’ use of air traffic control decision 
aids. Two groups of participants were asked to detect potential conflicts between 
approaching aircraft pairs with the aid of an imperfect conflict detection algorithm. The 
reliability of the automation varied corresponding to two different scenarios, and this 
information was only given to one of the two groups through training. The result showed 
that both trust and reliance were affected by this context information. The trained group 
trusted automation in the two scenarios differentially and more appropriately. However, 
their overall performance didn’t improve. This was because that the context information 
appeared to have a side effect of reducing participants’ criteria to report a conflict, 
whereas the trained group tended to accept the automation judgment without question. 

These studies provide initial evidence that providing operators with information related to the 
context affecting automation reliability does influence their trust and reliance on that automation. 
This knowledge appears to have helped participants to more effectively allocate attention to the 
automated task [2] and benefited the resolution and specificity of trust across situations. Thus, 
Lee and See’s (2004) recommendation to “reveal the context and support the assessment and 
classification of the situations relative to the capability of automation” (pp. 75) appears to have 
empirical support.  

However, contextual information may also have a down side, inducing some participants to rely 
on the automation even when trust is unwarranted [18] [28]. Therefore, the recommendation to 
reveal context information must be tempered by the recognition that this information may have 
an undesirable effect on an individual’s decision criterion. Striking a balance between these 
concerns will require more extensive empirical evidence. 



In all three of the studies mentioned above, context was revealed through training. Although this 
approach offers a relatively easy way to study the role of context in operator trust and reliance, 
there are several drawbacks to training. An alternative approach to communicating contextual 
factors is to include them in the operator interface. 

We propose to design cognitive artifacts that convey the contextual-dependence of automation 
behavior. The interface approach may be preferable to the training approach for two reasons. 
First, training requires operators to remember the context information and recall it later during 
mission, and this occupies resource of working memory [42]. In stressful situations, working 
memory capacity is reduced (and the consequences of failure increase). An interface could places 
knowledge contextual impact in the world, thereby relieving the operator of a memory burden. 
Second, the nature of training determines that it can only provide information for anticipated 
situations. However, an interface can be designed in a way to provide useful information even in 
unanticipated situations, which characterize complex UAV missions [4].  

Methods 
The methods to be used in this experiment are drawn, in part, from those described by Wickens, 
et al. (2005). This is to take advantage of their prior experience in conducting human-automation 
interaction studies in a similar STE. Taking this approach will reduce risks in our experimental 
design without compromising our research objectives. As well, it will be advantageous to be able 
to compare results with those obtained by Wickens, et al. (2005) 

Participants 
Graduate students at University of Toronto Institute for Aerospace Studies (UTIAS) will be 
recruited to participate in this experiment. Graduate students were used successfully by Wickens, 
et al. (2005) and UTIAS students have participated in research studies in the past. These students 
are also the most convenient participants for this experiment because the STE will be located at 
UTIAS, which is removed from the main campus of the University of Toronto7. The participants 
will receive cash compensation and a bonus will be given to top performers. The compensation 
scheme follows that used by Wickens, et al. (2005) and has been found to be adequately 
motivating.   

Synthetic Task Environment 

Vega Prime 2.0 Simulator 
Vega Prime is judged to be a leading candidate for a synthetic task environment for human 
factors UAV research8. Vega Prime is a commercial-off-the-shelf software application for the 
creation and deployment of real-time 3D simulation, training, and visualization applications. It is 
a high-fidelity environment, allowing for realistic, interactive aerial simulations. Its Graphical 
User Interface (GUI), Application Program Interface (API), and many extensible modules 
provide a high degree of flexibility and functionality. Vega Prime is used at several universities 
in North America, including the University of Toronto Institute for Aviation Studies (UTIAS). 

                                                 
7 …but close to DRDC-Toronto 
8 An early list of UAV simulators is included in Appendix A for information. The list is incomplete and does not reflect some of 
the simulators described above. 



The information below was compiled from communication with UTIAS staff, Vega Prime 
vendors, university developers, the Vega Prime Programmer’s Guide, a visit to the UTIAS 
facility, and content from the Vega Prime website. 

Vega Prime Environment at UTIAS 
UTIAS currently operates a Vega Prime environment consisting of three software components:  

 Vega Prime is the scene graph manager that functions as the foundation of the program. 
It contains core C++ classes and functions. A screenshot of a sample scene window is 
shown in Figure 15. 

 LynX Prime is a GUI tool that allows users to configure the scene graph in Vega Prime. 
It also contains an API to support programming interfaces in Vega Prime (generally for 
more experienced users). This is shown in Figure 16. 

 GL Studio is a tool that aids creation of 2D or 3D graphical displays, including 
instrumentation models for simulation or training applications. GL Studio Plug-In allows 
the graphics to be integrated into Vega Prime such that the instrumentation can interact 
with the scene graph. For example, a dial graphic can be easily linked to the pitch of a 
plane without the need to write additional code. An example of the instrumentation 
generated is shown in Figure 17. 

The following Vega Prime modules are not currently available at UTIAS but may be of value to 
UAV human-automation interaction experiments9: 

 Vega Prime IR Scene provides real-time, physics-based generation of a scene at a variety 
of wavelengths from visible to infrared. It achieves this primarily using a physics-based 
approach to calculate the apparent radiance of objects with respect to the viewpoint of 
the user. A sample screenshot is shown in Figure 18. 

 Vega Prime IR Sensor is an addition to IR Scene that adds realistic sensor effects, such 
as blur, saturation, jitter and various types of noise, to scenes generated using IR Scene. 
Post-processing done by IR Sensor helps to simulate sensor devices such as night-vision 
goggles or long-range infrared systems. A sample screenshot is shown in Figure 18 

 Vega Prime Radar provides real-time, realistic 3D radar displays. A sample screenshot is 
shown in Figure 19. 

 Vega Prime MAT creates atmospheric conditions. 
 Vega Prime TMM (Texture Material Mapper) makes it possible to assign material 

classifications to textures in an IR database, which adds detail and realism to simulated 
sensor scenes. A sample database is included. This is being rolled into a module called 
“CTS Sensors.” 

 

                                                 
9 Pricing information for these modules is provided in Appendix B. 



 
Figure 15: Vega Prime scene example 

 
Figure 16: Screenshot of LynX Prime application 



 
Figure 17: Instrumentation produced with GL Studio 

 

 
Figure 18: Screenshot of scene created using Vega Prime IR Scene (left) and Vega Prime IR Sensor (right) 

 

 
Figure 19: Screenshot of a Vega Prime scene (left) and corresponding radar return created using Vega Prime 
Radar (right) 

UTIAS runs Vega Prime on a single Windows-based system with multiple monitors, including a 
touch screen. Vega Prime is available in two areas: one office space and one large laboratory that 
contains a motion-based flight simulator. Additional computers and monitors are present in both 
areas. Some rearrangement of the monitors would likely be required to create a functional testing 
environment, but there is sufficient room and flexibility in the hardware systems to do so. 



Implementation Considerations 
Vega Prime is a leading candidate for an STE for UAV human-automation interaction. It has the 
following advantages: 

 The progress of the UAV can be simulated as if the aircraft were flying between 
waypoints and, if necessary, loitering around a fixed point.  

 The sensor modules (i.e., optical camera, IR, radar, etc.) allow for simulation of the 
scene information obtained by UAV sensors. For example, we can simulate the image 
obtained from a camera mounted on the UAV panning across the scene. This 
functionality is already partially implemented in the UTIAS configuration. 

 The display of the scene graph can be manipulated with the Vega Prime API to cue 
objects in the scene. This requires only a moderate amount of coding. 

 Automation can be simulated with a “Wizard of Oz” technique—by scripting where, 
when, and how automation tasks are performed. This will allow for greater experimental 
control. 

 Instrumentation can be easily linked to attributes in the scene through GL Studio. 
A potential drawback of the Vega Prime system (at least in the UTIAS implementation) is that it 
does not have flight dynamics module or an image database for a UAV. Thus, they are currently 
unable to simulate the flight characteristics of a UAV and they cannot generate an image of a 
UAV. These drawbacks may not be serious10. Given that we do not intend to include the piloting 
task in our experiment, the flight dynamics will not come in to play. UTIAS has many aircraft 
models and it would be possible to select one that has a similar flight envelope to a UAV, 
yielding a sufficient level of fidelity for the experiment. The inability to view the UAV itself is 
also not a substantial problem because there is no need to see a UAV in the scene. Rather the 
tasks involve viewing the scene from an egocentric perspective. 

Experimental Design 
A 2x2 between-subjects repeated measures design will be employed in the experiment to test the 
effect of two types of information contained in the interface; 1) automation process information 
(present or absent), and 2) context information (present or absent). Thus, four experimental 
groups will be formed: 

 Control Group:  process information absent  context information absent 

 Treatment Group 1:  process information present context information absent 

 Treatment Group 2:  process information absent  context information present 

 Treatment Group 3:  process information present context information present 

Experimental Tasks 
Each participant will complete 10 mission trials (scenarios), each lasting approximately 10 
minutes. In each trial, the UAV will fly a pre-determined path through a scene populated with 
targets. The primary task will be to identify the targets in the scene. Participants will be aided in 

                                                 
10 We have not enquired with the UIUC about whether they are using UAV flight and image models. This might offer another 
way to circumvent this drawback.  



this task by target identification automation comprised of  two ATR systems and the DS sensor 
fusion automation described above (see Figure 20).  

 
Figure 20. Sensor fusion automation flow chart 

It may be necessary to introduce secondary tasks to increase the workload level11. An effort will 
be made to keep the difficulty level of each mission consistent. However, the order of 
presentation of the scenarios will be randomized to minimize order effects. 

The location of hostile targets detected by the sensor fusion automation will be cued on the 
tactical situation map and the type of target will be indicated with text. In the three treatment 
conditions, additional information about the automation process and/or the context factors will 
be revealed through the interface as described above. The participant will respond by pressing a 
key or touchscreen location to designate the type of target. The participant will be free to use the 
automation process or context information (where provided) or the EO/IR camera (all groups) to 
acquire information about the automation conclusion or the visual scene, respectively. The 
training of the EO/IR camera will be automated in the simulation to control for spatial 
orientation skills. A key challenge lies in tuning the experimental scenario by balancing the 
payoff function and imposing time constraints (including delays in the camera pan and zoom) on 
task completion. 

This automation will not make target detection errors. That is to say that all objects cued by the 
automation will be targets. However, the target identification could be wrong in either one of the 
ATR conclusions or in the DS sensor fusion conclusion. The automation reliability is computed 
as the rate of correct target type identification by the DS sensor fusion automation. The 
automation reliability will be constant within each trail, but will vary among trails with different 
context. In the 10 trails, the sequence of the automation reliability will be balanced across 
participants.  

                                                 
11 For example, Wickens et al. [38] introduced a “target of opportunity” detection task and a system monitoring task to increase 
workload. 
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Participants will be given feedback about the performance of each type of automation (i.e., ATR 
and sensor fusion) at the completion of each trial. Note that this information is provided for all 
groups. 

Procedure 
A detailed experimental procedure will not be presented here. The procedure will generally 
consist of 4 phases: Informed consent, collection of demographic measures, experimental 
scenarios, and debriefing. Breaks will be given breaks between the phases and at regular 
intervals between the trials. The total experiment is expected to last 2.5-3 hours. 

Measures and Instruments 
The measures to be collected in the experiment are listing in Table 2 along with the instruments 
that will be used to collect them. 



Table 2. Experimental measures and associated instruments. 

Occurrence Type of 
Measure 

Data Collected Instrument 

General predisposition to 
trust 

Four questions about trust in 
everyday objects [26].  

 

Phase 2: One 
time  

Demographic 

 

General self-confidence Four questions about self-
confidence in everyday tasks 
[26].  

Participant identification of 
each target 

Simulation software 

Identification time for each 
target 

Simulation software 

Verification strategy for 
each target12 

Simulation software 

Phase 3: 

During each 
trial  

 

Objective 

Performance of secondary 
tasks (if included) 

Simulation software 

Perceived workload NASA Task Load Index (TLX) 

Self-confidence to fulfill 
target identification with 
automation 

One direct question (10-point 
scale) developed by Lee & 
Moray (1992, 1994) 

Phase 3: 

After each 
trial 

 

Subjective 

Trust in the automation Two options: 

One direct question (10-point 
scale) developed by Lee & 
Moray (1992, 1994). 

The 12-item trust scale 
designed by Jian, et al. (2000). 

Note that the operator’s self-confidence in her ability to complete tasks manually and her trust in 
automation have long been used as subjective measures in trust in automation research. However, 
Masalonis, et al. [28] suggested that as users learned how to accommodate the automation’s 
failings and capitalize on its strong points, it will be more meaningful to questions an operator’s 
self-confidence in his ability to complete the tasks with the automation. We include all three 
measures 

                                                 
12 Whether or not, participants direct the video camera to the target location. 



Hypotheses:  

Main Effects 
H1. Participants receiving automation process information will exhibit trust that is better 

calibrated, more resolved, and more specific as compared to participants not receiving 
this information. 

H2. Participants receiving automation process information will perform better on the target 
identification task as compared to participants not receiving this information. 

H3. Participants receiving automation context information will exhibit more better 
calibrated, more resolved, and more specific as compared to participants not receiving 
this information. 

H4. Participants receiving automation context information will perform better on the target 
identification task as compared to participants not receiving this information. 

Test and Evaluation Plan 
The purpose of this section is to outline a test and evaluation plan for the experiment described 
above. Developing a synthetic task environment and experimental scenarios, implementing 
human-machine interfaces, and linking the various elements together are high risk tasks that will 
be prone to disruptions. Therefore, the tasks in this plan should be considered to be the minimum 
required to undertake the experiment. Similarly, the timeline provided is only an approximation 
and should be re-evaluated on a regular basis as the plan is executed. 

Task Milestone Duration Completion 
Refine experimental 
plan13 

DRDC sign-off on 
experimental plan 

1 month May 31st, 2006 

Acquire radar and IR 
modules for VEGA 
Prime 

Modules received at 
UTIAS 

1 month Jun. 30th, 2006 

Develop synthetic task 
environment 

Demonstration of 
functional capabilities of 
STE 

2 months Aug. 31st, 2006 

Implement interface 
artifacts 

Delivery of software 
code 

1 month Sep. 30th, 2006 

Develop experimental 
scenarios 

Demonstration of ten 
experimental scenarios 
meeting the 
requirements of the 
experimental plan. 

1 month Oct. 31st, 2006 

Collect and prepare 
instruments and 

Provide completed 
checklist of measures 

1/2  month Nov. 15th, 2006 

                                                 
13 Refinement tasks will include: designing the appearance of the targeting cue, determining a compensation plan, setting the 
initial weights of the payoff function, setting the initial levels of automation reliability. 



supporting 
documentation14 

and associated 
instruments 

Conduct a usability 
study on the interface 
concepts 

 1/2  month Nov. 30th, 2006 

Run pilot study  1 month Dec. 31st, 2006 

Summative review of 
experimental design 

Verbal agreement 
between DRDC and 
contractor that 
experiment is fully 
prepared 

2 months Feb. 30th, 2006 

Recruit Participants Produce list of 
participants and their 
assignment to groups 

1 month March. 31st, 2006 

Data collection All participants 
completed 

1 month April. 30th, 2006 

Data recovery and 
treatment 

Confirmation that all 
data have been recorded 
and extracted as 
required for analysis 

1 month May. 31st, 2006 

Data Analysis Produce complete 
statistical analyses of all 
measures 

1 month Jun. 30th, 2006 

Reporting Final report delivered to 
DRDC 

2 months August. 31st, 2006 

Conclusions 
This report has described a research plan for testing human-automation interfaces for UAV 
automation. The experiment is grounded in theory and practice of human factors scientists 
exploring the role of trust in automation as an important determinant of human automation 
reliance. A review of relevant literature in the domain suggests that the proposed study poses 
unique and important questions that, if answered, would comprise a significant contribution to 
the knowledge base supporting UAV automation design. Moreover, the results would be of 
broader interest to the human factors community as it addresses issues that cross domain 
boundaries. The risks inherent in the undertaking of a new research program should be further 
resolved and weighed against the expected returns. 
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Appendix A: Review of UAV Simulators 
Name Description Functionality  Flexibility Fidelity Popularit

y 
Price System 

Requirements 
Multi-
Attribute 
Task 
Battery 

Allows users 
to perform 
multi-task 
workload and 
performance 
experiments.  

Medium:  
Functions 
include system 
monitoring, 
tracking, a 
scheduling 
window, 
communications 
and resource 
management 

Low:  
Written using 
Microsoft 
QuickBASIC 
4.5 

Low High Free:  
Available in 
lab now 

Low:  
Available in 
lab now 

Vega Prime 
V 2.0 

A commercial 
off-the-shelf 
software, 
specifically 
designed for 
the creation 
and 
deployment of 
real-time 3D 
simulation, 
training, and 
visualization 
applications.  

High:  
Users can 
manage details 
concerning 
numerous 
parameters 
associated with 
real-time, 
interactive 
visual 
simulation. 

High : 
C++ 
development 
environment. 
GL Studio 
allows a user to 
easily insert 
interactive 
dials, gauges, 
and 
instrumentation.
 
This flexibility 
has been 
confirmed by a 
programmer 
who served for 
UIUC research 

High High in 
academia 

Vega Prime: 
$3999.50 
Maintenance: 
$1439.10 
Educational 
Program 
offers further 
discount 

Medium:  
Windows 
workstation, 
1.0 GHz or 
higher; 1+ GB 
RAM; 4+ GB 
hard drive; CD 
Rom drive; 
OpenGL 1.2 
compliant 
graphics card; 
Windows XP 
Professional; 
Visual C++ 7.1 

CAE UAV 
simulator 

An integrated 
product that 
combines the 
Vehicle 
Control 
System from 
CDL Systems 
Ltd. with CAE 
simulation 
technology to 
form a vehicle 
operator 
station with a 
synthetic 
environment. 

High:  
Fully-integrated 
command, 
control and 
information 
system 
designed for the 
control of UAVs 

High:  
Fully integrates 
with CAE’s 
STRIVE™ suite 
of products, 
allowing 
maximum 
expansion and 
flexibility in 
applications.  

High Unable to 
Judge: 
Has been 
sent to 
Defense 
Research 
and 
Developm
ent 
Canada 
(DRDC) 
as a 
research 
test bed  

No detailed 
information. 
Note it is 
availabe in 
DRDC now. 

Medium: 
Hardware: 
Additional 
video card for 
simultaneous 
display of 
video 
 
Operating 
Systems: Red 
Hat Linux 7.2 
and 7.3; SUN 
Solaris 2.6, 
2.7 (7), 2.8; 
HP-Unix 
10.10, 10.20 

Visual 
Computing 
and 
Engineering 
(VCE) UAV 
Simulator 

Software 
developed for 
the US Navy. 
Provides a 
real-time 3D 
representation 
of the 
Predator 
UAV's 
daytime 
camera, 
which the 
user can 
control 

Medium:  
Measure and 
track operator 
actions as they 
perform UAV 
payload 
operations and 
track ground 
objects.  

High: 
Customization 
of the operating 
environment 
and mission 
scenario  

High Low:  
Used by 
Space 
and Naval 
Warfare 
Systems 
Comman
d 
(SPAWA
R) (US 
Navy) 

Negotiating 
educational 
price 

No detailed 
information 
now 



Name Description Functionality  Flexibility Fidelity Popularit
y 

Price System 
Requirements 

PCPlane Flight 
simulator 
developed by 
NASA 
Langley 
Research 
Center 

Medium:  
Contains 
Primary Flight 
Display (PFD), 
Navigation 
Display (ND) 
and auto-
pilot/auto-
throttle 
capabilities. 
Uses a Boeing 
757 dynamics 
model. 

Unable to 
judge:  
Can be 
integrated with 
Cockpit 
Displays of 
Traffic Info. 
(CDTI) and 
Multi-aircraft 
Control System 
(MACS) 

Low High:  
Used in 
many 
NASA 
projects/si
mulators 

No detailed 
information 
now 

No detailed 
information 
now 

Cockpit 
Displays of 
Traffic 
Information 
(CDTI) / 
Advanced 
Cockpit 
Situation 
Display 
(CSD) 

Display for air 
traffic that 
may be useful 
for us to 
integrate with 
other 
simulators 

Medium:  
Provides 
information 
relevant to air 
traffic control, 
including 
position, ground 
speed and 
assigned track 
of multiple 
aircraft 

Unable to 
judge: 
Can be 
integrated with 
other 
simulators, 
such as Multi-
aircraft Control 
System 
(MACS) 

Low Medium: 
Used in 
some 
NASA 
projects/si
mulators 

Free:  
download off 
website 

Medium: 
Intel Pentium 
4 processor 
NVIDIA chip 
based 
graphics card 
(GeForce 2 or 
higher) 
256 Mb RAM  
30Mb HD  

Multi-
aircraft 
Control 
System 
(MACS) 

A research 
tool being 
developed by 
NASA to 
enhance 
realism and 
flexibility of air 
traffic 
simulations 
involving 
human 
monitoring. 

Medium: 
Provides 
information 
relevant to air 
traffic control 
and 
management. 

Medium: 
MACS uses 
Java and is 
conducive to 
rapid 
prototyping of 
user interfaces 
for various flight 
management 
and guidance 
functions. 

Medium Medium:  
Used by 
NASA 
and 
California 
State 
University 

No detailed 
information 
now 

No detailed 
information 
now 

Aerospace 
Science 
(ASC) UAV 
Flight 
Simulator 
Station 

A flight 
simulation 
used to study 
UAV 
operational 
concepts and 
to evaluate 
weapons 
integration 
risk. 

No detailed 
information now 

Unable to judge Medium Unable to 
Judge:  
Serves for 
defense 
client, 
cannot 
find 
specific 
client 
name. 

No detailed 
information 
now 

No detailed 
information 
now 

 



Appendix B: Pricing for Vega Prime Modules 
Table 3 lists the educational pricing for Vega Prime modules not yet available at UTIAS. Each 
additional monitor that a single Vega Prime system runs on requires a runtime license. UTIAS 
has the correct classifications and Export License to purchase these modules. 

Vendor Contact: 

Mary Beth Roselli 
MultiGen-Paradigm 
Maintenance and Educational Sales Rep. 
Direct:  (408) 878-0810 
Fax:  (408) 878-0895 

550 S. Winchester Boulevard  #500 

San Jose, CA  95128 
 
Table 3: Price list for Vega Prime modules. 

Module Name Base Cost Maintenance Runtime License (RTL) 

Vega Prime IRScene $14249.50 $3869.10 $1699.50 

Vega Prime IRSensor $6488.59 $1799.10 $799.50 

Vega Prime Radar $8749.50 $2474.10 $1099.50 

Vega Prime Mat $2849.50 $1025.10 N/A 

Vega Prime TMM $3874.50 $1394.10 N/A 
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confiance dans l’automatisation, il serait essentiel de procurer aux opérateurs des
informations sur le processus d’automatisation et sur la fiabilité de l’automatisation en
contexte spécifique pour promouvoir un degré approprié de confiance dans
l’automatisation.
Le présent rapport présente un plan de recherche visant à créer des conceptions
novatrices pour les artefacts cognitifs communiquant ces deux types d’informations aux
opérateurs d’UAV dans le but d’engendrer la confiance appropriée dans les systèmes
automatisés. Cela inclut une catégorisation des nouvelles technologies d’automatisation
émergeant dans les systèmes d’UAV, une analyse des tâches changeantes des
équipages d’UAV, et un examen sélectif de la recherche pertinente
homme−automatisation. Le rapport introduit ensuite deux concepts d’interface
homme−machine pour des types sélectionnés d’automatisation d’UAV et il propose un
plan de recherches pour éprouver et évaluer ces conceptions.
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